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Electronic correlations in coherent transport through a two quantum dot system
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Coherent electronic transport through a double quantum2it@d system connected in a series with elec-
trodes is studied by means of nonequilibrium Green functions and using the equation of motion method, in
which all electron correlations in the 2qd are treated exactly. For moderate Coulomb interactions we predict
features in a conductance characteristics resulting from transmission through triplet states, which can be
strongly activated for larger source-drain voltages. The analysis of the spin-spin correlation functions shows
strong antiferromagnetic correlations arising from transport through the singlet state and a reduction of the total
magnetic moment. However, when the transmission channel corresponding to the triplet state becomes acti-
vated the antiferromagnetic correlations are much weaker, the spins behave as free electrons spins and strongly
fluctuate. We speculate that this effect can be seen in wide range of a gate voltage for a double electron
occupancy of the 2qd.
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I. INTRODUCTION small source-drain voltages. Important effects of correlations

Recent spectacular advances in nanotechnology gave poddd formation of many-particle states are outside the scope
sibility to experimental studies of coherent transport in quanof these approaches.
tum dots!=® carbon nanotubes’ quantum corral§, and Arole of many-particle states in transport through the 2qd
single molecule? It was possible to investigate an inter- system were studied in the incoherent sequential tunneling
play of interference processes and electron correlations, arrégime, which usually implies the perturbative treatment of
their influence on transport characteristics. An interestinghe electrode-dot couplingsee, for example, Refs. 29535
idea of the last decade was constructing a qubit, due to whichlowever, in this conduction regime important aspects of in-
one could coherently manipulate on entanglement electroterference processes are ignored. Just recently Aguado and
pairs and which could be used for a quantum comptfting.Langreti® studied coherent transport in the 2qd system us-
Therefore, many experimental efforts were undertaken ting a generalization of the noncrossing approximations for
build coherently coupled quantum dot devices. A simplestarge intradot Coulomb interactions. They predicted a
realization was a two quantum dot system connected with themooth transition from a state of two isolated impurities to a
source and the drain electrodes either in pafdit€lor in  coherent superposition of the many-body states of each dot
seriest*~'® Such a system contains only a few interactingwhen the interdot electron hopping increases.
electrons, which can form many-body singlet and triplet In this paper we want to consider a problem of electronic
states. Coherent coupling of these states with conductingorrelations and a role of many-particle states in coherent
electrons leads to the Kondo resonaféeyhich involves transport in the 2qd system. An interesting issue seems to be
both the orbital and spin degree of freedom of electfdns. interplay of transmission channels through the singlet and

In this paper we want to study theoretically coherentthe triplet state. This aspect has been studied recently for the
transport through the system of two-quantum datg) con-  Kondo model showing on effects closed to the singlet-triplet
nected in series. The problem is complex and one needs agegeneracy’—*° The approach required a spS+1 ground
proximations to deal with both intra- and interdot Coulombstate in a quantum dot and took into account spin fluctua-
interactions as well as the coupling between the dots and th#&ns, neglecting charge fluctuations. Our 2qd system will be
macroscopic electrodes. The one-particle approximations fadescribed by the two-impurity Anderson model and the equa-
the interactior®2? and the perturbative treatment of the tion of motion (EOM) approach will be used, within which
Coulomb interactior$ allows one to treat exactly the cou- charge fluctuations are taken into account. The EOM with
pling to the electrodes. However, these methods are justifiedarious approximate decoupling procedures for the higher
only in the limit of weak interactions, relatively strong lead- order Green functions was used in previous paferSThe
dot coupling, and low temperatures. If Coulomb interactionsdisadvantage of these procedures lies in omitting higher or-
are strong enough, one can adapt the slave boson method,der correlation functions and neglecting a contribution to
which the energy levels are assumed to be occupied by onliyansport from transmission channels through excited states.
single electrorf*—27 Usually one applies the mean-field ap- In the present paper we apply the procedure, which treats all
proximation(SBMFA), which reduces the many-body prob- electronic correlations exactly within the 2qd system and re-
lem to the one-particle one with constraints. It was showrguires determination of various intra- and interdot correlation
that SBMFA takes into account spin fluctuations and can béunctions, which are computed here in a fully self-consistent
applied for low temperature’$.Since charge fluctuations are way. In our decoupling some higher order correlations be-
neglected, applicability of SBMFA is restricted to the limit of tween electrons at the 2qd and conducting electrons from the
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electrodes are omitted, which is justified above the temperal) and the right(R) electrode. Electrons in the electrodes

tures typical of the Kondo effect. (a=L,R) are described by

We analyze in detail the differential conductance of the
2qd system as well as some relevant intra- and interdot cor- He= > fkaCEa,nga,o- (3)
relation functions in both the equilibrium limit and in the ka0

nonequilibrium case. For the intermediate values of the Cou-

lomb repulsion the conductance shows some structure, disrédthough in this work we describe the situation in the system
garded in the previous papers, which is due to the dynamiof quantum dots the same model can be used for transport
occupation of the triplet excited states of the double occupiethrough a two atomic molecules.

2qd. This structure is accompanied with changes of the total The current is calculated from the time evolution of the
magnetic moment, which is also due to the existence of theccupation numbemL=Ek,(,clLﬂckL,,, for electrons in the left
triplet states. Although the structure in the conductance ilectrode

best visible at low temperatures, it should be detectable in a

wide temperature range. The computations made for the fi- l=—e dn_\ _ie S el ey ) -c.c @)
nite values of the source-drain voltage show significant o dt / ﬁ[ka L\ kLo=Lol et e
changes in the differential conductance, some transmission '

channels corresponding to excited states become strongly agsing the nonequilibrium Greens functidfé® one can re-
tivated. We find a reduction of spin-spin correlations, whichyyite this formula to the form

is due to voltage induced charge fluctuations.

The plan of our paper is as follows. In Sec. Il we intro- e
duce the Hamiltonian of the system and present the basic I:HE 2i11f doff ()2 Im[({cy ,lc] ))2]
formulas of the nonequilibrium Green functions theory used
here to compute the current. This section includes also de- ‘<<Cl,(r|CI,(r>>§}- (5)

tails of our decoupling of a set of equations for the Green
functions. The results of the numerical computations of theHere,T",=mp,t? corresponds to the electron transfer rate be-
transport properties and the correlation functions are pretween the 2qd system and thaeelectrode, the electron den-
sented in Sec. Ill. The paper concludes with a summary irsity of states in the electrodes is assumed to be congtant
Sec. IV. near the Fermi level, (w) denotes the Fermi-Dirac distribu-
tion function for electrons in the electrode with the chemi-
cal potentialu,. We use the notatior(c,,|cl )) with the
superscripg, r, and< for the advance, the retarded, and the
lesser Green function. The formu(8) is exact, no approxi-
Our model for the 2qd connected in series to the elecmations have been done. The main problem is to determine
trodes is given by the three part Hamiltoniah=H,,; the Green functions, which can be performed within an ap-
+Hpqa.et Hei The 2qd system is described by the Hubbardproximate method only.
Hamiltonian In order to study the currerib), one has to determine the
U lesser Green functiori(c, ,|c] )); for a nonequilibrium
- T T ~o situation with the stationary charge flow. The procedure is
Haga™ 24 6o+ 112 (€1 oCor* Co 1) + 2 % Mo~ similar to that one used in >(;erivat?on of the qua?ntum Boltz-
mann equation and the Wigner functit#f'64” Let us con-
+U1 > Ny o g, (1) sider the time dependent Green functigfa(t)|b(t’)))~,
o0’ wherea andb are products of annihilation and creation op-

where the first term gives a local electron potential energy, iff"alors for electrons at the 2qd system. Since we are inter-
which only one energy leved for each quantum dot is taken ested in the stationary current the pme_ transformation is
into account—it means that the energy level separatiois ~ US€d:7=t—t" andto=(t+t')/2. The derivative of the Green
very large, larger than the other parameters. The second terfdnction with respect td, should be equal to zero and with
corresponds to an electron transfer between the quantuf§SPECt tor:

dots, which is proportional to the hopping integtgl. Two

Il. DESCRIPTION OF THE SYSTEM AND
DETERMINATION OF THE CURRENT

i,o '

last terms describe Coulomb interactions for electrons on the ii«a(to +712)|blty - 712))~
quantum dot and interdot interactions, where the parameters ar
Uy andU, are the intra- and the interdot coulombic integrals, ) -
respectively. The Hamiltonian = 'E{<< aia(to +1/2) ‘ b(ty - r/2)>>
r
Hoqd-e1= > (CEL,UCLU + CI,UCkL,U) P _
ko - <<a(t0+ 712) ‘ — bity- T/z)>> } . (8
T
+ IRE (CER(TCZ,lr + C;,U'CkR,U') (2)
k,o

Therefore, the Fourier transform of the lesser Green function
corresponds to the coupling of the 2qd system with the lefis expressed as
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_ tions in the 2gd system and in the limit of the vanishing
((albyy;, = f dre“((a(to + 7/2)|b(ty - 7/2)))~ coulomb interactions it leads to exact results for the Green
functions for any value of dot-lead coupling, arbitrary tem-
perature, and the bias voltage.
Through the series of equations of motion, the one-
particle Green functions are coupled with many-particle
where((a|b)), and((a|b)) are auxiliary functions defined Green functions. The highest order Green functions are of

= [y - (alb);), U

as the type:((Cy ;N2 .M~y -,/ € ,)). The Green functions de-
_ P < pend on the Hamiltonian parameters and on the correlators.
w((@b)); =i dere"‘” —al(ty + r/2)‘b(to—7/2) For a paramagnetic case one can distinguish 19 correla-
aT tors: <n1,0'>1 <CI,0'C2,0'>1 <nl,a'n2,—a->v <nl,0'nl,—0'n2,—0'>'

T T T
(8) <C1,0—C2,UC1,—0—CZ,—U>1 <nl,o'nl,—0'n2,—¢r>a <C1,UCZ,0'n1,—0'n2,— >u etc.
In general the correlators are determined by means of the

. d < i
o((alb)s =i f dre"”<<a(t0+ 2) ‘ ﬁ—b(to— 7_/2)>> . lesser Green functions, for example
7.

dow
(9) <n1,(rn2,—(r>:f g<<cl,(rn2,—(r|czlr_,u—>>jv (12)

(Note the different bracket notation used for both the func-Where the lesser Green function is symmetrized, as in Eq.

tions,) In order to 1.‘|nd<<a|b>>j.one has first to determine 7) “gjnce the Green functions depend on the correlators, one
((alb));, from a series of equation of motions with respect t0gets a set of 19 self-consistent integral equations. We use a
the first operatom (e.g., following the scheme presented by spectral decomposition procedure, in which any physical
Niu et al);*® and next—the second functioffa|b)); (re-  quantity is written as a sum of contributions corresponding to
peating the equation of motion procedure with respect to thelectron transitions between any energy state in the system.
second operatob). The physical quantities calculated by In our approximation the poles of the Green functions are
means of the lesser Green functions fulfill the quantum reciexpressed as differences of energy eigenvakg¢hl) of the
procity relations(i.e., the Onsager’s reciprocity theorem for jsolated 2qd corresponding to different electron occupation
nonequilibrium quantum physigsOur approach is equiva- and shifted by the factor determined by the coupling to the
lent to the Dyson equation approach presented by Haug angladsil’,. The Green functions are decomposed into partial
Jauho(see Chap. 8.2 in Ref. 44 fractions and the integrals are calculated analytic&tige

In the absence of the coupling to the leads, the sequencg@iso the Appendix In this way a set of 19 self-consistent
of equations of motion for the Green functions is closed andntegral equations is reduced to a set of 19 linear equations.
they can be determined exactly for any values of the interdo§olving numerically this set of equations we find all correla-
hoppingt;,, local energy valueg;, and the interaction pa- tors. Finally, one calculates the one-particle lesser and ad-
rametersU,, U;. For the finite coupling to the leads, many vanced Green functions and from the form(Bathe current.
mixed Green functions involving both the leads and the 2qd The many-particle correlators can be expressed by differ-
degrees of freedom, enter the system of equations of motiont Green functions. For exampl@y ,n, _,) can be calcu-
and they have to be included in an approximate way. Th ; W<
coupling to the electrodes is treated here to lowest order Wit%:aelldagécrziif, |%f£ th>e><(_3:,e\/inhgjvlcgﬁ?éﬁgé’}ﬁzlt‘ﬁé‘“r;suns
respect to the electron transfer rdig We assume that presented later do not depend on the choice of the Green

S (cpaleh )= ~ gl (e palcl )= functions used in the calculations of the correlators.
Noa 1,0 feoa 1,0
k
oS e 1 lll. TRANSPORT THROUGH TWO-QUANTUM
tor(( craci )N (10 DOT SYSTEM
> <<CkL,aa|CIU>)a ~ tLgf<<C1,ga|CiT,g>>a, (11) A. Zero-voltage conductance
k

Lets us first apply the procedure described earlier for
wherea is a product of operators for electrons at the 2gdsmall voltagesV— 0). In this case one can use the equilib-
system, and the equivalent approximations are made for theum Green functions, which poles correspond to energies of
terms including the coupling with the right electrode. Thethe isolated two-quantum dot system whkix1, 2, 3, and 4
higher order correlation processes for the electron transfeglectrons. Table | summarizes the energy structureefor
between the electrodes and the 2qd system are ontittexl =€, (see, e.g., Ref. 49 for detajlsin our studies a strong
the Appendix, in which the approach is presented for the caselectron transfer between the quantum dots is assumed
of the single dot In this way we neglect processes leadingt;»>1,, and the moderate values for the coulomb interaction
to the Abrikosov-Suhl resonance and the Kondo effect. Omparameters are taken: the intradot coulomb intetygt6
the other hand, charge fluctuation and all correlations in thend the interdot coulomb integrél;=1.6 (with respect to
2qd system are included. The results are reliable for temperdhe hopping integral treated as the unify=1). The results
tures higher than the Kondo temperatiiie Note, however, are presented in Fig. 1 for the temperatlireO ande;=e,.
that our procedure takes into account all electronic correlaOne can see four conductance peaks of the height
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TABLE |. States, eigenvalues, and the ground states energy of the isolated two-quantum dot system for

€= €. Below we putA =/16t2,+(Uy—U,)2.

Ground state

State Eigenvalue energy
0 electron 0
10,0 0
1 electron € t12l
1/\5(\0’,0>i|0,0')) e1tty,

2 electron 2€;+5(Ug+U;—A)
[+, +)
IN2(|+,=)= |-, +) 2e1+Us
=)
N2 (| +,-)+|-, +
an (|_ Y= ) 2e1+1(Ug+U )
+pBIN2(|2,00+(0,2)
132(2,0-|0,2) 2¢,+U,
3 electron @+ Ug+2U; -ty
1N2(]2,0)%|0,2) 3ertUpt+2U £ty
4 electron 4+2Ug+4U,
2,2 4e+2Ug+4U,

~(2€?/h) X 0.6. Comparing the ground state energgsN height of the one-electron pedlat e;,—Er=t;,) is almost
+1)=E4(N) one finds the position of the conductance peaksconstant(2e?/h) X (2/3) for larger U,. The height of the

(1) e,—Eg=lty4], (2) e—Eg=—t;J]-(Upy+U;—-A)/2, (3) ¢,  two-electron peak monotonously decreases.

—Er=|ti) —(Up+3U;+A)/2, and (4) e-Er=-|t1]-U, The conductance curve in Fig. 1 shows also a series of

~2U, whereA:\/—16t22+(U0—Ul)2. The bottom part of Fig. smaller conductance peaks, which correspond to transmis-
1 shows the averagle number of electrdns,) (the solid sion through excited electron states. The decoupling approxi-

hich | h _ | h hmations used in the previous wofks*® neglected such
curve), which increases at these points. It means that the.,nsmission channels. The dashed vertical lines in Fig. 1

resonant conductance peaks correspond to energy levels, 1@, positions of resonant transmission through the one-

which an extra electron is introduced to the system. Thlectron states, whereas the solid lines—transmission

results exhibit the electron-hole symmetseen in the con-  through the two-electron states. Using the results from Table

ductance spectrum as well as in the correlgtdfer our case | |one can assign the transmission channels @h+U,

the symmetry point is in the middle of the Hut_)bard_ gap aty+y,-A)/2 and #,,+U; as through the singlefs) and the

El_EF:_U0/27U1:_4.6. Our further anal)(SIS will be t“p'et (t) states, respective|y_

therefore restricted to the half of the electronic structure. In the bottom part of Fig. 1 the correlators are presented:
Similar four peak conductance characteristics can bgquare of the local spis?)=2((n; .-n;,)? and the cor-

found in the literaturé!~*3In the present case the peaks arerq|ator between the spins localized at both the d8isS,)

much higher, which is related to our procedure. Usually:%<(n1‘+_n1’_)(n2]+_nzy_»_ Using these correlators one can

many-particle Green functions were decoupled to one- an . 2\ — (2 2
two-particle Green functions in order to close the set of seIf-% é?g%s f%ﬁrﬁ e oén;heen Cf?éz;gg%;; zo>(n-<s>1><';1;<cjsﬁ>s,
consistent equatiorfd-43 The decoupling approximation in- 1) P [ Lo

troduced some dissipation processes, which resulted in a rg_alue '”Creaseg when the gate vqltage Smf.bEIOWEF' One
duction of the conductance peaks. In our procedure all man)ﬁan see tha(§> saturates_ passing the smgl_et St@ €1
particle Green functions on the 2qd system are taken intg EF=—1.827 in order to increase once again passing the
account and transitions between many-particle states affiPlet state(at e;—~Ex=-2.6. The maximal value ofS) is
treated coherently. Figure 2 presents the maximal value cichieved in the middle of the plot and it is closed to
the conductance through resonant levels,atE-=t;, and at  ;—square of a spin of a free electron. The correld&r S))
€,—Ep=—|t1J - (Ug+U;—-A)/2 as a function of the coulomb is negative in the whole range, what indicates an antiferro-
interaction parameted,. The height of both the peaks is magnetic coupling between the spins. The value (& -S,)

equal to 2?/h at U,=0 and rapidly drops fotJ,>T",. The increases at the singlet state and decreases passing the triplet

205333-4



ELECTRONIC CORRELATIONS IN COHERENT. PHYSICAL REVIEW B 70, 205333(2004)

0.75 | L L L L
4 3

b the Kondo resonance. Whedf: passes the position of the
singlet state we have double electron occupancy with the
strong antiferromagnetic coupling between the local spins.
Square of the total spif(S;+S,)?) is strongly compensated,
which destroys the condition for the Kondo resonance. How-
ever, when the triplet state starts to participate in transport
the antiferromagnetic correlations are much weakereAt
—-Er=-4.6 square of the total spitS,+S,)?)=1.36, which

is a bit below the value 1.5 for square of the total spin of two
free electrons. One can expect also strong fluctuations of the
magnetic moment.

An interesting problem which arises is screening of the
magnetic moment by conduction electrons in the 2qd system
when the temperatur& is lowered belowTy. Does the
Kondo resonance appear for the 2qd system with two elec-
trons, and what is a role of many-particle states in the effect?
‘ The effect could occur in a central part of Fig. 1, which can

y . ! be achieved in an experiment for a very wide range of the
0.00 Etltoienindet 1 - gate voltaggeven for moderate Coulomb interactipn&c-
-10 8 6 -4 2 cording to our best knowledge the effect has not been studied
€-E experimentally in the 2qd system. A similar situation was
predicted theoretically by Izumidet al3® and Hofstetter and

FIG. 1. Zero-voltage conductandg (top figure and correlators ~ Schoellef® for a multilevel quantum dot, which was just
(bottom  figure: (n; ,)—solid curve, (S)—long-dashed curve, recently verified experimentally by Kogagt al® For an odd
—(S;-Sy)—short-dashed curve, as a function of the relative positionnumber of electrons in the system they observed a peak in
of the energy levek; ~Eg. The parameters arg,=1, Ug=6, U;  the source-drain conductance plot\&t0, which is a char-
=1.6,I' =I'r=0.1, e,=€;, andT=0. The labels above the conduc- acteristic feature of the Kondo resonance. The similar feature
tance peaks denote the position when an extra electron is added {pas found for an even number of electrons, but the Kondo
the 2qd system. The vertical solid lines show positions of poles ofaggonance range was separated by the gate voltage range be-
the Green functiorjs corresponding t.o transmission through the tWoyyeen the singlet and the triplet state without the zero-
electron states: singldt) and the triplet(t), whereas the dashed \/,|taq6 peak® This is very similar to our situation discussed
lines—transmission through the one-electron states. above. Pustilnik and Glazm#nproposed an alternative sce-
@ario for two coupled electrons witB=1 suggesting a non-
conventional Kondo resonance—in contrast to our model, in
which the total magnetic moment is a composition of two
%pins of free electrons with a weak antiferromagnetic cou-
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state. The length of the total spin is strongly reduced an
achieves its minimal valud(S;+S,)?)=0.2. Note also a
small bump in the spin correlation, which occurs between th
singlet and the triplet state in the range —€.6 pling.
~Er<0.173. When the Ferrm energy: lies be.tween the Figure 3 shows dependence of the conductance spectrum
one-electron state and the singlet state, there is one electr%rp] the couplingl’,. The height of the main peaks is almost
on average in the 2qd system with a local uncorrelated spir}:0 <«

. . ; . X nstant, but the smaller peakselated to transmission
which due interactions with conduction electrons can lead t‘?hrough excited statgslepend on the coupling strength and

1.0 their hight is proportional td",. The conductance peaks are
3 . asymmetrical, what is clearly seen for the peaksg;atEr=

7 -1 and -0.6. The asymmetry is related with interference pro-

08 k ] cesses. The current formul® has two terms: the first one is

i proportional to the local electron density of stal&0S)
] 1 Im[((clyg|c1(,>>2] and the second—proportional to
<<c1,(,|cla>>j, which corresponds to interference processes.

max G, [2e2/h]

06 L 5 1 The interference term of the conductance is plotted in Fig. 3

- < as the dashed curve. These results show that for multi dot
oal v systems the local DOS as well as interference play an impor-
0 2 4 6 8 10 tant role in transport and the formul®) in its full form

U should be taken for calculations.
0 . :

The results presented earlier are determined for the tem-

FIG. 2. Height of the conductance peaks through:the one-  Peraturer=0, because this case is much simpler for numeri-
electron levele;—Eg=|t;J and(2) the singlet levele,—Er=-|t;  cal calculations. On the other side, our approach is reliable

—-(Ug+U;—A)/2, plotted as the function of the intradot coulomb for high temperature$ > T,. The zero-temperatures studies
repulsion paramete,. The interdot coulomb interaction is taken can be a good qualitative description of the high temperature
Ui=Uy/4, T =Tr=0.1, e,=¢€;. situation, and features of electronic transport presented above
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FIG. 5. Zero-voltage conductangg vs the center level position

FIG. 3. Zero-voltage conductan&g vs e, — Eg for two different . .
: ; . €0=(e1+€)/2 (with respect toEg) and the detuning parametefs
couplings of the 2gqd system with the electrodgsI'g=0.2 (thick :0(61(_162)/2% plf)tted as pa gray-;)cale map. The pgrgmetersthre

curve) andI' =I'r=0.05(thin curve. The other parameters are the _ < _ o _

same as in Fig. 1. The dashed curve is the conductance determinag’ J0= 6 U1=1.6, ' =I'=0.1, andT=0.

form Eq.(5) taking only the interference ter(the second onefor

I' =I'r=0.2. Vertical lines denote position of resonant levels for theFig. 4 corresponding tégT=2I",). The correlators are less
two-electron stategsolid liney and for the one-electron states Sensitive to temperature changes than the conductance, be-

(dashed lines cause they are dependent on the Fermi distribution function
whereas the conductance is dependent on its derivative. For

survive in a wide temperature range. The procedure for £xample, in the center of theZHubbard gap-Ep=-4.6
finite T is analogous to th&=0 case, in which one solves a SAuare of the total spii(S,+S,)9)~1.36 for the tempera-
set of integral equations for the thermal average of correlatures up tkgT=2T",, the antiferromagnetic correlations are a
tors. Figure 4 presents the dependencgoin e, for differ-  bit reduced and the minimal value ¢fS,+S,)%)=0.22 at
ent temperatures. As one could expect, the conductand@T=I", increases to 0.31 fdgT=2I",,.
peaks are smeared out, and significant changes are seen wherApplying a gate voltage different for each quantum dot
kgT=T,. Even atkgT=T, the triplet peak at;—Er=-2.6is  one can shift the position of the energy levejsande,. With
clearly seen as the shoulder of the peak at —-1.@28 the the shift of the position of the resonant energies the conduc-
dashed curve The conductance spectrum between the onetance peaks change their height. The gray-scale plGh o
electron and two-electron resonance peaks changes slightifesented in Fig. 5 as a function of the average position of
(see the peaks at -1, —0.6, and Q.1These conductance the levelsey=(e;+¢€,)/2 and the detuning parametér (e,
peaks come from tails of the one-electron and the two—¢,)/2. At §=0, Fig. 5 shows the situation as in Fig. 1.
electron spectruntat e;—Eg=1 and at —1.82)f Temperature Increasingé the main conductance peaks are shifted from
changes of the tails are much smaller than changes at theach other. The height of the single-electron conductance
resonance centers. For higher temperatures the smearing gRak (at e,—Eg=1 for §=0) monotonously decreases with
fect can be large enough and one can observe an increase®f The similar dependence has been observed
the electron density of states in the tails, which can result irexperimentally*8-1’and calculated for coherent transport of
an increase of the conductance as weéle the dot curve in  noninteracting electrortS. The position of the one-electron
states is given by

€ - Ep

078 [ T T T Erz et Vo248, (13
C T=0 ] The second large peak in Fig. (&t eg—Er=-1.827 for 6
= 050 T oos i =0) corresponds to two-electron singlet state and its height
Ng L 1 ] decreases much slower. The positions of the conductance
— r o1 h peaks corresponding to the singlets are giverEas—E.,
Qg’ 0.25 dos ] where the singlet eigenenergies
C A ',,;'77 . 1 Eosn= 26+ w + :—iv"p CO{@) forn=0,1,2.
0.00 o) T N
-3 0 1 2 (14)
€ -Eg

Here, we denotedp=arccosq/p®?), p=(Ug—U,)?+125?

FIG. 4. Zero-voltage conductancg as a function of; - Er for +127, and q=(Uy—U,)[(Uy—U,)?+187,-3652]. The posi-
different temperaturesT=0—solid curve, T=0.05—dashed-dot tion of the conductance peak for the triplet stateEs
curve, T=0.1—dashed curve, ante=0.2—dot curve. The coupling —Ejs, where Exr=2¢y+U;. The small peaks ateg—Ep
to the electrodes id =I'g=0.1, t;,=1, Uy=6, U;=1.6, ande, = =0.173, -0.6, and -1 from Fig. 1 are seen also in the gray
=€y plot in Fig. 5, but they disappear at large Note that the
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position of two-electron singlet level and the antibonding €-Ep
one-electron levelthose at —-1.827 and -1 fo6=0) is
shifted to the left-hand side in contrast to the bonding one-
electron level, which is shifted to the right-hand side. The
triplet state(at —2.6 for6=0) is well seen even for a largé

The results presented earlier are for moderate values of
the coulomb parametetd, and U,, for which the one- and
the two-electron states are well separated from the three- and
four-electron stategthe Hubbard gap is large in our case
Moreover, we assumed a large electron transfer between the
dotst,,>T",, for which the singlet and the triplet states are
also well separated. For larger valueslf, U, the differ- 0.00 Al
ence between the position of the singlet and the triplet states
is J=16t7,/ (Uy—U,). When the coupling strength, > J, the
corresponding two conductance peaks merge together and
specific features of the singlet and the triplet state are lost.
The conductance spectrum is then similar to that for the in-
coherent sequential transport. Such the situatigyr— o and
J—0) is often considered in the literatu(see, e.g., Refs.
24-27 and 3B

N
o
e

-2 -3

A

O-75||||IIII|III

€ -Ep=2

0.50

G [2¢’h]

0.25

0.50

0.25

20 __q.
<n,,>, <S7>, —<5;S5,>

......

N %4 s Teel
Lepgrebaebopopelof 10 By o110

0.00
B. Nonequilibrium transport 0 1 2 3 4 5

»

Let us now consider the nonequilibrium situation with a
finite squrce-dram voltgge drog. Experimentally one can FIG. 6. Differential conductancg (top figure and correlators
apply either the potentia/2 and -V/2 to the left and the  yortom figure: (n; .)—solid curve, ($)—long-dashed curve,
right electrodes, or the potentiglito the left electrode and in  _(s,.5)__short-dashed curve, as a function of the applied source-
the right electrode the potential becomes zero. We choose thgain voltageV at €;—Er=e,~Er=2. Note that in the low voltage
latter situations, which seems to be simpler for presentationegion the values ofn; ) and (S for i=1 are larger than those
In the present studies full screening of the electric field orones fori=2, whereas in the high voltage regime the situation is
the quantum dots is assumed and the energy lesiedse  opposite and these quantities are higheri f2. The parameters are
independent otV. (The results presented later can be easilyt;,=1, Uy=6, U;=1.6,T' =I'r=0.1, andT=0. For comparison the
extended for the case whepare shifted with increasinyg.) plot for the equilibrium situation is presented by the thin curves for
Moreover, the approximation for the splitting of the Greenthe zero-voltage conductangg and the correlators as a function of
functions keeps the poles at the same positions. Therefore,—Eg (the top axig.

sweeping the potentia¥ of the left electrode one can scan o ) o o .
the electronic spectrum of the 2qd system. electric field. This result is in qualitative agreement with the

Figure 6 presents the differential conductagaghe thick ~ Hartree-Fock approach used for the similar modeihere
solid curve when the levels; —-E-=e,~E-=2 are below the the polarization changed its sign and increased when the sec-
one-electron ground state and the 2qd systems is empty &fd transmission channel became activated in transport. The
the equilibrium(at V=0). For comparison the zero-voltage €lectron occupancyin Fig. 6) saturates when the voltage
conductanceg, is plotted versus;—Er (see the thin solid Passes the first resonance level, but its value is smaller than
curve. For the nonequilibrium situation four high conduc- for the equilibrium case. This is not surprising, because elec-
tance peaks are se€in contrast to two peaks at the equilib- trons flow from the left electrode into the 2qd system and
rium). A large peak arises &v=3, which is due to an acti- Simultaneously flow out to the rlght_electro_de._ Th_e local el_ec-
vation of transmission through the one-electron antibondindfon occupancy depends on the Wigner distribution function,
state. The first peafateV=1 and corresponding to transmis- Which is a combination of the Fermi distribution functions
sion through the one-electron bonding statealso higher fpr both the electrodes. Therefore, when the chemical poten-
than that one at equilibrium. One can observe a large erfi@l of the electrode passes the local energy levels of the
hancement of the peak aV=4.6 corresponding to transfer System, one can observe steps of the charge accumulation
through the triplet state, whereas the singlet chagaiety ~ With @ fractional height. The voltage dependence(mf,)
=2.827 gives a smaller value of. The peaks aéV=1.827 shows two additional steps &v=3 and ateV=4.6, i.e.,
andeV=2.6 are a bit stronger. when a large activation of the conducting channels occur.

The bottom part of Fig. 6 presents the voltage dependenc8quare of the local spinsS’) increase withv and their de-
of the correlators. The local occupangy ,) is different for ~ pendences are similar to the local chafgg,). The short-
the first and the second dgee the solid curveésAn elec- dashed curves in bottom of Fig. 6 represent the correlator
tronic polarization effect appears in the system. In the low=(S;-S,) for the nonequilibrium and the equilibrium situa-
voltage regiorn(up toeV=2) the polarization is negative and tion. The strong antiferromagnetic correlations at the singlet
for large voltages the polarization is positive according thestate are reduced substantially when a high source-drain volt-
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€ - Ep series with electrodes were performed within the two-

0.75 ! 0 1 2 -3 impurity Anderson model taking into account the intra- and

B SRR R R the interdot coulomb interactions. The conductance charac-
‘ ‘ teristics were determined by means of the nonequilibrium
Green function technique using the equation of motion ap-
proach, in which all correlations inside the 2gd system were
treated exactly and a decoupling procedure for the Green
function connecting the 2qd system with the electrodes was
applied. Although the procedure neglects spin fluctuations, it
takes into account charge fluctuations. Therefore, it is reli-
able for temperatures higher than the Kondo temperafyre
and for any value of the source-drain voltaye also for
largeV.

Our attention was focused on electronic correlations, for-
mation of many-body states and their role in transport. The
analysis was done for the system of strongly coupled dots, in
which the interdot electron transfer is large>1T",, and with
moderate Coulomb interactiokk,> U, >t,,. In this case the
singlet and the triplet state are well separated, which gives a

! good opportunity for analysis of transport through these
| states. The analysis of the conductance was performed as a
5 4 3 5 1 0 1 function of the position of the dot levets shifted by the gate
eV voltage and for nonequilibrium as a function of the source-
drain voltage(at the constant position af). Apart from the

FIG. 7. Differential conductancg (top figurg and correlators  resonance peaks a significant contribution to transport
(bottom figure: (n; ,)—solid curve, (S')—long-dashed curve, through excited many-particle states was found. The triplet
~(S;-Sy—short-dashed curve, as a function of the applied sourcestates give the significant contribution to the conductance
drain voltageV at e, ~Er=€e,~E¢=-3. The parameters at;=1,  and we predict that this should be a measurable effect in a
Up=6,U,=1.6,I' =I'r=0.1. For comparison the plot for the equi- \yide range of temperatures. In the present procedure all
librium situation is presented by the thin curves for the zero-voltagemany_body correlators were determined in a self-consistent
conductancelo and correlators as a function @j-Ex (the top 4y A detailed analysis of the spin-spin correlation function
axis). showed an antiferromagnetic coupling connected with a for-

) . ] mation of the singlet state, for which the total magnetic mo-
age is applied. Moreover, some small ferromagnetic correlagent is strongly compensated. However, when the triplet
tions are foundat eV~ 3 andeV~=6). These results suggest state starts to participate in transport the antiferromagnetic
that flowing currents reduce antiferromagnetic correlanns.COUp"ng is reduced, the spins are loosely coupled and

Figure 7 shows the same quantities as in Fig. 6, now, foggongly fluctuate. Such the situation occurs in a wide range
€-Er=€,~Er=-3, i.e., for double electron occupancy at of the gate voltages when the Fermi energy lies in the Hub-
the equilibrium. In this case a negative voltagés used to  parq gap and in a wide range of temperatures, provided that
scan the conductance spectrum. Once again four significaghe on-site Coulomb repulsion is strong enough>2|t|
peaks ofG are seen. In this case a strongest activation exhibgq, U,=0) and the energy splitting between the lowest
its the triplet channel a¢V=-2.4. The one-electron channel ginglet state and the triplet state is relatively small. Note,
transmission is much weaker and the corresponding condugpwever, that in an improved treatment of the model one can
tance peakat evV=-4) is much lower than the peak at the gypect a quantitative modification of the observed tendency
equilibrium. Changes of the peaks for the singlet and thgy syppression of the spin-spin correlations in the lowest
triplet channels(at eV=-1.287 andeV=-0.4) are not SO temperatures, where tiieeglected henecorrelations respon-
large as in Fig. 6. The electronic char@g ) decreases and gjple for the Kondo effect become important.
one can see steps at the same position as for the high con- For the nonequilibrium situation the procedure kept the
duction peaks. The polarization effect occurs for this case agosition of the poles of the Green functions and therefore,
well. For small voltages the polarization is opposite to thesweeping the source-drain voltage one scans the electronic
electric field, in order to change its orientation for a high spectrum of the system. The conductance characteristics ob-
voltage drop(eV<-2). The spin correlationéS, - S,) are re-  tained in this way showed a strong activation of the trans-
duced, although not so strong as in Fig. 6. One finds antifermission through excited states with the conductance peaks so
romagnetic correlations again in the range -34%Y¥  high as the resonant peaks. The activation of the channels
<-2.4, which may be related to proximity of the excited depended on the equilibrium position of the system. For an
singlet channel. empty systenjwith the energy levelg; > Er) at the equilib-
rium the conductance corresponding to the one-electron
states was strongly enhanced, whereas for the system with

In this work theoretical studies of coherent electronictwo electrons a¥=0 (¢ —Eg in the Hubbard gapthe triplet
transport in the system of two coupled dots connected irstates were activated for the large voltages. As one could

n
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A

€ -Eg=-3

0.50

G [2¢%/h]
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expect, the analysis showed smaller spin-spin correlationgseglect the resonance broadening terms related to the simul-
and a reduction of the antiferromagnetic coupling. tanuous hopping of electron pairs to and out of the 2qd:
The main drawback of the approach used here is the neéc, ,cl, _,C1-,|cl )5 and((cy o€l _ Cra-o|CL )Y, (the sum
glect of electron correlations leading to the Kondo effectof these terms vanish in the Hartree-Fock decoupliaffec-
what limits our results tol' > Ty range. Within the frame- tively closing the system of equations for the Green func-
work of the EOM method one can try to extend our work totions. In the case of the single-dot this procedure is equiva-
low-T regime, by taking into account electron correlators in-lent to the one used by Pals and MacKinrtémyho showed
volving both the lead and the 2qd degrees of freedom at théhat it compares favorably well with the results of approxi-
same time, following the approach presented by Lactdix. mation of Meir et al,>® and gives reliable results for
One should be aware, however, the enormous complicatioriE> T.5? Note, however, that in the case of 2qd additional
which would arise in the present case due to necessity derms are generated by interdot hopping and the interaction,
treatment of the large number of correlators on equal footindeading to appearance of novel interdot correlation functions.
in order to keep the proportions between the various excitain the paper of Pals and MacKinntrthese correlation func-
tion processes. tions were decoupled in a mean-field way, whereas here we
Although the address of the present work is to thecompute all such correlations selfconsistently using the
system of the two quantum dots, the same model can b&reen functions.
used for studies of transport through single molecules. For the case of the single-dot this approximation leads to
As an example let it be théN,N’,N"-trimethyl-1,4,7- the following retarded Green function:
triazacyclononang-V»(CN)4(u-C4N,4) molecule, which was f . .
used recently by Liangt al’ for the conductance measure- (C16ler N = (1 = (M ) Go(@) +(Ny )Gl (w),
ments. The molecule contains two vanadium centers, and (A4)
therefore, it can be described by the same model.
where € =€ +il', I's[ +I'g, Gj(w)=1/(w-¢€;), and
ACKNOWLEDGMENTS G[,_(w):l/(w—e_;—uo). (Note the larger energy level broad-
ening for the single-dot system than for two quantum dlots.
The authors would like to thank Arturo Tagliacozzo for Using the symmetrization procedure from Sec. Il one derives
his helpful discussions. This work was supported by the Statéhe lesser Green function as
Committee for Scientific Resear¢Roland Project No. PBZ
KBN 044 P03 2001. (Cyglel N = 20 y(@){(L =Ny - NIM[GH] +(ny _HIM[G]},

(A5)

APPENDIX: SINGLE-DOT CASE
where fi(w)=7y f (o) +ysfr(w) and y,=I',/T". The local

Let us present the decoupling procedure for the Greedensity of electrons is expressed by
functions for the case of the single dot. The calculations are

much simpler and one can see better the approximations _ _ do N
made during this procedure. From the EOM one finds the <n1>_§ (M) = g 2i 7T<<Clﬂ|clﬂ>>w
retarded single-particle and the two-particle Green functions > <
at the dot as (n ny)
(1) P (A8)

(@~ eDi(er el N,
_ Foar Foar where 7,= [dof,(w)Im[G!]/ is the occupancy of uncorre-
- 1+§a:t“% CuaolCL My + ULC1, oM —[CL o lated electrons at the energy levE|-o=€; and E,-y=¢;

+U,. It is useful to introduce the function

(A1)
dw '
(0= &= U)(Cy oy Ic] ), Rl €)= [ Ciom(S]
=) + 22 o ole] .2 ImMg _#a=Eym ir)} A
@ a 2 27T|kBT

_ T YN
(€100 -oC1,-0lC1L N whereW the digamma function. At the temperature T=0 this
+{(C14C} _oCka-olCL MET. (A2)  function is simply expressed &&(u,~E,)=1+(2/m) arc
ta (w,—E,)/T"]. Therefore,n,=2, v,F(u,—E,) and from
Eq. (6) one getdn1>:2770/(2+7.70_77u)-
E <<Cka,(r|CI,o—>>L; =t (w)<<clﬂ|c1’0>>; , (A3) Inserting Eqs(A4) and(A5) into (5) one gets the current
k

In the second step of the EOM one finds

. o _(, (), |
where d'(w) is the retarded Green function in the elec- I={1- > lo+ > lu, (A8)
trode, and which is taken ag(w)=2[1/(w—€+i0)]
~-imp,. In EqQ. (A2) for two-particle Green function we where
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e4rLer do r 2¢® 8"\ g e{ (1 Er+eV- E,,—il“)}
= SR () - = LR pd | s )|
VSR TT o LR(@) = T@]ImG,] - (A9) 9= N 2T 2 2mikgT
for =0, U. Using (A7) one can express (A12)
L= 2e8MTg |m|:\II<1 - M) whereW’ denotes the derivative of the digamma function. At
h T 2 2mikgT T=0 it is simply
1 u -E,- il“)}
-V ——-— . A10
v 2 2"
The conductance can be derived as h (Er+eV-E)"+T
any) In the zero-voltage limit the conductance reaches its

G= (1 - @>go+ @gu +(ly=1g) , (A11)  maximal value at the resonandés The average number of
2 2 2V electrons is(n;)=2/3 atEy and{n;)=4/3 atE,. It means
where G, is the conductance of uncorrelated electronsthat within our decoupling procedure the conductance peaks
through the energy levet,. Assuming the chemical poten- can reach the value mg®=(2/3)x (2€?/h). For larger
tials in the electrodegiz=E+eV and u; =Er one can ex- voltages also the last term ¢All) plays a role and it can
pressg, as change the height of the conductance peaks.
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