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Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression
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Based on the theory of nonlocal continuum mechanics, a multiple shell model is developed for the axial
buckling of multiwalled carbon nanotubes under axial compression. The effects of small length scale are
incorporated in this model. In particular, an explicit expression is derived for the axial buckling strain for a
double-walled carbon nanotube. On the basis of this expression, the influence of the small length scale on the
axial buckling strain is discussed. As a result, the effect of small length scale on the axial buckling strain is
related to the buckling mode and the length-to-radial ratio.
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I. INTRODUCTION beam model to study column buckling of multiwalled carbon
It is known that carbon nanotubéSNTS) are cylindrical nanotubeSMWNTs) embedded within an elastic medium.
macromolecules composed of carbon atoms in a periodizh's model assumes that each of the nested, originally con-

hexagonal arrangement. They can be produced by an array S@ntric SWNTs is an individual elastic beam, and the deflec-

techniques, such as arc discharge, laser ablation and cherfie"S ©f all elastic beams are coupled through the van der

: : - 22
cal vapor deposition. Depending on the synthesis conditiond//28!S interaction between adjacent nanotubes. Vg

nanotubes can be single-walled or multiwalled. Due to theid2V€ @ systematic analysis of axially compressed buckling of

remarkable mechanical, physical, and chemical propertiei;/‘WNTS subjected to radial internal or external pressure

. . . ased on a multiple-elastic shell mod&lt was shown that
CNTs have emerged as potentially attractive materials as r he predicted increase of the critical axial stress due to an

inforcing elements n composite materials _and have drawn_ ternal radial pressure appears to be in qualitative agreement
great de_al of attention and a good many stimulated extensiy ith some known results obtained by molecular dynamics
studies'™ As most potential applications of CNTs are gimulations.
heavily ba;ed on athorough und(_erstanding of their mechani- Although the classic continuum models, especially the
cal behaviof,” mechanical behavior of CNTs has been theg|astic models, provide simple formulas in many important
subject of much recent resealth? cases which clearly identify major factors affecting mechani-
For the sake of the difficulties in experimental characteral behavior of carbon nanotubes, the applicability of these
ization of nanotubes, investigation of mechanical response aflassical continuum models to CNTs in many cases of prac-
CNTs by theoretical modeling has been purstied. The tical and academic interest is questionable. This has raised a
modeling for the theoretical analysis is classified into twomajor challenge to the classic continuum mechanics. To
main categories. The first one is the atomistic modeling, insolve this issue, one can extend the continuum approach to
cluding the techniques such as classical molecular dynamicamaller length scales by incorporating information regarding
(MD), tight-binding molecular dynamic@BMD), and den- the behavior of material microstructure. This is carried out
sity functional theoryDFT). However, being very time con- quite readily by the use of the theory of nonlocal continuum
suming and computationally expensive for large-sizedmechanics. The theory of nonlocal continuum mechanics
atomic systems, practical applications of these atomistigvas formally initiated by the papers of Eringérand Erin-
modeling techniques are very limited. In order to derive the-gen and Edeléd on nonlocal elasticity. While the classical
oretical analysis for large-sized atomic systems, it is desir(local) continuum mechanics assumes that the stress state at
able to develop continuum theories that may overcome tha given point is dependent uniquely on the strain state at that
limitations of atomistic simulations concerning both time andsame point, the theory of nonlocal continuum mechanics re-
length scales. Recently, continuum mechanics models havgards the stress state at a given point as a function of the
been widely used to study carbon nanotub¥s'15-18 strain states of all points in the body. Thus, the theory of
When CNTs are subjected to external loads, the phenonmonlocal continuum mechanics contains information about
enon of buckling is often observed. Hence, buckling of CNTsthe long range forces between atoms, and the internal length
has been one of the topics of primary intef®%!92%and  scale is introduced into the constitutive equations simply as a
quite a few continuum buckling models have been presentednaterial parameter.
Yakobsonet al® compared the results of atomistic modeling  The theory of nonlocal continuum mechanics has been
for axially compressed buckling of single-walled nanotubesapplied to a wide variety of fields such as lattice dispersion
(SWNTy with a simple continuum shell model, and found of elastic waves, fracture mechanics, dislocation mechanics,
that the properties of buckling given by the molecular-wave propagation in composites, and surface tension in flu-
dynamics simulations can be predicted satisfactorily by théds, among others. Very recently, Peddiesemnal?® em-
continuum shell model. R developed a multiple-elastic ployed the nonlocal elasticity theory to develop a nonlocal
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Benoulli/Euler beam model, and it was concluded that thematching dispersion curves of plane waves with those of
nonlocal continuum mechanics could potentially play a useatomic lattice dynamics. In addition, the volume integral in
ful role in analysis related to nanotechnology applicationsEq. (1) is over the regiorV occupied by the body.
Based on the theory of nonlocal continuum mechanics, As the constitutive equation of nonlocal elasticity in-
SudaK’ derived a multiple-elastic beam model to study col-volves spatial integrals which represent weighted averages of
umn buckling of MWNTSs, and the significance of small- the contributions of the strain tensors of all points in the
scale effects were demonstrated. In this study, the assumpeody to the stress tensor at the given point, it is difficult
tion that the beam consists of fibers which are in a state ofmathematically to get the solution of nonlocal elasticity
uniaxial compression or tension was adopted. problems. However, it is pointed out by Eringénhat the

In recent years, elastic beam models have been effectiveiptegral constitutive equation can be converted exactly into
applied to CNTs by many researchers. However, they aran equivalent differential form for some kernels. This, of
valid only for those with large aspect ratios. When aspectourse, provides a great deal of simplicity and convenience
ratios of CNTs are small, or local deformation is concernedfor the application of the theory of nonlocal elasticity. In
CNTs should be treated as elastic shell rather than elastiwhat follows, the following form for the kernel function:
beam. In this article, basic equations for axially compressed 5 o1 —
cylindrical shell are formulated on the basis of nonlocal con- al|x],7) = (2m127) Ko(Vx - x/17)

tinuum mechanics. Then, based on these nonlocal bas{};,i” be adopted, which was suggested by Eringein this

equations, a multiple shell model is developed for the axiabqation K, is the modified Bessel function. With this form
buckling of MWNTs under axial compression, which in- ot'tne kernel function. we have

cludes the effect of small length scale. Finally, an explicit
expression is derived for the axial buckling strain for a (1-AV?)o=t. 2)
double-walled carbon nanotultBWNT).

This is the singular differential constitutive equation devel-
oped by Eringer®
II. NONLOCAL CONTINUUM SHELL MODEL

A. Constitutive relation of the nonlocal elasticity B. Basic equations of cylindrical shells

In the theory of nonlocal elasticiff; the stress at a refer- | his section, we consider infinitesimal axially com-
ence poini in the body is dependent not only on the strainSyressed buckling of a single-layer cylindrical shell with ra-
atx but also on strains at any other points of the body, whictyiys of curvaturer and thickness. In the derivation of the
is in accordance with atomic theory of lattice dynamics andspe|| equations, we assume that the shell is thin, lateral de-
experimental observations on phonon dispersion. Ignoringections are small compared to the thickness of the shell, and
the effects of strains at points other thanthe classical jines normal to the middle surface of the shell before bend-
(local) theory of_elastlcny_ls obtained. The most_g_engral forming remain straight and normal during bending. The material
of the constitutive equation for nonlocal elasticity involves ¢ the shell is regarded as homogeneous, isotropic, and elas-
an integral over the entire region of interest. This integrakjc The coordinate system is chosen so that the origin is in
contains a kernel function which describes the relative influne middle surface of the shell. thedirection is parallel to

ences of strains at various locations on the stress at a giv§Re axis of the cylinder, thé direction is tangent to a circular

location. _ _ _ _ arc, and thez direction is normal to the median surface.
For homogeneous and isotropic elastic solids, the constiregarding the behavior of thin shells, it is customary to sup-
tutive equation is given by pose that the normal stress, the corresponding straig,,
and the shear strains, and e,, are negligible. As a conse-
o(X) :f a(]x" = x|, Dt(x")dV(x") (1) quence, the thin shell can be treated as a two-dimensional
v stress probler?®

Let 2 and &% be the membrane strains due to uniform
axial pressures prior to buckling. if, v, andw denote the
t(x') =C:e(x’), additional displacements of the middle surface due to buck-
ling, alongx, 6, and the inward normal direction of the shell,
re;opectively, the total membrane strains can be expressed
a

with

where the symbol “” is the inner product with double con-
traction,C is the elastic stiffness tensor of classical isotropic
elasticity, o(x) denotes the nonlocal stress tensoxaand
t(x") is the macroscopi¢classical stress tensor at any points _ o, du o 1w w 1l 1ou v
x'in the body which is a function of the strain tengsx’). ExTexT o 9= &gt el
The kernel functiona(|x’=x|, ) is the nonlocal modulus, 3)
|x"=x| is the Euclidean distance, andeya/l, wheree, is a

constant appropriate to each materalis an internal char- In order to capture the essential features and the analytical
acteristic length(e.g., length of C-C bond, lattice spacing, solutions for the buckling of cylindrical shells by the use of
granular distange and| is an external characteristic length theory of nonlocal elasticity, simplifying assumptions are ob-
(e.g., crack length, wavelengtht should be noted that the viously required. To this end, we assume that,/d6
value ofey needs to be determined from experiments or by=do,/dx=0. Thus, it follows from Eq(2) that

R R 72

RO ox
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h/2 b2
Mx=f oyzdz M,,=J oyzdz

-h/2 -h/2

h/2
ngz—f oyZdz (9
-h/2

Substitution of Eq(4) into Eq.(9) yields

Poy 1 Po E AW v Pw M
_ a 2 X0 + = X6 — , 4c __ 14 TW 2 X
oy~ (€8) ( 2 R o 1 +V8xa (4c) M,=-D v R2 7 +(ega) PVl (103
whereE and v are the Young's modulus and Poisson’s ratio 2
. . 1w Pw 1 M,
of the material, respectively. As can be seen, @greverts M,=-D Rl +1v— | + (gya)? oy (10b
to Hookes law of classical elasticity for a two-dimensional d R 9
stress problem when the small scale paramatganishes. LA 7 5
Following Eq.(4), the total membrane forces can be obtainedy, _ 54 _ w 2< Myp 17 Mx@)
= —— )l —— +—=— |, (10c
by My ( V)R XJ0 (eO ) 2 RZ 902 ( )
232Nx where use is made of
- (eOa) ? = K(8X+ VSO)! (Sa) ~ (92W ~ 1 (92W
SX——Z?, 80——Z§ﬁ. (11
N, - (e5a)> 1 ‘92N0 K(ey+ vey), (sb)  InEq.(10), the parameteD is the effective bending stiffness
R a? of the shell, which is expressed as
Ny 17 p= " a2
3Ny Nyo| = — o
- (603)2(7; + @(9—0;) = K(l - V)Sxo, (50) - 12(1 Vz) - - -
It should be pointed out that it is questionable if Etj2) is
where applied directly as the effective bending stiffness of nano-
tubes in elastic shell model. As noted by Yakobsoal.2 the
Ny=oyh, Ng=oh, Nyy=oyh (6)  actual bending stiffness of SWNTs is much lower than that
given by Eq.(12) if the thicknessh is substituted by the
and representative thicknese=0.34 nm. From the study of
SWNTs, the effective bending stiffnessiis=0.85 eV while
K= Eh R the in-plane stiffness iEh=360 J/n%.831
T2 The condition that the sum of the moments about xhe

ou vaov w
—+

=N, + N, (89

1 1 #N
4= W) + (eoa)zgajj =Nj, (8b)

N, —}K(l V)(E@#?—”) +(e0a)2(&2ng+ ! asza)

RJO  ox R? 96°
=Ny, (80

whereN;, N;, andN,, are the membrane forces due to buck-
is the only nonzero membrane force prior to

ling, and NSH

buckling under a uniform axial compression.

direction must vanish givé3

ST ,=0, (13)

whereQ, is the component in the direction of the shearing
force in the transverse section perpendicula@tdirection.
Similarly, moment equilibrium about the direction leads to

TS, =0, (14)

whereQ, is the component in the direction of the shearing
force in the transverse section perpendiculax taxis. The
equation of equilibrium in the direction is expressed as

Q, 10Qy o PW ,1( 1&2w>
N +NO)— + N = 1+=—
x R a0 (N X)ax2 = R 6P
1 Pw
+2N! =—— +p=0, 15
XOR Ixd0 +p (15

The momentsM,, My, andM,, are caused by normal and where p denotes the nefinward) normal pressure at buck-
shear stresses, and their magnitude is proportional to the difing. In Eq.(15) the initial curvature and the primary middle-
tance of the stress from the middle surface. Consequently, surface forces are quantities of finite magnitude. By compari-
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son, the curvatures due to bending and the secondary middle- R

surface forces are infinitesimally small. It is therefore Pii+ni =~ R,-_pi(”l)' (22
possible to neglect some of the terms in Elp) and reduce 1

it to the form whereR; is the radius of tubé.

In what follows, all nested tubes are assumed to have the
same thickness and effective material constants. Applying
Eq. (17) to each concentric tube of a MWNT, the buckling is
(16) governed by théN coupled equations

(7_Qx+l‘9_QH+ 032_W+1 Eh (1(90 W v

Z——|==-=+v—|+p=0.
X R0 X R1-72\Rs0 R Vﬁx) P

— . R_ i
A combination of Eqs(8), (10), (13), (14), and(16) yields DV?W,- = V]4|:pi(i+1) - _IJ?__lp(j_l)j} _ (eoa)zV?nj n NgﬁVij
1

& Ehdfw
DVEw + (6,2)°Vgn - NS Vaw+ —— - Vap=0, (17) Ehdw;
X R? ox* - (23
R® ox
where with
1 Fw # 1P AW AW
=V?2 +N°(—+——>, 2= —+ 55—, vy R AL '
TR 08 T R aae? RO RoP 7= V3| P+ R, P-oj | N 2 * R o)’
(18 (24)
and use is made of the following relations: wherej=1,2,... N, and the values oRy, Po1, and pyne1)
LW 1 Aw v+2 P 1Pw are defined to be zero. In addition, the axial fodg is
Viu=—— - —=——, Vi= +—=—=. uniform over all nested tubes, and
ZRaE  Rax' T R ol R P 2 2
1
(19) V.2:—+——_ 25
ad R (29
It can be observed that when the small scale paranaeter o _ _
vanishes, Eq(17) reduces to the classical restfit. Combining Eqs(20), (23), and(24) givesN coupled linear

equations foN deflectionsw;.

C. Multiple shell model Il. BUCKLING ANALYSIS

The present work studies axially compressed buckling of | what follows, the buckling of a double-walled carbon
a thin MWNT (the innermost radius-to-thickness ratio is nanotubg DWNT) is studied, and a condition for its critical

larger than fivg under axial pressure. It is known that ayja| buckling strain is derived. For DWNTs, it follows from
MWNTs are distinguished from traditional elastic shells by gqs (20), (23), and(24) that

their hollow multilayer structure and the associated van der
Waals forces. As all nested tubes are originally concentric
and the initial interlayer spacing is equal or very close to the
equilibrium spacing, the initial van der Waals interaction be-

(92
DViwy = oVi(w, = W) = (652)V 17 + Ny—5Viws

tween two tubes of undeformed MWNTSs can be overlooked. _ E_hm (269

When the external load applies, the interlayer spacing Ri ox*

changes, and any increager decreasein the interlayer

spacing will cause an attractiyer repulsivg van der Waals Ri4 4 0 4

interaction. Assumingy.;) denotes the pressure on tube DVgWZZCEZV2(W1_W2) - (€0R)*Vamp + NX%VZWZ

due to tubei+1, which is positive inward and can be ex-

pressed b¥ _Ehdw, b
v (26b)

2

Pig+p =CWirg—w;) (i=1,2,...N-1), (20) .
with
where the subscripts,2, ... N denote the quantities of the
innermost tube, its adjacent tube,and the outermost tube, 7= CVE(Wy = Wy) + NS(
respectivelyw; is the(inward) deflection of theth tube, and
c is the van der Waals interaction coefficient, which can be

dwy 1 m)
P R: ax296” )’ (279

estimated b$? R A 1 dw
2= Calvﬁwl —Wp) + Ng(ﬁ + an%y;z . (27b
_ 320 erg/cr (d=0.142 nri 20 2 >
~ 0.6 o .- It is seen that the van der Waals interaction makes &)

o and(26b) coupled. When the small length scale paramater
Let p.1); stand for the pressure on tubel due to tube, it vanishes, Eq(26) reduces to the known local result at the
can be obtained by same conditior!
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FIG. 2. Relationship between the effect of the small length scale

FIG. 1. Effect of the small length scale on the axial buckling @nd parametep.

strain for various buckling modes.

Considering the boundary conditions corresponding to

simply supported ends, we have
. maXx . . mmX
wy=A; smT sinng, w,=A, sstmna, (28)

where A; and A, are real constantd, is the length of the

DWNT, m is the number of half-waves in the longitudinal
direction, andn is the number of half-waves in the circum-

ferential direction. Substitution of E¢28) into Egs.(26) and
(27) yields

Eh
DAT + C\2 + (gy@)%CAS + Ew“ +(1 +eba’\y) Nng)\f} A
1

- cN2(1 +€5a®\)A,= 0, (29a

R R R
N1 +e2a®\H)A; — | DA+ C=EN2 + (epa)%c=EN3
Ry R, Ry

Eh
+ Ew‘l +(1 +e(2)a2)\2)N2w2)\§]A2 =0, (29b)
2
with
NP i L L. S
T2 TR 2Tz TR YT

Eh
A =DM +c\]+eda’end+ ?w“' (33

1

As the radii of MWNTs are usually not less than a few na-
nometers and thus at least one order of magnitude larger than
the interlayer spacing which is about 0.34 Afd;33all terms
proportional to the ratidR,—R;)/R; can be assumed to be
small, and then have been ignored in E82). Combining
Egs.(31) and(32), the axial compressive buckling strain can
be obtained by

N A-cn\i(1+\e5)

Eh  EN1+\,e2ad)wd\?

(34)

which includes the small length scale effect. Thus, the criti-
cal axial compressive buckling strain can be determined by
minimizing the right-hand side of the above equation with

respect of the integens andn.

IV. DISCUSSION

To illustrate the influence of the small length scale on the
axial buckling strain of a DWNT, the van der Waals forces
are ignored for simplicity. For this case, E&4) reduces to

NS  DRA\j+Eho’
Eh  EhRwA2(1+\e8)

(35

In order to determine the critical axial compressive buckling
strain, it is necessary to obtain the nontrivial solution of Eq.Neglecting the small length scale effect, the above equation

(29), which leads to the following relation:

NO 2 0
x( X) +Y=2+7=0
Eh

== 31
£h (31
with
X = E?h%(1 +eZa’\ ) %0\, (323
Y = 2Ehw?A(1 +€5a® A3, (32b)
Z=A%-c\j(1 +€la’ry)?, (320
where

reduces to the classitocal) resulf®

Ny _ DR} + Eho? 39

Eh  EhRw?\?

It can be observed that E(B5) gives a smaller axial buck-
ling strain than the classic result given by Eg6). In other
words, the classic result could overestimate the axial buck-
ling strain.

To further examine the effect of the small length scale on
the axial buckling strain, let us consider the ratioof the
buckling strain predicted by Eq36) to that given by Eq.
(35). It follows from these two equations that
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- eéaz a larger value ok, implies a more significant influence of
x=1+(mn? +n’b )W' (37 small length scale on the axial buckling strain.
1
whereb is the length-to-radial ratio, which is defined as V. CONCLUSIONS
b=L/R;. (39

Based on the theory of nonlocal continuum mechanics,

It should be pointed out that the value of parameighas  basic equations for axially compressed cylindrical shell are
not been obtained for carbon nanotubes at present. The valfiegrmulated. Following these nonlocal basic equations, a mul-
of parameten can be chosen to be the length of a C-C bondtiple shell model is developed for the axial buckling of

which is equal to 0.142 nm. If we assume thit=6.8 nm  MWNTs under axial compression, which takes account of
and the value of parametey is 0.39 which was given by the effects of small length scale. An explicit expression is
Eringen?8 the influence of the small length scale on the axialderived for the axial buckling strain for a double-walled car-

buckling strain can be obtained from E&7), as shown in bon nanotube.

Fig. 1. It is found that the effect of the small length scale on The influence of the small length scale on the axial buck-
the axial buckling strain is dependent on the buckling modding strain is discussed. The effect of small length scale on
and the length-to-radial ratio. With the same buckling modethe axial buckling strain is related to the buckling mode and
the degree of influence of the small length scale on the axighe length-to-radial ratio. The degree of influence of the
buckling strain decreases with increasing the length-to-radiusmall length scale varies with the buckling mode and the

ratio. If the tube length is assumed to be 40 nm, the relatiotength-to-radius ratio. Although the value of parameggr

between the ratigy and parametep (p=€ya) is obtained

remains unknown for carbon nanotubes, it is clear from the

from Eq.(37), which is shown in Fig. 2. As can be seen, theresults that a larger value @& implies a more significant
axial buckling strain decreases compared to the classical ré&ffect of the small length scale.

sult as the small length scale paramegigncreases in mag-

nitude. In other words, the effect of the small length scale on
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