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We investigate a disordered single-walled carbon nanotube(SWCNT) in an effective-medium supercell
approximation(EMSCA). The first type of disorder that we consider is the presence of vacancies. Our results
show that the vacancies induce some bound states on their neighbor host sites, leading to the creation of a band
around the Fermi energy in the SWCNT average density of states. The second type of disorder considered is a
substitutional BcbNcnC1−cb−cn alloy due to its applications in hetrojunctions. We found that for a fixed boron
(nitrogen) concentration, by increasing the nitrogen(boron) concentration the averaged semiconducting gapEg

decreases and disappears at a critical concentration. A consequence of our results for nanoelectronic devices is
that by changing the boron(nitrogen) concentration, one can make a semiconductor SWCNT with a predeter-
mined energy gap.
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I. INTRODUCTION

The role of disorder in a single-walled carbon nanotube
(SWCNT) is of importance from two prospectives; first in
the growth process of a SWCNT due to the experimental
environment some impurity atoms are inserted and vacancies
are created.1–3 Second, we deliberately implant the impurity
so as to construct nanotube alloys, such as BcbC1−cb,
NcnC1−cn and BcbNcnC1−cb−cn SWCNTs,4–7 with predeter-
mined physical properties. In the first case, the effect of a
point-like defect was investigated by calculation of electron
reflection coefficient,8 and also two substitute defects in an
armchair SWCNT.9 It has been found that the symmetry of
defects strongly affected the conductance and the local den-
sity of states. By different techniques, the boron nitride
SWCNTs junctions,10,11 the spin polarization in a quasi-one-
dimensional C/BN nanotube,12 and also the current distribu-
tion in boron and nitrogen doped SWCNTs were
investigated.13 For finite impurity concentration, a systematic
field theory technique beyond single-site T-matrix approxi-
mation has not yet been applied to the disordered
SWCNTs.14 In this paper, by applying the effective-medium
supercell approximation(EMSCA)15,16 method to the disor-
dered SWCNT, we will go beyond this approximation and
consider the presence of finite impurities. We provide a more
realistic description of the effects of disorder, due to vacan-
cies, on an armchair SWCNT’s and a zigzag SWCNT’s den-
sity of states(dos). Also in this formalism, we address the
question of how the doping of a zigzag SWCNT by boron
(nitrogen), i.e., BcbNcnC1−cb−cn, controls the semiconducting
gapEg.

II. MODEL AND FORMALISM

Let us consider the Hamiltonian as a general random
tight-binding model15

H = − o
i j abs

tij
abcis

a†cjs
b + o

ias

s«i
a − mdn̂is

a , s1d

wherea andb refer to the A or B sites inside of the graphene
Bravais lattice unit cell, where each Bravais lattice site in-

cludes two nonequivalent sites that are indicated by A and B,
cis

a† scis
a d is the creation(annihilation) operator of an electron

with spin s on Bravais lattice sitei, and n̂is
a =cis

a†cis
a is the

number operator.tij ss
ab are the hopping integrals between the

p orbitals of sitesi and j with spin s. m is the chemical
potential and«i

a is the random on-site energy where it takes
0 with probability 1−c for host sites andd with probabilityc
for impurity sites. For the BcbNcnC1−cb−cn SWCNT alloy,«i

a

takes «b
a=2.33 eV with probabilitycb for boron sites,«n

a

=−2.50 eV with probabilitycn for nitrogen sites and«c
a

=0 eV with probability 1−cb−cn for the carbon sites, if
measured with respect to«c

a.6,7 Figure 1 shows a two-
dimensional graphene sheet. Each cell of the Bravias lattice
includes two nonequivalent sites that are denoted by A and
B. The primitive vectors of the Bravias lattice area1 anda2
and the chiral vector isL . The heavy dashed line on the
figure shows a four-site supercell of the graphene Bravias
lattice.

The SWCNT can be construct by role up a two-dimension
graphene sheet in some specified directions with the periodic
boundary condition along the circumference direction.17 Fol-
lowing this, rolling up chiral vectorL has been fixed on the
x axes of the two-dimensional(2D) graphene sheet, hence

FIG. 1. A two-dimensional graphene sheet. The light dashed
lines illustrate the Bravais lattice unit cells,a1 anda2 are the primi-
tive vectors. Each cell includes two nonequivalent sites, which are
denoted by A and B.L=n1a1+n2a2 is the chiral vector. For an
armchair SWCNTn1=n and n2=2n, while for a zigzag SWCNT
n1=n and n2=0. The heavy dashed line denotes a four-site
supercell.
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the carbon nanotube axes is coincident on they axes. There-
fore the real lattice primitive vectorsa1 and a2 and their
corresponding reciprocal lattice primitive vectorsb1 and b2
for a zigzag SWCNT are

a1 = ai, a2 =
a

2
s− i + Î3j d,

b1 =
2p

a Si +
j

Î3
D, b2 =

2j
Î3

2p

a
, s2d

and for an armchair are given by

a1 = aj , a2 =
a

2
s− j + Î3id,

b1 =
2p

a S i
Î3

+ jD, b2 =
2i
Î3

2p

a
, s3d

wherei and j are the unit vectors of thex-y graphene plane
anda= ua1u. The periodic boundary condition in thex direc-
tion imply that

expsıkxLd = 1, s4d

whereL is the length of the chiral vector,L= uL u. For a zig-
zag SWCNTL=na and for an armchair isL=Î3na. So the
periodicity condition Eq.(4) implies that thex component of
the wave-vectorskx is restricted to

kx =
2pm

L
, s5d

wherem is an integer number.
The matrix form of Eq.(1) is

H = − o
i j s

Cis
† t̂i jC js + o

is

Cis
† s«̂i − mI dCis, s6d

where the two-component field operator,Cis
† , is given by

Cis = Scis
A

cis
B D , s7d

and «̂i is the random on-site energy matrix

«̂i = S«i
A 0

0 «i
B D , s8d

and t̂i j is the hopping matrix defined by

t̂i j = Stij
AA tij

AB

tij
BA tij

BB D , s9d

and I is a 232 unitary matrix.
The equation of motion for electrons in such a lattice is,

o
l

fsEI − «̂i + m̂iddil − t̂ilgGsl, j ;Ed = Idi j , s10d

whereGsi , j ;Ed is the random Green function matrix defined
by

Gsi, j ;Ed = SGAAsi, j ;Ed GABsi, j ;Ed
GBAsi, j ;Ed GBBsi, j ;Ed

D . s11d

We considered the«̂i as a perturbation parameter, hence
Gsi , j ;Ed in Eq. (10), may be expanded in terms of the per-
fect Green’s, function matrixG0si , j ;Ed as

Gsi, j ;Ed = G0si, j ;Ed + o
l

G0si,l ;Ed«̂lGsl, j ;Ed, s12d

whereG0si , j ;Ed is given by

G0si, j ;Ed =
2

N
o
k

eık.r i jsEI − «̂k + Imd−1, s13d

with êk = 2
Noi j t̂i je

ık.r i j being the band structure for perfect sys-
tem. In our calculations we takem=0, the hopping random-
ness are neglected also we assumed allowed hopping to the
nearest neighbors and neglected the others,

tki j l
AB = tki j l

BA = t, s14d

where t,3 eV is clean system nearest-neighbour hopping
integral. Hence

t̂ki j l = S 0 tki j l
AB

tki j l
BA 0

D , s15d

and the dispersion relation is

«̂k = S 0 tgskd
tg * skd 0

D , s16d

wheregskd=oi=1
3 eık.ti andti are three vectors that connect an

A (B) site to its nearest neighbors B(A) sites.
The Dyson equation for the averaged Green function,

Ḡsi , j ;Ed, corresponding to Eq.(12) is

Ḡsi, j ;Ed = G0si, j ;Ed + o
ll8

G0si,l ;EdSsl,l8;EdḠsl8, j ;Ed,

s17d

where the self energySsl , l8 ;Ed is defined by

k«̂lGsl, j ;Edl = o
l8

Ssl,l8;EdḠsl8, j ;Ed. s18d

The Fourier transform ofḠsi , j ;Ed in Eq. (17) is given by

Ḡsi, j ;Ed =
2

N
o
k

eık.r i jsEI − «̂k + mI − Ssk ;Edd−1, s19d

where

Ssk ;Ed =
2

N
o
i,j

e−ık.r i jSsi, j ;Ed, s20d

is the self-energy Fourier transform. Since Eqs.(19) and(17)
could not be solved exactly, different single site approxima-
tions such as Born approximation, coherent potential ap-
proximation, etc.,14 have been applied to solve these equa-
tions. Here by using EMSCA we are going beyond such
single site approximations.
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III. EFFECTIVE MEDIUM SUPER CELL
APPROXIMATION (EMSCA) TREATMENT

We solve Eq.(12) using the EMSCA method15,16 for the
case of four sites supercell, i.e.,Nc=4.

In the EMSCA technique, the supercell random Green’s
functions,Gsc

imsi , j ;Ed, are related to the cavity Green’s func-

tion Ĝsi , j ;Ed via16

Gsc
imsI,J;Ed = ĜsI,J;Ed + o

L

ĜsI,L;Ed«̂LGsc
imsL8,J;Ed,

s21d

where hIj refers to the sites inside the supercell. Also the
Dyson’s-like equation for the average supercell Green’s

function ḠscsI ,J;Ed is given by

ḠscsI,J;Ed = ĜsI,J;Ed

+ o
LL8

ĜscsI,L;EdSscsL,L8;EdGsL8,J;Ed.

s22d

The Fourier transform ofḠscsI ,J;Ed in Eq. (22) to the su-
percell wave vectorshK nj is

ḠscsK n;Ed = ĜsK n;Ed + ĜsK n;EdSscsK n;EdGsK n;Ed,

s23d

where

SsK n;Ed =
1

Nc
o
IJ

eK n.r IJSscsI,J;Ed s24d

and

ḠsK n;Ed =
Nc

N
o

kPnth patches
sIE − «̂k + Im − SsK n;Edd−1.

s25d

The supercell wave vectorhK nj is defined by15,16

K n = o
i=1

3
l i

Nci
bi , s26d

whereNci are the number of Bravias lattice sites inside of the
supercell in theith direction andhbij are the reciprocal lattice
primitive vectors andl i is an integer number.

For a four-site supercellsNc=4d SWCNT, whereNc1=2
andNc2=2, Eq.(26) is reduced to

hK nj = H l1
2

b1 +
l2
2

b2J . s27d

Therefore for zigzag SWCNT’s Eq.(27) is convert to,

FIG. 2. First Brillouin zone and the patches of supercell wave
vectorsK n where they are corresponding to a four-sites supercell in
real space for:(a) an armchair SWCNT where the supercell wave
vectors areK 1=0, K 2=s−b1+b2d /2, K 3=b2/2, K 4=b1/2, and(b) a
zigzag SWCNT where the supercell wave vectors areK 1=0, K 2=
−b2/2, K 3=sb1−b2d /2, andK 4=b1/2. The heavy lines indicate the
FBZ and the dashed lines illustrate the patches where belong to
eachK n.

FIG. 3. (a) Comparison of average density of states for a(10,10)
armchair SWCNT and(b) for a (10,0) zigzag SWCNT atd=40t and
different impurity concentration. At high random energies,d
@bandwidth, we have band splitting and the impurity band is lo-
cated at higher energies, while remaining sites are the vacancies that
induce a band around the Fermi energy. By increasing the vacancy
concentration, the height of the peak at the Fermi energy increases
and the van Hove singularities are smeared out.
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FIG. 4. The figure shows the effects of nitrogen doping on semi-
conducting gapEg for a (10,0), (20,0), and (40,0) zigzag SWCNT
alloy.

FIG. 5. The effects of nitrogen doping on a(10,0), (20,0), and
(40,0) zigzag SWCNT’s average density of states. At a fixed boron
concentrationcb=0.15, the average density of states for two nitro-
gen concentrations, lowcn=0.0005 and high, are compared. For
(20,0) and(40,0), at the critical concentrationEg is zero and the van
Hove singularities disappear.

FIG. 6. Figure shows the effects of boron doping on the semi-
conducting gapEg in a (10,0), (20,0), and (40,0) zigzag SWCNT
alloy.

FIG. 7. Effects of boron doping on a(10,0), (20,0), and (40,0)
zigzag SWCNT’s average density of states. At a fixed nitrogen con-
centration ofcn=0.1, the average density of states for two boron
concentrations are compared. For(20,0), (40,0) at a critical concen-
tration,Eg is closed and the van Hove singularities disappears and a
semiconductor semimetal phase transition takes place.
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K 1 = 0; K 2 = −
b2

2
; K 3 =

b1 − b2

2
; K 4 =

b1

2
s28d

and for an armchair SWCNT are,

K 1 = 0; K 2 =
− b1 + b2

2
; K 3 =

b2

2
; K 4 =

b1

2
. s29d

Figures 2 illustrate the location of the supercell wave-
vectorshK nj in the Brillouin zone corresponding to Eqs.(28)
and(29) for a zigzag and an armchair SWCNT, respectively.

To calculate the ḠscsI ,J;Ed and Gsc
imsI ,J;Ed, Eqs.

(21)–(25) should be solved self-consistently.

IV. RESULTS AND DISCUSSION

A SWCNT with vacancies is considered, the averaged
density of states for different vacancy concentrations is cal-
culated. We found that vacancies create some bound states
around the Fermi level on their host neighbor sites, hence
constructing a band in the averaged density of states. Also
the one-dimensional(1D) van Hove singularities in high va-
cancy concentrations disappear. Figures 3(a) and 3(b) show
the comparison between the average density of states for
different vacancy concentrations in(10, 10) and (10, 0)
SWCNTs, respectively. The bound states due to vacancies
around the Fermi energy is marked by an arrow. In short, our
results show that vacancies not only change the average den-
sity of states but also the number of electrons located on the
host sites and also at high vacancy concentrations SWCNT’s
loses their 1D characteristics and become similar to a 2D
disordered geraphene sheet.

We now investigate the effect of nitrogen and boron dop-
ing on a(10,0), (20,0), and(40,0) zigzag SWCNT. Two cases
are considered, first fixed boron concentration atcb=0.15,
with variable nitrogen concentration. In this case, we found
that the average semiconducting gap,Eg, decreased by in-
creasing the nitrogen concentration, and in some of them,
(20,0) and (40,0), at a critical concentration disappeared.
Figure 4 illustrates the effects of the nitrogen doping on the
Eg. To clarify our results, we compare the average density of
states for low and high nitrogen concentrations. Figure 5
compares the average density of states for the low,cn
=0.000 05, and high nitrogen concentration. Atcn
=0.000 05, the gap is located at the top of the Fermi energy,

but inside the pure SWCNT conduction band. By increasing
the nitrogen concentration, the low edge of the conduction
band is moved and the gap is decreased.

For (20,0) and (40,), the gap is closed, hence a semicon-
ductor to semimetal phase transition takes place. Also 1D
van Hove singularities disappeared. But for the(10,0) zigzag
SWCNT the gap is preserved and semimetal phase transition
is not observed.

In the second case, we fixed the nitrogen concentration at
cn=0.1, while varying the boron concentration. We found
thatEg decreases with an increase in the boron concentration,
and for(20,0), (40,0) at a critical concentration; it tended to
zero. Figure 6 compares the average density of states for the
low, cb=0.000 05, and high boron concentrations. For the
(20,0), (40,0) cases, theEg is closed, similar to the first case,
and the van Hove singularities also disappeared. Further-
more, the semiconductor to semimetal phase transition was
also observed.

V. CONCLUSION

In conclusion, we have applied the EMSCA method to a
disordered SWCNT in order to investigate the role of disor-
der in such materials. For a(10,10) armchair tube and also a
zigzag(10,0) tube we found that the vacancies induce some
bound states on their host neighbor sites, creating a band
around the Fermi energy in the average density of states. The
consequences of this band formation around the Fermi en-
ergy and also disappearance of the 1D van Hove singularities
at high vacancy concentrations is that the density of states of
an armchair and also a zigzag SWCNT become similar to a
disordered(vacancy disorder) 2D graphene sheet density of
states. A(10,0), (20,0), and (40,0) zigzag BcbNcnC1−cb−cn
SWCNT alloy was investigated. We found that for a fixed
boron (nitrogen) concentration, by increasing the nitrogen
(boron) concentrations, theEg decreases and for the cases of
(20,0) and (40,0) at a critical concentration it becomes
closed. Therefore, a semiconductor to a semimetal phase
transition takes place. Our results show that we can control
the Eg by changing the nitrogen(boron) concentration.
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