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Spin transport in diffusive superconductors
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We employ the Keldysh formalism in the quasiclassical approximation to study transport in a diffusive
superconductor. The resulting<# transport equations describe the flow of charge and energy as well as the
corresponding flow of spin and spin energy. Spin-flip scattering due to magnetic impurities is included. We find
that the spin-flip length is renormalized in the superconducting case and propose an experimental system to
measure the spin accumulation in a superconductor.
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Manipulation of spin-polarized currents can be used tcan experimental system to measure the properties resulting
study fundamental transport processes and might also prédrom the superconducting correlations. Many, but not all, ex-
vide new functionality in electronic devices. In ferromagnetsperimental systems involving spin transport in superconduct-
(F), the current is spin-polarized due to the spin-dependendrs are in theelastic transport regimé, which is considered
density of states and the spin-dependent scattering potentialgere. Complementary studies based on the Boltzmann equa-
In contrast, ins-wave superconductorsS), electrons with  tion for spin-transport by quasiparticles in tinelastictrans-
spin up and spin down and opposite momentum form Coop&kort regime have recently been publisHeNote that spin
pairs with no net spin. Nanoscale superconductors therefor@iection is qualitatively different in these opposite transport

display strikingly different properties when driven out of roqimes due to the strong energy dependence of quasiparticle
equilibrium by spin transport than by charge transport. tﬂow in superconductors

Most of the recent activities on the transport properties o Let us now outline the derivation of our main results. We

F/S junctions have studied effects caused by the phyS|caISe natural units so that=ks=1, and the electron charge is

properties on the F side of the junction. The zero spin CoopelfI

pairs prevent spin-polarized electrons to flow into S. Conse‘—az_'e" To describe the out-of-equilibrium electron-hole cor-

quently, a spin-polarized current from F injected into S Canrelatlops as well as spin accumulation, we define the Keldysh
result in nonequilibrium spin accumulation near the F/S in-Creen’s function as

terface. The competition between electron-hole correlations - .

and spin accumuﬁ)ation on the F side has recently attracted Gif(l’z) =2 (_')(P3)ik<[(¢(1))k'(¢T(2))j]—>' (1)
considerable interestPossible influence of the ferromag- k

netic order parameter on the superconductor has receiVQﬁherezp:[wT,wl,w}r,wI]T is a four-vector ands' the corre-
less attention. Singlet pairing does not allow a spin accumusnonding adjoint vector. The matrjy is the third Pauli ma-
lation in the superconductor. Consequently, spin accumulag;, generalized to & 4 spaceps=diagl,1,-1,-1. The

tion can reduce.the superconducting gap anq change N&ordinates are 1ér4,t) and 2<r,,t,). Similarly, we de-
transport properties both for transport via quasiparticles and , ~o A
for the supercurrent. Experimentally, spin transport in diffu-fin® 4x< 4 retarded and advanced Green's functic@8, G*)
sive S has recently been studfedlere, the reduced quasi- N SPIN- and particle-hole space x4 matrices are denoted
particle penetration due to spin accumulation results in los8Y @ “hat” superscript. A compact notation can be obtained
of spin memory which can be measured as a decreased magy construction of an &8 matrix in the Keldysh spacgle-
netoresistance. noted by a “check” superscript

Although the theory of nonequilibrium superconductivity ~1he quasiclassical Green's function is defined by
is widely used and developed, it has not been completelg(R,T,pg,E)=i/7[d§,G(R,T,p,E). This function is deter-
generalized to study spin transport. In this paper we thus usained by the Eilenberger equation which in the mixed rep-
the Keldysh formalism and the quasiclassicalresentation for a stationary state can be written
approximatiof™ to rigorously obtain a set of equations de-
scribing the_ transport of charge and energy in_ a dif_fusi\_/e EZ)3+iB . ;9_e¢1_5_;,,g =0, 2)
weak coupling S, as well as the transport of spin. This will m -
describe the penetration of spins into S and the associated e . . o~
suppression of the superconducting order parameter. Our d@merea:v_l"eAps IS _the gauge Invariant _derlvatlve,ls
scription of the transport properties will be based on a Athe A1X4 unit matrix, ¢ is the electromagnetic scalar poten-
X 4 matrix equation formalism to include spin accumulationtial, A contains the superconducting gap, ands the self-
as well as electron-hole correlations. Spin-flip scatteringenergy due to elastic impurity scattering and spin-flip scat-
from magnetic impurities is included as the dominant spintering by magnetic impurities in  quasiclassical
relaxation process inside the superconductor. We find that thepproximation. In the case of strong impurity scattering
spin-flip length is renormalized in the BCS case, and proposélirty limit) transport is diffusive. Expansion of the quasi-
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classical Green'’s function in spherical harmonics then gives a s s = {Rdcosh(0) 1} - {Im[sinh(6) ]}, (5b)
the Usadel equations. The symmetries and normalization of
the Green’s function allows for a parameterization of the arsts= {Rcosh9) 12 + {Re sinh(6) ]}2. (50)

quasiclassical, retarded componént:
The|A|agt terms on the right-hand side in E@) are due to

AR ( Tcosf(&) i sinh(a)e‘X) 3 conversion of quasiparticle current into supercurrent, and the
= Six ' a s sl s arstd T terms are due to spin flips. The spin-flip
7, sinh(0)e 1 cosf6) time in the normal state isry=8mngNoS(S+1)|vg]?/3,

where 1is the 2x 2 unit matrix, 7, is the second Pauli ma- Wherens is the magnetic impurity densitjy, the density of
trix, and @ and y are position and energy dependent func-States at the Fermi leves the impurity spin quantum num-
tions. We assume colinear magnetizations alongzttmsis ~ P€r. @ndus; is the Fourier transformed spin-flip impurity po-
ands-wave singlet superconducting state. We choose a gauggntial. We assume isotropic scattering. Our definitionof
where the superconducting order parameteis real and differs from the usual spin-flip lifetime by a renormalization
positive, and then the supercurrent is contained in the eledactor 4/3. This definition reproduces the diffusion equation

. . . . ; ; ; (N)— | ;
tromagnetic vector potenti@l and the chemical potential of With a spin-flip lengthl"=VD7 in the normal state. Thus

the Cooper pairs is included ig. Inspection of the self- there is a difference between the spin-flip lifetime measured
consistency relation foA reveals thafy=0,7 depending on in, e.g., electron spin resonance and spin-flip transport time.
the boundary conditions. This ansatz simplifies the calcula- We introduce generalized energy-dependent diffusion co-
tions considerably. The advanced Green’s function is relate§fficients

to the retarded throug® =—[ps3%ps]'. Because of normal- D, = D{Rdcosi &) 12 - {Rsin(6) 12, (6a)
ization, the Keldysh Green’s function can be expressed as

g<=g"h-hg" where h is a diagonal distribution function Dy =D({Recostd)]}* +{Im[sinh(6)]}>),  (6b)
matrix.

We will now consider a stationary state. A kinetic equa-WhereD=mZ/3 is the diffusion constant. The currents can
tion can be derived from the Usadel equations if we includghen be expressed as
Keldysh components. The important quantities are the physi- i =—D, Vh +Imii
. . . i =- m{jethy, 7
cal particle and energy currenggncluding particles and L S Uethr (78
holes, which we will denote by, andj, respectively, with

the corresponding distribution functions carrying the same jr==-DrVhr+Im{jeth,, (7b)
indices,hy andh, .* The physical spin current is denotpg ) )

and the spin energy currefits, with distribution functions jLs=— D1 Vhs+Im{jgihys, (70
hts andh s. The spin-resolved distribution functions can be

expressed by the particle distribution function fagy, )= jrs==DL V hrs+ Im{jethys, (7d)

“[HE -, (E))2-(H[FH(-E)-f|(-E)]/2.  The current \here we have defined the spectral supercurrentzas

componentsjr, efc. are spectral quantities, and the fotal=p(vy-2eA)sint?(6). The self-consistency relation is
charge current is given as an integrgkpargdr ,t)

=|e|NoS .. dEj+(r ,t,E), and the spin current is obtained by a
similar integral of jrs. Energy current is given by
jenergfT 1) =[€[NoJZdEF (r,t,E), and the difference in en- _ _
ergy current carried by opposite spins by a similar integral ofvhere the factor sgio) is determined from the boundary
iLs. condition to give the correct sign andis the interaction

The equilibrium solutions for the distribution functions Parameter. The complex part of this equation is neglected as
areh,_o=tanh(BE/2) andhy g=h, s ¢=hrs c=0. We derive ki- & consequence of charge conservation.

[

Alr)y=- % sgr(Ao)No)\f dEsinh(6)h,, (8)

netic equations and find: The functions¢ and x are determined by the retarded
. components of the Usadel equation. We obtain
V. L= 0, (4a) .
V-je=0, 9
\Y -jT:—2|A|a-|—-|-h-|-, (4b) 1
. D(Vzﬁ— E(VX— 2eA)Zsinh(20))
Vijis=- (2|A|aTT + T_faLSLS> h.s, (4c) 31
s = - 2iEsinh(#) - 2i cosr(0)|A|+Z— sinh(26),
Tsf
_ 1
Vijrs=- T_fCYTSTshTs- (4d) (10)
S

where Eq.(9) implies that the spectral supercurrent is con-
"Sbrved. In addition we have the following symmetry condi-
tions, 0* (-E)=-6(E), x* (-E)=x(E). Equations(4)—(10)
arr = Im[sinh(6)], (5a)  determine all transport properties of S.

The right-hand side terms represent renormalized scatteri
because of superconductivity:
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eV/2 a tunnel junction to the superconductor. A voltage bias be-
i tween K and F, induces a spin accumulation that can flow
into S. The superconducting wire is connected to an S reser
voir in equilibrium BCS state by a good metallic contact at
distanceL® from the N/S interface. On top of the S wire
there is a ferromagnet connected by tunnel barrier which
upon switching of the magnetization direction acts as a de-
tector for the spin signal. Measurement of the relative volt-
age of this electrode between parallel and antiparaiéh
respect to the top F reservpimagnetization givesAu
=uP - uAP) which describes the difference between electro-

FIG. 1. Spin battery connected to a superconductor. The thiciheémical potential of spin-up and spin-down quasiparticles
solid line indicates a tunnel barrier. located a distancé from the N/S interface. This quantity

can be calculated u=-/*, dEPPh4(L,E), where P is

In general, in a hybrid F/S system, the superconductothe spin polarization of the tunnel barrier between S and the
cannot be described as in terms of BCS formulas close to thp detector. We assume a homogeneous order parameter and
FIS interface due to the proximity effect. Nevertheless, toBCS spectral properties in the S wire since there are tunnel
gain insight into the physics implied by the abovementionecharriers between the N, F, and S elements and perturbation
formulas let us now consider the limit of a homogeneousrom current and spin-flip is weak.
BCS Superconductor, and SeIQGtO. This is relevant for the We can express the difference between the Spin_up and
proposed experiment below. For energiés <[A|, arr  spin-down distribution functions in N close to S ag™
=A/VA’-E? and the spin-flip renormalization factors are — N _¢N =pFN[f(E-eV/2)-f(E+eV/2)], where PFN
arsts=0, aps s=-A?/(A2-E?). The generalized diffusion —& _& G i olarizati

TSTS LsLs~™ ™ AN 29 ! =(Gmaj= Gmin)/ (Gmaj* Gmin) is the spin polarization between

constanD, =0 while Dy=DA%/(A°-E%). From Eq.(7a) this  he F reservoirs and Ni(E+eV/2) is the Fermi-Dirac dis-
means that there is no energy current carried by quasipartizipytions in the F reservoirs ar@hsmin is the conductance
cles W'th energyE| <|A|. Gap scattering for quasiparticle of majority (minority) spin electrons from ferromagnetic res-
energies below the superconducting gap corresponds to voir to the middle of N. There is thus no charge current or

transformation of the charge currefjt) into supercurrent. supercurrent anywhere in S, however there may be a spin

Such scattering is not possible for the physical spin current ent  Equatiori7d) states that there is no spin-current for

(irs). Consequently, in the absence of spin-flip scattering thenergies below the gap, thus for these energies the N/S in-

quasiparticle spin current into the superconductor vanishegface is effectively insulating. Since the S wire is con-

for [E|<[A| since D, =0 in Eq. (7d) and arsts=0 in the  pected to a reservoir in the other end f&@ <A the spin
kinetic Eq.(4d). Note that this result relies on the fact that istripution function equals the equilibrium valbgs=0. We
there are different effective diffusion coefficients for chargeqqye the TS kinetic EqAd) for energiesE|> A. This equa-
current(Dy) and for spin currentD, ). We also observe that o reduces to a diffusion equation with renormalized spin-
the terme g 5 is negativebelow the gap, acting as a source flip IengthI(S)(E):Isf\/(EZ—AZ)/(E2+A2), wherel= \;—DTSf is

of spin energy. the normaIsttate spin-flip length. The boundary condition at
Above the gap(|E|>|A|) the factorayr vanishes while pin-Hip engtn. nneaty "

2= Az o Ay =2 a2 the S reservoir is that the distribution function attains the
asis=E/ (E°-A%), arsts=(ET+A9)/(E°-A%). For the gen-  oqilibrium value, and at the S/N interface we match at each
eralized diffusion coefficients we find th&i, =D and D¢

PP 4 e ) . energy the tunnel spin current to the spin current inside S,
=DE*/(E*-A%). Now consider the kinetic equations in the

, ALOM: > |e|Ngjrs. We assume that®/1¥'>1 which is a relevant

BCS case. A charge current carried by quasiparticles wit hysical situation. s
energy|E|>|A| can propagate into S. For quasiparticles at” g position and energy dependent solutigg is substi-
[E|>[A] we see that there is no renormalization for the spin+ e into the expression for the measured difference in elec-
energy diffusion length in Eq4c), whereas the spin diffu- qchemical potential for parallel and antiparallel configura-
sion length in E_q(4d)_has an energy dependent renom_]allza-tion’ and we obtain
tion factor which diverges for energied|=|A| causing
massive spin-flip scattering. % © Rgs)

We will now apply this formalism to study spin diffusion, A= 2P(D)f dEAf(Neg st Tf(l) (11)
and demonstrate the significance of the renormalization of A Rt +R
the spin diffusion length. Experimental studies of spin accu- 1)) — ) ) )
mulation and spin injection has recently been perforhied Where R (E)—1/[_|T| Ngcs(E)No] is the resistance of the
metallic spin valves. The spin accumulation in the physicallyN/S tunnel barrier,[T| is the tunnellsng matrix element,
differentinelasticregime for a superconductor in this experi- Nacs(E) is the BCS density of stateRS (E) =15 (E)p/A is
mental system has also been calculated theoretitalg  the resistance of the S wire within a spin-flip length i
will consider the simplified geometry shown in Fig. 1, wherethe resistivity of the material in S when in the normal state
there is no charge transport in the superconductor, and calT >T). This result can be understood as follows. The spin-
culate the spin-accumulation signal in tHasticregime. The  accumulation close to the tunnel interface is exponentially
F,/N/F, systems act as a spin battery which is connected viattenuated by spin-flip scattering in S. The spin signal is also

Ho = —eV/
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decreased by the tunnel resistance, and since spin current is b -
strongly suppressed for energiEg <A only quasiparticles /
with energies higher than the gap contribute. The effective /
total resistance is a series of the tunnel interface resistance rd
with the resistance of S within one spin-flip length.

We will now consider some simplified limits for the quan- %
tity Au defined above. In the normal state whére-0 we E /
find that Au/ev=2PPPFVRY exp-L/Ig)/(RY+R") <
where Rg') andR" assume their normal statenergy inde- '
pendenyvalues. AtkgT<<A the signal measured hyu van-
ishes when the bias is lower than the energy gap<A 0.2
since spin current is suppressed for quasiparticles below the —
gap. For higher biagV>A, and at zero temperature when
the bulk resistance dominate%j» R", an approximate so- 0 02
lution is Ap=2POPFNA g Ulsifgtri2lsi/ — g Li2lst
+Y’wL/ZISf(erﬂr\fL/.ZISf]—eri[\e"L/ZISf])}, wherer=2a/eV.In - g o Temperature dependencelgf/eV. We useRy =R" in
this case the relatlon_ between the gner_gy gap and the b"'{’ﬁe normal state. For the dotted lined =6, and for the solid lines
determines the magnitude of the spin signal, and the expQ-/|_=7. The biaseV is 0.1A(T=0), 3A(T=0), 10A(T=0) for the
nential decrease of the signal. lower curve to the higher curve, respectively.

The temperature dependence/gi in the general case is
given by a decrease from a constant value abbyes the  yoing e find different effective diffusion coefficients for
temperature approaches zero. An example of this behavior {§,,,9e_ and spin-current. The spin-flip length is renormalized
shown in Fig. 2. Here we have used the approximate temy, he superconducting case, and at energies close to the gap
perature dependende=1.76T; tanH(1.74/Tc/T—1). Ourcal-  here is massive spin-flip. As an illustration we compute the
culations show that the spin signal decreases due t0 SUP&fifierence in electrochemical potential due to spin-

conducting correlations. For a large energy gap the spiRccymulation in an experiment sensitive to the renormaliza-
accumulation vanishes completely at low temperaturesion of spin-flip length.

These effects can be explained by suppressed subgap spin

current and massive spin-flip at energies close to the gap This work was supported in part by the Research Council

because of the superconducting correlations. of Norway, NANOMAT Grants No. 158518/431 and
In conclusion, we have presented a formalism to describd58547/431, RTN Spintronics, the Swiss NSF and the NCCR

elastic spin transport in superconductors with spin-flip scatNanoscience.

-’
-
.
-’
____ -

..

=
o
L
.,

-
-
-
-
_________ S

1V. T. Petrashov, I. A. Sosnin, I. Cox, A. Parsons, and C. Troadec,*W. Belzig, F. K. Wilhelm, C. Bruder, G. Schén, and A. D. Zaikin,
Phys. Rev. Lett.83, 3281(1999; M. Giroud, H. Courtois, K. Superlattices Microstruct25, 1251(1999.
Hasselbach, D. Mailly, and B. Pannetier, Phys. Rev.5B 5J. Rammer and H. Smith, Rev. Mod. Phy&8, 323(1986.
R11872(1998; V. I. Fal'ko, C. J. Lambert, and A. F. Volkov, 6y, Tserkovnyak and A. Brataas, Phys. Rev6B, 094517(2002.
Pis'ma Zh. Eksp. Teor. Fiz69, 497 (1999, JETP Lett.69, 532 7T yamashita, S. Takahashi, H. Imamura, and S. Maekawa, Phys.
(1999; F. J. Jedema, B. J. van Wees, B. H. Hoving, A. Filip, and  Rev. B 65, 172509(2002; S. Takahashi and S. Maekavibid.

T. M. Klapwijk, Phys. Rev. B60, 16549(1999; D. Huertas- 67, 052409(2003.
Hernando, Yu. V. Nazarov, and W. Belzig, Phys. Rev. L&g, 8A. Schmid, of NATO Advanced Study Institute Series(B981),
047003(2003. \ol. 65, pp. 423-480.

2J.Y. Gu, J. A. Caballero, R. D. Slater, R. Loloee, and W. P. Pratt’gM Johnson and R. H. Silsbee, Phys. Rev. L&6, 1790(1985;

3 Jr, PhYS- Rev. B66, 14050-(3_) (_2003' - F. J. Jedema, A. Filip, and B. J. van Wees, Natlwendon 410,
N. Kopnin, Theory of Nonequilibrium Superconductivi@xford 345 (2001)

Science, London, 2001

212508-4



