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We consider the effect of the finite size in theab plane on the surface density of states(DOS) in clean
d-wave superconductors. We demonstrate that the angle-resolved DOS consists of energy bands that are
formed similarly to the Kronig-Penney model. In contrast to the gapless DOS on a surface of a bulk sample,
finiteness of the superconductor in one dimension provides the energy gap for all directions of quasiparticle
motion except foru=45° (u is the angle between the trajectory and the surface normal). As a result, the
angle-averaged DOS behaves linearly at low energies. At the same time, the transport DOS can still have a gap.
In the special case ofa=0° (a is the angle between thea axis of the crystal and the surface normal), the
spectrum is gapped for all trajectoriesu; the angle-averaged DOS is also gapped. Fora=45°, the spectrum is
gapless for allu; the angle-averaged DOS is then large at low energies.

DOI: 10.1103/PhysRevB.70.212513 PACS number(s): 74.78.Bz, 74.78.Fk, 74.45.1c

A characteristic property of thed-wave superconductivity
is the gapless spectrum of quasiparticles. The pair potential is
anisotropic, and the gap vanishes along the nodal directions.
Another source of low-energy quasiparticles is the surface,
which leads to forming the midgap states(MGS)1 due to the
change of the sign of the pair potential along a trajectory
upon reflection.

The d-wave superconductors can be employed in novel
types of logic elements, qubits;2,3 there is experimental
progress in this direction.4,5 However, the low-energy quasi-
particles introduce decoherence ind-wave qubits.6,7 At the
same time, the authors of Ref. 2 mention the possibility to
suppress the low-energy quasiparticles due to the finite size
of the d-wave banks.

In this paper, we systematically study the influence of the
finite size of ad-wave superconductor on the low-energy
density of states at the surface for all crystalline orientations
and both types of low-energy states. There is only a limited
number of results related to particular aspects of this issue.
The angle-averaged surface density of states(DOS) was nu-
merically studied by Nagato and Nagai for 45°-oriented
superconductors.8 There are also results on the DOS in clean
SN systems(where S is a conventionals-wave supercon-
ductor andN is a normal metal), which are relevant to the
nodal directions of finite-sized-wave superconductors due to
similarity of the pair potential profile along quasiparticle tra-
jectories in the two systems. The works by van Gelder9 and
Gallagher10 are the most relevant in this respect. In Ref. 11,
Shelankov and Ozana suggested a method to treat multiple-
interface superconducting systems and, as an application, nu-
merically considered the DOS in a finite-size bilayer. Their
results are relevant for the 45° trajectory in thed-wave sys-
tem. Finally, we mention an analytical result of Ref. 12,
where Fauchèreet al. considered anSN system with repul-
sive interaction between the electrons in theN layer. In our
language, their result refers to the splitting of the MGS.

We consider the system shown in Fig. 1(a). The profile of
the pair potential along a quasiparticle trajectory depicted in
Fig. 1(b), is not self-consistent, while the self-consistent pair
potential is suppressed near the surfaces. However, the width

of the regions where this happens has the characteristic scale
of the coherence lengthj=vF /2pTc (vF is the Fermi velocity
and Tc is the superconducting critical temperature). We as-
sumeL@j, then the piecewise constantD is a good approxi-
mation.

Technically, we solve the Eilenberger equations13 along
the trajectory, determining the normal Green functiong and

the anomalous Green functionsf and f̄. Since the Green
functions along the trajectory are continuous upon specular
reflection at the surfaces of thed-wave superconductor, they
obey the same condition in the effective one-dimensional

problem described by Fig. 1(b): g, f, and f̄ must be continu-
ous at the edges of the intervals of constantD. In addition,
the Green functions are 2d periodic.

FIG. 1. (a) dx2−y2-wave superconductor of finite widthL in the
ab plane(quasi-two-dimensional strip). The orientation of the crys-
talline a axis with respect to the surface normal is denoted bya,
then the angular dependence of the pair potential isDsud
=D0 coss2u−2ad. We assume 0°øaø45°—this interval covers all
physically different situations.(b) The pair potential along the tra-
jectory described by the angleu changes periodically betweenD1

=Dsud and −D2=Ds−ud on the surfaces of the superconductor;d
=L /cosu. The signs are chosen in such a way that the midgap states
exist atD1,D2.0. For definiteness, we chooseD1ùD2.
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The DOS(normalized by its normal-metal value) is determined by the real part of the normal Green functionn=Reg. The
DOS is symmetric,nsEd=ns−Ed. Straightforwardly solving the Eilenberger equations, we find the DOS at the interface
between the intervals of constantD (this corresponds to the surface DOS in thed-wave superconductor):

nsx = 0d = Re

EFÎD1
2 − E2tanhSk2d

2
D + ÎD2

2 − E2tanhSk1d

2
DG

ÎS ÎD1
2 − E2ÎD2

2 − E2

coshsk1d/2dcoshsk2d/2d
D2

− FsE2 + D1D2dtanhSk1d

2
DtanhSk2d

2
D − ÎD1

2 − E2ÎD2
2 − E2G2

, s1d

wherek1s2d=2ÎD1s2d
2 −E2/vF.

A similar formula was obtained by Gallagher;10 at the
same time, our results are different since his formula refers
to the center of the strip in thed-wave problem, while we
study the surface DOS. The zero-energy DOS can be found
immediately. If D1ÞD2, then Eq.(1) yields nsE=0d=0. If
D1=D2 s;Dd, then we obtainnsE=0d=coshsDd/vFd.

In Eq. (1), we did not assumeDd/vF@1, however, the
piecewise constant pair potential[Fig. 1(b)] is a good ap-
proximation only under this condition.

Below we analyze Eq.(1) at low energies,E!D, in the
following relevant cases.(a) D2=0 (nodal directions), (b)
D1ÞD2, and (c) D1=D2 (the latter two cases correspond to
the presence of the MGS in the infinite system).

(1) Effect of finite size on the nodal quasiparticles. A
nodal direction corresponds toD2=0. For brevity, we shall
denoteD1 by D. In the bulk, the DOS along a nodal direction
is normal metallic,n`=1.

The finite-size problem was considered previously(al-
though in a different context) by van Gelder9 and
Gallagher.10 They numerically demonstrated that in this su-
perconducting version of the Kronig-Penney model,14 the
quasiparticle spectrum consists of energy bands with square-
root singularities at the band edges. Below we present ana-
lytical results for this problem.

Taking into account thatDd/vF@1 andE!D, we obtain
from Eq. (1) that there is a sequence of bands and the center
of the lowest band is

E0 =
p

2

vF

d
S1 −

vF

Dd
D <

p

2

vF

d
. s2d

In the vicinity of E0, the DOS can be written as

n = Re
vF/d

ÎF2
vF

d
expS−

Dd

vF
DG2

− fE − E0g2

, s3d

hence the width of the band is

dE = 4
vF

d
expS−

Dd

vF
D s4d

and the DOS has square-root singularities at the edges of the
band.

The physical mechanisms behind the above results are
quite transparent. Instead of the normal-metallic situation
that takes place for the nodal directions in the bulk, in the
finite system we obtain the profile of the pair potential cor-
responding to theSN superlattice[Fig. 1(b) with D2=0].
Then the energy spectrum in each normal layer consists of
the Andreev levels15 which are smeared into the bands due to
periodicity of the system. The energy of the lowest Andreev
level corresponds to the center of the band, see Eq.(2), while
smearing is due to tunneling across the barrier of heightD
and widthd, and thus contains the tunneling exponential, see
Eq. (4).

(2) Effect of finite size on the midgap states. In the infinite
systemsL ,d→`d, the midgap states arise if the pair poten-
tial changes its sing upon reflection from the surface.1 Ac-
cording to our definitions(Fig. 1), this happens atD1,D2
.0. The MGS are localized near the surfaces and have ex-
actly zero energy; the corresponding DOS isn`

=2pD1D2sD1+D2d−1dsEd. Below we consider the effect of
finite d on this result; the results for the cases of differing
and coincidingD1 andD2 will be qualitatively different.

In the general case,D1 andD2 are nonzero and different.
Employing D1d/vF, D2d/vF@1, and E!D1,D2, and ex-
panding Eq.(1), we obtain

n =
2D1D2

D1 + D2
Re

E

Î− FE2 − S 2D1D2

D1 + D2
D2

se2 − e1d2GFE2 − S 2D1D2

D1 + D2
D2

se2 + e1d2G , s5d

wheree1s2d=exps−D1s2dd/vFd.
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This yields two bands, symmetric aroundE=0. The center
and the width of the positive-energy band are

E0 =
2D1D2

D1 + D2
expS−

D2d

vF
D , s6d

dE =
4D1D2

D1 + D2
expS−

D1d

vF
D . s7d

At the edges, the DOS has square-root singularities.
The position of the center of the band in the limitD1

@D2 was calculated in Ref. 12(although in a different con-
text), while only discrete energy levels were discussed and
the width of the band was not studied. Physically, the ob-
tained results can be explained as follows. In the infinite
systemd→`, the zero-energy levels are localized near the
interfaces betweenD1 and −D2. The first effect of finited is
to split the levels at the two neighboring interfaces due to
tunneling across theD2 barrier (the lowest barrier). This
splitting is symmetric with respect toE=0. Physically, it is
similar to the level splitting in the double-well potential. The
second effect of finited is to smear each of the split levels
due to periodicity of the system(similarly to the Kronig-
Penney model14); the smearing is due to tunneling across the
D1 barriers. As a result, the center and the width of the band
(6) and(7) are determined by the tunneling exponentials con-
taining D2 and D1, respectively. SinceD2,D1, the splitting
of the zero-energy level is larger than its smearing, hence a
gap in the spectrum arises.

Now we consider the caseD1=D2 s;Dd. Then

n =
D

ÎEb
2 − E2

, Eb = 2D expS−
Dd

vF
D . s8d

Thus the MGS is smeared into the band of width 2Eb around
zero. At the edges of the band, the DOS has square-root
singularities.

This result means that the two bands(positive and nega-
tive) that existed atD1.D2, touch each other atE=0 and
merge into a single band, while the singularities atE=0
transform into the minimum. The equivalent result about the
band centered atE=0 was numerically obtained in Ref. 11
(although in a different context).

The physical explanation of these results is the same as in
the previous caseD1.D2. The only difference is that in the
case of equal barriersD1=D2, the splitting of the zero-energy
level is exactly the same as its smearing, hence no gap in the
spectrum appears.

The results for the angle-resolved DOS are illustrated in
Fig. 2, which is a result of self-consistent numerical calcula-
tions. Our numerical method is similar to the one employed
in Ref. 16.

The energy gap for the lowest band along the nodal direc-
tion su=25°d (Ref. 17) is larger than for the MGS directions
(u=30°, 35°, 40°, and 45°); this agrees with the analytical
results according to which the gap for the nodal direction
does not contain an exponentially small factor[see Eq.(2)].
The energy bands for the MGS directions are gapped ifu

Þ45°, which corresponds to the caseD1ÞD2. The u=45°
direction corresponds to the caseD1=D2; the energy band is
then gapless.

(3) Angle-averaged DOS. Let us consider the behavior of
the angle-averaged surface DOS atE→0. The only contri-
bution to the DOS arises from the vicinity of the angles at
which D1=D2; these are theu= ±45° angles(at any orienta-
tion a).

Denotingq=u−p /4, we simplify Eq.(5) at smallq and
find that the angles contributing to the angle-averaged DOS
at energyE, lie in the interval −qb,q,qb, where

qb =
E

2DD8d

vF
expS−

Dd

vF
D , s9d

and D=D0 sin 2a, D8=2D0 cos 2a. We assume that
D8qd/vF!1; this condition for allq up to qb is equivalent
to E!Eb, whereEb=2Dexps−Dd/vFd is the upper edge of
the band. The angle-averaged DOS is

nav =
2

p
E

−qb

qb

nsqddq =
E

2DD8d

vF
expS−

2Dd

vF
D . s10d

The DOS is zero at zero energy, and behaves linearly at
smallE. Thus the averaged surface DOS remains gapless but
is strongly suppressed compared to that in the bulkd-wave
superconductor.

The gapless structure of the angle-averaged DOS(10) is
due to integrating in the vicinity ofu= ±45°, where the gap
in the angle-resolved DOS vanishes. At the same time, the
DOS probed by transport methods is

ntr ,E nsudDsuddu, s11d

and differs from Eq.(10) by the weighting factorDsud, the
angle-dependent transparency of the tunneling interface.
When the tunneling interface has finite thickness, the func-
tion Dsud is exponentially suppressed at not too smallu, then
the contribution of theu= ±45° trajectories can be signifi-

FIG. 2. The low-energy DOS for several trajectoriesu.
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cantly suppressed[since ntr,Ds45°dnav]. In this case, we
can expect that the transport DOSntr will be gapped despite
the angular averaging. The directional selectivity of tunnel-
ing is most pronounced in the scanning tunneling spectros-
copy experiments, where the effective tunneling cone around
the surface normal can be as narrow asdu,20°.18

The result(10) does not refer to the casesa=0° anda
=45°; these cases are special. Ata=0°, the MGS do not
appear, and the low-energy DOS is entirely due to the nodal
directions, the spectrum along which acquires a gap due to
the finite size. The angular averaging preserves the gap, ap-
proximately given by Eq.(2).

At a=45°, the conditionD1=D2 (which implies the gap-
less spectrum) is satisfied not only atu= ±45° but at anyu.
Then angular averaging does not introduce new qualitative
features(compared to the angle-resolved result), and the
DOS at small energies is large. Comparing with the bulk
case, we can say that the zero-energy peak in the DOS is
smeared but not split. This agrees with the self-consistent
numerical calculation of Nagato and Nagai.8

The above results refer to the surface DOS. However, the
averaged DOS is linear at low energies also inside the strip,
although the slope is different from Eq.(10), because the
MGS contributing to this result decay into the bulk of the
sample. For example, in the middle of the strip the angle-
averaged DOS differs from Eq.(10) by an additional factor
2 exps−Dd/vFd. This result is again valid atE!Eb; this in-
terval shrinks in the limit of larged, where the DOS is
mainly determined by the standard nodal contribution at
largerE.

Conclusions. Due to the finite size of the superconductor,
the spectrum of nodal quasiparticles acquires an energy gap.
The midgap states acquire the angle-dependent gap that van-
ishes for theu=45° trajectory; this result is valid unless the
crystal is 0° or 45° oriented(aÞ0° or 45°). At a=0°, the
MGS are absent, and the spectrum is gapped for all trajecto-
riesu. On the opposite, ata=45°, the spectrum is gapless for
all u. In all the cases, the angle-resolved DOS consists of
energy bands.

At a=0° the angle-averaged DOS has a gap, while ata
=45° the angle-averaged DOS is finite at low energies. At
aÞ0° or 45°, the angle-averaged surface DOS is strongly
suppressed due to finite size, while remains gapless and be-
haves linearly at small energies. The low-energy contribution
comes from the trajectories withu<45°, hence we can ex-
pect that the energy gap survives upon angular averaging if
one measures thetransport DOS in the case when the 45°-
angle contribution is suppressed by the transparency of the
tunneling barrier.
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