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Multichannel Anderson impurity behavior in a pure hybridization impurity model
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A single multichannel quantum impurity model with pure hybridizations between the localized and orbital
degenerate conducting electrons is shown to exhibit several interesting impurity properties resembling that of
the multichannel Anderson model. Particularly for two special kinds of hybridization parameters the model can
be solved exactly by the Bethe ansatz method. In these integrable cases, the competition between the direct and
exchange correlated hybridizations can produces either a Fermi-liquid or non-Fermi-liquid behavior at low

temperatures.
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I. INTRODUCTION naukhove and Yu suggested to consider a single-impurity

A prototype model of quantum hybridization impurity mpo_lel o_lesgribing the exchange interaction and corr_elated hy-
problem is the well-known Anderson modeAM), which ~ Pridization in a degenerate AM.More recently, by using the
describes the formation of the local magnetic moment inBA method, Bolech and Andrei have studied the two-channel
nonmagnetic host metals. The model exhibits the quanturAM with the single-occupancy constraint on the localized
nature of an impurity embedded in a Fermi liqufeL), such level }® and Zvyagin has investigated a generalized AM with
as mixed-valance behavior and the Kondo effect, and proboth in-shell Hubbard-like interaction and Hunds ex-
vides some interesting interpretations of the deviations fronghange*
the FL which have been widely observed in the normal-state In this paper, we propose to study a class of hybridization
properties of cuprates and in some Ce- and U-based heavimpurity models without direct Coulomb in-shell coupling
fermion compound$.The deviations are in some cases alsobetween localized electrons. Recall that in the AM, the hy-
ascribed to the existence of a quantum critical po@€P)  bridization is a one-particle process; the only two-particle
associated with degenerate impurity states at zero tempertéeraction is the direct-d correlation parametrized by re-
ture, such as the quadrupolar Kondo effect and electronpulsionU on an impurity shell. In our model, the latter is
assisted tunneling of an atom in a double-well potertial. absent. Instead, two competing correlated hybridizations
Thus, in order to make a closer connection between theorjHw, andHW2 in Eq. (1)] corresponding to off-diagonal Cou-
and experiment, it is interesting to investigate the differenfomb processes are introduced. We will show that the model
types of impurity correlations in a single-impurity model and Hamiltonian shares some features similar to those of the
to clarify if it is responsible for the non-Fermi liquidNFL) multichannel AM and is exactly solvable in some specified
behavior. parameter regions. Though the conventiobaterm is ab-

The simplest single-impurity model Hamiltonian exhibit- sent, the electrons on the impurity shell experience Pauli
ing NFL behavior is the multichannel Kondo modidKM)  exclusion due to correlated two-body impurity-metal hybrid-
in the overscreened case, which has been studied extensivéhations and the exclusion of three- or more-particle occu-
by the Bethe ansa{BA) method}~" conformal field theor§,  pancy at the impurity site. The latter requirement is neces-
and bosonization technigdeUnlike other NFL scenarios, sary for the validity of the BA solutions in a number of
the overscreened Kondo effect manifests itself as the groundnultichannel models involving thre@r more hybridizing
state degeneracy due to the residue degrees of freedom at tingpurity valencegconveniently chosen as empty, singly, or
impurity site, resulting in divergent susceptibility at low doubly occupied impurity statg$® As the model parameters
temperature& Many efforts have been made to clarify if this vary, the system exhibits both the traditional Kondo effect
unusual impurity behavior is limited only to the Kondo re- and NFL behavior due to the different degenerate ground
gime. One may consider a generalized AM with additionalstates similar to the multichannel Anderson model.
screening channels. As long as the normalized local level is
pinned at the Fermi surface the valence fluctuation may give IIl. MODEL HAMILTONIAN

the response of channel anisotropy to NFL behavior in th§y the conducting band and the local impurity level, given by
MKM by use of a BA solution. In this case, a new energy

scale is generated characterizing the neighbors of the fixed , d

points, reflecting the structure of symmetry breaking in the Ho=-iX dxq“:w(x)&—xcm(,(x) + €92 Ay,
channel sectot Depending on the anisotropy parameter, the m m

BA solution provides a unified description for the crossoverwherec;‘n(,(x) (dﬁw) creates a conducting batidcal orbita)
from FL to NFL behavior. It is then interesting to seek a electron with spin indexr=1,] and orbital channgfflavor)
similar BA solution for the Anderson-like model where a indexm=1,...,f. The one-patrticle hybridization between lo-
similar crossover would take place. For this purpose, Karcalized and band electrons is described by
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Hy==2 | dX809[VCh,(X)dms + VAl Cro(X)]. Y
mo
Among two-particle impurity-metal correlations, we con- 1+
sider two kinds of correlated hybridizations, represented by
W; andW,, respectively, as
- tot . 4 '

le = E dXé(X)[Wldmo'Cm'u—’(X)dm’o’dmo +H.c .], -1 0 1 2 3 X

Hw, = > J dx(S(x)[Wzd;,,C:n,g,(x)dm,[,dmg, +H.c.]. -1
Obviously, these two terms are truncated from the off-
diagonal Coulomb processes preserving the spin and orbite
rotational invariance. Our total model Hamiltonian is given

by
FIG. 1. The integrable cases parametrized XoyW,;/V and

H=Hp+Hy+ le + HWZ- (1) Y=W,/V. Casqi) (spin-orbital degeneratés along theX axis; case
e . . . (ii) (spin-orbital nondegeneratés a circle centered afl,0) with
The pure hybridization Hamiltonian, Eql), shares_ n radius 1. The two integrable lines insect(@f 0) and (2, 0). The
Some. aspepts the features of degenerate a_symmetrlc AM Sffective coupling(c) along theX axis is negative(positive) in
For simplicity, we fixV>0, W;>0 and conside, as @  petween(or outside the two points. Along the circle the effective

running parameter. Let us first conside&,=0—i.e., the  coupling changes sign alternatively at the four free spin paidits
spin-orbital degenerate case. Usually, both the one-particlg) (1, 1), (2, 0), and(1,-1).

hybridizationH,, and the correlated hybridizatidFIWl will

induce the antiferromagnetic exchange between the local aget and orbital triple{ss,o} is W;—W,, while for an orbital

nglet and spin tripletos,sj is W;+W,. The situation re-
sembles that of the multichannel AM with both direct and
exchange correlations amontelectrons’®17.14 Generally,

conducting electrons. But due to the absence of direct on-si
repulsionU, the effectives-d exchangel, induced byV
via valence fluctuationgj'+e = d?,d*=d’+e", is vanish-
ing, while the one induced by via di+e"=d” is  ynase asymmetric spin or orbital singlet ground states will
Jw, ~~VWi/ &5 We always assume that the local leeglis |54 1o non-Fermi-liquid behavior at low temperatures.
below the Fermi surface. The case with1 (i.e., the single- At first glance, the model seems to be integrable for ge-
channel model without th&V, term) was first discussed by neric w,, as the two-electron scattering matrices in both
Karnaukhov® The Kondo regime closes ta;=V, where (ot,s9 and (os,s} sectors satisfy the Yang-Baxter relation
double occupation at the impurity site is forbidden. This iS(YBR). However, the explicit two-electron scattering matrix

becauseHy+Hyy, is given by in a general spin-orbital configuration cannot be expressed in
W terms of the product of those obtained in egohs9 and
Vf dx5(x)[1——1nd}cf,(x)dg, (0s,s} sector, owing to the hybridizing dynamitsSo the
v model is not integrable for generit,. Fortunately, we will

indicating the limitW; —V being the same as that of the find that there is a nontrivial circléV,=\W,;(2V-W)),

U — = degenerate Anderson modéF In fact, as we will see  along which the exact solution of Hamiltoniath) is again

in the following, the two-electron scatterir§gmatrix turns ~ available. In the phase diagram parametrized\yV, W,/V

out to be the same as that of the infinifedegenerate Ander- (see Fig. 1, the center of the circle is located @, 0—i.e.,

son modél and the model is exactly solvable for arbitrry the Kondo regime in the degenerate case. There are four

As the spin and orbital channels are degenefpteserving ~Special points at the circle—i.e(, 0), (1, 1), (2, 0), and

SU(2f) symmetry, there is a characteristic energy scale  (1,—1—corresponding to the exact free spin regimes.

(the Kondo temperatuyébelow which both the spin and or-

bital degrees of freedoms of the impurity are exactly com-

pensated by the conducting electrons. The integrability of the model in two special cases, espe-
WhenW, # 0, the above picture will be modified in each cially the spin-orbital nondegenerate case, is nontrivial. This

spin-orbital channel, resulting in an orbital singlet or spinis explored byexplicitly solving the two-particle scattering

singlet, respectively, depending on the effective couplingmatrix (TPSM) $,(k;,k,) of two conduction electronis the

This is because whil#, is spin-orbital SW2f) invariant, W,  following.!® Here, we need to solve the three valence states

breaks it into SWY,i(2) ® SU,pital(f). The meaning oHW2 is  with ny=0, 1, 2 by use of Bethe wave functions. These

clear: when there is an electron in theorbital, it leads to  states, however, are mixed into each other due to the one-

anotherd electron attractingrepelling a c electron if they particle and correlated hybridizations. A generic state of the

are in the samedifferent) channels with differentthe samg  two-particle system, parametrized by two different quasimo-

spins. Therefore the correlated hybridizations for a spin sinmentalk,,k,), is defined by

lll. INTEGRABLE CASES
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|k1'k2> = 2

mjoj

+ X

m;aj

+ 2

mjoj

dx,d X2g(rl(r2 (X1, %2) le(;l(xl) sz(,z(xz) |0)

dxef2|72 (X)ch, ,, 00 dlh, |0}

f”l"'z dT
mmy=myoy "‘2”2

0),

whereg(xq,X,),€e(x), andf are the wave functions satisfying
the following Schrédinger equations:

a(xp)e(x)],

2
E)e(x) +2V'g(x,0) + 2[(V + Wy)f + W,P,f15(x)

3
Pme(0)

(4)

In the aboveP,,P,, andP=P,® P, are permutation op-

\Y
(- 10y, =10y, = BE)g(x1,xp) = E[ﬁ(xl)Pe(Xz) -

(—idy+eg—

= 0,
(2¢4= B + 5V +Wy)(1-P)e(0) + WP, -

=0.

erators defined in the spin, orbital, and total spaces, respe

tively.
According to Wiegmann and Tsveliékwe assume the
following Bethe wave functions:

21 9(xq, %) = [AGk, (X1) Gk, (X2) = PB,(X1) gk (X2)16(X1 = X2)

+ [ngl(xl)gkz(xz) - PA9<2(X1)9|<1(X2)]
X O0(Xy = Xq),

where g,(x) is the one-electron wave function satisfying

(-idy—K)g(X)+Ves(x)=0 and g.=[V'/(k-€y)]g(0). It is
solved by g.(x)=exgi[kx+¢sgnx)]}, with ¢=2tarr?
[-V?/2(k-€g)]. Once the Bethe function fag,(x1,Xp) is
adoptedg ,(x) andfy \, can be derived directly from Egs.
(2) and(4), respectively:

Bk, (X) = [A8 Gk, (X) = PBe gk, (X)]16(X) + [Be, gk, (X)

- PAQG, (010~ X), (5)
V' + W, + W,Pg
fity =8, g2 S(L-P)A+B).  (6)

By substituting the above expressions into B3], we obtain
the following constraint on the amplitudésand B:

A1+A2+A3=0

where  A;=—(V/2)(1-P)(A+B), A,=(i/V)[(k—eg) +(k,
—€)PI(B-A), and As=[(|[V+W+W,PJ?)/2V](1-P)(A
+B). It is straightforward to derive from Eq7) the two-
particle scattering matrix defined =Sk, ,k,)A. The ex-

)
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(i) Spin-orbital degenerate case witBU(2f) symme-
try:  W,=0, c=2W,(W,-2V):
k2—
k -k, -

(ii) Spin-orbital nondegenerate case wiitJ(2) ® SU(f)
symmetry: \B-2VW,; +W2=0,c=2W,(W,; - V):

S(ky, ko) = 9

S(ky, ko) = Sy(kg, ko) ® Sy(ky, ko), (10
where
kl - k2 - iCPU.
ki ky) = ——— 11
S(J'( 1y 2) kl_kz_ic ’ ( )
kl - k2 + iCPm
ki ko) = —F——. 12
Snlkako) == L (12

We notice that the same TPSM of the conducting electrons
keeping SW2) ® SU(f) symmetry in the spin-orbital non-
degenerate case was first obtained in the MKM by the
fusion rul¢ and equivalently in the degenerate Alldut is
valid only in the Kondo regime® In that case, the
electron-impurity TPSM is determined by the electron-
ﬁnpurlty exchange correlation, but the electron-electron
TPSM is basically arbitrary, as there are no true interac-
tions between two conduction electrons with linear disper-
sion. The integrability is then guaranteed by choosing a
proper electron-electron TPSM satisfying the YBR asso-
ciated with that of electron-impurity ones. The ambiguity
in choosing the electron-electron TPSM appears also in
the hybridization impurity model if only two valence
states such asy=1,2 orny=0,1 are consideret. How-
ever, once the mixing of three impurity valenceg=0,1,

2) in the hybridization models is concerned, such an am-
biguity no longer exists. Moreover, as we can see from
Eq. (7), S=1 when W;=W,=0. So the electron-electron
TPSM is unambiguously fixed by, ven in the absence of
interactions This is a striking dynamical constraint on the
wave functions of the hybridization impurity models involv-
ing three impurity valences, in contrast to that of the conven-
tional impurity models.

IV. BETHE ANSATZ EQUATIONS AND THE SOLUTIONS

In the SU2f) case, the solutidit®2is identical to that of
the single-channel Anderson model provided the number of
spin components is simply replaced bf; S0 we turn to the
more interesting S(2) ® SU(f) case where the TPSM is ex-
pressed as a product of individual ones defined in spin and
orbital spaces, respectively. This characteristic is crucial for
the formation of orbita(spin) singlet ground states, which in
turn leads to the NFL behavior. In this case, the eigenstates
are parametrlzed by three sets of rapidities: the charge rapidi-

pression forS(ky,k,) is rather complicated, and it does not tles{k} 1, the spin rapiditieg\ .}, and the orbital rapidi-

satisfy the following YBR for generit\V,:
S1251593 = $3513512- (8)

However, we find two special cases where Swatrices do
satisfy Eq.(8).

ties {,u Y }q 1» whereN,M, andM, are the numbers of con-
ductlon electrons, of down spins, and of electrons inrthe
orbital. Each eigenstate corresponds to a solution of the fol-
lowing BA equationg BAE's) (obtained on a periodic inter-
val of lengthL):
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My
exlikiL + 2ip(k)] = H ek —\ ]H &'k — myl,

_H elNg— K=~ H CARVEDY
11 Hel[M pg He[,u pgl, (13
s=+1 g=1
where j=1,...,N,a=1,... ,M,p=1,...,M,;,Mg=N, M;=0,

ande,(x)=(x—inc/2)/(x+inc/2). The energy, the spin mag-
netization, and the orbital projection are given Iy
=31k, S,=3N=-M, and L,=[(f-1)/2]N-2/2im, respec-
tively. (The number of electrons in theth orbital is N,
=M1-M;.)

In the thermodynamic limit, witih.,N,M, M, —« while
keeping their ratios fixed, the solutions of the above BAE'’s

PHYSICAL REVIEW B0, 212401(2004)

integral equations of Wiener-Hopf type for the distribution
densities of the rapidities, where the integration li@ibf \

is determined by the total number of electrons. When the
renormalized impurity level energye =(eq—Q)m/V?
—(f/2)In(f/2) is far below the Fermi surface, the averaged
impurity valence is given by ng/f=1-1/€ +[(f

2. The characteristic logarithmic dependence
of the muI'uchanneI Kondo problem is recovered by identi-
fying |€'|~In(D/Tk). In the presence of the magnetic field,
there are an additional\2=2S, number of real charge ra-
pidities corresponding to unpaired propagating electrons and
consequentlyf (f-r)/f]2S, number of real orbital rapidities

in the ground state. The integration lint for real charge
rapidities is now determined by the total magnetization. In
the integer valence limit, the magnetization can be obtained
by simply suppressing the charge fluctuatiqi@— «
M=exp—€' —1/2)/T(f/2) for small fields andM=(f/2)[1

are classified by the string hypothesis. The ground-state andf/2|€e’|~(f/2|€'|)4n|€'|] for large fields respectively, where

thermodynamics properties can be analyzed by the standa
method®"1314.19.200 peculiar feature of our model is that
the effective coupling can be either positive or negative, as

tde dimensionless parametéris defined in the same form
ase but with B in place ofQ.
Summarizing, we have shown that the impurity model

hybridizations parameters vary along the integrable lines; seeith pure hybridizations, in case€$) and(ii), is integrable.

Fig. 1. Forc>0 (<0), the effective coupling is attractive
(repulsive in the orbital sector and repulsivattractive in

While the first case is spin-orbital degenerate and shows
single-channel Kondo impurity behavior, the second one is

the spin sector. The former situation was discussed in detafipin-orbital nondegenerate, exhibiting typical multichannel
by Schlottmann and Sacramento for the multichannel Kondd\nderson impurity behavior. The latter provides an interest-

model” The only difference is that in our case the effective
couplingc and the hybridizition widthv/?/2 are independent

ing new realization of a general critical theory for the hybrid-
ization impurity problen?! For generic model parameters

of each other. Thus the main results are briefly stated a#,; andW,, the system is not integrable. Whether it falls into

follows. Forc>0, the ground state is an orbital singlet. In
the absence of a magnetic field, the spin rapidities are al
real, the charge rapidities are bounded with opposite spi
components into pairs vie€e=\+ic/2, and the orbital rapidi-
ties are also complex, building bound pairs vja"
=A"+ic/2 with some real parameters®”. Inserting these
rapidities into the BAE's, we obtain a set of coupled linear

the same universal class as that of the integrable one or ex-
hibits new impurity physics at low temperatures needs fur-
ther investigations.
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