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Thermal fluctuations and longitudinal relaxation of single-domain magnetic particles at elevated
temperatures
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We present numerical and analytical results for the swiching times of magnetic nanoparticles with uniaxial
anisotropy at elevated temperatures, including the vicinitf @ The consideration is based in the Landau-
Lifshitz-Bloch equation that includes the relaxation of the magnetization magrudée resulting switching
times are shorter than those following from the naive Landau-Lifshitz equation d@g additional barrier
lowering because of the reduction BF at the barrier andii) critical divergence of the damping parameters.
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The theory of thermal fluctuations of small magnetic par-i.e., the equilibrium magnetizatiad(T) introduced through
ticles is one of the fundamental issues of modern micromagthe mean-field approximatiofMFA) involving the Brillouin
netics. The conditions at which the particle becomes supefunction, and the uniaxial anisotrop§(T) through the scal-
paramagnetic define the thermal stability of the magnetizeghq relationK(T) ~ M2(T). However, this approach becomes
state and therefore are also valuable for technological appliz,yajid at elevated temperatures as it does not incorporate the
cations such as magnetic recordinBrown suggested in his - ongitudinal relaxational effects. The purpose of this commu-
seminal work to include thermal fluctuations in the Landau- pication is to propose the theoretical formalism of the ther-
Lifshitz (LL) dynamical equation as formal random fields ) flyctuations of single-domain particles on the basis of
whose properties are defined by the equilibrium solution otne | B equation, which should be valid at all temperatures.
the corresponding Fokker-PlanckP) equation. He also de-  ag g practical example, we consider analytically and numeri-
rived the Arrhenius-Néel formula to describe the relaxationcaly the thermal switching of a FePt particle and discuss the
rate in the axially symmetric case of single-domain particle:ongitions at which the differences between the two formal-
which was later generalized to the presence of externgkmg emerge.
field3* Lyberatos and Chantréllapplied the Langevin- We start with the LLB equatidif augmented by the
dynamics approach of Brown to numerical micromagneticSyhite-noise fields, ¢;, and, in the form
to model the thermal properties of an ensemble of interacting

particles and, more generally, of ferromagnetic materials, in- . you

terpreting the micromagnetic discretization elements as small n=onXx Her+ O]+ n2 [n - (Hetr+ )]
particles. Generally speaking, the LL equation used in these

simulations is a low-temperature approximation only. Re- =Y T X (H o + 1
cently a generalized Landau-Lifshitz-Blo¢hLB) equation n? [ (Her+ &)1, @

for a ferromagnét® was derived, which is valid for all tem- _ .

peratures and includes the longitudinal relaxation. The deviavheren= M_/Me(_T) is the reduced magnetizationy, IS the_

tions of the LLB dynamics from the LL dynamics should be 9Yromagnetic ratio, and; and «, are dimensionless longi-

pronounced at high temperatures, especially close to the ciidinal and transverse damping parameters. The effective

fie temperatureTe. The validity of this approach has been fiéld Her is given by

confirmed by the measurements of the domain-wall mobility SF

in crystals of Ba and Sr hexaferrites closeTia® He=— == =H+Ha+ (MJx)(1-n?)n, (2
Since the proposal of the heat-assisted magnetic M

recording® (HAMR) the problem of high-temperature ther- \hereF is the free energy density of the single-domain par-

mal magnetization dynamics has become of large practicg|cie (cf, Ref. 8, H andH , are applied and anisotropy fields,
importance. The basic idea of HAMR is to write bits of 54, = M/ aH is the longitudinal susceptibility. Parameters
information at elevated temperatui@ose to the Curie tem- M, x;» anda; , depend on temperature and they are singular

perature, where the switching field is smadind store the 5+ 7 " \within the MFA-based model. one can use &9) of
information at room temperature. To achieve a signiﬁcamRef_C 7 with K=K, and ;.0 @y » ;earranged to the form
areal density advantage, the use of high-anisotropy intermesjmiar to that of of Ref. 8- “

tallics such asl, FePt has been suggestéd.herefore, from

both fundamental and applied points of view it is necessary N2T 2q N|tanhg T

to (_:onsid_er the micromagnetics of small partic(e_s mag- A= iﬁm ¥ = r‘r_le q B 3_-|—C )
netic graing at elevated temperatures. The straightforward
approacf? uses the formalism of the standard stochastic LLHere\ is a microscopic damping parameter that is tempera-
equation, however, with temperature-dependent parametersire dependent but noncritical &g,
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mMe = M(T)/M¢(T=0) 4) VFIT=20F, o=VMI(2x.T). 9)

is the reduced magnetization, agd 3T;m./[2(S+1)T]. One  We will restrict our consideration to the cabk=0. In this
can seg that in the vicinity of¢ the relaxatlo'nal parameters ,se the minima of are located ah,=n,=0, n,=+1, and
diverge: a; = a,x 1/M¢(T). In accordance with this theoret- ~

— ; = — — 2 2
) o . Fnin=0. The saddle point oF is n,=0 andn, =+n +n
ical prediction, ferromagnetic resonance measurements on™" P z LV

permalloy have shown a sharp increase of the damping close s where

to the Curie temperature. J1-a, a<1 -~ {(2 -a)l4, as<1
The stochastic fields in the LLB-Langevin equation above ng= ’ Fead= '

can be, in fact, introduced in many different ways. For in- 0, a=1 1(4a), a=1.

stance, one can consider all three fields as uncorrelated, set (10
some of them to zero, or identify some of them with each . )

other. In all these cases one obtains different LLB-Langevir]" the limit T—0 (i.e., x,—0 and thusa—0) Eg. (8) con-
equations and different stochastic trajectories. The physicain€s the vecton to the spherev=|n|=1, and the standard
quantities obtained by averaging over realizationg, df, &, formalism based on the LL equation is recovered._At nonzero
are, however, the same for all models. The reason is that ijfmPeraturesa>0, the magnetization changes its magni-
all cases one obtains the same Fokker-Planck equatiotHde- In our model_th|§ effect is maX|maI at_the saddle point
(FPB), as was shown in Ref. 14 for the LL-Langevin equa_where the magnetization vector is perpendlgular to th_e easy
tion. The FPE corresponding to E€L) can be obtained in 2XIS: One can wsuahzg th_e trajectory of th_|s vector in the
the same way as that for the LL equatizee the Appendix ~Process of thermal activation, after averaging over fluctua-

of Ref. 8. The result has the form of the conservation law toNS, as an ellipsis going via the saddle point. B&T*
defined bya=1 the ellipsis degenerates into a line. In the

o o rangeT* <T<T, one hasa>1, and the situation is quali-
—+—--J=0, (5)  tatively different. Heren contracts preserving its direction
along thez axis and goes through zero at the saddle point,
wheref =1f(n,t) is the probability density and the probability then it grows in the opposite direction. These scenarios are
currentJ reads very similar to the transformation of the domain wall struc-
ture with temperatur Obviously the process of thermal ac-
T ¢ tivation of single-domain magnetic particles cannot be de-
VMe% scribed on the basis of the LL equation at elevated

J=[n X Helf + %n[n : (Heﬁ—
T temperatures. The crucial process of the longitudinal relax-
_ %{n % {n % (Heﬁ_ )Hf (6) ation is captured by Eq$l)—(6) based on the LLB equation.

VMe% The escape rate in the ca§e< AU has the form
We will illustrate the stochastic dynamics of single- AU AU VF ~
domain magnetic particles for the model with theniaxial I'=Tqgexp - T) T°7° 20Fs¢ (1)
anisotropy,

5 5 In addition to the dependencex Mg(T) in EQ. (9) that is
Fa= (M +M)/(2x,), (7)  responsible for the barrier lowering at elevated temperatures,

where y, is the transverse susceptibility that is a constanﬁhere is another source of the barrier lowering described by

within the MFA. We use Eq. (7) rather than Fsadin EQ.(10). In particular, the value dfsqata=1 is two
Fa=—-M2?/(2y,) to makeT, independent of the anisotropy tmes smaller than its low-temperature value0. The
and thus to simplify our formalism. Equatiaif) could be ~ Prefactorl’s in Eq. (11) can be obtained by solving the FPE,
rewritten using a generalization of the micromagnetic anisoEd- (3), similarly to the derivation in Ref. 4. Fa=<1 the
tropy K as FA:(V)Z(‘FVZ)K (or as FA:—ng), where v is the res_ult depends o, only, since in this case the .bar_ner is
magnetization direci/ion vectory=M/M (see Ref. & being crossed by the pure rotation of the magnetization vec-

This is not helpful, however, within the approach based OrLor. Fora=1 both the longitudinal and transverse relaxation

the LLB equation. The problem is th&t=M?2/(2y, ) is not a ecomes important, and it is difficult to find an analytical
. = L . - .
constant and even not a function of temperaticé. solution to the FPE. Fortunately, in this temperature ramge

K:Mg(T)/(ZXL) used in Ref. 1P since the magnetization and «, given by Eq.(3) already become very close to each

magnitudeM can change dynamically during the thermal other_, SO t_hat one can seil] a; everywhere. Then the cal-
; . culation yields
escape process. It is convenient to scale the free energy den-

sity asF=(M?/x,)F with F given by 1-n? a 1\2
et FOZ (e 210%] g a © ex ?0- 1- 5 0(a— 1)
o

~ 1 1
F=-n-h+>(nZ+n)+_—(1-n?, )
a 1
2 4a xerfc{\/?a(l—gﬂ. (12
whereh=(x,/MgJH and a=2y,/x,. We also define the
temperature variable similarly to Ref. 2: Here 6(x) is the step function and,;=yM./(2x,) is the
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ferromagnetic-resonance frequency. el the total rate M2T=0) BBAM.E
simplifies to =22 e(T=0) BBg(MepB)

L/, (16)
Sk 1-EBYMP)

_ o a where v,=6.4x1023cm?® is the unit-cell volume and
F=2a2wl\/;ex4:_0'<l_§>:| (13) B’S(X)Est(X)/dX

To integrate the LLB-Langevin equation, the Heun nu-
merical schem has been used. The physically reasonable
interpretation of the stochastical process is that in the sense
of Stratonovich, as was stressed for the LL equation in Ref.
14. Later, it was showhf that even a naive Euler scheme that
yields the Ito solution would converge to the proper averaged
physical value if the magnetization is normalized at each
time step, reflecting the conservation of the magnetization
?ength. However, in the case of the LLB equation the mag-
netization length is also a stochastic fluctuating variable, so
that the choice of the integration scheme should explicitly
include the Stratonovich interpretation.

The spins were prepared in the state=-1, and mean

This reduces to the Brown's formulfi=2a,w,\o/me™®
(Ref. 2 in the limita— 0. Exactly ata=1, Eqs.(11) and(12)
yield I'= apwq\ o/ e™"2. Just belowT,, according to Eqs(8)
and (9) one hasaox(T,~T)?*7?, where 8 and y are the
critical indices for the magnetization and susceptibility.
Within the MFA ao remains finite afl;, whereas for more

work out the appropriate limiting expressions foibecause
nearT. the high-barrier approximatioAU > T becomes in-
valid. In fact, the prefactofy in Eq. (11) does not strongly
depend ona. The main difference of our result from the

Brown’s formula with a temperature-dependent barridy, fi - :

Py . ! - irst-passage tim@VIFPT) was evaluated as the time elapsed
OCMG(T) IS descnped by the two factoré) _a(_jdltlonal IQW'. until the magnetization reached the boundary value beyond
ering of the barrle_r_ beca_use qf the nonrigid magnetizationy, barriern,=0.5. The exact position of this boundary only
Egs.(10) and(11); (ii) crytical divergence of the damping at gjighty changes the MFPT. Alternatively, one can set the

Te EQ. (3)h btained the &/ . h boundary at the top of the barrier,=0. In this case one has
Brown has obtained the Cfﬁcﬁgn to the escape rate 14 multiply the time by 2, since in 50% of all realizations the

for o>1 in the formI'=2a,0 Vo/ me™7(1-1/0).> Within - gin crosses the barrier and in 50% of all realizations it falls

the LLB approach finding this correction in the whole rangep5ck18 |n the high-barrier caseT<AU, the MFPT should

O<a=is a complicated task. F@r=1 the correction fac-  coincide with the relaxation timé~ following from the

tor in Eq.(12) simplifies to FPE.

For a comparison, we also solved theaive) LL-
1 1 Langevin equation with a constant but thermally reduced
1-2-(1+7 (14 magnetization length,

2
nS
To illustrate the practical implication of our approach, we N=9n X (Herr+ 91— ya{n X [n X (Her + £},
consider thermal switching of a FePt partiolmagnetic (17)

grain) at high temperature. The LLB-Langevin equation, Eq.

(1), has been integrated numerically wigh0, (Z")=0, and where H is given by Eq.(2) without the last term. The
1 ’ I 1

temperature dependence enters this equation, as in the LLB
case, via the scaling of the anisotropy energy st@(T)

[Eq. (7) and(8) without the last terrh The nonrigorous deri-
vation of Eq.(17) starts with the equatios=19{sX (Hx
+)]-yNsX[sX (Het+&p)]} for the spin vector of unit
lengths. [The same starting equation is used for the deriva-
tion of the LLB equation, Eq(1), in the classical caskg.

been found analytically for a spin-phonon interactidtow- Rep""‘ﬂ”g § in this _equatlon _by |ts. thermal average,
ever it is difficult to obtain reliable theoretical results fom S0 M=(S) and rescgllqgn asm=nme yields Eq.17) \_N'th
general, as well as to extraktfrom experiments. For our ®2~=AMe. The latter is in a striking contradiction with the
illustration below we just set=0.1, neglecting its tempera- 190rous LLB expressions for the damping parameters, Eq.
ture dependence. The valuesma{(T) of Eq. (4) can be mea- (3). This difference bgcomes very important at elevateo_l tem-
sured or obtained from the Curie-Weiss equationperatures, and there is no easy way to improve the naive LL

_ ~ ~ @ . S results. In our simulations of Eql7) we just use the con-
Me=Bs(MeB), where B=S"J/(kgT), Bs(x) is the Brillouin a6\ =01 instead oy, to conform with existing publica-

function, andJ, is related to the experimentally measuredtions, e.g., with Ref. 12. Using,=\m, leads to even more
Tc via Tc=(1/3S(S+1)J, within the MFA. For FePt ,.,hqunced difference between the LL and LLB results.
Tc=750 K, and the best fit fom(T) is obtained with Figure 1 shows the MFPT of a 8-nm one-domain FePt
S=3/2'? For FePt we takeMg(T=0)=1100 emu/cy  particle as a function of temperature, calculated numerically
K(T=0)=1.24x 10" erg/cn?, so that x,=M3T=0)/  from the LL-Langevin and LLB-Langevin equations. These
[2K(T=0)]=0.0488 Oe criYemu. In the same way, the lon- numerical results are compared in Fig. 1 with Brown’s ana-
gitudinal susceptibility x;=dM/dH can be measured or lytical formula for the relaxation tim& 2 and the result of
found analytically from the MFA: Eq. (12). The switching time calculated within the LLB ap-

2ksT
<§i“(t)§j”(t’)>=mdj%ﬁ(t—t’). (15)

wherei, j=1,2 andu, v=X,Y,Z
The microscopic relaxation parameterin Eq. (3) has
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1/T (s) barrier approximation leading to E@ll) becomes invalid
-y ) ) ' ) for T=T*. We cannot increase the volume, however, without
* : violating the single-domain requirement.
1074 T T (a Both Brown'’s formula for the LL model and Egl11) for
P g the LLB model describing the Arrhenius dynamics are only
10°4 s valid for T<AU. Switching times showing an unphysical
LL simulation divergence neaf is the signature of their breakdown. For
10°4 ©  LLB simulation | the LL model, there is a better analytical approach describing
the thermally activated escape in terms of the integral relax-
1074 LLB asymptote ation timé&81% (IRT) that is valid in the whole temperature
corrected i range. The IRT for the LL model is also plotted in Fig. 1,
1075 . LIE gsympiote showing good agreement with the numerical data at all tem-
i  MLRT : peratures. The possibility to find the IRT analytically results
10™ - . - . from the spatial one-dimensionality of the FPE in the axially
0.0013 0.0014 0.0015 - ;
/T (K") symmetric casef=f(6,t). For the LLB model there are two

o S _ spatial coordinates(d,n} or {n,,n, =\nZ+nZ}, and a rigor-
FIG. 1. Switching times for a FePt particle with 8-nm diameter ;5 analytical solution for the IRT seems to be impossible.
calcullated numencally from the LL-Langevin and LLB-Langevin In conclusion, we have proposed the formalism of the
equations and analytically from the approproate Fokker-Plancl, o a4 re fluctuations within the mean-field approach
equations. While the integral relaxation tifi&T) works very well - . .
at all temperatures, the high-barrier asymptotes break dowir for based_ on the Landau'L'fSh'tz'BIOCh_ equation. The Langevin
=1. The 1/ corrections improve the asymptotes for 1. equation COU,Id Serve as a basis for the temperature-
dependent micromagnetic approach for small partictas
proach is always lower than that of the LL approach due taliscretization elemenfsat high temperature, similar to stan-
the additional lowering of the energy barri€t0) and the dard temperature-dependent micromagnetics but valid in the
critical growth of the damping af.. We have also shown the whole temperature range. This new micromagnetics will
temperaturel* =738 K at whicha=1 and the geometry of have practical importance for the heat-assisted magnetic re-
the barrier changes. For a given particle’s volume, our highcording applications.
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