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We demonstrate a novel manifestation of dynamic Bragg reflection in artificial quantum-dot crystals that is
driven by the application of a magnetic field. This backscattering is coherently cascaded as the number of dots
in the structure is increased, causing a superlinear damping of the electron wave function and the appearance
of a series of gaps in the miniband spectrum. The evolution of the dynamic miniband structure as the magnetic
field is varied gives rise to behavior analogous to a metal-insulator transition, which is manifest as a dramatic
resonance in the magneto-resistance of the structures.
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Manipulation of matter on the nanoscale, to realize sys-
tems with artificially engineered bandstructures, is currently
an active area of research, with the potential to impact on the
development of a variety of electronic and optoelectronic
technologies. In photonic crystals, for example, nanoscale
patterning of conventional semiconductors is used to open
forbidden gaps in the spectrum for electromagnetic-wave
propagation.1,2 At the other extreme, scanning tunneling mi-
croscopy can be used to construct linear chains of small
numbers of atoms, and to study the emergence of one-
dimensional energy bands associated with the ordered atomic
arrangement.3,4 Another versatile system, with the potential
for use as the building block of periodically modulated nano-
structures, is provided by semiconductorquantum dots.5

These may be viewed as artificial atoms, with a discrete set
of energy levels(Darwin-Fock states) that hybridize when
several dots are coupled together to form an artificial mol-
ecule or crystal.6,7

A common feature of the systems considered above is the
formation of a superlattice bandstructure, whose gaps and
minibands are quite distinct from those of the bulk material.8

A well known process that influences the bandstructure of
real crystals isBragg reflectionof electrons, which occurs
when their wavelength is commensurate with the interatomic
spacing. When this occurs, constructive interference of elec-
tron waves, scattered from successive crystal planes, opens a
forbidden gap in the electronic energy spectrum, usually at
the Brillouin-zone boundary. At energies within this gap,
electron propagation is described by a complex wavevector,
whose wave function decays evanescently as the electron
attempts to tunnel into the crystal. In the various nanostruc-
tures described above, Bragg reflections are also expected to
arise at the new Brillouin zone boundary associated with
their artificial periodicity.

In this paper, we report on a noveldynamicmanifestation
of Bragg reflection in artificial quantum-dot crystals. The
scattering is driven by the application of a magnetic field,
which opens a set of gaps in the miniband spectrum and
gives rise to a dramatic resonance in the magneto-resistance.
The dynamic nature of this effect(as the magnetic field is
varied) is found to be due to the commensurability, at the

resonant magnetic field, of the electron cyclotron motion
with the internal dimensions of the dot(a condition which
depends upon both the magnetic field and the Fermi veloc-
ity). The commensurability leads to an enhancement of back-
scattering that is progressively cascaded as the number of
dots in the structure is increased, giving rise to a coherent
increase of the magneto-resistance peak, beyond that ex-
pected merely from the number of dots. Numerical calcula-
tions reproduce the observed resonance, and show that the
effect of the magnetic field is to induce a strong decay of the
electron wavefunction in the array, which is accompanied by
the appearance of forbidden gaps in its miniband spectrum.
Our observations are therefore analogous to a metal-insulator
transition, which is induced as the magnetic field is used to
dynamically open gaps in the artificially engineered elec-
tronic band structure.

Our results were obtained in a comparative study of a
single quantum dot, and of linear arrays comprised of three
and seven such dots(Fig. 1). For a consistent comparison,
the devices were fabricated on the same GaAs/AlGaAs het-
erojunction wafer, using the split-gate technique. The two-
dimensional electron gas was located 92 nm below the top
surface, and its density and mobility were 2.531011 cm−2

and 1.23106 cm2/Vs (at 0.03-K), respectively. The sample

FIG. 1. A micrograph of a seven-dot array realized by the split-
gate technique. Lighter regions are the metal gates and the white
lines show schematically the Hall-bar structure on top of which the
gates are deposited.
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was clamped to the mixing chamber of a dilution refrigera-
tor, and its magneto-resistance was measured at the base
temperature of 10-mK(unless stated otherwise). Low-
frequencys,11 Hzd constant currentss,5 nAd and lock-in
detection were used for these measurements.

The main panel of Fig. 2 shows the magneto-resistance of
the seven-dot array at several gate voltages, and reveals the
presence of two striking peaks near ±0.2 T that rise to as
much as 300% of the background resistance(which remains
less than 10 kV over the entire range of experiment). To
clarify the origin of the peaks, we simulate magneto-
transport using the transfer-matrix method that we have pre-
viously applied to open quantum dots.9,10 The simulations
are performed by discretizing the Schrödinger equation onto
a finite-difference mesh and using it in its discrete form to set
up a numerically stabilized variant of the transfer matrix
approach11 to solve the transport problem. By imposing an
electron flux from the left, and translating across the struc-
ture, one obtains the transmission coefficients that enter the
Landauer-Büttiker formula to give the conductance. These
coefficients also facilitate the reconstruction of the dot wave
functions via backward substitution. The calculations use a
device profile that mimics what one expects from self-
consistent calculations.9 A typical profile is shown in Fig. 3,
and we note from this that the point contact providing the
coupling between neighboring dots areopenand so do not
serve as tunnel barriers(consistent with the low background
resistance found in experiment). In the lower inset of Fig. 2,

we show the calculated magneto-resistance of the seven-dot
array, and the agreement with experiment is excellent. This
can also be seen in the upper inset of Fig. 2, which compares
the computed magneto-resistance to an experimental trace
that was chosen due to its similar background resistance. To
obtain such quantitative agreement, it was necessary to su-
perimpose a random background potential, of rms amplitude
2.8 mV, over the potential of the device. This fluctuation
corresponds to less than 30% of the Fermi energy, and is
consistent with the expected effects of the random dopant
distribution in the heterojunction.12

Insight into the origin of the magneto-resistance peaks is
also provided in Fig. 3, where we plot the electron
wave function in the array at a magnetic fieldB=0 and
0.2 T. The calculations are performed for a Fermi energy
equivalent to that in experiment(8.9 meV), and it is clear
that the magnetic field very dramatically modifies the form
of the wave function. At zero field, the electron probability
density is distributed ratheruniformlyalong the length of the
array, with the resulting impression being one of anextended
state. At 0.2 T, however, the probability densitydecaysrap-
idly along length of the array, consistent with the striking

FIG. 2. Main panel: Magneto-resistance of the seven-dot array
at several different gate voltages. Lower right inset: Simulated gate-
voltage dependent magneto-resistance of the array. Upper right in-
set: A comparison of the experimental(dotted line) and computed
(solid line) magneto-resistance. Also shown in the central inset is
the probability density at 0.2 T in the first cell of the seven-dot
array. Darker regions indicate higher probability density.

FIG. 3. The top panel shows an example of a potential profile
that is used in calculations. The middle two panels show the calcu-
lated electron probability density in the array at 0 T(upper plot) and
8 T (lower plot). The bottom figures show the computed bandstruc-
ture and density of states(DoS) of an infinite chain of quantum dots
at 0 T (left) and 0.2 T.
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increase of the resistance that we observe at this magnetic
field. (The apparently broken symmetry of the wave func-
tion in this figure is actually just a consequence of the
transfer-matrix method,11 in which the transmission is com-
puted by assuming that a wave is incident on the structure
from a particular direction. This is actually close to the situ-
ation in experiment, where a net electron flow is created by
applying a small bias across the structure). The driving force
for this effect, which is analogous to ametal-insulator tran-
sition, can be seen in the central inset to Fig. 2, which pro-
vides an expanded view of the wave function in the left-
most cell of the array. The role of magnetic focusing13–17 is
apparent in this figure, which shows the signature of two
electron orbits(or possibly a single, connected, orbit) whose
cyclotron curvature deflects them to the top and bottom cor-
ners of the dot, after which they are reflected back to its
entrance. Indeed, the electron cyclotron radius at this mag-
netic fieldsrc="kF /eB=375 nmd is comparable to the period
of the quantum-dot crystal(Fig. 3), and is consistent with the
deflection of the electron orbits that can be discerned in the
inset to Fig. 2. The evanescent decay of the wave function at
0.2 T, therefore, appears to result from acascadingof this
magnetically driven dynamic backscattering, and the reso-
nant nature of the associated magneto-resistance peaks can
be attributed to the fact that this backscattering is effective,
only near the magnetic field for which the cyclotron radius
and the internal dimensions of the dot are commensurate
with each other.

The decay of the wave function at 0.2 T is reminiscent of
that which occurs in periodic structures, when Bragg reflec-
tion of electrons opens a set of forbidden gaps in the their
energy spectrum. The magnetically driven dynamic back-
scattering mechanism that we discuss is analogous to such
Bragg reflection. To demonstrate this, in the bottom panel of
Fig. 3, we compute the bandstructure of aninfinitely long
chain of quantum dots atB=0 and 0.2 T(a is the period of
the crystal and is equal to 0.4µm in this case). These results
were obtained by solving the discretized Schrödinger equa-
tion for a single dot, applying Dirichlet boundary conditions
at its upper and lower walls, and periodic boundary condi-
tions at its left- and right-leads. To solve the resulting sparse-
matrix eigenvalue problem, we use the publicly available
ARPACK software package.18 To illustrate the connection to
the ideal behavior, the calculations are actually performed for
a clean dot. Comparison of the two bandstructures shows
that the effect of the magnetic field is to open several forbid-
den gaps, which occur over a range of energy. This can be
seen more clearly in the density-of-states plots in the same
figure, obtained by integrating the bandstructure over the full
Brillouin zone. While at 0 T there are no clear regions where
the density of states vanishes, at 0.2 T a number of such gaps
(indicated by arrows) can be seen.

The idea that the magneto-resistance peaks are associated
with dynamic Bragg reflection of electrons, and transmission
via evanescent states, suggests that the peak magnitude
should be extremely sensitive to variation of the array length.
Indeed, we expect a strong connection in this case to the
problem of tunneling through the gap states of single mol-
ecules, whose conductance can be strongly(even exponen-
tially) dependent on molecular length.19–21 In Fig. 4, we

show the scaling of the magneto-resistance peaks with array
length. The three curves in the figure correspond to similar
values of the split-gate voltage, and the resulting scaling be-
havior is typical of such comparisons. The magneto-
resistance peaks grow rapidly, and at a clearly faster rate than
the increase of the background resistance, as the number of
dots in the array is increased. To illustrate this, in the right
inset of Fig. 4, we compare the scaling of the zero-field con-
ductance(open symbols) with that at 0.2 T(filled symbols).
The figure is plotted using double-log axes, and each data
point was obtained by averaging the results of magneto-
resistance measurements at many gate voltages. The error
bars in the figure thus represent the range of values contrib-
uting to the average, rather than an experimental error. The
data indicate that, at zero magnetic field, the conductance
decreases linearly as the number of dots of increased, which
is just the behavior expected for the Ohmic addition of un-
correlated, individual, dot resistances(the dotted line in the
inset indicates a conductance variationG~N−1, whereN is
the dot number). At 0.2 T, however, the conductance shows a
much more rapid, superlinear decrease as the length of the
array is increased. While one expects exponential damping
for tunneling through a single energy gap,19 the situation is
likely more complicated here, sinceseveralgaps may influ-
ence transmission(see below). Unfortunately, we have insuf-
ficient data points to determine the precise functional form of
the decay in Fig. 4. Nonetheless, the rapid decrease of the
conductance at 0.2 T is consistent with the coherent expo-
nential damping of the wave function shown in Fig. 3.

The minigaps in Fig. 4 are,20 meV wide, so that they
should only be resolved at very low temperaturessø0.2 Kd.

FIG. 4. Main panel: comparison of the magneto-resistance of
the single dot and the three- and seven-dot arrays. Left inset:
Magneto-resistance of the seven-dot array at 30 mK(solid line) and
8 K (dotted line). Right inset: Scaling of the conductance with dot
number at 0 T(open symbols) and 0.2 T(filled symbols).
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Nonetheless, experiment reveals only a weak decay of the
magneto-resistance peaks with increasing temperature. In the
left inset of Fig. 4, we show the magneto-resistance of the
seven-dot array at 0.01 and 8 K. The resistance peaks are
only slightly damped at 8 K, in spite of the fact that the
thermal energy significantly exceeds the expected size of the
forbidden gaps at this temperature. This can be understood,
however, if we recall that the effect of the magnetic field is to
open aseriesof gaps in the energy spectrum, over a wide
range of energy(Fig. 4). While the effect of increasing tem-
perature is to increase the effective energy range that contrib-
utes to the conductance,9 in the present case this will result in
the sampling of additional forbidden gaps that contribute to
the superlinear decay effect. As such, the magneto-resistance
peaks should be attributed to a general reduction in the den-
sity of states, which occurs at the resonant magnetic field,
rather than to the signature of any specific gap. We believe
that a similar argument can also be made to explain the ro-

bustness of the magneto-resistance peaks to the presence of
disorder; while disorder should give rise to the mixing of
states, the appearance of a series of gaps, over a wide range
of energy, in the unperturbed density of states, should allow
the survival of the magneto-resistance peaks.

In conclusion, we have demonstrated a novel manifesta-
tion of a dynamic Bragg reflection in artificial quantum-dot
crystals that is driven by the application of a magnetic
field. This backscattering is progressively cascaded in a
coherent manner as the number of dots in the structure
is increased, causing a superlinear damping of the electron
wave function and the appearance of a series of gaps in the
miniband spectrum. The dynamic evolution of the miniband
structure as the magnetic field is varied gives rise to behavior
analogous to a metal-insulator transition, which is manifest
as a dramatic resonance in the magneto-resistance of the
structures.
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