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A single multichannel quantum impurity model with pure hybridizations between the localized and orbital
degenerate conducting electrons is shown to exhibit several interesting impurity properties resembling that of
the multichannel Anderson model. Particularly for two special kinds of hybridization parameters the model can
be solved exactly by the Bethe ansatz method. In these integrable cases, the competition between the direct and
exchange correlated hybridizations can produces either a Fermi-liquid or non-Fermi-liquid behavior at low
temperatures.
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I. INTRODUCTION

A prototype model of quantum hybridization impurity
problem is the well-known Anderson model(AM ), which
describes the formation of the local magnetic moment in
nonmagnetic host metals. The model exhibits the quantum
nature of an impurity embedded in a Fermi liquid(FL), such
as mixed-valance behavior and the Kondo effect, and pro-
vides some interesting interpretations of the deviations from
the FL which have been widely observed in the normal-state
properties of cuprates and in some Ce- and U-based heavy-
fermion compounds.1 The deviations are in some cases also
ascribed to the existence of a quantum critical point(QCP)
associated with degenerate impurity states at zero tempera-
ture, such as the quadrupolar Kondo effect and electron-
assisted tunneling of an atom in a double-well potential.2

Thus, in order to make a closer connection between theory
and experiment, it is interesting to investigate the different
types of impurity correlations in a single-impurity model and
to clarify if it is responsible for the non-Fermi liquid(NFL)
behavior.

The simplest single-impurity model Hamiltonian exhibit-
ing NFL behavior is the multichannel Kondo model3(MKM )
in the overscreened case, which has been studied extensively
by the Bethe ansatz(BA) method,4–7 conformal field theory,8

and bosonization technique.9 Unlike other NFL scenarios,
the overscreened Kondo effect manifests itself as the ground-
state degeneracy due to the residue degrees of freedom at the
impurity site, resulting in divergent susceptibility at low
temperatures.6 Many efforts have been made to clarify if this
unusual impurity behavior is limited only to the Kondo re-
gime. One may consider a generalized AM with additional
screening channels. As long as the normalized local level is
pinned at the Fermi surface the valence fluctuation may give
rise to a NFL.10 Another remarkable approach is to consider
the response of channel anisotropy to NFL behavior in the
MKM by use of a BA solution. In this case, a new energy
scale is generated characterizing the neighbors of the fixed
points, reflecting the structure of symmetry breaking in the
channel sector.11 Depending on the anisotropy parameter, the
BA solution provides a unified description for the crossover
from FL to NFL behavior. It is then interesting to seek a
similar BA solution for the Anderson-like model where a
similar crossover would take place. For this purpose, Kar-

naukhove and Yu suggested to consider a single-impurity
model describing the exchange interaction and correlated hy-
bridization in a degenerate AM.12 More recently, by using the
BA method, Bolech and Andrei have studied the two-channel
AM with the single-occupancy constraint on the localized
level,13 and Zvyagin has investigated a generalized AM with
both in-shell Hubbard-like interaction and Hunds ex-
change.14

In this paper, we propose to study a class of hybridization
impurity models without direct Coulomb in-shell coupling
between localized electrons. Recall that in the AM, the hy-
bridization is a one-particle process; the only two-particle
interaction is the directd-d correlation parametrized by re-
pulsion U on an impurity shell. In our model, the latter is
absent. Instead, two competing correlated hybridizations
[HW1

andHW2
in Eq. (1)] corresponding to off-diagonal Cou-

lomb processes are introduced. We will show that the model
Hamiltonian shares some features similar to those of the
multichannel AM and is exactly solvable in some specified
parameter regions. Though the conventionalU term is ab-
sent, the electrons on the impurity shell experience Pauli
exclusion due to correlated two-body impurity-metal hybrid-
izations and the exclusion of three- or more-particle occu-
pancy at the impurity site. The latter requirement is neces-
sary for the validity of the BA solutions in a number of
multichannel models involving three(or more) hybridizing
impurity valences(conveniently chosen as empty, singly, or
doubly occupied impurity states).15 As the model parameters
vary, the system exhibits both the traditional Kondo effect
and NFL behavior due to the different degenerate ground
states similar to the multichannel Anderson model.

II. MODEL HAMILTONIAN

The free part of the model includes the electron energies
in the conducting band and the local impurity level, given by

H0 = − io
ms
E dxcms

† sxd
]

] x
cmssxd + edo

ms

dms
† dms,

wherecms
† sxd sdms

† d creates a conducting band(local orbital)
electron with spin indexs= ↑ ,↓ and orbital channel(flavor)
indexm=1,… , f. The one-particle hybridization between lo-
calized and band electrons is described by

PHYSICAL REVIEW B 70, 212401(2004)

1098-0121/2004/70(21)/212401(4)/$22.50 ©2004 The American Physical Society212401-1



HV = − o
ms
E dxdsxdfVcms

† sxddms + V*dms
† cmssxdg.

Among two-particle impurity-metal correlations, we con-
sider two kinds of correlated hybridizations, represented by
W1 andW2, respectively, as

HW1
= oE dxdsxdfW1dms

† cm8s8
† sxddm8s8dms + H . c .g,

HW2
= oE dxdsxdfW2dms

† cm8s8
† sxddm8sdms8 + H . c .g.

Obviously, these two terms are truncated from the off-
diagonal Coulomb processes preserving the spin and orbital
rotational invariance. Our total model Hamiltonian is given
by

H = H0 + HV + HW1
+ HW2

. s1d

The pure hybridization Hamiltonian, Eq.(1), shares in
some aspects the features of degenerate asymmetric AM’s.
For simplicity, we fix V.0, W1.0 and considerW2 as a
running parameter. Let us first considerW2=0—i.e., the
spin-orbital degenerate case. Usually, both the one-particle
hybridizationHV and the correlated hybridizationHW1

will
induce the antiferromagnetic exchange between the local and
conducting electrons. But due to the absence of direct on-site
repulsion U, the effectives-d exchangeJV induced byV
via valence fluctuations,d1+e−
d2,d1
d0+e−, is vanish-
ing, while the one induced byW1 via d1+e−
d2 is
JW1

,−VW1/ed. We always assume that the local leveled is
below the Fermi surface. The case withf =1 (i.e., the single-
channel model without theW2 term) was first discussed by
Karnaukhov.16 The Kondo regime closes toW1=V, where
double occupation at the impurity site is forbidden. This is
becauseHV+HW1

is given by

VE dxdsxdF1 −
W1

V
ndGcs

†sxdds,

indicating the limit W1→V being the same as that of the
U→` degenerate Anderson model.6,16 In fact, as we will see
in the following, the two-electron scatteringS matrix turns
out to be the same as that of the infinite-U degenerate Ander-
son model6 and the model is exactly solvable for arbitraryf.
As the spin and orbital channels are degenerate[preserving
SUs2fd symmetry], there is a characteristic energy scaleTK

(the Kondo temperature) below which both the spin and or-
bital degrees of freedoms of the impurity are exactly com-
pensated by the conducting electrons.

WhenW2Þ0, the above picture will be modified in each
spin-orbital channel, resulting in an orbital singlet or spin
singlet, respectively, depending on the effective coupling.
This is because whileW1 is spin-orbital SUs2fd invariant,W2

breaks it into SUspins2d ^ SUorbitalsfd. The meaning ofHW2
is

clear: when there is an electron in thed orbital, it leads to
anotherd electron attracting(repelling) a c electron if they
are in the same(different) channels with different(the same)
spins. Therefore the correlated hybridizations for a spin sin-

glet and orbital triplet(ss,ot) is W1−W2, while for an orbital
singlet and spin triplet(os,st) is W1+W2. The situation re-
sembles that of the multichannel AM with both direct and
exchange correlations amongd electrons.5,6,17,14 Generally,
these asymmetric spin or orbital singlet ground states will
lead to non-Fermi-liquid behavior at low temperatures.

At first glance, the model seems to be integrable for ge-
neric W2, as the two-electron scattering matrices in both
(ot,ss) and (os,st) sectors satisfy the Yang-Baxter relation
(YBR). However, the explicit two-electron scattering matrix
in a general spin-orbital configuration cannot be expressed in
terms of the product of those obtained in each(ot,ss) and
(os,st) sector, owing to the hybridizing dynamics.15 So the
model is not integrable for genericW2. Fortunately, we will
find that there is a nontrivial circleW2= ±ÎW1s2V−W1d,
along which the exact solution of Hamiltonian(1) is again
available. In the phase diagram parametrized byW1/V,W2/V
(see Fig. 1), the center of the circle is located at(1, 0)—i.e.,
the Kondo regime in the degenerate case. There are four
special points at the circle—i.e.,(0, 0), (1, 1), (2, 0), and
s1,−1d—corresponding to the exact free spin regimes.

III. INTEGRABLE CASES

The integrability of the model in two special cases, espe-
cially the spin-orbital nondegenerate case, is nontrivial. This
is explored byexplicitly solving the two-particle scattering
matrix (TPSM) S12sk1,k2d of two conduction electronsin the
following.15 Here, we need to solve the three valence states
with nd=0, 1, 2 by use of Bethe wave functions. These
states, however, are mixed into each other due to the one-
particle and correlated hybridizations. A generic state of the
two-particle system, parametrized by two different quasimo-
mentauk1,k2l, is defined by

FIG. 1. The integrable cases parametrized byX=W1/V and
Y=W2/V. Case(i) (spin-orbital degenerate) is along theX axis; case
(ii ) (spin-orbital nondegenerate) is a circle centered at(1,0) with
radius 1. The two integrable lines insect at(0, 0) and (2, 0). The
effective couplingscd along theX axis is negative(positive) in
between(or outside) the two points. Along the circle the effective
coupling changes sign alternatively at the four free spin points(0,
0), (1, 1), (2, 0), ands1,−1d.
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uk1,k2l = o
misi

E dx1dx2gm1m2

s1s2 sx1,x2dcm1s1

† sx1dcm2s2

† sx2du0l

+ o
misi

E dxem1um2

s1us2 sxdcm1s1

† sxddm2s2

† u0l

+ o
misi

fm1m2

s1s2 dm1s1

† dm2s2

† u0l,

wheregsx1,x2d ,esxd, and f are the wave functions satisfying
the following Schrödinger equations:

s− i]x1
− i]x2

− Edgsx1,x2d =
V

2
fdsx1dPesx2d − dsx2desx1dg,

s2d
s− i]x + ed − Edesxd + 2V*gsx,0d + 2fsV + W1df + W2Psfgdsxd

= 0, s3d

s2ed − Edf +
1

2
sV* + W1

*ds1 − Pdes0d +
1

2
W2

*sPs − Pmdes0d

= 0. s4d

In the above,Ps ,Pm, and P; Ps ^ Pm are permutation op-
erators defined in the spin, orbital, and total spaces, respec-
tively.

According to Wiegmann and Tsvelick,5 we assume the
following Bethe wave functions:

2 ! gsx1,x2d = fAgk1
sx1dgk2

sx2d − PBgk2
sx1dgk1

sx2dgusx1 − x2d

+ fBgk1
sx1dgk2

sx2d − PAgk2
sx1dgk1

sx2dg

3usx2 − x1d,

where gksxd is the one-electron wave function satisfying
s−i]x−kdgksxd+Vekdsxd=0 and ek=fV* / sk−eddggks0d. It is
solved by gksxd=exphifkx+f sgnsxdgj, with f=2 tan−1

f−V2/2sk−eddg. Once the Bethe function forgk1k2
sx1,x2d is

adopted,ek1k2
sxd and fk1,k2

can be derived directly from Eqs.
(2) and (4), respectively:

ek1k2
sxd = fAek2

gk1
sxd − PBek1

gk2
sxdgusxd + fBek2

gk1
sxd

− PAek1
gk2

sxdgus− xd, s5d

fk1k2
= ek1

ek2

V* + W1
* + W2

*Ps

4V* s1 − PdsA + Bd. s6d

By substituting the above expressions into Eq.(3), we obtain
the following constraint on the amplitudesA andB:

D1 + D2 + D3 = 0, s7d

where D1=−sV/2ds1−PdsA+Bd , D2=si /V*dfsk1−edd+sk2

−eddPgsB−Ad, and D3=fsuV+W1+W2Psu2d /2V*gs1−PdsA
+Bd. It is straightforward to derive from Eq.(7) the two-
particle scattering matrix defined byB=Ssk1,k2dA. The ex-
pression forSsk1,k2d is rather complicated, and it does not
satisfy the following YBR for genericW2:

S12S13S23 = S23S13S12. s8d

However, we find two special cases where theS matrices do
satisfy Eq.(8).

(i) Spin-orbital degenerate case withSUs2fd symme-
try: W2=0, c=2W1sW1−2Vd:

Ssk1,k2d =
k1 − k2 − icP

k1 − k2 − ic
. s9d

(ii ) Spin-orbital nondegenerate case withSUs2d ^ SUsfd
symmetry: W2

2−2VW1+W1
2=0,c=2W2sW1−Vd:

Ssk1,k2d = Sssk1,k2d ^ Smsk1,k2d, s10d

where

Sssk1,k2d =
k1 − k2 − icPs

k1 − k2 − ic
, s11d

Smsk1,k2d =
k1 − k2 + icPm

k1 − k2 + ic
. s12d

We notice that the same TPSM of the conducting electrons
keeping SUs2d ^ SUsfd symmetry in the spin-orbital non-
degenerate case was first obtained in the MKM by the
fusion rule4 and equivalently in the degenerate AMsbut is
valid only in the Kondo regimed.5 In that case, the
electron-impurity TPSM is determined by the electron-
impurity exchange correlation, but the electron-electron
TPSM is basically arbitrary, as there are no true interac-
tions between two conduction electrons with linear disper-
sion. The integrability is then guaranteed by choosing a
proper electron-electron TPSM satisfying the YBR asso-
ciated with that of electron-impurity ones. The ambiguity
in choosing the electron-electron TPSM appears also in
the hybridization impurity model if only two valence
states such asnd=1,2 or nd=0,1 are considered.12 How-
ever, once the mixing of three impurity valencessnd=0,1,
2d in the hybridization models is concerned, such an am-
biguity no longer exists. Moreover, as we can see from
Eq. s7d, S= I when W1=W2=0. So the electron-electron
TPSM is unambiguously fixed by HV even in the absence of
interactions. This is a striking dynamical constraint on the
wave functions of the hybridization impurity models involv-
ing three impurity valences, in contrast to that of the conven-
tional impurity models.

IV. BETHE ANSATZ EQUATIONS AND THE SOLUTIONS

In the SUs2fd case, the solution6,19,20is identical to that of
the single-channel Anderson model provided the number of
spin components is simply replaced by 2f. So we turn to the
more interesting SUs2d ^ SUsfd case where the TPSM is ex-
pressed as a product of individual ones defined in spin and
orbital spaces, respectively. This characteristic is crucial for
the formation of orbital(spin) singlet ground states, which in
turn leads to the NFL behavior. In this case, the eigenstates
are parametrized by three sets of rapidities: the charge rapidi-
ties hkjj j=1

N , the spin rapiditieshlaja=1
M , and the orbital rapidi-

ties hmq
srdjq=1

Mr , whereN,M, and Mr are the numbers of con-
duction electrons, of down spins, and of electrons in therth
orbital. Each eigenstate corresponds to a solution of the fol-
lowing BA equations(BAE’s) (obtained on a periodic inter-
val of lengthL):

BRIEF REPORTS PHYSICAL REVIEW B70, 212401(2004)

212401-3



expfikjL + 2ifskjdg = p
a=1

M

e1fkj − lagp
q=1

M1

e1
−1fkj − mq

s1dg,

p
j=1

N

e1fla − kjg = − p
b=1

M

e2fla − lbg,

p
s=±1

p
q=1

Mr+s

e1fmp
srd − mq

sr+sdg = − p
q=1

Mr

e2fmp
srd − mq

srdg, s13d

where j =1,… ,N,a=1,… ,M ,p=1,… ,Mr ,M0=N, Mf =0,
andensxd=sx−inc/2d / sx+inc/2d. The energy, the spin mag-
netization, and the orbital projection are given byE
=o j=1

N kj ,Sz=
1
2N−M, and Lz=fsf −1d /2gN−or=1

f−1mr, respec-
tively. (The number of electrons in therth orbital is Nr
=Mr−1−Mr.)

In the thermodynamic limit, withL ,N,M ,Mr →` while
keeping their ratios fixed, the solutions of the above BAE’s
are classified by the string hypothesis. The ground-state and
thermodynamics properties can be analyzed by the standard
method.5–7,13,14,19,20A peculiar feature of our model is that
the effective couplingc can be either positive or negative, as
hybridizations parameters vary along the integrable lines; see
Fig. 1. For c.0 s,0d, the effective coupling is attractive
(repulsive) in the orbital sector and repulsive(attractive) in
the spin sector. The former situation was discussed in detail
by Schlottmann and Sacramento for the multichannel Kondo
model.7 The only difference is that in our case the effective
couplingc and the hybridizition widthV2/2 are independent
of each other. Thus the main results are briefly stated as
follows. For c.0, the ground state is an orbital singlet. In
the absence of a magnetic field, the spin rapidities are all
real, the charge rapidities are bounded with opposite spin
components into pairs viak±=l± ic /2, and the orbital rapidi-
ties are also complex, building bound pairs viamsrd

=Lsrd± ic /2 with some real parametersLsrd. Inserting these
rapidities into the BAE’s, we obtain a set of coupled linear

integral equations of Wiener-Hopf type for the distribution
densities of the rapidities, where the integration limitQ of l
is determined by the total number of electrons. When the
renormalized impurity level energye* =sed−Qdp /V2

−sf /2dlnsf /2d is far below the Fermi surface, the averaged
impurity valence is given by nd/ f =1−1/e* +fsf
−2dlnue* ug /2ue* u2. The characteristic logarithmic dependence
of the multichannel Kondo problem is recovered by identi-
fying ue* u, lnsD /TKd. In the presence of the magnetic field,
there are an additional 2M =2Sz number of real charge ra-
pidities corresponding to unpaired propagating electrons and
consequentlyfsf −rd / fg2Sz number of real orbital rapidities
in the ground state. The integration limitB for real charge
rapidities is now determined by the total magnetization. In
the integer valence limit, the magnetization can be obtained
by simply suppressing the charge fluctuationssQ→`d as
M =exps−e8− f /2d /Gsf /2d for small fields andM =sf /2df1
− f /2ue8u−sf /2ue8ud2lnue8ug for large fields respectively, where
the dimensionless parametere8 is defined in the same form
ase* but with B in place ofQ.

Summarizing, we have shown that the impurity model
with pure hybridizations, in cases(i) and (ii ), is integrable.
While the first case is spin-orbital degenerate and shows
single-channel Kondo impurity behavior, the second one is
spin-orbital nondegenerate, exhibiting typical multichannel
Anderson impurity behavior. The latter provides an interest-
ing new realization of a general critical theory for the hybrid-
ization impurity problem.21 For generic model parameters
W1 andW2, the system is not integrable. Whether it falls into
the same universal class as that of the integrable one or ex-
hibits new impurity physics at low temperatures needs fur-
ther investigations.
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