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Slowing down of spin relaxation in two-dimensional systems by quantum interference effects
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The effect of weak localization on spin relaxation in a two-dimensional system with a spin-split spectrum is
considered. It is shown that the spin relaxation slows down due to the interference of electron waves moving
along closed paths in opposite directions. As a result, the averaged electron spin decays at large times as 1/
It is found that the spin dynamics can be described by a Boltzmann-type equation, in which the weak local-
ization effects are taken into account as nonlocal-in-time corrections to the collision integral. The corrections
are expressed via a spin-dependent return probability. The physical nature of the phenomenon is discussed and
it is shown that the “nonbackscattering” contribution to the weak localization plays an essential role. It is also
demonstrated that the magnetic field, both transversal and longitudinal, suppresses the power tail in the spin

polarization.
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INTRODUCTION Such a divergence was first predicted by Sthighspin cor-

relation functions for a system with spin-dependent impurity

The relaxation of noneqU|I|br|um spin poIar|zat_|on 'S t'he scattering. It was shown, however, that the quantum correc-
central phenomenon in spin-dependent transport in semicon-

ductor nanostructurdsOne of the most efficient mecha- tion to the spin relaxation rate is not proportional to the
) o L : ._gquantum correction to the diffusion coefficient, as one might
nisms of electron spin relaxation in Ill-V semiconductors is

) X expect from Eq(1). A similar result was obtained in Ref. 9
the vyell Known Dyakonov P(_arel .mechan%m_sed on th_e for a system with a spin—split spectrum. It was found in Ref.
classical image of angular diffusion of the spin vector in a

random magnetic field. The field originates from the 10 that the weak localization slows down the spin relaxation

momentum-dependent spin-orbit splitting of the conductionOf excitons in guantum wells, which leads to & power tal

. Lo . . In the spin orientation. A similar effect was also predicted for
band in the crystals with zmc-blend_ structdnéhile PassINg  gjactrons in 2D semiconductors with a zinc-blend crystal
through the crystal, the electron is scattered by 'mpu”t'esstructure

aE2r:tcsemt?geer#g(r:?ivc:%‘gezggg(?gglyagghcﬂr:ﬁ' :‘SS ;r?ggrsn?_ In this paper, we consider the effects of localization on the
d ' 9 9 gpin relaxation for a 2D semiconductor with a spin—split

with a correlation time of the order of the momentum relax'spectrum. We show that the spin dynamics is described by a

fi‘::]Oenot]:rS’}eeT.s -Err:zr?pmarre(;?%i'%&t/'mis(;g /af?)azraiirésrgc Boltzmann-type equation. In the first order inkl,/the local-
pin ang s AT ization effects can be taken into account by a nonlocal-in-

frioNn%a Trfu%nlsr;:l ?(;)tliglr?a::rr?g%:?ﬂorst?ﬁei?én Eéiiess;o?ggégetime correction to the Boltzmann collision integral. This cor-
q yorp rection is expressed in terms of the spin-dependent return

fjlt?(?ticl)nn tr;eaneéfesctnﬁnma?:r;eiu; fﬁg_gﬁg?g;gggéo f:gesecon'probability. We discuss the role of coherent returns at differ-
piiting. o A .) ' ent scattering angles and show that the “nonbackscattering”
when the electron motion in one direction is confined by the

quantum well, the spin spliting and, hence, the precessioﬁonmbuuon to the collision integral plays a key role. We

. ; .~ ~solve the generalized kinetic equation and demonstrate that,
frequency are proportional to the in-plane electron vel4éity

Q~v. So, at low temperatures, when inelastic processes ¢ arllt large times, the spin polarization decays as The mag-

be disregarded, the spin relaxation rate for a 2D electron with etic field, both transversal and longitudinal, is found to sup-
; 9 L 2p . . . .. press the long-living tail in the spin-relaxation.

a given energfE=mv</2 is proportional to the particle dif-

fusion coefficient

DERIVATION OF THE KINETIC EQUATION

The Hamiltonian of a 2D with a spin—split spectrum is

1
= D, D=v22. @ given by

Ts

The effects of localization on the particle diffusion have been H = P~ + 5w0+ ur). ?)

discussed in a great number of publications. The first-order 2m

term in a series expansion &f in 1/kl (I=v7 is the mean ) _ )

free pathk is the electron wave vectpis known as the weak €€ pP=pn is the in-plane electron momenturm is the
localization correctioh (for a review, see Ref.)7 coming electron effective mass ana is a vector consisting of Pauli

from the coherent enhancement of the backscattering ampiffatrices. The spin—(zrbit interaction is described by the sec-
tude. An important feature of this correction is the logarith-O"d térm, in whichw=w(n) depends on the direction of the

mic divergence at low temperatures in the 2D case. Equatiofil€ctron momentum;(n)=2nddy (i=x,y,z;k=x.y). The
(1) implies a similar divergence of the spin relaxation rate.matrix Q=Q®+0®? is the sum of two terms: the so-called
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a0 0

Bychkov-Rashba terfn o (with  nonzero components 0 B
0y/=-00) ~p) and O?, which is the Dresselhaus tetm

avxéraged over the electron motion along thdirection per-

pendicular to the quantum well plane. The Bychkov-Rashba
coupling depends on the asymmetry of the quantum well
confining potential. Its strength can be tuned by varying the
gate voltageé! The Dresselhaus term is present in semicon-

ductors with no bulk inversion symmetry. The components

of the matrix Q® are also linear in the in-plane electron
momentqui(.Z)~p and vary with well plane orientation
with respect to the crystallographic aXegse neglect cubic
Dresselhaus terms, assuming that the electron concentratiol
is relatively small. We consider the scattering by the short-
range impurity potential with the correlation function
U(r)U(r"))y=v8r-r"), where the coefficieny is related to
the transport scattering time yz=#3/my. o 4
The classical spin dynamics is described by the kinetic =3
equatior? For a homogeneous case, this equation is

]
Js ~
—=w(n) X s+Jgs. (3)
Here:]O is the Boltzmann collision integral argEs(p,t) is e
the spin density in the momentum space, related to the aver- - R
aged spin byS=[sd’p/(27#)>. We assume that the spin g4 A By !

splitting is relatively small:.w(n)7<1. This inequality pro- = “~seecoce=””
vides 7< 75, The relationship betweers and the inelastic

scattering timer;, varies with temperature. Here we focus on

the case of low temperatures, assuming that 7. Then FIG. 1. Relevant irreducible diagramasb,c and the respective
spins with different energies do not correlate with eachscattering processes,b’,c’. The Born collision procesa’ is in-
other, and the solution of Eq@3) at t>7 yields S(t) dependent of the electron spiits contribution is proportional to

=(m/2m#?) [sdE, where s=s(E,t)=e's(E,0), s(0,E) S4p09y). Coherent backscattering (®-&'~ ), as well as the

- . " : ; _processeg’ describing coherent scattering at an arbitrary angle
(s(p,0)) s the initial spin density averaged over the mo (0<®-d’' <27), are spin dependent due to rotation of the spin of

mentum direction, and“:%gl is the spin relaxation tensor an electron passing along the closed path.
(tensor of inverse relaxation timegiven by

Ty =| 03— >y |712. (4) section for a single ir_npurity was suggested in Ref. 14. It was

sl | based on an analysis of the interference contribution of tra-

) . jectories propagating in the opposite directions along closed

The conventional approach to the calculation of the COryaihs in terms of the phase stationarity requirement. This
relations functlons7|n weakly Io_callzed syste3§ is based Onalysis shows that the diagrams Figb)lcorrespond to a
the Kubo formulé:” An alternative approaéf4is to gen- process shown in Fig. ('), which is indeed a coherent

eralize the Boltzmann equation to include weak |°Calizati°’backscattering. Diagramidc) were found to describe coher-
effects in the kinetic description. This approach may turn Ot scattering processes with arbitrary scattering angles,
to be more convenient when studying nonlinear and strongl¥pown in Fig. 1c").

nonequilibrium phenomena. To describe quantitatively the  next we discuss the key points of a quantitative descrip-
weak localization phenomenon in the kinetic picture, one hagg of the weakly localized regime within the kinetic ap-

to modify the Boltzmann equation by mtroijucmg anonlocal-poach. We start with a brief discussion of the zero spin—orbit
in-time correction to the collision integr&:'3These correc- coupling. As can be seen from Figs(bl) and Xc'), the

tions can be derivéd from the diagrammatic structure of rejeyant processes contain the same closed paths, so the ef-

linear-response functions. Diagrammatically, the inclusion Okactive change in the differential cross section of impurity 0,
a weak localization correction to the effective collision inte- coming from both 1b’) and Xc’), is expressed in terms of

gral requires the consideration of the irreducible 1415

diagram&®'4in Figs. 4b) and Xc), in addition to the dia- the return probability'

gram for the Born scattering, shown in Fig(al The S, () Al

crossed-ladder diagrams Figib] are usually considered to = ;Ww(O)[é(CID - m) = 1/27]. (5)
describe the coherent backscattering of the electron wave. A

physical interpretation of the diagrams Figgb)land 1c) in ~ WhereSy=1/N;u 7 is the isotropic cross section in the Drude
terms of a small change in the effective differential crossapproximationN; is the impurity concentrationy,=27/k is
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S W, (r) = 3 WA(r), (8)
N

where

W[:l)(r) :f P(r —=ryP(ry—rn-1) ... P(ra—ry)

XP(ry)dry...dry, 9)

and

. 1 .
0 n 2n o-@' P(r) = %e—rﬂﬂwrlv ) (10)

FIG. 2. Angular dependence of the effective cross-section modi-
fied by weak localization. The narrow peakdt®'=xis due to At =0, the functionP(r) is the classical probability density
the coherent backscattering shown in Fighl). The enhancement for an electron starting to move from=0 to experience
of the coherent backscattering is accompanied by a reduction ¢he first collision around the point. In the framework of
scattering at other angl¢the process in Fig. {c')], the total cross  a diagrammatic approach, the functidr) arises as the
section being unchanged. product of two spherical wavegretarded and advanced
Green's functions P(r)=yGg,; Ge. Here Ggalr)
the electron wavelength, awl,,(0) is given by =(Fi)3(mih2)etkr 12 2 mkr, k=\2mE/#, and we took
into account thateke+o'e Ke"~gev A path involving N
W,,(0) _1 f dtd“'W(0, 1), (6)  scatterings containgN+1) functions Gg for the clockwise
T propagation along the path aid+1) functionsG, for the

where W(0,t)= W(r ,1)|, o is the probability density for a counterclockwise propagation. As a restt/! contains
diffusing particle to return after the time to the origin (N+1) functionsP(r). Using Eqs.(6) and(8)«10), one can
r=0. The coefficient\l/ in the cross-section correction SNOW that in the diffusion approximatider<1), when the
was found in Ref. 14 by integration over small deviations oftyPical number of scattering events along a path is large
the electron trajectories from the trajectories Figh'jland  (N>1), the functionW(r t) obeys the diffusion equation

1(c’) meeting the phase stationarity requirement. Physically, W

Ml is the characteristic area of the region around the origin oW -

into which the diffusing electron should return for the at DAW= 8(r) (D). (1)
effective interference to occur. The calculations show that

the contributions of Figs. (b’) and Xc’) have different Solving Eq.(11) and takingr =0, we find the return prob-
signs. The positive contribution represented in B5). by  ability W(0,t)=1/4=Dt, andW,,(0) = (1/271?)In(1/7w).
S8(P—) comes from the process Figihl), while the nega- A generalization of the above results to a system with a
tive one(the term —1/2r), from the process Fig.(&'). In  spin-split spectrum is straightforward. Since the electron
other words, the enhancement of the differential cross sespin rotates while passing along a closed loop, electron
tion at the anglew due to the coherent backscattering is Green’s functions become operators with respect to the spin
accompanied by a reduction of the scattering in other direcvariables:

tions, the total cross-section remaining unchangese Fig.

2). We see that the correction to the effective impurity cross & (r) = (50)32D tikr-r/2l iw(n)oti2u (12)
section isw-dependent. Therefore, the correction to the col- RAV =AU 42 N © '
lision integral in the time representation turns out to be non-
local in time: They are the products of spherical waves and spin-rotation
t matrices describing the electron spin precession. The preces-
5jf(p,t) :(M/WZ)J dt'W(0,t —t') sion frequencyw(n) depends on the propagation direction

n=r/r. Due to the spin precession, the quantum correction to
the effective cross section becomes spin dependsfith)
X f dO'[8(D - D' - 7) — 1/27]f(p',t"). (7)  — 8SP*% (D), where the spin indices, B, v, 6 correspond
to the electron trajectories, as shown in Figh'iand Xc’)
Heref(p,t) is the electron distribution functiofwe consider
a homogeneous case, assuming th#& independent of) sSEY(®) I
, ' , — =W (D - m) - 1/2w], (13
and®, @' are the angles gb andp’. So T ¢
The probability densityV,(r) is found as a sum over the
paths involving different numbers of scattering evefstse, The correction to the Boltzmann collision integral can be
for example, Ref. 16 written as
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~n () in a series over these functions, we keep the term with
[63t(p, @)]gy = Niv f 8SEY D = ®")f 4y(p’, ) AP, L=0. The corresponding eigenfuncti@, is independent of
(14) the angle¢ and LW,=0. This is the only term which sur-
vives att>r7s The other terms decay exponentially with
where f_4(p’,w) is the momentum-dependent spin-densitycharacteristic times of the order of. (This statement is not
matrix. To derive the expression fav2"*’, we introduce the true for a degenerate case, wHeh depends on the compo-

probability density for a diffusing electron to arrive afir - ot o[ along a single axis. This case is discussed bglow.
collisions at the point with the spin rotated by an angi#  ag a result, we obtain the following expression for the as-

ymptotical behavior ofM0, ¢, 1):
Wy(r, ¢) = f A= dP(r —ry) ... P(ra=ry)

W(0,¢,t) = 1 fort> rs. (21)

The anglegy changes with the coordinates of the scattering Now, we write the distribution function as
pointsr4, ... ,ry. One can find it from the matrix equation

giONo12 = grielr =) ol2gmic(iT)ol2 | delryp)ol2grie(ry)ol2, f=If +so, (22

(16)  wheref is the particle density in the momentum space, re-
wheree(r)=w(n)r/v. The spin-dependent return probability [ated to the electron concentration by 2 f fdp/(2mh)? | is

is then expressed via the total probability density the unit matrix, ands is the spin density. Substituting Eqg.
(21) and Eq.(22) into Eq. (18) and Eq.(14), respectively,
W, (r, ) = >, WN(r, ¢), (17 making a Fourier transform, and taking into account Eq.
N (13), we obtain the weak-localization-induced correction to

taken atr =0 the collision integral

t
WE(0)= [ (Ble o ole 47w, (0, g, 30 = e avwios-t)

(18)

wheredA =g(¢)d3¢ and functiong(¢) is defined in Appen-
dix A. ( Note that, in the absence of the spin—orbit coupling,
W,(0,¢)=8(p)W,,/g(¢p) and WA is expressed awPr*? A t
= 8,30,4W,,). What remains to be done is to find an equation ~ (8Js); = (M/TFTZ)J dt'W, (0,t - t')
for W,,(r, ¢). To this end, the probabilitied/! are related to -
each other by the recurrent equations:

X qu)’[ﬁ((b—(b’ -a) = 12x]f(p’.t'), (23

><fd@’[&(cb—cb'—w)—llzw]sk(p’,t'),
AW, ™(r, ¢) = f Pr)Wo(r —r',¢") (24

Xd(p=-¢' =A)dr'dA’. (19 whereW,(0,t) andW(0,t) are given by
The vectorA=A,, , describes the change of the spin rota-
tion angle in a ballistic path between two scattering. One can W, (0,1) :f <5ik - 2ee,sir? é)W(O,@t)dA,
find it from the following equation expi(¢’'+A)o/2] 2
—exfd-ie(r')o/2]exp-i¢’ o/2) Next, we sum Eq.(19)
over N and take into account that <1. After combersome
but straightforward calculations, we find th&(r,¢,t) W(0,t) :f cospW(0,¢,t)dA, (25)
=7[W,(r, ¢)exp-iwt)dw/ 27 (the probability density to ar-
rive after timet to the pointr with the spin rotated by the \yheree= /4. Using Eq.(21), we find the asymptotical be-

angle ¢) is described by an equation similar to Ed1): havior of these functions
~AA\2
oW J QL ) S 1
— =D\ ——-—] W=48(t)8(r)8(¢)/g(0). (20 =9k R s
p (&r 5 WANAIGO. 20 wyon= e wop=- o forts g
Here L is the angular momentum operator acting on the (26)

func.tlt?ns of vec.torqs (see Ref. 1y and (QL)i:Qikl_‘k' The  Note also that the spin—orbit coupling can be neglected in the
explicit expressions fot and for the common eigenfunc- time intervalr<t< 75, Hence, W(0,¢,t) ~ &(¢) and the ex-
tions of L? andL, are presented in Appendix A. Expanding pressions foMV,, and W become
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Sk 1 classical limit, the component of the electron spin parallel to
Wi (0,t) = et W(O,t) = 27Dt forr<t<rs u does not rela I',,=0 and the two perpendicular compo-
nents relax with equal ratdg =I",=T", the off-diagonal com-
@7 ponents ofl' being equal to zerdl',,=I",,=I'1,=0). This
We see that the difference between E@6) and(27) is in  happens in symmetric quantum wells grown in fH4.0]
the numerical coefficients only. direction?® as well as in asymmetric quantum wells grown in
the[001] direction, due to the interplay between Dresselhaus
and Rashba couplingg:?° To find the long-time asymptotic
of the return probability, we write the formal solution of Eg.
(20) as
For the case with a spin polarization uniform in space, the
eneralized kinetic equation is eD@- L)%t
9 q W(O,,1) = f 2m?° a(¢)/g(0). (33

ds . —S  ~
— =w(n) X S+S_+ 8Js, (28)
T

SOLUTION OF THE KINETIC EQUATION: THE LONG-
LIVING TAIL IN THE SPIN POLARIZATION

In the degenerate case, each of the three operéflﬁs)x,

whered] sis given by Eq(24). This equation can be solved (QL)V’ and(QL)X Is proportional td‘”’ which is the compo-
in the usual way. Since w(n)7<1, the spin density can be Nent of L along the precession axis. Therefore, these three
represented as a sum of the isotropic [, t), which de- operators commute with each other. Changing the integration

pends on the electron energy only, and a small anlsotroplvaflab|eSQ—>q—IQL/U in Eq. (33) we obtain
corrections,(p,t), which is linear in the electron momentum 5d)

p: W(0,¢,t) = m (39
S=§ +t8S,. (29)

Substituting Eq(29) into Eq.(28), using Eq(26), and taking
into account the equalities

Thus, after traveling around a closed loop, the electron spin
does not rotate at all. This can be interpreted as follSws.
For the degenerate case, the spin rotation angle is simply
A AL given by ¢=[wdt~ [pdt. For a closed loop, we havgodt
as=0, (dJsy)=0, (30) =0 and, as a consequeneg=0 After substituting Eq(34)
(here the angular brackets stand for averaging over the mdato Eq.(25) and using Eqs(24) and(28), one can see that

mentum directionwe obtain a closed relation fy: the weak localization does not affect the longitudinal com-
ponent of the spin densitys,(E,t)=us/(E,0), while the re-
IS - _f( 1 dt s(t’ )> (31) laxation of the perpendicular component is described by the
at 27kl t-t following equation
Assuming that the spin polarization was createt= with s 1 ,S(t) )
a densitys(E, 0) and neglecting the quantum correction, we E =" i % . dt -t § 1 (35

get the exponential relaxatiof(E,t)=6(t)e"'s(E,0) [here . _ . _ .

f(t) is the theta functioh This solution is valid untile’V”s ~ The integral in the right-hand side of E(5) contains an
~1/mkl. For larger times, the spin polarization should beadditional factor 2 as compared with that in E&1). It can
found from the condition that the right-hand side of E2f) be shown that this factor arises from the contribution of the
equals zero:a(E,t)z(1/27-rkl)fgdt’e‘“/$(E,O)/(t—t’). So  e€igenfunctions withL=1 o }he Iong—time asymptotie Eq.
we find that the spin polarization has a long-living power tail(34) Of. the return _propab!lltﬁ. The long-time asymptotic of
at large times the spin polarization is given by

. 1
I E.t)= ——s(E,0, wheres(E,00 Lu. (36
SEN=5 o SEO), (32 SED=S(EO. s(E0 (30
To conclude this section, we note that we neglected in our
calculations the electron dephasing due to inelastic scatter- SUPPRESSION OF LONG-LIVING POLARIZATION BY
ing. Such dephasing can be accounted for phenomenologi- THE MAGNETIC FIELD
cally by introducing the factor expt/ 7,) into the right-hand

side of Eq.(32). Herer, is the phase-breaking time. Next, we consider the influence of the external magnetic

field on the long-living power tail in the spin polarization.
When an external fiel@ is present, the spin rotation matri-
DEGENERATE CASE ces appearing ifGg and G, become differentei@mer/2v

Equation(32) is invalid for the degenerate case, when the— € '(V*@al/ for Gr and e7ieMor/2e _ grilon-Qolor/2

spin precession frequeney(n) is parallel to a certain vector for GA Here, ), is the frequency of the spin precession in
u for any electron momentumw(n)llu for any n. In the the fieldB. So, Eq.(18) is modified as
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. g =y, (n+1/2), 45
W= [ (Ble el W, (0,6, ) GAGA 7y 49
wherey, =4eB,D/#c andn=0,1,2,etc. Since the operator
(37)  D(-ig/or-2eA/ch)? has a discrete spectrum, we have to

make the replacement

f d_zqe—y(q)t B A e —
2 .
(2m) 47D} 47D sinh(y, t/2)

where

W, (r, b, = D) f - )P - d'y)
§ (46)

in EqQ. (43). The second step is to take into account the term

-iQy(L-L"), taking it to be a small perturbation. In the first
Here}® order of the perturbation theory, this term leads to the mixing
B of the eigenfunctions witld=1 to the eigenfunction witld
Pg(r—r')=P(r —r ’)exp(i—i[r X r’]), (399  =0. This mixing can be disregarded@<T". Corrections to
hc the eigenvalues,, arise in the second order only. They are
calculated in Appendix B. Using E@B5), we can show that
the spin polarization dynamics at large times is described as

XPB(I’ - I’N) PB(I’Z— I’l)PB(rl)drl. drN
(38)

and B, is the component of the magnetic field normal to
the quantum well plane. The vectogs, and ¢y should be
found from Eq.(16) with €(r)=[w(n)+Qq]r/v for ¢y and e_QOf—lgot A

€' (r)=[w(n)-Q]r/v for ¢). Writing out the recurrent s(Et) = Yis I's(E,0). (47)
equations for the consecutive terms in E88), we can 2mkl 2 sint{y, /2)
derive the following expression for the probability density Thys, we see that the magnetic field does suppress the long-

W(r, ¢, 9" )=7JW,(r, ¢, ¢')exp~iwt)dw/ 2, living tail in the spin polarization.
MW o~ s 0 2eA QUL+0)) DISCUSSION
— —iQyL -LW-D{ —-i—-i———| W
A o ch v Next we discuss briefly the physical meaning of the re-

= 5(t)8(r) 8(p) 8(¢')Ig(0). (40)  Sults obtained. Our calculations were based on the interpre-
A N tation of the weak localization phenomena in terms of two
Here the operatorls andL’ are given by Eq(A1) (with the  scattering processes: coherent backscatt¢seg Fig. br)]
replacements— ¢’ for L’). The term +2eA/ch in Eq. (40) and coherent scattering at an arbitrary arjgke Fig. ic)].
is responsible for the magnetic field effect on the electron! € €xistence of the long-living spin polarization can be ex-

orbital motion?2 Here A=[B , Xr]/2 is the vector potential. plained as follows. Both coherent scattering processes were
We assume that the magnetic field is small shown to be nonlocal in time. In other words, the transition

of a spins to a spins’, caused by coherent scattering, takes
Op7s<1, andDeB, rdfic<1. (41)  a certain timet which may be relatively longt> 75 The
_ . : coherent scattering events do not change the direction of the
For B=0, the solution of Eq(40) is electron spin. Indeed, as seen from E26), W (0,t) ~ &
W(r, ¢, ¢' 1) =W(r, b, 1) (b — ¢ )Ig( ), (42) and, as a consequencg,s. Therefore, the electrons in-
) . volved in such a scattering can keep memory about the initial
whereW(r, ¢,t) obeys Eq(20). Using Eq.(42), we rewrite  gpin polarization during the time much longer thapn The
the long-living solution21) (which corresponds to zero total power law 1t is due to the proportionality of the probability

angular momentund=L +L") in terms of two angleg, ¢': of coherent scattering to the probability of diffusive return.
, " , The collision integral accounting for both coherent pro-
1 d¢-¢') = d’q e—y(q)t5(¢_ ¢") forB=0. cesses does not change the total scattering cross section.
4mDt  g(¢) (2m)? a(p) Therefore,
43 sJf;=0, &Js=0. (48)

. . = 2 . .
IAn this quuAatlogy(q) Dg” is the ellgenvalu.e of the oper.ator Using EQgs.(23), (24), and(26), and taking into account that
y=D(q-QJ/v)"atJ=0 andd(¢-¢')/g(¢) is the respective ¢ (_p w)=—f.(p,w) ands,(—p,w)=-s(p, ), we obtain
eigenfunction. FoB # 0, the long time dynamics of the spin

relaxation is determined by the eigenvalues of the operator A IN(1/w)
Y e ss P 83fa(p.0) == (P, w),
Y==iQoL —=L")+D(=idlor - 2eAlch — QI/v)>.
44 N In(1/
49 8Jsy(p,w) == n( wT)sa(p,w), forwrs<1. (49
27kl

First, we neglect the termi(—!o(I: —I:’). In this approxima-
tion, the eigenvalues o, corresponding td=0, are given Eqgs.(48) and(49) imply that the effect of localization on the
by angular spin diffusion, as well as that on the particle diffu-
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sion, can be accounted for by thedependent renormaliza- .~ | 4 ¢ ¢ J ¢ 9
tion of the transport scattering time. However, the quantunt =1 Py +(1 T, ot jrexiex a6l | 7\ 2 X a6 [

corrections to this time have different signs for the particle
and angular spin diffusion: (A1)

1 1-InLon/2mk with e=¢/¢. The components of this operator obey the
—= , (50) usual commutation rules[L;,L;]=i€;L;. The common

Ty T ~ ~
" eigenfunctions olL? and L, are Wigner’s rotation matrices
(Ref. 17 Dy, ()

for the particle diffusion and

1 1+In(Uwn/2mkl - L2Dyypy(#) = L(L+ DDy (@), LDy () =MDy ().

N (A2
for the spin diffusion. This implies that the E) is invalid ~ The values of L may be integer and half-integet
in the quantum case, or, more precisely, it relateand 7, ~ =0,1/2,1,3/2etc.(as usualM=-L, ... L). There is also
rather thanrg and 7. (2L+1) degeneracy with respect td’. The eigenfunction

An important comment should be made concerning the&orresponding td.=0 is equal to unity
role of the coherent nonbackscattering contributiqmo-
cessex’ in Fig. 1). Neglecting this contribution, we have Vy=D%=1, L¥,=0. (A3)
8Js; # 0. It can be easily shown that this leads to a physically
meaningless result for the spin relaxation rate. Therefore, th&he orthogonality conditions ate
correct treatment of the effect of weak localization on the
spin relaxation is only possible when the nonbackscattering . L
coherent processes are taken into accgthr role of such f dADMM,(¢)DM11M,(¢) = 5|_|_15MM15M'M1/(2L +1).
effects for particle diffusion was discussed in Ref). 14 is !
worth noting that the weak localization effects are usually (A4)
considered to be due to the coherent backscattering only. The
point is that the quantum correction to the conductivity iSHere the integration is made over all possible transforma-
usually calculated by means of the Kubo formula, whichtions of the SJ2) group. The integration measure is taken in
expresses conductivity in terms of the current—current correthe invariant form:
lation function. This approach focuses on the calculation of
the velocity correlation function, which depends on the an- 1 sirX(¢/2)
isotropic part of the distribution functiofy; so, there is no dA =g(¢)d’p, whereg(¢) = 1672 (422
need to know corrections . The situation is quite different
for spin relaxation which is due to the relaxation of the iso-
tropic part of the distribution functiof®

(A5)

Note that SW2) transformations are usually parameterized
ng Euler angles & a<2m, 0<B<m, —2w<y<2m. For

To conclude, we have discussed the long-time dynami uch a parametrization, the invariant integration measure is
of the spin polarization in a 2D disordered semiconductor. Its_ P ' 9

is shown that, at large times, the spin relaxation slows dow§iven by"" dA=sin g da dg dy/167* (the expression fot
due to weak localization effects. An analytical expression forvia the Euler angles is also given in Ref)1lt is convenient
the long-living tail of the spin polarization has been derived.for us to use the components of vecir(0<¢<2m) in-
The magnetic field, both transversal and longitudinal, supstead of Euler angles. This givéslA =g(¢)d>. The expan-

presses this tail, restoring the exponential relaxation. sion of the delta functiod(¢$—¢') in Wigner’s functions is
"N — L L* ’
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Dynasty—ICFPM. from Eq. (18) only two terms(L=0 andL=1) contribute to

the spin-dependent return probability. Indeed, the action of

APPENDIX A the operatolL on the spin-rotation matrices is given by

The analytical expression for the angular momentum op-

~ . T3p .
L —ipol2 — BB 1 a—ipol2 A7
eratorL is (Blea) 5 (B'le" " a), (A7)
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~ . s o /500/ + 0, 1 gg! — A4/ —_— L
(e 2la)( gl = 2 APV pran s Wi, (e
2 9(¢) L My=-L
1 a-ipol2 1 i porl2
X(B'|e a0 [ ). e
(A8) .
As follows from Eq.(A8), the projection of the operatdr WwMM2(p ') = 2L +1 D, Dy, (¢) (¢ ),
onto the subspace formed by products of two rotation matri- M=-L
ces is given by (B2)
o+ 5@

(A9) is the full set of the eigenfunctiond=0,1/2,1,3/2etc.;

2 ' M;=-L,...,L; M,=-L,... L) for zero total angular mo-

whereo® and ¢'@ are the Pauli matrices acting on the first mentumJ\IfMle 0. In the second order of the perturbation

and second rotation matrices, respectively. Therefore, the atkeory, the term rﬂo(L L' ) leads to the corrections to the

gular momentunL” can only be 0 or Isinglet and triplet eigenvalues of the operat§r These corrections are different

contributions. for the functions¥ 1"+ with different values oL. They are
Using Eq. (20) and the property [dAW;LW¥,=  calculated as

- dA\PZL\P], valid for arbitrary functionsW¥,(¢) and

WV,(¢), we can see that the function

L*=

D WM M (L - L7)(Q3/0)2(L - L)WM

_ _ :A')’LéMlMi- (B3)
WEP(r ) = J (Ble™ 72 a)(le” "2 )WI(r, ¢, 1)dA, ..
Next, we diagonalize the operat®2J/v)? in the subspace

(A10)  formed by the following three functionslix—l;’()‘lf',i"i'\"i,
obeys the equation similar to E(0) (IA_y—IA_)’,)\If't"iMl, and(liz—lig)\lfﬁ"i'\"l. Direct calculation gives
An\2
0 J 1QL I 4L(L+1 ~
{— - D(— + ) ] WA = 5(1) (1) 3,46, Ay = 2D g g, (B4)
(?t or U Bﬁrogr 3

(A1l)  The expression for the long-living solution becomes

where matrix elements;ﬁ,ge, are given by Eq(A8). Note
that Eq.(A11) was used in Refs. 19, 25, and 26 for calcula- W(O,¢,¢",1) =
tion of weak localization corrections to conductivity. The

" . . L
alternative derivation of the operatar was given in Ref.
27 P g xE V2L +1ednt 3 wMiML - (Bp)
. Mq=-L

w2
47D sinh(y, 1/2)

APPENDIX B whereL=0,1/2,1,3/2,etc. Substituting Eq(B5) into Eq.
Using Eq.(A6), we expand Eq43) as (37) and using Eqs(13), (14), and(22) we derive Eq(47).
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