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A structure-dependent self-consistent mean-field model has been used to calculate the temperature-
dependent magnetization in ferromagnetic bilayers that consist of two materials with different Curie tempera-
tures. The magnetization versus temperature curvesfSsTdg are found to be structure sensitive among the bilayer
systems with simple cubic, face-centered-cubic, and body-centered-cubic structures. The Curie temperature
sTcd enhancement of the systems due to the interface exchange coupling is discussed quantitatively as a
function of bilayer structure as well as the interface coupling strength. The interface effect on the layer-
dependent magnetization curvesSisTd is discussed.
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The temperature dependence of the spontaneous magneti-
zationSsTd curve in a ferromagnetic material has long been
an important problem in magnetism. It is usually regarded as
an intrinsic property of a given material—e.g., Fe, Co, and
Ni have their ownSsTd curves with different Curie tempera-
tures as well as different magnitudes of magnetization, re-
spectively. However, aSsTd curve can be modified signifi-
cantly if the size of the given material is shrunk down or the
dimensionality of the material is reduced. It is interesting to
note that the modification and manipulation of theSsTd
curves by the use of ultrathin films, nanowires, and nanodots
turns out to be one of the most challenging issues in current
magnetism research and engineering.

It has been found that theSsTd curve of a given ferromag-
netic material can be manipulated not only by those men-
tioned above but also by some extrinsic methods. Experi-
mentally, it was observed that the Curie temperature of Gd
layers on Fe(100) was enhanced significantly from its intrin-
sic bulk value by the proximity effect of Fe to the Gd
layers.1,2 Similar results were also obtained for Fe films on
Pd(100) (Refs. 3 and 4) and for Ni layers in the Co/Cu/Ni
trilayer system with an adjustable interlayer coupling.5 A
clear physical mechanism is needed to explain all these ex-
perimental observations. Theoretically, for a bilayer or a su-
perlattice that consists of two materials with different Curie
temperatures and a ferromagnetic interface coupling, phe-
nomenological approaches have been carried out by use of
Landau-Ginzburg theory6,7 which predicted that the magnetic
susceptibility should have a single maximum(singularity) if
the films are thin but have two maxima(one maximum at
lower temperature, one singularity at higher temperature) if
the films are thick. Meanwhile, microscopic approaches have
also been developed. Camley and Li used the self-consistent
local mean-field theory8 to address the magnetic bilayers or
superlattices with an antiferromagnetic interface coupling.
Jensenet al. used the Green’s function theory with a random
phase approximation(RPA) to explain quantitatively the ef-
fective “Curie temperature” enhancement of Ni films in the
Co/Cu/Ni trilayer system,9 a theory that picks up part of the
spin fluctuations but is still a kind of mean-field theory,
which works quite well for the whole temperature range ex-

cept in the vicinity of real Curie temperature.10 Compared to
the phenomenological approaches, the advantage of the mi-
croscopic approaches lies in the fact that they deal with the
underlying microscopic structures in the films and the results
can be in principle verified by modern element-specific tech-
niques. For example, with the probe layer technique, Möss-
bauer spectroscopy is able to study the element-specific and
position-selective spin arrangement.11–13 Meanwhile, x-ray
magnetic circularly dichroism(XMCD) spectroscopy using
synchrotron radiation has been proven to be an even more
powerful technique.14

In spite of the many progresses listed above, there are still
some interesting issues that need to be addressed.(1) There
is still lacking a microscopic model with real lattice struc-
tures of a bilayer, which consists of two materials with dif-
ferent Curie temperatures. For example, what is the differ-
ence of aSsTd curve if the bilayer has a face-centered-cubic
or a body-centered-cubic structure? For this purpose, the in-
plane contribution must be included in the model Hamil-
tonian; otherwise, only the body-centered-cubic structure
along thek100l directions can be treated.8 (2) Most of the
previous works focused only on the enhancement of the ef-
fectiveTc of the ferromagnetic bilayers by the interface cou-
pling, yet little attention has been paid to the change, espe-
cially the quantitative change, of the realTc, although an
increase is predicted by a theorem.15 (3) It is not clear how
far the influence of interface coupling can be extended to
both sides in a ferromagnetic bilayer system, while the
Mössbauer or other experimental techniques like XMCD
might be able in principle to provide such information in
experiments.

In this work, we develop a method that takes into account
the in-plane contribution, which can be applied to study any
real lattice structures of a ferromagnetic bilayer that consists
of two materials with different Curie temperatures; we also
describe quantitatively the enhancement of the realTc in a
magnetic bilayer, as a function of the bilayer structure as
well as the interface coupling strength; we finally provide the
layer-dependentSksTd curves for each atomic layer in a bi-
layer system. All the results worked out here can be in prin-
ciple verified by future experiments.
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It should be pointed out that the magnetization versus
temperature curves are the main concern of the present work,
while many other interesting properties of magnetic bilayers
or multilayers, such as the interface magnons,16 spin-wave
resonance,17 the finite-size scaling of the Curie
temperature,18 and the spring magnets,19 are not discussed
here.

The system to be considered here is as following: a bi-
layer with film A on the top of filmB, stacked along the
k001l direction. FilmA hask1 and film B k2 atomic layers,
respectively. Define the top layer of filmA as the first layer,
then its bottom layer at the interface becomes thesk1dth
layer, meanwhile the first layer of filmB at the interface is
the sk1+1dth layer and the bottom layer of filmB is the
sk1+k2dth layer.

Similar to that adopted by Camley and Li8 and Jensenet
al.9 a three-dimensional Heisenberg Hamiltonian is used in
the following to describe the magnetic bilayer with a ferro-
magnetic interface coupling:
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Here, the first and second terms represent the spin-spin inter-
actions in filmsA andB, respectively, while the third gives
the spin-spin interaction between filmsA andB.

Under the standard mean-field approximation, this Hamil-
tonian can be decoupled to the product ofHk andSk, where
Sk=s1/Ndoi jSijk takes thekth layer as a single atomic spin
whose magnitude is averaged up among theN spins and
Hk=s1/Ndoi jHijk is the averaged effective field felt by the
kth layer. Hijk represents the corresponding field applied to
the spin atsi , j ,kd. N is the total spin number in each atomic
layer. Thus the thermal average of the layer-dependent
atomic spin at any finite temperatureT can be written as

kSksTdl = SBssyd, s1d
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andS is the spin angular momentum to be considered. Cor-
respondingly the effective magnetic field is

Hk = z'sJk−1kSk−1l + Jk+1kSk+1ld + ziJkkSkl, s2d

where zi and z' are the in-plane and out-of-plane nearest-
neighbor coordination numbers for any specific lattices,
respectively. For the three specific lattices to be treated in
this work, zi=4 z'=1 for simple cubic(sc), zi=0 z'=4 for
bcc, andzi=4 z'=4 for fcc structures, respectively.

It is clear that we have now 2sk1+k2d equations from the
foregoing equations(1) and (2). These 2sk1+k2d equations
with sk1+k2d unknown spinskSkl andsk1+k2d unknown mag-

netic fieldHk can be solved self-consistently in the iterative
way.

Without the loss of generality, we takeSA=SB=1. It is
further assumed that the exchange constants in the two free-
standing filmssAd and sBd are JA and JB, respectively, and
the interface coupling constant betweensAd and sBd is JAB,
while their relative magnitudes are set to beJA:JB=1:2, and
JAB is adjustable betweenJA and JB. It is clear that we are
considering here two ferromagnetic films withTcA,TcB, re-
spectively. To illustrate most clearly the interface effect to
both films, 5 monolayers(ML ) each for filmssAd andsBd is
found to be the best choice.

Figure 1 shows a set of spontaneous magnetizations as a
function of temperature for the bilayers with sc, bcc, and fcc
structures, respectively, when the interface coupling is turned
off and on. HereJAB is set to beJAB=JB. The absolute nu-
merical values ofJB for the uncoupled and coupled sc, bcc,
and fcc cases have been determined by normalizing the cor-
respondingTcB to 1. To avoid confusion, we uset to repre-
sent the temperature after the normalization process. It is
seen that there are two independent phase transitions at
t=0.5 andt=1.0, respectively, for the uncoupled cases, while
there is only one real phase transition att=1.0 for the
coupled cases. In addition, for the uncoupled cases at any
particular temperatures(see the inset) it is found thatSsTd of
sc is at the top and bcc is at the bottom, while fcc is sand-
wiched in between. However, this ordering is just upside
down after the coupling is turned on, where bcc sits the
highest, sc the lowest, and fcc in between. It should be noted
that the two sets of orderings do not correspond to the bulk
coordination numbersszbulkd of the three lattices—i.e., 12 for
fcc, 8 for bcc, and 6 for sc structures—as one might naively
think. To understand the physics behind this, one needs to go
a little deeper into this problem. For the uncoupled cases, the
influences by the coordination numbers for different struc-
tures have already been automatically taken into account in
the Tc normalization process. After that, the curve shapes of
the three different bilayer systems reflect directly the compe-
tition between the contributions from the in-plane and the

FIG. 1. NormalizedSsTd curves for bilayers with simple cubic,
body-centered-cubic, and face-centered-cubic structures, respec-
tively, when the interface coupling is turned on or off.
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interlayer couplings. For the(100) thin films with the
nearest-neighbor exchange interaction, bcc has zero in-plane
coordinates, but has eight or four interlayer coordinates de-
pending on whether or not this layer sits in bulk or at the
surface. Similarly, fcc has four in-plane coordinates but eight
or four interlayer coordinates accordingly, and sc has four
in-plane coordinates but two or one interlayer coordinates.

With these numbers in mind, it is not difficult to judge
now that for a free-standing film with only 5 ML thick—i.e.,
only three layers in bulk but two layers at surfaces—the per-
turbation by the surfaces for the spontaneous magnetization
is obviously most severe for the bcc case, but less for the fcc
case and the least for the sc case. On the other hand, for the
coupled cases, since the interface coupling is chosen to be
the same as that in thesBd film (higher-Tc material), it is then
a strong perturbation for thesAd film (lower Tc material).
Therefore it is expected that the curve ordering will be re-
versed because the perturbation is the strongest for the bcc,
less stronger for the fcc, and the weakest for the sc cases. It
is thus concluded that it is the competition between the sur-
face and interface effects that determines the detailed shape
of a normalizedSsTd curve for any particular bilayer sys-
tems. It should be mentioned that the overall features dis-
cussed above are not changed when the interface coupling
strength is shifted to that of thesAd film (lower Tc material).

Now we turn to the problem of the Curie temperature
enhancement by the interface coupling. We concentrate here
only on the enhancement of the Curie temperature in the real
Tc. What we have done is to fixJB and calculateTc with
interface coupling on and off. In Fig. 2, theTc enhancement
is plotted, with different interface coupling strengths, as a
function of the relative interlayer coordination numbers—
i.e., the ratio of coordination numbers between interlayer and
bulk values—for the sc, bcc, and fcc bilayers, respectively. It
is found that the degree ofTc enhancement depends on the
detailed bilayer structure. The effect is the largest for the bcc
structure, intermediate for fcc, and the smallest for sc. This

can be interpreted as following: on the one hand, for the sc
case the coordination number contributed to the enhance-
ment of the Curie temperature increases only one per inter-
face atom compared to the uncoupled case, while for the fcc
and bcc cases the numbers are four per atom; on the other
hand, these increases of coordination numbers relative to
their uncoupled cases(5 for sc, 8 for fcc, and 4 for bcc
structures) are quite different. It is these two factors that lead
to the difference of the Curie temperature enhancement. In-
terestingly, if only two layers are concernedsk1=k2=1d, an
analytical formula of the critical temperature can be obtained
explicitly from Eqs. (1) and (2) by replacing the Brillion
function with the leading term of its Taylor series expansion:

kTc =
SsS+ 1d

6
hzisJA + JBd + Îzi

2sJA − JBd2 + 4zi
2JAB

2 j.

It is seen that any nonzeroJAB results in an enhancedTc,
while the degree of enhancement does depend on the struc-
ture as well as the interface coupling.

Finally we try to study how the interface coupling affects
the magnetization away from the interface. We take the bi-
layer with a simple cubic structure as an example in the
following but the results are generally valid for any other
structures. Figure 3 shows the layer-dependent magnetization
of the bilayer when the interface exchange coupling is turned
on between filmsA andB. It is found that the phase transi-
tion that previously happened att=0.5 does not exist any-
more: meanwhile, there is still a clear phase transition at
t=1. However, the difference compared to the uncoupled
case is that there are now ten distinguished curves for the
whole bilayer system, since the first and fifth layers the sec-
ond and fourth layers of each film are not anymore identical
after the interface coupling is turned on. For any fixed tem-
peratures, the layer-dependent curves of filmA are ordered as
layers 1, 2, 3, 4, 5, respectively, starting from the bottom.

FIG. 2. Tc enhancements for bilayers with simple cubic, body
centered cubic, and face centered cubic structures respectively.
a=sTc2−Tc1d /Tc1 whereTc1 is Tc of uncoupled bilayer andTc2 is
Tc of the coupled bilayer.

FIG. 3. Layer-dependent magnetization for a coupled bilayer
with simple cubic structure. For any fixed temperatures, the layer-
dependent curves of filmA are ordered from the bottom as layers 1,
2, 3, 4, 5, respectively, while the curves of filmB are ordered as
layers 10, 6, 9, 7, 8, respectively. The solid line is theSsTd curve of
layer 1 in the uncoupled case.
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The curve from the interface layer(fifth layer) is most
strongly affected. Compared to the uncoupled case, all the
curves of film A show clear tails as the magnetization is
decreased to zero, even for the farthest layer from the inter-
face(first layer) where the tail is still obvious. As a reference
to see the tail, we also put in this figure the curve of the first
layer in the uncoupled case. It should be noted that these tails
are very similar to that observed at the Curie point for a
ferromagnetic-paramagnetic phase transition under an exter-
nal magnetic field. In this sense the interface coupling acts as
a kind of effective residual magnetic field for filmA. The
interface effect, however, is much weaker in filmB as seen in
Fig. 3, although the set of curves are also split to five differ-
ent curves. The ordering of the curves in filmB at any given
temperature is found to be qualitatively different from that of
film A as discussed previously. The curves of filmB from the
bottom are 10, 6, 9, 7, 8, respectively. The magnetization of
the interface layer(sixth layer) is larger than the surface
layer (tenth layer) since the former is coupled directly to

another magnetic system. Similarly the magnetization of the
seventh layer is larger than the ninth layer. The magnetiza-
tion of the ninth layer is larger than the sixth layer because
the former has large exchange couplings at both sides, while
the latter has one side large(with the seventh layer of filmB)
and the other side small(with the fifth layer of film A) ex-
change couplings. Following the same reasoning, the magne-
tization of the eighth layer is the largest as expected. At last,
it should be mentioned that 10 ML/10 ML and 20 ML/20 ML
cases(not shown here) have also been investigated. The re-
sult shows that the interface effect on anSsTd curve extends
at least to the tenth layer of the lower-Tc side but is almost
negligible in the second layer at the higher-Tc side.
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