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Based on the theory of nonlocal continuum mechanics, a multiple shell model is developed for the axial
buckling of multiwalled carbon nanotubes under axial compression. The effects of small length scale are
incorporated in this model. In particular, an explicit expression is derived for the axial buckling strain for a
double-walled carbon nanotube. On the basis of this expression, the influence of the small length scale on the
axial buckling strain is discussed. As a result, the effect of small length scale on the axial buckling strain is
related to the buckling mode and the length-to-radial ratio.
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I. INTRODUCTION

It is known that carbon nanotubes(CNTs) are cylindrical
macromolecules composed of carbon atoms in a periodic
hexagonal arrangement. They can be produced by an array of
techniques, such as arc discharge, laser ablation and chemi-
cal vapor deposition. Depending on the synthesis conditions,
nanotubes can be single-walled or multiwalled. Due to their
remarkable mechanical, physical, and chemical properties,
CNTs have emerged as potentially attractive materials as re-
inforcing elements in composite materials and have drawn a
great deal of attention and a good many stimulated extensive
studies.1–5 As most potential applications of CNTs are
heavily based on a thorough understanding of their mechani-
cal behavior,6,7 mechanical behavior of CNTs has been the
subject of much recent research.8–12

For the sake of the difficulties in experimental character-
ization of nanotubes, investigation of mechanical response of
CNTs by theoretical modeling has been pursued.13,14 The
modeling for the theoretical analysis is classified into two
main categories. The first one is the atomistic modeling, in-
cluding the techniques such as classical molecular dynamics
(MD), tight-binding molecular dynamics(TBMD), and den-
sity functional theory(DFT). However, being very time con-
suming and computationally expensive for large-sized
atomic systems, practical applications of these atomistic
modeling techniques are very limited. In order to derive the-
oretical analysis for large-sized atomic systems, it is desir-
able to develop continuum theories that may overcome the
limitations of atomistic simulations concerning both time and
length scales. Recently, continuum mechanics models have
been widely used to study carbon nanotubes.8,10,11,15–18

When CNTs are subjected to external loads, the phenom-
enon of buckling is often observed. Hence, buckling of CNTs
has been one of the topics of primary interest,8,16,19,20and
quite a few continuum buckling models have been presented.
Yakobsonet al.8 compared the results of atomistic modeling
for axially compressed buckling of single-walled nanotubes
(SWNTs) with a simple continuum shell model, and found
that the properties of buckling given by the molecular-
dynamics simulations can be predicted satisfactorily by the
continuum shell model. Ru21 developed a multiple-elastic

beam model to study column buckling of multiwalled carbon
nanotubes(MWNTs) embedded within an elastic medium.
This model assumes that each of the nested, originally con-
centric SWNTs is an individual elastic beam, and the deflec-
tions of all elastic beams are coupled through the van der
Waals interaction between adjacent nanotubes. Wanget al.22

gave a systematic analysis of axially compressed buckling of
MWNTs subjected to radial internal or external pressure
based on a multiple-elastic shell model.23 It was shown that
the predicted increase of the critical axial stress due to an
internal radial pressure appears to be in qualitative agreement
with some known results obtained by molecular dynamics
simulations.

Although the classic continuum models, especially the
elastic models, provide simple formulas in many important
cases which clearly identify major factors affecting mechani-
cal behavior of carbon nanotubes, the applicability of these
classical continuum models to CNTs in many cases of prac-
tical and academic interest is questionable. This has raised a
major challenge to the classic continuum mechanics. To
solve this issue, one can extend the continuum approach to
smaller length scales by incorporating information regarding
the behavior of material microstructure. This is carried out
quite readily by the use of the theory of nonlocal continuum
mechanics. The theory of nonlocal continuum mechanics
was formally initiated by the papers of Eringen24 and Erin-
gen and Edelen25 on nonlocal elasticity. While the classical
(local) continuum mechanics assumes that the stress state at
a given point is dependent uniquely on the strain state at that
same point, the theory of nonlocal continuum mechanics re-
gards the stress state at a given point as a function of the
strain states of all points in the body. Thus, the theory of
nonlocal continuum mechanics contains information about
the long range forces between atoms, and the internal length
scale is introduced into the constitutive equations simply as a
material parameter.

The theory of nonlocal continuum mechanics has been
applied to a wide variety of fields such as lattice dispersion
of elastic waves, fracture mechanics, dislocation mechanics,
wave propagation in composites, and surface tension in flu-
ids, among others. Very recently, Peddiesonet al.26 em-
ployed the nonlocal elasticity theory to develop a nonlocal
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Benoulli/Euler beam model, and it was concluded that the
nonlocal continuum mechanics could potentially play a use-
ful role in analysis related to nanotechnology applications.
Based on the theory of nonlocal continuum mechanics,
Sudak27 derived a multiple-elastic beam model to study col-
umn buckling of MWNTs, and the significance of small-
scale effects were demonstrated. In this study, the assump-
tion that the beam consists of fibers which are in a state of
uniaxial compression or tension was adopted.

In recent years, elastic beam models have been effectively
applied to CNTs by many researchers. However, they are
valid only for those with large aspect ratios. When aspect
ratios of CNTs are small, or local deformation is concerned,
CNTs should be treated as elastic shell rather than elastic
beam. In this article, basic equations for axially compressed
cylindrical shell are formulated on the basis of nonlocal con-
tinuum mechanics. Then, based on these nonlocal basic
equations, a multiple shell model is developed for the axial
buckling of MWNTs under axial compression, which in-
cludes the effect of small length scale. Finally, an explicit
expression is derived for the axial buckling strain for a
double-walled carbon nanotube(DWNT).

II. NONLOCAL CONTINUUM SHELL MODEL

A. Constitutive relation of the nonlocal elasticity

In the theory of nonlocal elasticity,28 the stress at a refer-
ence pointx in the body is dependent not only on the strains
at x but also on strains at any other points of the body, which
is in accordance with atomic theory of lattice dynamics and
experimental observations on phonon dispersion. Ignoring
the effects of strains at points other thanx, the classical
(local) theory of elasticity is obtained. The most general form
of the constitutive equation for nonlocal elasticity involves
an integral over the entire region of interest. This integral
contains a kernel function which describes the relative influ-
ences of strains at various locations on the stress at a given
location.

For homogeneous and isotropic elastic solids, the consti-
tutive equation is given by

ssxd =E
V

asux8 − xu,tdtsx8ddVsx8d s1d

with

tsx8d = C:«sx8d,

where the symbol “:” is the inner product with double con-
traction,C is the elastic stiffness tensor of classical isotropic
elasticity, ssxd denotes the nonlocal stress tensor atx, and
tsx8d is the macroscopic(classical) stress tensor at any points
x8in the body which is a function of the strain tensor«sx8d.
The kernel functionasux8−xu ,td is the nonlocal modulus,
ux8−xu is the Euclidean distance, andt=e0a/ l, wheree0 is a
constant appropriate to each material,a is an internal char-
acteristic length(e.g., length of C-C bond, lattice spacing,
granular distance), and l is an external characteristic length
(e.g., crack length, wavelength). It should be noted that the
value ofe0 needs to be determined from experiments or by

matching dispersion curves of plane waves with those of
atomic lattice dynamics. In addition, the volume integral in
Eq. (1) is over the regionV occupied by the body.

As the constitutive equation of nonlocal elasticity in-
volves spatial integrals which represent weighted averages of
the contributions of the strain tensors of all points in the
body to the stress tensor at the given point, it is difficult
mathematically to get the solution of nonlocal elasticity
problems. However, it is pointed out by Eringen28 that the
integral constitutive equation can be converted exactly into
an equivalent differential form for some kernels. This, of
course, provides a great deal of simplicity and convenience
for the application of the theory of nonlocal elasticity. In
what follows, the following form for the kernel function:

asuxu,td = s2pl2t2d−1K0sÎx ·x/ltd

will be adopted, which was suggested by Eringen.28 In this
equation,K0 is the modified Bessel function. With this form
of the kernel function, we have

s1 − t2l2¹2ds = t . s2d

This is the singular differential constitutive equation devel-
oped by Eringen.28

B. Basic equations of cylindrical shells

In this section, we consider infinitesimal axially com-
pressed buckling of a single-layer cylindrical shell with ra-
dius of curvatureR and thicknessh. In the derivation of the
shell equations, we assume that the shell is thin, lateral de-
flections are small compared to the thickness of the shell, and
lines normal to the middle surface of the shell before bend-
ing remain straight and normal during bending. The material
of the shell is regarded as homogeneous, isotropic, and elas-
tic. The coordinate system is chosen so that the origin is in
the middle surface of the shell, thex direction is parallel to
the axis of the cylinder, theu direction is tangent to a circular
arc, and thez direction is normal to the median surface.
Regarding the behavior of thin shells, it is customary to sup-
pose that the normal stresssz, the corresponding strain«z,
and the shear strains«xz and«uz are negligible. As a conse-
quence, the thin shell can be treated as a two-dimensional
stress problem.29

Let «x
0 and «u

0 be the membrane strains due to uniform
axial pressures prior to buckling. Ifu, v, andw denote the
additional displacements of the middle surface due to buck-
ling, alongx, u, and the inward normal direction of the shell,
respectively, the total membrane strains can be expressed
as30

«x = «x
0 +

]u

]x
, «u = «u

0 +
1

R

]v
]u

−
w

R
, «xu =

1

2
F 1

R

]u

]u
+

]v
]x
G .

s3d

In order to capture the essential features and the analytical
solutions for the buckling of cylindrical shells by the use of
theory of nonlocal elasticity, simplifying assumptions are ob-
viously required. To this end, we assume that]sx/]u
=]su /]x=0. Thus, it follows from Eq.(2) that
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sx − se0ad2]2sx

]x2 =
E

1 − n2s«x + n«ud, s4ad

su − se0ad2 1

R2

]2su

]u2 =
E

1 − n2s«u + n«xd, s4bd

sxu − se0ad2S ]2sxu

]x2 +
1

R2

]2sxu

]u2 D =
E

1 + n
«xu, s4cd

whereE andn are the Young’s modulus and Poisson’s ratio
of the material, respectively. As can be seen, Eq.(4) reverts
to Hookes law of classical elasticity for a two-dimensional
stress problem when the small scale parametera vanishes.
Following Eq.(4), the total membrane forces can be obtained
by

Nx − se0ad2]2Nx

]x2 = Ks«x + n«ud, s5ad

Nu − se0ad2 1

R2

]2Nu

]u2 = Ks«u + n«xd, s5bd

Nxu − se0ad2S ]2Nxu

]x2 +
1

R2

]2Nxu

]u2 D = Ks1 − nd«xu, s5cd

where

Nx = sxh, Nu = suh, Nxu = sxuh s6d

and

K =
Eh

1 − n2 . s7d

Substituting Eq.(3) into Eq. (5) gives

Nx = KS ]u

]x
+

n

R

]v
]u

− n
w

R
D + se0ad2]2Nx

]x2 + Ks«x
0 + n«u

0d

= Nx8 + Nx
0, s8ad

Nu = KSn
]u

]x
+

1

R

]v
]u

−
w

R
D + se0ad2 1

R2

]2Nu

]u2 = Nu8, s8bd

Nxu =
1

2
Ks1 − ndS 1

R

]u

]u
+

]v
]x
D + se0ad2S ]2Nxu

]x2 +
1

R2

]2Nxu

]u2 D
= Nxu8 , s8cd

whereNx8, Nu8, andNxu8 are the membrane forces due to buck-
ling, and Nx

0 is the only nonzero membrane force prior to
buckling under a uniform axial compression.

The momentsMx, Mu, andMxu are caused by normal and
shear stresses, and their magnitude is proportional to the dis-
tance of the stress from the middle surface. Consequently,

Mx =E
−h/2

h/2

sxzdz, Mu =E
−h/2

h/2

suzdz,

Mxu = −E
−h/2

h/2

sxuzdz. s9d

Substitution of Eq.(4) into Eq. (9) yields

Mx = − DS ]2w

]x2 +
n

R2

]2w

]u2D + se0ad2]2Mx

]x2 , s10ad

Mu = − DS 1

R2

]2w

]u2 + n
]2w

]x2 D + se0ad2 1

R2

]2Mu

]u2 , s10bd

Mxu = Ds1 − nd
1

R

]2w

]x]u
+ se0ad2S ]2Mxu

]x2 +
1

R2

]2Mxu

]u2 D , s10cd

where use is made of

«x = − z
]2w

]x2 , «u = − z
1

R2

]2w

]u2 . s11d

In Eq. (10), the parameterD is the effective bending stiffness
of the shell, which is expressed as

D =
Eh3

12s1 − n2d
. s12d

It should be pointed out that it is questionable if Eq.(12) is
applied directly as the effective bending stiffness of nano-
tubes in elastic shell model. As noted by Yakobsonet al.,8 the
actual bending stiffness of SWNTs is much lower than that
given by Eq.(12) if the thicknessh is substituted by the
representative thicknessh=0.34 nm. From the study of
SWNTs, the effective bending stiffness isD=0.85 eV while
the in-plane stiffness isEh=360 J/m2.8,31

The condition that the sum of the moments about thex
direction must vanish gives29

1

R

]Mu

]u
−

]Mxu

]x
− Qu = 0, s13d

whereQu is the component in thez direction of the shearing
force in the transverse section perpendicular tou direction.
Similarly, moment equilibrium about theu direction leads to

]Mx

]x
−

1

R

]Mxu

]u
− Qx = 0, s14d

whereQx is the component in thez direction of the shearing
force in the transverse section perpendicular tox axis. The
equation of equilibrium in thez direction is expressed as

]Qx

]x
+

1

R

]Qu

]u
+ sNx8 + Nx

0d
]2w

]x2 + Nu8
1

R
S1 +

1

R

]2w

]u2D
+ 2Nxu8

1

R

]2w

]x]u
+ p = 0, s15d

wherep denotes the net(inward) normal pressure at buck-
ling. In Eq.(15) the initial curvature and the primary middle-
surface forces are quantities of finite magnitude. By compari-
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son, the curvatures due to bending and the secondary middle-
surface forces are infinitesimally small. It is therefore
possible to neglect some of the terms in Eq.(15) and reduce
it to the form

]Qx

]x
+

1

R

]Qu

]u
+ Nx

0]2w

]x2 +
1

R

Eh

1 − n2S 1

R

]v
]u

−
w

R
+ n

]v
]x
D + p = 0.

s16d

A combination of Eqs.(8), (10), (13), (14), and(16) yields

D¹R
8w + se0ad2¹R

4h − Nx
0 ]2

]x2¹R
4w +

Eh

R2

]4w

]x4 − ¹R
4p = 0, s17d

where

h = ¹R
2p + Nx

0S ]4w

]x4 +
1

R2

]4w

]x2]u2D, ¹R
2 =

]2

]x2 +
1

R2

]2

]u2 ,

s18d

and use is made of the following relations:

¹R
4u =

n

R

]3w

]x3 −
1

R3

]3w

]u2]x
, ¹R

4v =
n + 2

R2

]3w

]x2]u
+

1

R4

]3w

]u3 .

s19d

It can be observed that when the small scale parametera
vanishes, Eq.(17) reduces to the classical result.11

C. Multiple shell model

The present work studies axially compressed buckling of
a thin MWNT (the innermost radius-to-thickness ratio is
larger than five) under axial pressure. It is known that
MWNTs are distinguished from traditional elastic shells by
their hollow multilayer structure and the associated van der
Waals forces. As all nested tubes are originally concentric
and the initial interlayer spacing is equal or very close to the
equilibrium spacing, the initial van der Waals interaction be-
tween two tubes of undeformed MWNTs can be overlooked.
When the external load applies, the interlayer spacing
changes, and any increase(or decrease) in the interlayer
spacing will cause an attractive(or repulsive) van der Waals
interaction. Assumingpisi+1d denotes the pressure on tubei
due to tubei +1, which is positive inward and can be ex-
pressed by11

pisi+1d = cswi+1 − wid si = 1,2, . . . ,N − 1d, s20d

where the subscripts1,2, . . . ,N denote the quantities of the
innermost tube, its adjacent tube,… and the outermost tube,
respectively,wi is the(inward) deflection of theith tube, and
c is the van der Waals interaction coefficient, which can be
estimated by22

c =
320 erg/cm2

0.16d2 sd = 0.142 nmd. s21d

Let psi+1di stand for the pressure on tubei +1 due to tubei, it
can be obtained by

psi+1di = −
Ri

Ri+1
pisi+1d, s22d

whereRi is the radius of tubei.
In what follows, all nested tubes are assumed to have the

same thickness and effective material constants. Applying
Eq. (17) to each concentric tube of a MWNT, the buckling is
governed by theN coupled equations

D¹ j
8wj = ¹ j

4Fpjs j+1d −
Rj−1

Rj
ps j−1d jG − se0ad2¹ j

4h j + Nx
0 ]2

]x2¹ j
4wj

−
Eh

Rj
2

]4wj

]x4 s23d

with

h j = ¹ j
2Fpjs j+1d −

Rj−1

Rj
ps j−1d jG + Nx

0S ]4wj

]x4 +
1

Rj
2

]4wj

]x2]u2D ,

s24d

where j =1,2, . . . ,N, and the values ofR0, p01, and pNsN+1d
are defined to be zero. In addition, the axial forceNx

0 is
uniform over all nested tubes, and

¹ j
2 =

]2

]x2 +
1

Rj
2

]2

]u2 . s25d

Combining Eqs.(20), (23), and(24) givesN coupled linear
equations forN deflectionswj.

III. BUCKLING ANALYSIS

In what follows, the buckling of a double-walled carbon
nanotube(DWNT) is studied, and a condition for its critical
axial buckling strain is derived. For DWNTs, it follows from
Eqs.(20), (23), and(24) that

D¹1
8w1 = c¹1

4sw2 − w1d − se0ad2¹1
4h1 + Nx

0 ]2

]x2¹1
4w1

−
Eh

R1
2

]4w1

]x4 , s26ad

D¹2
8w2 = c

R1

R2
¹2

4sw1 − w2d − se0ad2¹2
4h2 + Nx

0 ]2

]x2¹2
4w2

−
Eh

R2
2

]4w2

]x4 , s26bd

with

h1 = c¹1
2sw2 − w1d + Nx

0S ]4w1

]x4 +
1

R1
2

]4w1

]x2]u2D , s27ad

h2 = c
R1

R2
¹2

2sw1 − w2d + Nx
0S ]4w2

]x4 +
1

R2
2

]4w2

]x2]u2D . s27bd

It is seen that the van der Waals interaction makes Eqs.(26a)
and(26b) coupled. When the small length scale parametera
vanishes, Eq.(26) reduces to the known local result at the
same condition.11
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Considering the boundary conditions corresponding to
simply supported ends, we have

w1 = A1 sin
mpx

L
sinnu, w2 = A2 sin

mpx

L
sinnu, s28d

whereA1 and A2 are real constants,L is the length of the
DWNT, m is the number of half-waves in the longitudinal
direction, andn is the number of half-waves in the circum-
ferential direction. Substitution of Eq.(28) into Eqs.(26) and
(27) yields

FDl1
4 + cl1

2 + se0ad2cl1
3 +

Eh

R1
2 v4 + s1 + e0

2a2l1dNx
0v2l1

2GA1

− cl1
2s1 + e0

2a2l1dA2 = 0, s29ad

c
R1

R2
l2

2s1 + e0
2a2l2dA1 − FDl2

4 + c
R1

R2
l2

2 + se0ad2c
R1

R2
l2

3

+
Eh

R2
2 v4 + s1 + e0

2a2l2dNx
0v2l2

2GA2 = 0, s29bd

with

l1 =
m2p2

L2 +
n2

R1
2, l2 =

m2p2

L2 +
n2

R2
2, v =

mp

L
. s30d

In order to determine the critical axial compressive buckling
strain, it is necessary to obtain the nontrivial solution of Eq.
(29), which leads to the following relation:

XSNx
0

Eh
D2

+ Y
Nx

0

Eh
+ Z = 0 s31d

with

X = E2h2s1 + e0
2a2l1d2v4l1

4, s32ad

Y = 2Ehv2Ds1 + e0
2a2l1dl1

2, s32bd

Z = D2 − c2l1
4s1 + e0

2a2l1d2, s32cd

where

D = Dl1
4 + cl1

2 + e0
2a2cl1

3 +
Eh

R1
2 v4. s33d

As the radii of MWNTs are usually not less than a few na-
nometers and thus at least one order of magnitude larger than
the interlayer spacing which is about 0.34 nm,9,32,33all terms
proportional to the ratiosR2−R1d /R1 can be assumed to be
small, and then have been ignored in Eq.(32). Combining
Eqs.(31) and(32), the axial compressive buckling strain can
be obtained by

−
Nx

0

Eh
=

D − cl1
2s1 + l1e0

2a2d
Ehs1 + l1e0

2a2dv2l1
2 s34d

which includes the small length scale effect. Thus, the criti-
cal axial compressive buckling strain can be determined by
minimizing the right-hand side of the above equation with
respect of the integersm andn.

IV. DISCUSSION

To illustrate the influence of the small length scale on the
axial buckling strain of a DWNT, the van der Waals forces
are ignored for simplicity. For this case, Eq.(34) reduces to

−
Nx

0

Eh
=

DR1
2l1

4 + Ehv4

EhR1
2v2l1

2s1 + l1e0
2a2d

. s35d

Neglecting the small length scale effect, the above equation
reduces to the classic(local) result29

−
Nx

0

Eh
=

DR1
2l1

4 + Ehv4

EhR1
2v2l1

2 . s36d

It can be observed that Eq.(35) gives a smaller axial buck-
ling strain than the classic result given by Eq.(36). In other
words, the classic result could overestimate the axial buck-
ling strain.

To further examine the effect of the small length scale on
the axial buckling strain, let us consider the ratiox of the
buckling strain predicted by Eq.(36) to that given by Eq.
(35). It follows from these two equations that

FIG. 1. Effect of the small length scale on the axial buckling
strain for various buckling modes.

FIG. 2. Relationship between the effect of the small length scale
and parameterr.
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x = 1 + sp2m2 + n2b2d
e0

2a2

b2R1
2 , s37d

whereb is the length-to-radial ratio, which is defined as

b = L/R1. s38d

It should be pointed out that the value of parametere0 has
not been obtained for carbon nanotubes at present. The value
of parametera can be chosen to be the length of a C-C bond
which is equal to 0.142 nm. If we assume thatR1=6.8 nm
and the value of parametere0 is 0.39 which was given by
Eringen,28 the influence of the small length scale on the axial
buckling strain can be obtained from Eq.(37), as shown in
Fig. 1. It is found that the effect of the small length scale on
the axial buckling strain is dependent on the buckling mode
and the length-to-radial ratio. With the same buckling mode,
the degree of influence of the small length scale on the axial
buckling strain decreases with increasing the length-to-radius
ratio. If the tube length is assumed to be 40 nm, the relation
between the ratiox and parameterr sr=e0ad is obtained
from Eq. (37), which is shown in Fig. 2. As can be seen, the
axial buckling strain decreases compared to the classical re-
sult as the small length scale parameterr increases in mag-
nitude. In other words, the effect of the small length scale on
the axial buckling strain becomes more significant as param-
eterr becomes larger. As parametera remains fixed, param-
etere0 increases with increasing parameterr. Consequently,

a larger value ofe0 implies a more significant influence of
small length scale on the axial buckling strain.

V. CONCLUSIONS

Based on the theory of nonlocal continuum mechanics,
basic equations for axially compressed cylindrical shell are
formulated. Following these nonlocal basic equations, a mul-
tiple shell model is developed for the axial buckling of
MWNTs under axial compression, which takes account of
the effects of small length scale. An explicit expression is
derived for the axial buckling strain for a double-walled car-
bon nanotube.

The influence of the small length scale on the axial buck-
ling strain is discussed. The effect of small length scale on
the axial buckling strain is related to the buckling mode and
the length-to-radial ratio. The degree of influence of the
small length scale varies with the buckling mode and the
length-to-radius ratio. Although the value of parametere0
remains unknown for carbon nanotubes, it is clear from the
results that a larger value ofe0 implies a more significant
effect of the small length scale.
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