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We present numerical and analytical results for the swiching times of magnetic nanoparticles with uniaxial
anisotropy at elevated temperatures, including the vicinity ofTC. The consideration is based in the Landau-
Lifshitz-Bloch equation that includes the relaxation of the magnetization magnitudeM. The resulting switching
times are shorter than those following from the naive Landau-Lifshitz equation due to(i) additional barrier
lowering because of the reduction ofM at the barrier and(ii ) critical divergence of the damping parameters.
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The theory of thermal fluctuations of small magnetic par-
ticles is one of the fundamental issues of modern micromag-
netics. The conditions at which the particle becomes super-
paramagnetic define the thermal stability of the magnetized
state and therefore are also valuable for technological appli-
cations such as magnetic recording.1 Brown suggested in his
seminal work2 to include thermal fluctuations in the Landau-
Lifshitz (LL ) dynamical equation as formal random fields
whose properties are defined by the equilibrium solution of
the corresponding Fokker-Planck(FP) equation. He also de-
rived the Arrhenius-Néel formula to describe the relaxation
rate in the axially symmetric case of single-domain particles
which was later generalized to the presence of external
field.3,4 Lyberatos and Chantrell5 applied the Langevin-
dynamics approach of Brown to numerical micromagnetics
to model the thermal properties of an ensemble of interacting
particles and, more generally, of ferromagnetic materials, in-
terpreting the micromagnetic discretization elements as small
particles. Generally speaking, the LL equation used in these
simulations is a low-temperature approximation only. Re-
cently a generalized Landau-Lifshitz-Bloch(LLB ) equation
for a ferromagnet6,8 was derived, which is valid for all tem-
peratures and includes the longitudinal relaxation. The devia-
tions of the LLB dynamics from the LL dynamics should be
pronounced at high temperatures, especially close to the Cu-
rie temperatureTC. The validity of this approach has been
confirmed by the measurements of the domain-wall mobility
in crystals of Ba and Sr hexaferrites close toTC.9

Since the proposal of the heat-assisted magnetic
recording10 (HAMR) the problem of high-temperature ther-
mal magnetization dynamics has become of large practical
importance. The basic idea of HAMR is to write bits of
information at elevated temperature(close to the Curie tem-
perature, where the switching field is small) and store the
information at room temperature. To achieve a significant
areal density advantage, the use of high-anisotropy interme-
tallics such asLl0 FePt has been suggested.11 Therefore, from
both fundamental and applied points of view it is necessary
to consider the micromagnetics of small particles(or mag-
netic grains) at elevated temperatures. The straightforward
approach12 uses the formalism of the standard stochastic LL
equation, however, with temperature-dependent parameters,

i.e., the equilibrium magnetizationMesTd introduced through
the mean-field approximation(MFA) involving the Brillouin
function, and the uniaxial anisotropyKsTd through the scal-
ing relationKsTd,Me

2sTd. However, this approach becomes
invalid at elevated temperatures as it does not incorporate the
longitudinal relaxational effects. The purpose of this commu-
nication is to propose the theoretical formalism of the ther-
mal fluctuations of single-domain particles on the basis of
the LLB equation, which should be valid at all temperatures.
As a practical example, we consider analytically and numeri-
cally the thermal switching of a FePt particle and discuss the
conditions at which the differences between the two formal-
isms emerge.

We start with the LLB equation7,8 augmented by the
white-noise fieldsz, z1, andz2 in the form

ṅ = gfn 3 sHeff + zdg +
ga1

n2 fn · sHeff + z1dgn

−
ga2

n2 hn 3 fn 3 sHeff + z2dgj, s1d

wheren;M /MesTd is the reduced magnetization,g is the
gyromagnetic ratio, anda1 and a2 are dimensionless longi-
tudinal and transverse damping parameters. The effective
field Heff is given by

Heff = −
dF

dM
= H + HA + sMe/xids1 − n2dn, s2d

whereF is the free energy density of the single-domain par-
ticle (cf. Ref. 8), H andHA are applied and anisotropy fields,
andxi=]Me/]H is the longitudinal susceptibility. Parameters
Me, xi, anda1,2 depend on temperature and they are singular
at Tc. Within the MFA-based model, one can use Eq.(4.9) of
Ref. 7 with K1=K2 and g1,2⇒a1,2, rearranged to the form
similar to that of of Ref. 8:

a1 =
l

me

2T

3Tc

2q

sinhs2qd
, a2 =

l

me
F tanhq

q
−

T

3Tc
G . s3d

Herel is a microscopic damping parameter that is tempera-
ture dependent but noncritical atTC,
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me ; MesTd/MesT = 0d s4d

is the reduced magnetization, andq=3Tcme/ f2sS+1dTg. One
can see that in the vicinity ofTC the relaxational parameters
diverge:a1>a2~1/MesTd. In accordance with this theoret-
ical prediction, ferromagnetic resonance measurements on
permalloy have shown a sharp increase of the damping close
to the Curie temperature.13

The stochastic fields in the LLB-Langevin equation above
can be, in fact, introduced in many different ways. For in-
stance, one can consider all three fields as uncorrelated, set
some of them to zero, or identify some of them with each
other. In all these cases one obtains different LLB-Langevin
equations and different stochastic trajectories. The physical
quantities obtained by averaging over realizations ofz, z1, z2
are, however, the same for all models. The reason is that in
all cases one obtains the same Fokker-Planck equation
(FPE), as was shown in Ref. 14 for the LL-Langevin equa-
tion. The FPE corresponding to Eq.(1) can be obtained in
the same way as that for the LL equation(see the Appendix
of Ref. 8). The result has the form of the conservation law

]f

]t
+

]

]n
·J = 0, s5d

wheref ; fsn ,td is the probability density and the probability
currentJ reads

J = fn 3 Heffgf +
a1

n2 nFn ·SHeff −
T

VMe

]

]n
DG f

−
a2

n2Hn 3 Fn 3 SHeff −
T

VMe

]

]n
DGJ f . s6d

We will illustrate the stochastic dynamics of single-
domain magnetic particles for the model with thez uniaxial
anisotropy,

FA = sMx
2 + My

2d/s2x'd, s7d

where x' is the transverse susceptibility that is a constant
within the MFA. We use Eq. (7) rather than
FA=−Mz

2/ s2x'd to makeTc independent of the anisotropy
and thus to simplify our formalism. Equation(7) could be
rewritten using a generalization of the micromagnetic aniso-
tropy K as FA=snx

2+ny
2dK (or asFA=−nz

2K), wheren is the
magnetization direction vector,n;M /M (see Ref. 8).
This is not helpful, however, within the approach based on
the LLB equation. The problem is thatK=M2/ s2x'd is not a
constant and even not a function of temperature[cf.
K=Me

2sTd / s2x'd used in Ref. 12], since the magnetization
magnitudeM can change dynamically during the thermal
escape process. It is convenient to scale the free energy den-

sity asF=sMe
2/x'dF̃ with F̃ given by15

F̃ = − n ·h +
1

2
snx

2 + ny
2d +

1

4a
s1 − n2d2, s8d

where h;sx' /MedH and a;2xi /x'. We also define the
temperature variables similarly to Ref. 2:

VF/T ; 2sF̃, s ; VMe
2/s2x'Td. s9d

We will restrict our consideration to the caseH=0. In this

case the minima ofF̃ are located atnx=ny=0, nz= ±1, and

F̃min=0. The saddle point ofF̃ is nz=0 and n';Înx
2+ny

2

=ns, where

ns = HÎ1 − a, a ø 1

0, a ù 1
J F̃sad= Hs2 − ad/4, a ø 1

1/s4ad, a ù 1.
J
s10d

In the limit T→0 (i.e., xi→0 and thusa→0) Eq. (8) con-
fines the vectorn to the spheren;unu=1, and the standard
formalism based on the LL equation is recovered. At nonzero
temperatures,a.0, the magnetization changes its magni-
tude. In our model this effect is maximal at the saddle point
where the magnetization vector is perpendicular to the easy
axis. One can visualize the trajectory of this vector in the
process of thermal activation, after averaging over fluctua-
tions, as an ellipsis going via the saddle point. AtT=T*
defined bya=1 the ellipsis degenerates into a line. In the
rangeT* øT,Tc one hasa.1, and the situation is quali-
tatively different. Heren contracts preserving its direction
along thez axis and goes through zero at the saddle point,
then it grows in the opposite direction. These scenarios are
very similar to the transformation of the domain wall struc-
ture with temperature.9 Obviously the process of thermal ac-
tivation of single-domain magnetic particles cannot be de-
scribed on the basis of the LL equation at elevated
temperatures. The crucial process of the longitudinal relax-
ation is captured by Eqs.(1)–(6) based on the LLB equation.

The escape rate in the caseT!DU has the form

G = G0 expS−
DU

T
D,

DU

T
=

VF

T
; 2sF̃sad. s11d

In addition to the dependences~Me
2sTd in Eq. (9) that is

responsible for the barrier lowering at elevated temperatures,
there is another source of the barrier lowering described by

F̃sadin Eq. (10). In particular, the value ofF̃sadat a=1 is two
times smaller than its low-temperature value,a→0. The
prefactorG0 in Eq. (11) can be obtained by solving the FPE,
Eq. (5), similarly to the derivation in Ref. 4. Fora&1 the
result depends ona2 only, since in this case the barrier is
being crossed by the pure rotation of the magnetization vec-
tor. Fora*1 both the longitudinal and transverse relaxation
becomes important, and it is difficult to find an analytical
solution to the FPE. Fortunately, in this temperature rangea1
anda2 given by Eq.(3) already become very close to each
other, so that one can seta1⇒a2 everywhere. Then the cal-
culation yields

G0 = a2v1Îs

p
Î1 − ns

2

a
expFas

2
S1 −

1

a
D2

usa − 1dG
3 erfcFÎas

2
S1 −

1

a
DG . s12d

Here usxd is the step function andv1=gMe/ s2x'd is the
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ferromagnetic-resonance frequency. Fora&1 the total rate
simplifies to

G > 2a2v1Îs

p
expF− sS1 −

a

2
DG . s13d

This reduces to the Brown’s formulaG=2a2v1
Îs /pe−s

(Ref. 2) in the limit a→0. Exactly ata=1, Eqs.(11) and(12)
yield G=a2v1

Îs /pe−s/2. Just belowTc according to Eqs.(8)
and (9) one hasas~ sTc−Td2b−g, where b and g are the
critical indices for the magnetization and susceptibility.
Within the MFA as remains finite atTc, whereas for more
realistic models it diverges. It makes, however, little sense to
work out the appropriate limiting expressions forG because
nearTc the high-barrier approximationDU@T becomes in-
valid. In fact, the prefactorG0 in Eq. (11) does not strongly
depend ona. The main difference of our result from the
Brown’s formula with a temperature-dependent barrier,DU
~Me

2sTd is described by the two factors:(i) additional low-
ering of the barrier because of the nonrigid magnetization,
Eqs.(10) and(11); (ii ) crytical divergence of the damping at
Tc, Eq. (3).

Brown has obtained the 1/s correction to the escape rate
for s@1 in the formG=2a2v1

Îs /pe−ss1−1/sd.16 Within
the LLB approach finding this correction in the whole range
0øaø` is a complicated task. Fora&1 the correction fac-
tor in Eq. (12) simplifies to

F1 −
1

2s
S1 +

1

ns
2DG . s14d

To illustrate the practical implication of our approach, we
consider thermal switching of a FePt particle(magnetic
grain) at high temperature. The LLB-Langevin equation, Eq.
(1), has been integrated numerically withz=0, kzi

nl=0, and

kzi
mstdz j

nst8dl =
2kBT

gMeVai
di jdmndst − t8d, s15d

wherei, j =1,2 andm, n=x,y,z.
The microscopic relaxation parameterl in Eq. (3) has

been found analytically for a spin-phonon interaction.7 How-
ever it is difficult to obtain reliable theoretical results forl in
general, as well as to extractl from experiments. For our
illustration below we just setl=0.1, neglecting its tempera-
ture dependence. The values ofmesTd of Eq. (4) can be mea-
sured or obtained from the Curie-Weiss equation

me=BSsmeb̃d, where b̃;S2J0/ skBTd, BSsxd is the Brillouin
function, andJ0 is related to the experimentally measured
TC via TC=s1/3dSsS+1dJ0 within the MFA. For FePt
TC=750 K, and the best fit formesTd is obtained with
S=3/2.12 For FePt we takeMesT=0d=1100 emu/cm3,
KsT=0d=1.243107 erg/cm3, so that x'=Me

2sT=0d /
f2KsT=0dg=0.0488 Oe cm3/emu. In the same way, the lon-
gitudinal susceptibility xi=]M /]H can be measured or
found analytically from the MFA:

xi =
v0Me

2sT = 0d
S2J0

b̃BS8smeb̃d

1 − b̃BS8smeb̃d
, s16d

where v0=6.4310−23 cm3 is the unit-cell volume and
BS8sxd;dBSsxd /dx.

To integrate the LLB-Langevin equation, the Heun nu-
merical scheme14 has been used. The physically reasonable
interpretation of the stochastical process is that in the sense
of Stratonovich, as was stressed for the LL equation in Ref.
14. Later, it was shown17 that even a naive Euler scheme that
yields the Ito solution would converge to the proper averaged
physical value if the magnetization is normalized at each
time step, reflecting the conservation of the magnetization
length. However, in the case of the LLB equation the mag-
netization length is also a stochastic fluctuating variable, so
that the choice of the integration scheme should explicitly
include the Stratonovich interpretation.

The spins were prepared in the statenz=−1, and mean
first-passage time(MFPT) was evaluated as the time elapsed
until the magnetization reached the boundary value beyond
the barrier,nz=0.5. The exact position of this boundary only
slightly changes the MFPT. Alternatively, one can set the
boundary at the top of the barrier,nz=0. In this case one has
to multiply the time by 2, since in 50% of all realizations the
spin crosses the barrier and in 50% of all realizations it falls
back.18 In the high-barrier case,T!DU, the MFPT should
coincide with the relaxation timeG−1 following from the
FPE.

For a comparison, we also solved the(naive) LL-
Langevin equation with a constant but thermally reduced
magnetization length,

ṅ = gfn 3 sHeff + zdg − ga2hn 3 fn 3 sHeff + z2djg,

s17d

where Heff is given by Eq.(2) without the last term. The
temperature dependence enters this equation, as in the LLB
case, via the scaling of the anisotropy energy withMe

2sTd
[Eq. (7) and(8) without the last term]. The nonrigorous deri-
vation of Eq. (17) starts with the equationṡ=gfs3 sHeff

+zdg−glhs3 fs3 sHeff+z2dgj for the spin vector of unit
lengths. [The same starting equation is used for the deriva-
tion of the LLB equation, Eq.(1), in the classical case.]
Replacing s in this equation by its thermal average,
s⇒m;ksl, and rescalingm asm;nme yields Eq.(17) with
a2=lme. The latter is in a striking contradiction with the
rigorous LLB expressions for the damping parameters, Eq.
(3). This difference becomes very important at elevated tem-
peratures, and there is no easy way to improve the naive LL
results. In our simulations of Eq.(17) we just use the con-
stantl=0.1 instead ofa2, to conform with existing publica-
tions, e.g., with Ref. 12. Usinga2=lme leads to even more
pronounced difference between the LL and LLB results.

Figure 1 shows the MFPT of a 8-nm one-domain FePt
particle as a function of temperature, calculated numerically
from the LL-Langevin and LLB-Langevin equations. These
numerical results are compared in Fig. 1 with Brown’s ana-
lytical formula for the relaxation timeG−12 and the result of
Eq. (12). The switching time calculated within the LLB ap-
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proach is always lower than that of the LL approach due to
the additional lowering of the energy barrier(10) and the
critical growth of the damping atTC. We have also shown the
temperatureT* .738 K at whicha=1 and the geometry of
the barrier changes. For a given particle’s volume, our high-

barrier approximation leading to Eq.(11) becomes invalid
for T*T*. We cannot increase the volume, however, without
violating the single-domain requirement.

Both Brown’s formula for the LL model and Eq.(11) for
the LLB model describing the Arrhenius dynamics are only
valid for T!DU. Switching times showing an unphysical
divergence nearTC is the signature of their breakdown. For
the LL model, there is a better analytical approach describing
the thermally activated escape in terms of the integral relax-
ation time6,8,19 (IRT) that is valid in the whole temperature
range. The IRT for the LL model is also plotted in Fig. 1,
showing good agreement with the numerical data at all tem-
peratures. The possibility to find the IRT analytically results
from the spatial one-dimensionality of the FPE in the axially
symmetric case:f = fsu ,td. For the LLB model there are two
spatial coordinates,hu ,nj or hnz,n'=Înx

2+ny
2j, and a rigor-

ous analytical solution for the IRT seems to be impossible.
In conclusion, we have proposed the formalism of the

temperature fluctuations within the mean-field approach
based on the Landau-Lifshitz-Bloch equation. The Langevin
equation could serve as a basis for the temperature-
dependent micromagnetic approach for small particles(or
discretization elements) at high temperature, similar to stan-
dard temperature-dependent micromagnetics but valid in the
whole temperature range. This new micromagnetics will
have practical importance for the heat-assisted magnetic re-
cording applications.
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FIG. 1. Switching times for a FePt particle with 8-nm diameter
calculated numerically from the LL-Langevin and LLB-Langevin
equations and analytically from the approproate Fokker-Planck
equations. While the integral relaxation time(IRT) works very well
at all temperatures, the high-barrier asymptotes break down fors
&1. The 1/s corrections improve the asymptotes fors*1.
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