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The effect of weak localization on spin relaxation in a two-dimensional system with a spin-split spectrum is
considered. It is shown that the spin relaxation slows down due to the interference of electron waves moving
along closed paths in opposite directions. As a result, the averaged electron spin decays at large times as 1/t.
It is found that the spin dynamics can be described by a Boltzmann-type equation, in which the weak local-
ization effects are taken into account as nonlocal-in-time corrections to the collision integral. The corrections
are expressed via a spin-dependent return probability. The physical nature of the phenomenon is discussed and
it is shown that the “nonbackscattering” contribution to the weak localization plays an essential role. It is also
demonstrated that the magnetic field, both transversal and longitudinal, suppresses the power tail in the spin
polarization.
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INTRODUCTION

The relaxation of nonequilibrium spin polarization is the
central phenomenon in spin-dependent transport in semicon-
ductor nanostructures.1 One of the most efficient mecha-
nisms of electron spin relaxation in III–V semiconductors is
the well-known Dyakonov-Perel mechanism2 based on the
classical image of angular diffusion of the spin vector in a
random magnetic field. The field originates from the
momentum-dependent spin-orbit splitting of the conduction
band in the crystals with zinc-blend structure.3 While passing
through the crystal, the electron is scattered by impurities
and its momentum changes randomly with time. As a conse-
quence, the effective magnetic field also changes randomly
with a correlation time of the order of the momentum relax-
ation timet. The spin relaxation timetS is a characteristic
time of the spin angular diffusion2 1/tS,f2/t,V2t, where
f,Vt!1 is the typical angle of the spin precession for the
momentum relaxation time andV is the frequency of preces-
sion in the effective magnetic field proportional to the con-
duction band splitting. For a two-dimensional(2D) case,
when the electron motion in one direction is confined by the
quantum well, the spin splitting and, hence, the precession
frequency are proportional to the in-plane electron velocity4,5

V,v. So, at low temperatures, when inelastic processes can
be disregarded, the spin relaxation rate for a 2D electron with
a given energyE=mv2/2 is proportional to the particle dif-
fusion coefficient

1

tS
, D, D = v2t/2. s1d

The effects of localization on the particle diffusion have been
discussed in a great number of publications. The first-order
term in a series expansion ofD in 1/kl (l =vt is the mean
free path,k is the electron wave vector) is known as the weak
localization correction6 (for a review, see Ref. 7), coming
from the coherent enhancement of the backscattering ampli-
tude. An important feature of this correction is the logarith-
mic divergence at low temperatures in the 2D case. Equation
(1) implies a similar divergence of the spin relaxation rate.

Such a divergence was first predicted by Singh8 in spin cor-
relation functions for a system with spin-dependent impurity
scattering. It was shown, however, that the quantum correc-
tion to the spin relaxation rate is not proportional to the
quantum correction to the diffusion coefficient, as one might
expect from Eq.(1). A similar result was obtained in Ref. 9
for a system with a spin–split spectrum. It was found in Ref.
10 that the weak localization slows down the spin relaxation
of excitons in quantum wells, which leads to a 1/t power tail
in the spin orientation. A similar effect was also predicted for
electrons in 2D semiconductors with a zinc-blend crystal
structure.

In this paper, we consider the effects of localization on the
spin relaxation for a 2D semiconductor with a spin–split
spectrum. We show that the spin dynamics is described by a
Boltzmann-type equation. In the first order in 1/kl, the local-
ization effects can be taken into account by a nonlocal-in-
time correction to the Boltzmann collision integral. This cor-
rection is expressed in terms of the spin-dependent return
probability. We discuss the role of coherent returns at differ-
ent scattering angles and show that the “nonbackscattering”
contribution to the collision integral plays a key role. We
solve the generalized kinetic equation and demonstrate that,
at large times, the spin polarization decays as 1/t. The mag-
netic field, both transversal and longitudinal, is found to sup-
press the long-living tail in the spin-relaxation.

DERIVATION OF THE KINETIC EQUATION

The Hamiltonian of a 2D with a spin–split spectrum is
given by

H =
p2

2m
+

"

2
vs + Usr d. s2d

Here p=pn is the in-plane electron momentum,m is the
electron effective mass ands is a vector consisting of Pauli
matrices. The spin–orbit interaction is described by the sec-
ond term, in whichv=vsnd depends on the direction of the
electron momentumvisnd=oknkVki si =x,y,z;k=x,yd. The

matrix V̂=V̂s1d+V̂s2d is the sum of two terms: the so-called

PHYSICAL REVIEW B 70, 205335(2004)

1098-0121/2004/70(20)/205335(9)/$22.50 ©2004 The American Physical Society70 205335-1



Bychkov-Rashba term4 V̂s1d (with nonzero components

Vxy
s1d=−Vyx

s1d,p) and V̂s2d, which is the Dresselhaus term3

averaged over the electron motion along thez-direction per-
pendicular to the quantum well plane. The Bychkov-Rashba
coupling depends on the asymmetry of the quantum well
confining potential. Its strength can be tuned by varying the
gate voltage.11 The Dresselhaus term is present in semicon-
ductors with no bulk inversion symmetry. The components

of the matrix V̂s2d are also linear in the in-plane electron
momentumVi j

s2d,p and vary with well plane orientation
with respect to the crystallographic axes5 (we neglect cubic
Dresselhaus terms, assuming that the electron concentration
is relatively small). We consider the scattering by the short-
range impurity potential with the correlation function
kUsr dUsr 8dl=gdsr −r 8d, where the coefficientg is related to
the transport scattering time byt="3/mg.

The classical spin dynamics is described by the kinetic
equation.2 For a homogeneous case, this equation is

]s

]t
= vsnd 3 s+ Ĵ0s. s3d

Here Ĵ0 is the Boltzmann collision integral ands=ssp ,td is
the spin density in the momentum space, related to the aver-
aged spin byS=esd2p / s2p"d2. We assume that the spin
splitting is relatively small:vsndt!1. This inequality pro-
vides t!tS. The relationship betweentS and the inelastic
scattering timetin varies with temperature. Here we focus on
the case of low temperatures, assuming thattin@tS. Then
spins with different energies do not correlate with each
other, and the solution of Eq.(3) at t@t yields Sstd
=sm/2p"2desidE, where si =sisE,td=e−tĜsisE,0d, sis0,Ed
=kssp ,0dl is the initial spin density averaged over the mo-

mentum direction, andĜ= t̂S
−1 is the spin relaxation tensor

(tensor of inverse relaxation times) given by5

Gik = Fdiko
s,l

Vsl
2 − o

l

VliVlkGt/2. s4d

The conventional approach to the calculation of the cor-
relations functions in weakly localized systems is based on
the Kubo formula.6,7 An alternative approach12–14 is to gen-
eralize the Boltzmann equation to include weak localization
effects in the kinetic description. This approach may turn out
to be more convenient when studying nonlinear and strongly
nonequilibrium phenomena. To describe quantitatively the
weak localization phenomenon in the kinetic picture, one has
to modify the Boltzmann equation by introducing a nonlocal-
in-time correction to the collision integral.12,13These correc-
tions can be derived13 from the diagrammatic structure of
linear-response functions. Diagrammatically, the inclusion of
a weak localization correction to the effective collision inte-
gral requires the consideration of the irreducible
diagrams13,14 in Figs. 1(b) and 1(c), in addition to the dia-
gram for the Born scattering, shown in Fig. 1(a). The
crossed-ladder diagrams Fig. 1(b) are usually considered to
describe the coherent backscattering of the electron wave. A
physical interpretation of the diagrams Figs. 1(b) and 1(c) in
terms of a small change in the effective differential cross

section for a single impurity was suggested in Ref. 14. It was
based on an analysis of the interference contribution of tra-
jectories propagating in the opposite directions along closed
paths in terms of the phase stationarity requirement. This
analysis shows that the diagrams Fig. 1(b) correspond to a
process shown in Fig. 1(b8), which is indeed a coherent
backscattering. Diagrams(1c) were found to describe coher-
ent scattering processes with arbitrary scattering angles,
shown in Fig. 1(c8).

Next, we discuss the key points of a quantitative descrip-
tion of the weakly localized regime within the kinetic ap-
proach. We start with a brief discussion of the zero spin–orbit
coupling. As can be seen from Figs. 1(b8) and 1(c8), the
relevant processes contain the same closed paths, so the ef-
fective change in the differential cross section of impurity 0,
coming from both 1sb8d and 1sc8d, is expressed in terms of
the return probability14,15

dSvsFd
S0

=
ll

p
Wvs0dfdsF − pd − 1/2pg. s5d

WhereS0=1/Nivt is the isotropic cross section in the Drude
approximation,Ni is the impurity concentration,l=2p /k is

FIG. 1. Relevant irreducible diagramsa,b,c and the respective
scattering processesa8 ,b8 ,c8. The Born collision processa8 is in-
dependent of the electron spin(its contribution is proportional to
dabdug). Coherent backscatteringb8 sF−F8<pd, as well as the
processesc8 describing coherent scattering at an arbitrary angle
s0,F−F8,2pd, are spin dependent due to rotation of the spin of
an electron passing along the closed path.
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the electron wavelength, andWvs0d is given by

Wvs0d =
1

t
E dteivtWs0,td, s6d

where Ws0,td= uWsr ,tdur→0 is the probability density for a
diffusing particle to return after the timet to the origin
r =0. The coefficientll /p in the cross-section correction
was found in Ref. 14 by integration over small deviations of
the electron trajectories from the trajectories Figs. 1(b8) and
1(c8) meeting the phase stationarity requirement. Physically,
ll is the characteristic area of the region around the origin
into which the diffusing electron should return for the
effective interference to occur. The calculations show that
the contributions of Figs. 1(b8) and 1(c8) have different
signs. The positive contribution represented in Eq.(5) by
dsF−pd comes from the process Fig. 1(b8), while the nega-
tive one (the term −1/2p), from the process Fig. 1(c8). In
other words, the enhancement of the differential cross sec-
tion at the anglep due to the coherent backscattering is
accompanied by a reduction of the scattering in other direc-
tions, the total cross-section remaining unchanged(see Fig.
2). We see that the correction to the effective impurity cross
section isv-dependent. Therefore, the correction to the col-
lision integral in the time representation turns out to be non-
local in time:

dĴfsp,td = sll/pt2dE
−`

t

dt8Ws0,t − t8d

3E dF8fdsF − F8 − pd − 1/2pgfsp8,t8d. s7d

Here fsp ,td is the electron distribution function(we consider
a homogeneous case, assuming thatf is independent ofr )
andF, F8 are the angles ofp andp8.

The probability densityWvsr d is found as a sum over the
paths involving different numbers of scattering events(see,
for example, Ref. 16)

Wvsr d = o
N

Wv
Nsr d, s8d

where

Wv
Nsr d =E Psr − r NdPsr N − r N−1d . . . Psr 2 − r 1d

3Psr 1ddr 1 . . .dr N, s9d

and

Psr d =
1

2prl
e−r/l+ivr/v. s10d

At v=0, the functionPsrd is the classical probability density
for an electron starting to move fromr =0 to experience
the first collision around the pointr . In the framework of
a diagrammatic approach, the functionPsrd arises as the
product of two spherical waves(retarded and advanced
Green’s functions) Psrd=gGE+"v

R GE
A. Here GR,Asrd

=s7id3/2sm/"2de±ikr−r/2l /Î2pkr, k=Î2mE/", and we took
into account thateikE+"vre−ikEr <eivr/v. A path involving N
scatterings containssN+1d functions GR for the clockwise
propagation along the path andsN+1d functionsGA for the
counterclockwise propagation. As a result,Wv

N contains
sN+1d functionsPsrd. Using Eqs.(6) and (8)–(10), one can
show that in the diffusion approximationsvt!1d, when the
typical number of scattering events along a path is large
sN@1d, the functionWsr ,td obeys the diffusion equation

]W

]t
− DDW= dsr ddstd. s11d

Solving Eq.(11) and takingr =0, we find the return prob-
ability Ws0,td=1/4pDt, andWvs0d<s1/2pl2dlns1/tvd.

A generalization of the above results to a system with a
spin–split spectrum is straightforward. Since the electron
spin rotates while passing along a closed loop, electron
Green’s functions become operators with respect to the spin
variables:

ĜR,Asr d = s7 id3/2 m

"2

e±ikr−r/2l

Î2pkr
e−ivsndsr/2v. s12d

They are the products of spherical waves and spin-rotation
matrices describing the electron spin precession. The preces-
sion frequencyvsnd depends on the propagation direction
n=r / r. Due to the spin precession, the quantum correction to
the effective cross section becomes spin dependent:dSsFd
→dSbgausFd, where the spin indicesa, b, g, u correspond
to the electron trajectories, as shown in Figs. 1(b8) and 1(c8)

dSv
bgausFd
S0

=
ll

p
Wv

bgaus0dfdsF − pd − 1/2pg, s13d

The correction to the Boltzmann collision integral can be
written as

FIG. 2. Angular dependence of the effective cross-section modi-
fied by weak localization. The narrow peak atF−F8=p is due to
the coherent backscattering shown in Fig. 1sb8d. The enhancement
of the coherent backscattering is accompanied by a reduction of
scattering at other angles[the process in Fig. 1sc8d], the total cross
section being unchanged.
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fdĴf̂sp,vdgbg = NivE dSv
bgausF − F8dfausp8,vddF8,

s14d

where fausp8 ,vd is the momentum-dependent spin-density
matrix. To derive the expression forWv

bgau, we introduce the
probability density for a diffusing electron to arrive afterN
collisions at the pointr with the spin rotated by an anglef:

Wv
Nsr ,fd =E dsf − fNdPsr − r Nd . . . Psr 2 − r 1d

3Psr 1ddr 1 . . .dr N. s15d

The anglefN changes with the coordinates of the scattering
points r 1, . . . ,r N. One can find it from the matrix equation

e−ifNs/2 = e−iesr−r Nds/2e−iesr N−r 2ds/2 . . .eiesr 2−r 1ds/2e−iesr 1ds/2,

s16d

whereesr d=vsndr /v. The spin-dependent return probability
is then expressed via the total probability density

Wvsr ,fd = o
N

Wv
Nsr ,fd, s17d

taken atr =0

Wv
bgaus0d =E kbue−ifs/2ualkuue−ifs/2uglWvs0,fddL,

s18d

wheredL=gsfdd3f and functiongsfd is defined in Appen-
dix A. ( Note that, in the absence of the spin–orbit coupling,
Wvs0,fd=dsfdWv /gsfd and Wv

bgau is expressed asWv
bgau

=dabdguWv). What remains to be done is to find an equation
for Wvsr ,fd. To this end, the probabilitiesWv

N are related to
each other by the recurrent equations:

gsfdWv
N+1sr ,fd =E Psr 8dWv

Nsr − r 8,f8d

3dsf − f8 − Dddr 8dL8. s19d

The vectorD=Dr8,f8 describes the change of the spin rota-
tion angle in a ballistic path between two scattering. One can
find it from the following equation expf−isf8+Dds /2g
=expf−iesr 8ds /2gexps−if8s /2d Next, we sum Eq.(19)
over N and take into account thatD!1. After combersome
but straightforward calculations, we find thatWsr ,f ,td
=teWvsr ,fdexps−ivtddv /2p (the probability density to ar-
rive after timet to the pointr with the spin rotated by the
anglef) is described by an equation similar to Eq.(11):

]W

]t
− DS ]

]r
−

iV̂L̂

v
D2

W= dstddsr ddsfd/gs0d. s20d

Here L̂ is the angular momentum operator acting on the

functions of vectorf (see Ref. 17) and sV̂L̂ di =VikL̂k. The

explicit expressions forL̂ and for the common eigenfunc-

tions of L̂2 and L̂z are presented in Appendix A. Expanding

dsfd in a series over these functions, we keep the term with
L=0. The corresponding eigenfunctionC0 is independent of

the anglef and L̂C0=0. This is the only term which sur-
vives at t@tS. The other terms decay exponentially with
characteristic times of the order oftS. (This statement is not

true for a degenerate case, whenV̂L̂ depends on the compo-

nent of L̂ along a single axis. This case is discussed below.)
As a result, we obtain the following expression for the as-
ymptotical behavior ofWs0,f ,td:

Ws0,f,td =
1

4pDt
, for t @ tS. s21d

Now, we write the distribution function as

f̂ = Î f + ss, s22d

where f is the particle density in the momentum space, re-

lated to the electron concentration byn=2e fdp / s2p"d2, Î is
the unit matrix, ands is the spin density. Substituting Eq.
(21) and Eq.(22) into Eq. (18) and Eq.(14), respectively,
making a Fourier transform, and taking into account Eq.
(13), we obtain the weak-localization-induced correction to
the collision integral

sdĴfd = sll/pt2dE
−`

t

dt8Ws0,t − t8d

3E dF8fdsF − F8 − pd − 1/2pgfsp8,t8d, s23d

sdĴsdi = sll/pt2dE
−`

t

dt8Wiks0,t − t8d

3E dF8fdsF − F8 − pd − 1/2pgsksp8,t8d,

s24d

whereWiks0,td andWs0,td are given by

Wiks0,td =E Sdik − 2eiek sin2 f

2
DWs0,f,tddL,

Ws0,td =E cosfWs0,f,tddL, s25d

wheree=f /f. Using Eq.(21), we find the asymptotical be-
havior of these functions

Wiks0,td =
dik

8pDt
, Ws0,td = −

1

8pDt
, for t @ tS.

s26d

Note also that the spin–orbit coupling can be neglected in the
time intervalt! t!tS. Hence,Ws0,f ,td,dsfd and the ex-
pressions forWik andW become
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Wiks0,td =
dik

4pDt
, Ws0,td =

1

4pDt
, for t ! t ! tS.

s27d

We see that the difference between Eqs.(26) and (27) is in
the numerical coefficients only.

SOLUTION OF THE KINETIC EQUATION: THE LONG-
LIVING TAIL IN THE SPIN POLARIZATION

For the case with a spin polarization uniform in space, the
generalized kinetic equation is

]s

]t
= vsnd 3 s+

si − s

t
+ dĴs, s28d

wheredĴ s is given by Eq.(24). This equation can be solved
in the usual way.2 Sincevsndt!1, the spin density can be
represented as a sum of the isotropic partsisE,td, which de-
pends on the electron energy only, and a small anisotropic
correctionsasp ,td, which is linear in the electron momentum
p:

s= si + sa. s29d

Substituting Eq.(29) into Eq.(28), using Eq.(26), and taking
into account the equalities

dĴsi = 0, kdĴsal = 0, s30d

(here the angular brackets stand for averaging over the mo-
mentum direction) we obtain a closed relation forsi:

]si

]t
= − ĜSsi −

1

2pkl
E

−`

t

dt8
sist8d
t − t8

D . s31d

Assuming that the spin polarization was created att=0 with
a densitysisE,0d and neglecting the quantum correction, we

get the exponential relaxationsisE,td=ustde−ĜtsisE,0d [here
ustd is the theta function]. This solution is valid untile−t/tS

,1/pkl. For larger times, the spin polarization should be
found from the condition that the right-hand side of Eq.(31)
equals zero:sisE,td<s1/2pklde0

t dt8e−Gt8sisE,0d / st− t8d. So
we find that the spin polarization has a long-living power tail
at large times

sisE,td =
1

2pkl

Ĝ−1

t
sisE,0d. s32d

To conclude this section, we note that we neglected in our
calculations the electron dephasing due to inelastic scatter-
ing. Such dephasing can be accounted for phenomenologi-
cally by introducing the factor exps−t /twd into the right-hand
side of Eq.(32). Heretw is the phase-breaking time.

DEGENERATE CASE

Equation(32) is invalid for the degenerate case, when the
spin precession frequencyvsnd is parallel to a certain vector
u for any electron momentum:vsnd iu for any n. In the

classical limit, the component of the electron spin parallel to
u does not relax18 Guu=0 and the two perpendicular compo-
nents relax with equal ratesG1=G2=G, the off-diagonal com-

ponents ofĜ being equal to zerosG1v=G2v=G12=0d. This
happens in symmetric quantum wells grown in the[110]
direction,5 as well as in asymmetric quantum wells grown in
the [001] direction, due to the interplay between Dresselhaus
and Rashba couplings.19,20 To find the long-time asymptotic
of the return probability, we write the formal solution of Eq.
(20) as

Ws0,f,td =E d2q

s2pd2e−Dsq − V̂L̂ /vd2tdsfd/gs0d. s33d

In the degenerate case, each of the three operatorssV̂L̂ dx,

sV̂L̂ dy, andsV̂L̂ dx is proportional toL̂u, which is the compo-

nent of L̂ along the precession axis. Therefore, these three
operators commute with each other. Changing the integration

variablesq→q− iV̂L̂ /v in Eq. (33) we obtain

Ws0,f,td =
dsfd

4pgs0dDt
. s34d

Thus, after traveling around a closed loop, the electron spin
does not rotate at all. This can be interpreted as follows.19

For the degenerate case, the spin rotation angle is simply
given byf=evdt,epdt. For a closed loop, we haveepdt
=0 and, as a consequence,f=0 After substituting Eq.(34)
into Eq. (25) and using Eqs.(24) and (28), one can see that
the weak localization does not affect the longitudinal com-
ponent of the spin densityusisE,td=usisE,0d, while the re-
laxation of the perpendicular component is described by the
following equation

]si

]t
= − GSsi −

1

pkl
E

−`

t

dt8
sist8d
t − t8

D, si ' u. s35d

The integral in the right-hand side of Eq.(35) contains an
additional factor 2 as compared with that in Eq.(31). It can
be shown that this factor arises from the contribution of the
eigenfunctions withL=1 to the long-time asymptotic Eq.
(34) of the return probability.21 The long-time asymptotic of
the spin polarization is given by

sisE,td =
1

pkl

1

Gt
sisE,0d, wheresisE,0d ' u. s36d

SUPPRESSION OF LONG-LIVING POLARIZATION BY
THE MAGNETIC FIELD

Next, we consider the influence of the external magnetic
field on the long-living power tail in the spin polarization.
When an external fieldB is present, the spin rotation matri-

ces appearing inĜR and ĜA become different:e−ivsndsr/2v

→e−ifvsnd+V0gsr/2v for ĜR and e−ivsndsr/2v→e−ifvsnd−V0gsr/2v

for ĜA. Here,V0 is the frequency of the spin precession in
the fieldB. So, Eq.(18) is modified as
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Wv
bgau =E kbue−ifs/2ualkuue−if8s/2uglWvs0,f,f8ddLdL8,

s37d

where

Wvsr ,f,f8d = o
N
E dsf − fNddsf8 − f8Nd

3PBsr − r Nd . . . PBsr 2 − r 1dPBsr 1ddr 1 . . .dr N.

s38d

Here,16

PBsr − r 8d = Psr − r 8dexpSi
eB'

"c
fr 3 r 8gD , s39d

and B' is the component of the magnetic field normal to
the quantum well plane. The vectorsfN and fN8 should be
found from Eq.(16) with esr d=fvsnd+V0gr /v for fN and
e8sr d=fvsnd−V0gr /v for fN8 . Writing out the recurrent
equations for the consecutive terms in Eq.(38), we can
derive the following expression for the probability density
Wsr ,f ,f8 ,td=teWvsr ,f ,f8dexps−ivtddv /2p,

]W

]t
− iV0sL̂ − L̂ 8dW− DS ]

]r
− i

2eA

c"
− i

V̂sL̂ + L̂ 8d
v

D2

W

= dstddsr ddsfddsf8d/g2s0d. s40d

Here the operatorsL̂ andL̂ 8 are given by Eq.(A1) (with the

replacementf→f8 for L̂ 8). The term −i2eA /c" in Eq. (40)
is responsible for the magnetic field effect on the electron
orbital motion.22 HereA =fB'3 r g /2 is the vector potential.
We assume that the magnetic field is small

V0tS! 1, andDeB'tS/"c ! 1. s41d

For B=0, the solution of Eq.(40) is

Wsr ,f,f8,td = Wsr ,f,tddsf − f8d/gsfd, s42d

whereWsr ,f ,td obeys Eq.(20). Using Eq.(42), we rewrite
the long-living solution(21) (which corresponds to zero total

angular momentumĴ= L̂ + L̂ 8) in terms of two anglesf ,f8:

1

4pDt

dsf − f8d
gsfd

=E d2q

s2pd2e−gsqdtdsf − f8d
gsfd

, for B = 0.

s43d

In this equationgsqd=Dq2 is the eigenvalue of the operator

ĝ=Dsq−V̂Ĵ /vd2 at J=0 anddsf−f8d /gsfd is the respective
eigenfunction. ForBÞ0, the long time dynamics of the spin
relaxation is determined by the eigenvalues of the operator

ĝ = − iV0sL̂ − L̂ 8d + Ds− i]/]r − 2eA/c" − V̂Ĵ/vd2.

s44d

First, we neglect the term −iV0sL̂ − L̂ 8d. In this approxima-
tion, the eigenvalues ofĝ, corresponding toJ=0, are given
by

gn = g'sn + 1/2d, s45d

whereg'=4eB'D /"c andn=0,1,2,etc. Since the operator
Ds−i] /]r −2eA /c"d2 has a discrete spectrum, we have to
make the replacement

E d2q

s2pd2e−gsqdt → g'

4pD
o
n

e−gnt =
g'

4pD sinhsg't/2d

s46d

in Eq. (43). The second step is to take into account the term

−iV0sL̂ − L̂ 8d, taking it to be a small perturbation. In the first
order of the perturbation theory, this term leads to the mixing
of the eigenfunctions withJ=1 to the eigenfunction withJ
=0. This mixing can be disregarded atV0!G. Corrections to
the eigenvaluesgn arise in the second order only. They are
calculated in Appendix B. Using Eq.(B5), we can show that
the spin polarization dynamics at large times is described as

sisE,td =
1

2pkl

g'e−V0Ĝ−1V0t

2 sinhsg't/2d
Ĝ−1sisE,0d. s47d

Thus, we see that the magnetic field does suppress the long-
living tail in the spin polarization.

DISCUSSION

Next we discuss briefly the physical meaning of the re-
sults obtained. Our calculations were based on the interpre-
tation of the weak localization phenomena in terms of two
scattering processes: coherent backscattering[see Fig. 1(b8)]
and coherent scattering at an arbitrary angle[see Fig. 1(c8)].
The existence of the long-living spin polarization can be ex-
plained as follows. Both coherent scattering processes were
shown to be nonlocal in time. In other words, the transition
of a spins to a spins8, caused by coherent scattering, takes
a certain timet which may be relatively long:t@tS. The
coherent scattering events do not change the direction of the
electron spin. Indeed, as seen from Eq.(26), Wiks0,td,dik

and, as a consequence,s8 is. Therefore, the electrons in-
volved in such a scattering can keep memory about the initial
spin polarization during the time much longer thantS. The
power law 1/t is due to the proportionality of the probability
of coherent scattering to the probability of diffusive return.

The collision integral accounting for both coherent pro-
cesses does not change the total scattering cross section.
Therefore,

dĴf i = 0, dĴsi = 0. s48d

Using Eqs.(23), (24), and(26), and taking into account that
fas−p ,vd=−fasp ,vd andsas−p ,vd=−sasp ,vd, we obtain

dĴfasp,vd =
lns1/vtd
2pklt

fasp, vd,

dĴsasp,vd = −
lns1/vtd
2pklt

sasp,vd, for vtS! 1. s49d

Eqs.(48) and(49) imply that the effect of localization on the
angular spin diffusion, as well as that on the particle diffu-
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sion, can be accounted for by thev-dependent renormaliza-
tion of the transport scattering time. However, the quantum
corrections to this time have different signs for the particle
and angular spin diffusion:

1

ttr
=

1 − lns1/vtd/2pkl

t
, s50d

for the particle diffusion and

1

ttr8
=

1 + lns1/vtd/2pkl

t
, s51d

for the spin diffusion. This implies that the Eq.(1) is invalid
in the quantum case, or, more precisely, it relatestS andttr8
rather thantS andttr.

An important comment should be made concerning the
role of the coherent nonbackscattering contribution(pro-
cessesc8 in Fig. 1). Neglecting this contribution, we have

dĴsi Þ0. It can be easily shown that this leads to a physically
meaningless result for the spin relaxation rate. Therefore, the
correct treatment of the effect of weak localization on the
spin relaxation is only possible when the nonbackscattering
coherent processes are taken into account(the role of such
effects for particle diffusion was discussed in Ref. 14). It is
worth noting that the weak localization effects are usually
considered to be due to the coherent backscattering only. The
point is that the quantum correction to the conductivity is
usually calculated by means of the Kubo formula, which
expresses conductivity in terms of the current–current corre-
lation function. This approach focuses on the calculation of
the velocity correlation function, which depends on the an-
isotropic part of the distribution functionfa; so, there is no
need to know corrections tof i. The situation is quite different
for spin relaxation which is due to the relaxation of the iso-
tropic part of the distribution function.23

To conclude, we have discussed the long-time dynamics
of the spin polarization in a 2D disordered semiconductor. It
is shown that, at large times, the spin relaxation slows down
due to weak localization effects. An analytical expression for
the long-living tail of the spin polarization has been derived.
The magnetic field, both transversal and longitudinal, sup-
presses this tail, restoring the exponential relaxation.
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APPENDIX A

The analytical expression for the angular momentum op-

eratorL̂ is

L̂ = iH ]

]f
+ S1 −

f

2
cot

f

2
DFe3 Se3

]

]f
DG − Sf

2
3

]

]f
DJ ,

sA1d

with e=f /f. The components of this operator obey the

usual commutation rules,fL̂i ,L̂jg= iei jl L̂l. The common

eigenfunctions ofL̂2 and L̂z are Wigner’s rotation matrices
(Ref. 17) DMM8

L sfd:

L̂2DMM8
L sfd = LsL + 1dDMM8

L sfd, L̂zDMM8
L sfd = MDMM8

L sfd.

sA2d

The values of L may be integer and half-integerL
=0,1/2,1,3/2,etc. (as usual,M =−L , . . . ,L). There is also
s2L+1d degeneracy with respect toM8. The eigenfunction
corresponding toL=0 is equal to unity

C0 = D00
0 = 1, L̂C0 = 0. sA3d

The orthogonality conditions are17

E dLDMM8
L sfdDM1M18

L1* sfd = dLL1dMM1
dM8M18

/s2L + 1d.

sA4d

Here the integration is made over all possible transforma-
tions of the SU(2) group. The integration measure is taken in
the invariant form:

dL = gsfdd3f, wheregsfd =
1

16p2

sin2sf/2d
sf/2d2 . sA5d

Note that SU(2) transformations are usually parameterized
by Euler angles 0,a,2p, 0,b,p, −2p,g,2p. For
such a parametrization, the invariant integration measure is

given by17 dL=sinb da db dg /16p2 (the expression forL̂
via the Euler angles is also given in Ref. 17). It is convenient
for us to use the components of vectorf s0,f,2pd in-
stead of Euler angles. This gives24 dL=gsfdd3f. The expan-
sion of the delta functiondsf−f8d in Wigner’s functions is

dsf − f8d = o
L,M,M8

s2L + 1dDMM8
L sfdDMM8

L* sf8dgsfd.

sA6d

The solution to Eq.(20) can be represented as a sum over all
angular momentaL=0,1/2,1,3/2,etc. However, as follows
from Eq. (18) only two terms(L=0 andL=1) contribute to
the spin-dependent return probability. Indeed, the action of
the operatorL on the spin-rotation matrices is given by

L̂ kbue−ifs/2ual =
sbb8

2
kb8ue−ifs/2ual, sA7d
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L̂ kbue−ifs/2ualkuue−ifs/2ugl =
sbb8duu8 + dbb8suu8

2

3kb8ue−ifs/2ualku8ue−ifs/2ugl.

sA8d

As follows from Eq.(A8), the projection of the operatorL
onto the subspace formed by products of two rotation matri-
ces is given by

L̂ * =
ŝs1d + ŝs2d

2
, sA9d

wheress1d andss2d are the Pauli matrices acting on the first
and second rotation matrices, respectively. Therefore, the an-
gular momentumL* can only be 0 or 1(singlet and triplet
contributions).

Using Eq. (20) and the property edLC1
* L̂C2=

−edLC2L̂C1
* , valid for arbitrary functions C1sfd and

C2sfd, we can see that the function

Wbgausr ,td =E kbue−ifs/2ualkuue−ifs/2uglWsr ,f,tddL,

sA10d

obeys the equation similar to Eq.(20)

F ]

]t
− DS ]

]r
+

iV̂L̂ *

v
D2G

bb8uu8
Wb8gau8 = dstddsr ddabdgu,

sA11d

where matrix elementsL bb8uu8
* are given by Eq.(A8). Note

that Eq.(A11) was used in Refs. 19, 25, and 26 for calcula-
tion of weak localization corrections to conductivity. The

alternative derivation of the operatorL̂ * was given in Ref.
27.

APPENDIX B

Using Eq.(A6), we expand Eq.(43) as

dsf − f8d
gsfd

= o
L

Î2L + 1 o
M1=−L

L

CL
M1M1, sB1d

where

CL
M1M2sf,f8d = Î2L + 1 o

M=−L

L

DMM1

L sfdDMM2

*L sf8d,

sB2d

is the full set of the eigenfunctions(L=0,1/2,1,3/2,etc.;
M1=−L , . . . ,L; M2=−L , . . . ,L) for zero total angular mo-

mentumĴCL
M1M2=0. In the second order of the perturbation

theory, the term −iV0sL̂ − L̂ 8d leads to the corrections to the
eigenvalues of the operatorĝ. These corrections are different
for the functionsCL

M1M1 with different values ofL. They are
calculated as

D−1kCL
M1M1uV0sL̂ − L̂ 8dsV̂Ĵ/vd−2V0sL̂ − L̂ 8duCL

M18M18l

= DgLdM1M18
. sB3d

Next, we diagonalize the operatorsV̂Ĵ /vd2 in the subspace

formed by the following three functionssL̂x− L̂x8dCL
M18M18,

sL̂y− L̂y8dCL
M18M18, andsL̂z− L̂z8dCL

M18M18. Direct calculation gives

DgL =
4LsL + 1d

3
V0Ĝ−1V0. sB4d

The expression for the long-living solution becomes

Ws0,f,f8,td <
1

4pD

g'/2

sinhsg't/2d

3o
L

Î2L + 1e−DgLt o
M1=−L

L

CL
M1M1, sB5d

whereL=0,1/2,1,3/2,etc. Substituting Eq.(B5) into Eq.
(37) and using Eqs.(13), (14), and(22) we derive Eq.(47).
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