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Coherent electronic transport through a double quantum dot(2qd) system connected in a series with elec-
trodes is studied by means of nonequilibrium Green functions and using the equation of motion method, in
which all electron correlations in the 2qd are treated exactly. For moderate Coulomb interactions we predict
features in a conductance characteristics resulting from transmission through triplet states, which can be
strongly activated for larger source-drain voltages. The analysis of the spin-spin correlation functions shows
strong antiferromagnetic correlations arising from transport through the singlet state and a reduction of the total
magnetic moment. However, when the transmission channel corresponding to the triplet state becomes acti-
vated the antiferromagnetic correlations are much weaker, the spins behave as free electrons spins and strongly
fluctuate. We speculate that this effect can be seen in wide range of a gate voltage for a double electron
occupancy of the 2qd.
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I. INTRODUCTION

Recent spectacular advances in nanotechnology gave pos-
sibility to experimental studies of coherent transport in quan-
tum dots,1–3 carbon nanotubes,4,5 quantum corrals,6 and
single molecules.7,8 It was possible to investigate an inter-
play of interference processes and electron correlations, and
their influence on transport characteristics. An interesting
idea of the last decade was constructing a qubit, due to which
one could coherently manipulate on entanglement electron
pairs and which could be used for a quantum computing.9

Therefore, many experimental efforts were undertaken to
build coherently coupled quantum dot devices. A simplest
realization was a two quantum dot system connected with the
source and the drain electrodes either in parallel10–13 or in
series.14–18 Such a system contains only a few interacting
electrons, which can form many-body singlet and triplet
states. Coherent coupling of these states with conducting
electrons leads to the Kondo resonance,2,3 which involves
both the orbital and spin degree of freedom of electrons.19

In this paper we want to study theoretically coherent
transport through the system of two-quantum dots(2qd) con-
nected in series. The problem is complex and one needs ap-
proximations to deal with both intra- and interdot Coulomb
interactions as well as the coupling between the dots and the
macroscopic electrodes. The one-particle approximations for
the interactions20–22 and the perturbative treatment of the
Coulomb interactions23 allows one to treat exactly the cou-
pling to the electrodes. However, these methods are justified
only in the limit of weak interactions, relatively strong lead-
dot coupling, and low temperatures. If Coulomb interactions
are strong enough, one can adapt the slave boson method, in
which the energy levels are assumed to be occupied by only
single electron.24–27 Usually one applies the mean-field ap-
proximation(SBMFA), which reduces the many-body prob-
lem to the one-particle one with constraints. It was shown
that SBMFA takes into account spin fluctuations and can be
applied for low temperatures.28 Since charge fluctuations are
neglected, applicability of SBMFA is restricted to the limit of

small source-drain voltages. Important effects of correlations
and formation of many-particle states are outside the scope
of these approaches.

A role of many-particle states in transport through the 2qd
system were studied in the incoherent sequential tunneling
regime, which usually implies the perturbative treatment of
the electrode-dot coupling(see, for example, Refs. 29–35).
However, in this conduction regime important aspects of in-
terference processes are ignored. Just recently Aguado and
Langreth36 studied coherent transport in the 2qd system us-
ing a generalization of the noncrossing approximations for
large intradot Coulomb interactions. They predicted a
smooth transition from a state of two isolated impurities to a
coherent superposition of the many-body states of each dot
when the interdot electron hopping increases.

In this paper we want to consider a problem of electronic
correlations and a role of many-particle states in coherent
transport in the 2qd system. An interesting issue seems to be
interplay of transmission channels through the singlet and
the triplet state. This aspect has been studied recently for the
Kondo model showing on effects closed to the singlet-triplet
degeneracy.37–40 The approach required a spinS=1 ground
state in a quantum dot and took into account spin fluctua-
tions, neglecting charge fluctuations. Our 2qd system will be
described by the two-impurity Anderson model and the equa-
tion of motion (EOM) approach will be used, within which
charge fluctuations are taken into account. The EOM with
various approximate decoupling procedures for the higher
order Green functions was used in previous papers.41–43The
disadvantage of these procedures lies in omitting higher or-
der correlation functions and neglecting a contribution to
transport from transmission channels through excited states.
In the present paper we apply the procedure, which treats all
electronic correlations exactly within the 2qd system and re-
quires determination of various intra- and interdot correlation
functions, which are computed here in a fully self-consistent
way. In our decoupling some higher order correlations be-
tween electrons at the 2qd and conducting electrons from the
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electrodes are omitted, which is justified above the tempera-
tures typical of the Kondo effect.

We analyze in detail the differential conductance of the
2qd system as well as some relevant intra- and interdot cor-
relation functions in both the equilibrium limit and in the
nonequilibrium case. For the intermediate values of the Cou-
lomb repulsion the conductance shows some structure, disre-
garded in the previous papers, which is due to the dynamic
occupation of the triplet excited states of the double occupied
2qd. This structure is accompanied with changes of the total
magnetic moment, which is also due to the existence of the
triplet states. Although the structure in the conductance is
best visible at low temperatures, it should be detectable in a
wide temperature range. The computations made for the fi-
nite values of the source-drain voltage show significant
changes in the differential conductance, some transmission
channels corresponding to excited states become strongly ac-
tivated. We find a reduction of spin-spin correlations, which
is due to voltage induced charge fluctuations.

The plan of our paper is as follows. In Sec. II we intro-
duce the Hamiltonian of the system and present the basic
formulas of the nonequilibrium Green functions theory used
here to compute the current. This section includes also de-
tails of our decoupling of a set of equations for the Green
functions. The results of the numerical computations of the
transport properties and the correlation functions are pre-
sented in Sec. III. The paper concludes with a summary in
Sec. IV.

II. DESCRIPTION OF THE SYSTEM AND
DETERMINATION OF THE CURRENT

Our model for the 2qd connected in series to the elec-
trodes is given by the three part HamiltonianH=H2qd
+H2qd-el+Hel. The 2qd system is described by the Hubbard
Hamiltonian

H2qd= o
i,s

eini,s + t12o
s

sc1,s
† c2,s + c2,s

† c1,sd +
U0

2 o
i,s

ni,sni,−s

+ U1 o
s,s8

n1,sn2,s8, s1d

where the first term gives a local electron potential energy, in
which only one energy levelei for each quantum dot is taken
into account—it means that the energy level separationDe is
very large, larger than the other parameters. The second term
corresponds to an electron transfer between the quantum
dots, which is proportional to the hopping integralt12. Two
last terms describe Coulomb interactions for electrons on the
quantum dot and interdot interactions, where the parameters
U0 andU1 are the intra- and the interdot coulombic integrals,
respectively. The Hamiltonian

H2qd-el= tLo
k,s

sckL,s
† c1,s + c1,s

† ckL,sd

+ tRo
k,s

sckR,s
† c2,s + c2,s

† ckR,sd s2d

corresponds to the coupling of the 2qd system with the left

sLd and the rightsRd electrode. Electrons in the electrodes
sa=L ,Rd are described by

Hel = o
k,a,s

ekacka,s
† cka,s. s3d

Although in this work we describe the situation in the system
of quantum dots the same model can be used for transport
through a two atomic molecules.

The current is calculated from the time evolution of the
occupation numbernL=ok,sckL,s

† ckL,s for electrons in the left
electrode

I ; − eKdnL

dt
L =

ie

" Fo
k,s

tLkckL,s
† c1,sl − c.c.G . s4d

Using the nonequilibrium Greens functions44,45 one can re-
write this formula to the form

I =
e

h o 2iGLE dvhfLsvd2i Imfkkc1,suc1,s
† llv

ag

− kkc1,suc1,s
† llv

,j. s5d

Here,Ga=prata
2 corresponds to the electron transfer rate be-

tween the 2qd system and thea electrode, the electron den-
sity of states in the electrodes is assumed to be constantra

near the Fermi level.fasvd denotes the Fermi-Dirac distribu-
tion function for electrons in thea electrode with the chemi-
cal potentialma. We use the notationkkc1s uc1s

† ll with the
superscripta, r, and, for the advance, the retarded, and the
lesser Green function. The formula(5) is exact, no approxi-
mations have been done. The main problem is to determine
the Green functions, which can be performed within an ap-
proximate method only.

In order to study the current(5), one has to determine the
lesser Green functionkkc1,s uc1,s

† llv
, for a nonequilibrium

situation with the stationary charge flow. The procedure is
similar to that one used in derivation of the quantum Boltz-
mann equation and the Wigner function.44,46,47 Let us con-
sider the time dependent Green functionkkastd ubst8dll,,
wherea andb are products of annihilation and creation op-
erators for electrons at the 2qd system. Since we are inter-
ested in the stationary current the time transformation is
used:t= t− t8 and t0=st+ t8d /2. The derivative of the Green
function with respect tot0 should be equal to zero and with
respect tot :

i
]

]t
kkast0 + t/2dubst0 − t/2dll,

=
i

2
FKKU ]

]t
ast0 + t/2dUbst0 − t/2dLL,

−KKast0 + t/2dU ]

]t
ubst0 − t/2dlL,G . s6d

Therefore, the Fourier transform of the lesser Green function
is expressed as
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kkaubllv
, ;E dteivtkkast0 + t/2dubst0 − t/2dll,

=
1

2
fssaubllv

, − kkaubddv
,g, s7d

wheressaubllv
, and kkaubddv

, are auxiliary functions defined
as

vssaubllv
, = i E dteivtKKU ]

]t
ast0 + t/2dUbst0 − t/2dLL,

s8d

vkkaubddv
, = i E dteivtKKast0 + t/2dU ]

]t
bst0 − t/2dLL,

.

s9d

(Note the different bracket notation used for both the func-
tions.) In order to findkkaubllv

, one has first to determine
ssaubllv

, from a series of equation of motions with respect to
the first operatora (e.g., following the scheme presented by
Niu et al.);48 and next—the second functionkkaubddv

, (re-
peating the equation of motion procedure with respect to the
second operatorb). The physical quantities calculated by
means of the lesser Green functions fulfill the quantum reci-
procity relations(i.e., the Onsager’s reciprocity theorem for
nonequilibrium quantum physics). Our approach is equiva-
lent to the Dyson equation approach presented by Haug and
Jauho(see Chap. 8.2 in Ref. 44).

In the absence of the coupling to the leads, the sequence
of equations of motion for the Green functions is closed and
they can be determined exactly for any values of the interdot
hopping t12, local energy valuesei, and the interaction pa-
rameters,U0, U1. For the finite coupling to the leads, many
mixed Green functions involving both the leads and the 2qd
degrees of freedom, enter the system of equations of motion,
and they have to be included in an approximate way. The
coupling to the electrodes is treated here to lowest order with
respect to the electron transfer rateGa. We assume that

o
k

ssckL,sauci,s
† ll, < tLgL

r ssc1,sauci,s
† ll,

+ tLgL
,kksc1,sauci,s

† dlla, s10d

o
k

kkckL,sauci,s
† lla < tLgL

akkc1,sauci,s
† lla, s11d

where a is a product of operators for electrons at the 2qd
system, and the equivalent approximations are made for the
terms including the coupling with the right electrode. The
higher order correlation processes for the electron transfer
between the electrodes and the 2qd system are omitted(see
the Appendix, in which the approach is presented for the case
of the single dot). In this way we neglect processes leading
to the Abrikosov-Suhl resonance and the Kondo effect. On
the other hand, charge fluctuation and all correlations in the
2qd system are included. The results are reliable for tempera-
tures higher than the Kondo temperatureTK. Note, however,
that our procedure takes into account all electronic correla-

tions in the 2qd system and in the limit of the vanishing
coulomb interactions it leads to exact results for the Green
functions for any value of dot-lead coupling, arbitrary tem-
perature, and the bias voltage.

Through the series of equations of motion, the one-
particle Green functions are coupled with many-particle
Green functions. The highest order Green functions are of
the type:kkc1,sn2,sn1,−sn2,−s uci,s

† ll. The Green functions de-
pend on the Hamiltonian parameters and on the correlators.
For a paramagnetic case one can distinguish 19 correla-
tors: kn1,sl, kc1,s

† c2,sl, kn1,sn2,−sl, kn1,sn1,−sn2,−sl,
kc1,s

† c2,sc1,−s
† c2,−sl, kn1,sn1,−sn2,−sl, kc1,s

† c2,sn1,−sn2,−sl, etc.
In general the correlators are determined by means of the
lesser Green functions, for example

kn1,sn2,−sl =E dv

2pi
kkc1,sn2,−suc1,s

† llv
,, s12d

where the lesser Green function is symmetrized, as in Eq.
(7). Since the Green functions depend on the correlators, one
gets a set of 19 self-consistent integral equations. We use a
spectral decomposition procedure, in which any physical
quantity is written as a sum of contributions corresponding to
electron transitions between any energy state in the system.
In our approximation the poles of the Green functions are
expressed as differences of energy eigenvaluesElsNd of the
isolated 2qd corresponding to different electron occupationN
and shifted by the factor determined by the coupling to the
leadsiGa. The Green functions are decomposed into partial
fractions and the integrals are calculated analytically(see
also the Appendix). In this way a set of 19 self-consistent
integral equations is reduced to a set of 19 linear equations.
Solving numerically this set of equations we find all correla-
tors. Finally, one calculates the one-particle lesser and ad-
vanced Green functions and from the formula(5) the current.

The many-particle correlators can be expressed by differ-
ent Green functions. For example,kn1,sn2,−sl can be calcu-
lated by means of the Green functionkkc1,sn2,−s uc1,s

† llv
, as

well askkc2,−sn1,s uc2,−s
† llv

,. We have checked that the results
presented later do not depend on the choice of the Green
functions used in the calculations of the correlators.

III. TRANSPORT THROUGH TWO-QUANTUM
DOT SYSTEM

A. Zero-voltage conductance

Lets us first apply the procedure described earlier for
small voltagessV→0d. In this case one can use the equilib-
rium Green functions, which poles correspond to energies of
the isolated two-quantum dot system withN=1, 2, 3, and 4
electrons. Table I summarizes the energy structure fore1
=e2 (see, e.g., Ref. 49 for details). In our studies a strong
electron transfer between the quantum dots is assumed
t12.Ga, and the moderate values for the coulomb interaction
parameters are taken: the intradot coulomb integralU0=6
and the interdot coulomb integralU1=1.6 (with respect to
the hopping integral treated as the unityt12=1). The results
are presented in Fig. 1 for the temperatureT=0 ande1=e2.
One can see four conductance peaks of the height

ELECTRONIC CORRELATIONS IN COHERENT… PHYSICAL REVIEW B 70, 205333(2004)

205333-3



,s2e2/hd30.6. Comparing the ground state energiesEgsN
+1d=EgsNd one finds the position of the conductance peaks:
(1) e1−EF= ut12u, (2) e1−EF=−ut12u−sU0+U1−Dd /2, (3) e1

−EF= ut12u−sU0+3U1+Dd /2, and (4) e1−EF=−ut12u−U0

−2U1, whereD=Î16t12
2 +sU0−U1d2. The bottom part of Fig.

1 shows the average number of electronskn1,+l (the solid
curve), which increases at these points. It means that the
resonant conductance peaks correspond to energy levels, for
which an extra electron is introduced to the system. The
results exhibit the electron-hole symmetry(seen in the con-
ductance spectrum as well as in the correlators). For our case
the symmetry point is in the middle of the Hubbard gap at
e1−EF=−U0/2−U1=−4.6. Our further analysis will be
therefore restricted to the half of the electronic structure.

Similar four peak conductance characteristics can be
found in the literature.41–43 In the present case the peaks are
much higher, which is related to our procedure. Usually
many-particle Green functions were decoupled to one- and
two-particle Green functions in order to close the set of self-
consistent equations.41–43 The decoupling approximation in-
troduced some dissipation processes, which resulted in a re-
duction of the conductance peaks. In our procedure all many-
particle Green functions on the 2qd system are taken into
account and transitions between many-particle states are
treated coherently. Figure 2 presents the maximal value of
the conductance through resonant levels ate1−EF= t12 and at
e1−EF=−ut12u−sU0+U1−Dd /2 as a function of the coulomb
interaction parameterU0. The height of both the peaks is
equal to 2e2/h at U0=0 and rapidly drops forU0.Ga. The

height of the one-electron peak(at e1−EF= t12) is almost
constants2e2/hd3 s2/3d for larger U0. The height of the
two-electron peak monotonously decreases.

The conductance curve in Fig. 1 shows also a series of
smaller conductance peaks, which correspond to transmis-
sion through excited electron states. The decoupling approxi-
mations used in the previous works41–43 neglected such
transmission channels. The dashed vertical lines in Fig. 1
show positions of resonant transmission through the one-
electron states, whereas the solid lines—transmission
through the two-electron states. Using the results from Table
I Ione can assign the transmission channels at ±t12+sU0
+U1−Dd /2 and ±t12+U1 as through the singletssd and the
triplet std states, respectively.

In the bottom part of Fig. 1 the correlators are presented:
square of the local spinkSi

2l= 3
4ksni,+−ni,−d2l and the cor-

relator between the spins localized at both the dotskS1·S2l
= 3

4ksn1,+−n1,−dsn2,+−n2,−dl. Using these correlators one can
express square of the total spinksS1+S2d2l=kS1

2l+kS2
2l

+2kS1·S2l. The dependence ofkSi
2l is similar tokni,sl and its

value increases when the gate voltage shiftsei belowEF. One
can see thatkSi

2l saturates passing the singlet state(at e1

−EF=−1.827) in order to increase once again passing the
triplet state(at e1−EF=−2.6). The maximal value ofkSi

2l is
achieved in the middle of the plot and it is closed to
3
4—square of a spin of a free electron. The correlatorkS1·S2l
is negative in the whole range, what indicates an antiferro-
magnetic coupling between the spins. The value of −kS1·S2l
increases at the singlet state and decreases passing the triplet

TABLE I. States, eigenvalues, and the ground states energy of the isolated two-quantum dot system for
e1=e2. Below we putD=Î16t12

2 +sU0−U1d2.

State Eigenvalue
Ground state

energy

0 electron 0

u0,0l 0

1 electron e1− ut12u
1/Î2 sus ,0l± u0,sld e1± t12

2 electron 2e1+ 1
2sU0+U1−Dd

5 u + , + l

1/Î2 su + ,− l − u− , + ld
u− ,− l

6 2e1+U1

Ha/Î2 su + ,− l + u− , + ld

+ b/Î2 su2,0l + u0,2ld
J 2e1+ 1

2sU0+U1±Dd

1/Î2 su2,0l− u0,2ld 2e1+U0

3 electron 3e1+U0+2U1− ut12u
1/Î2 su2,sl± us ,2ld 3e1+U0+2U1± t12

4 electron 4e1+2U0+4U1

u2,2l 4e1+2U0+4U1
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state. The length of the total spin is strongly reduced and
achieves its minimal valueksS1+S2d2l=0.2. Note also a
small bump in the spin correlation, which occurs between the
singlet and the triplet state in the range −0.6,e1
−EF,0.173. When the Fermi energyEF lies between the
one-electron state and the singlet state, there is one electron
on average in the 2qd system with a local uncorrelated spin,
which due interactions with conduction electrons can lead to

the Kondo resonance. WhenEF passes the position of the
singlet state we have double electron occupancy with the
strong antiferromagnetic coupling between the local spins.
Square of the total spinksS1+S2d2l is strongly compensated,
which destroys the condition for the Kondo resonance. How-
ever, when the triplet state starts to participate in transport
the antiferromagnetic correlations are much weaker. Ate1
−EF=−4.6 square of the total spinksS1+S2d2l=1.36, which
is a bit below the value 1.5 for square of the total spin of two
free electrons. One can expect also strong fluctuations of the
magnetic moment.

An interesting problem which arises is screening of the
magnetic moment by conduction electrons in the 2qd system
when the temperatureT is lowered belowTK. Does the
Kondo resonance appear for the 2qd system with two elec-
trons, and what is a role of many-particle states in the effect?
The effect could occur in a central part of Fig. 1, which can
be achieved in an experiment for a very wide range of the
gate voltage(even for moderate Coulomb interactions). Ac-
cording to our best knowledge the effect has not been studied
experimentally in the 2qd system. A similar situation was
predicted theoretically by Izumidaet al.39 and Hofstetter and
Schoeller40 for a multilevel quantum dot, which was just
recently verified experimentally by Koganet al.50 For an odd
number of electrons in the system they observed a peak in
the source-drain conductance plot atV=0, which is a char-
acteristic feature of the Kondo resonance. The similar feature
was found for an even number of electrons, but the Kondo
resonance range was separated by the gate voltage range be-
tween the singlet and the triplet state without the zero-
voltage peak.50 This is very similar to our situation discussed
above. Pustilnik and Glazman37 proposed an alternative sce-
nario for two coupled electrons withS=1 suggesting a non-
conventional Kondo resonance—in contrast to our model, in
which the total magnetic moment is a composition of two
spins of free electrons with a weak antiferromagnetic cou-
pling.

Figure 3 shows dependence of the conductance spectrum
on the couplingGa. The height of the main peaks is almost
constant, but the smaller peaks(related to transmission
through excited states) depend on the coupling strength and
their hight is proportional toGa. The conductance peaks are
asymmetrical, what is clearly seen for the peaks ate1−EF=
−1 and −0.6. The asymmetry is related with interference pro-
cesses. The current formula(5) has two terms: the first one is
proportional to the local electron density of states(DOS)
Imfkkc1,s uc1,s

† llv
ag and the second—proportional to

kkc1,s uc1,s
† llv

,, which corresponds to interference processes.
The interference term of the conductance is plotted in Fig. 3
as the dashed curve. These results show that for multi dot
systems the local DOS as well as interference play an impor-
tant role in transport and the formula(5) in its full form
should be taken for calculations.

The results presented earlier are determined for the tem-
peratureT=0, because this case is much simpler for numeri-
cal calculations. On the other side, our approach is reliable
for high temperaturesT.TK. The zero-temperatures studies
can be a good qualitative description of the high temperature
situation, and features of electronic transport presented above

FIG. 1. Zero-voltage conductanceG0 (top figure) and correlators
(bottom figure): kn1,+l—solid curve, kS1

2l—long-dashed curve,
−kS1·S2l—short-dashed curve, as a function of the relative position
of the energy levele1−EF. The parameters aret12=1, U0=6, U1

=1.6, GL=GR=0.1, e2=e1, andT=0. The labels above the conduc-
tance peaks denote the position when an extra electron is added to
the 2qd system. The vertical solid lines show positions of poles of
the Green functions corresponding to transmission through the two-
electron states: singletssd and the tripletstd, whereas the dashed
lines—transmission through the one-electron states.

FIG. 2. Height of the conductance peaks through:(1) the one-
electron levele1−EF= ut12u and (2) the singlet levele1−EF=−ut12u
−sU0+U1−Dd /2, plotted as the function of the intradot coulomb
repulsion parameterU0. The interdot coulomb interaction is taken
U1=U0/4, GL=GR=0.1, e2=e1.
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survive in a wide temperature range. The procedure for a
finite T is analogous to theT=0 case, in which one solves a
set of integral equations for the thermal average of correla-
tors. Figure 4 presents the dependence ofG0 on e1 for differ-
ent temperatures. As one could expect, the conductance
peaks are smeared out, and significant changes are seen when
kBT<Ga. Even atkBT=Ga the triplet peak ate1−EF=−2.6 is
clearly seen as the shoulder of the peak at −1.827(see the
dashed curve). The conductance spectrum between the one-
electron and two-electron resonance peaks changes slightly
(see the peaks at −1, −0.6, and 0.17). These conductance
peaks come from tails of the one-electron and the two-
electron spectrum(at e1−EF=1 and at −1.827). Temperature
changes of the tails are much smaller than changes at the
resonance centers. For higher temperatures the smearing ef-
fect can be large enough and one can observe an increase of
the electron density of states in the tails, which can result in
an increase of the conductance as well(see the dot curve in

Fig. 4 corresponding tokBT=2Ga). The correlators are less
sensitive to temperature changes than the conductance, be-
cause they are dependent on the Fermi distribution function
whereas the conductance is dependent on its derivative. For
example, in the center of the Hubbard gape1−EF=−4.6
square of the total spinksS1+S2d2l<1.36 for the tempera-
tures up tokBT=2Ga, the antiferromagnetic correlations are a
bit reduced and the minimal value ofksS1+S2d2l=0.22 at
kBT=Ga increases to 0.31 forkBT=2Ga.

Applying a gate voltage different for each quantum dot
one can shift the position of the energy levelse1 ande2. With
the shift of the position of the resonant energies the conduc-
tance peaks change their height. The gray-scale plot ofG0 is
presented in Fig. 5 as a function of the average position of
the levelse0=se1+e2d /2 and the detuning parameterd=se1

−e2d /2. At d=0, Fig. 5 shows the situation as in Fig. 1.
Increasingd the main conductance peaks are shifted from
each other. The height of the single-electron conductance
peak (at e0−EF=1 for d=0) monotonously decreases with
d. The similar dependence has been observed
experimentally14,16,17and calculated for coherent transport of
noninteracting electrons.20 The position of the one-electron
states is given by

E1± = e0 ± Îd 2 + t12
2 . s13d

The second large peak in Fig. 5(at e0−EF=−1.827 for d
=0) corresponds to two-electron singlet state and its height
decreases much slower. The positions of the conductance
peaks corresponding to the singlets are given asE2Sn−E1±,
where the singlet eigenenergies

E2Sn= 2e0 +
2U0 + U1

3
+

2

3
Îp cosSf + 2pn

3
D for n = 0,1,2.

s14d

Here, we denotedf=arccossq/p3/2d, p=sU0−U1d2+12d 2

+12t12
2 and q=sU0−U1dfsU0−U1d2+18t12

2 −36d 2g. The posi-
tion of the conductance peak for the triplet state isE2T
−E1±, where E2T=2e0+U1. The small peaks ate0−EF
=0.173, −0.6, and −1 from Fig. 1 are seen also in the gray
plot in Fig. 5, but they disappear at larged. Note that the

FIG. 3. Zero-voltage conductanceG0 vs e1−EF for two different
couplings of the 2qd system with the electrodesGL=GR=0.2 (thick
curve) andGL=GR=0.05(thin curve). The other parameters are the
same as in Fig. 1. The dashed curve is the conductance determined
form Eq. (5) taking only the interference term(the second one) for
GL=GR=0.2. Vertical lines denote position of resonant levels for the
two-electron states(solid lines) and for the one-electron states
(dashed lines).

FIG. 4. Zero-voltage conductanceG0 as a function ofe1−EF for
different temperatures:T=0—solid curve, T=0.05—dashed-dot
curve,T=0.1—dashed curve, andT=0.2—dot curve. The coupling
to the electrodes isGL=GR=0.1, t12=1, U0=6, U1=1.6, ande2

=e1.

FIG. 5. Zero-voltage conductanceG0 vs the center level position
e0=se1+e2d /2 (with respect toEF) and the detuning parametersd
=se1−e2d /2 plotted as a gray-scale map. The parameters aret12

=1, U0=6, U1=1.6, GL=GR=0.1, andT=0.
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position of two-electron singlet level and the antibonding
one-electron level(those at −1.827 and −1 ford=0) is
shifted to the left-hand side in contrast to the bonding one-
electron level, which is shifted to the right-hand side. The
triplet state(at −2.6 ford=0) is well seen even for a larged.

The results presented earlier are for moderate values of
the coulomb parametersU0 andU1, for which the one- and
the two-electron states are well separated from the three- and
four-electron states(the Hubbard gap is large in our case).
Moreover, we assumed a large electron transfer between the
dots t12@Ga, for which the singlet and the triplet states are
also well separated. For larger values ofU0, U1 the differ-
ence between the position of the singlet and the triplet states
is J=16t12

2 / sU0−U1d. When the coupling strengthGa.J, the
corresponding two conductance peaks merge together and
specific features of the singlet and the triplet state are lost.
The conductance spectrum is then similar to that for the in-
coherent sequential transport. Such the situation(U0→` and
J→0) is often considered in the literature(see, e.g., Refs.
24–27 and 36).

B. Nonequilibrium transport

Let us now consider the nonequilibrium situation with a
finite source-drain voltage dropV. Experimentally one can
apply either the potentialV/2 and −V/2 to the left and the
right electrodes, or the potentialV to the left electrode and in
the right electrode the potential becomes zero. We choose the
latter situations, which seems to be simpler for presentation.
In the present studies full screening of the electric field on
the quantum dots is assumed and the energy levelsei are
independent onV. (The results presented later can be easily
extended for the case whenei are shifted with increasingV.)
Moreover, the approximation for the splitting of the Green
functions keeps the poles at the same positions. Therefore,
sweeping the potentialV of the left electrode one can scan
the electronic spectrum of the 2qd system.

Figure 6 presents the differential conductanceG (the thick
solid curve) when the levelse1−EF=e2−EF=2 are below the
one-electron ground state and the 2qd systems is empty at
the equilibrium(at V=0). For comparison the zero-voltage
conductanceG0 is plotted versuse1−EF (see the thin solid
curve). For the nonequilibrium situation four high conduc-
tance peaks are seen(in contrast to two peaks at the equilib-
rium). A large peak arises ateV=3, which is due to an acti-
vation of transmission through the one-electron antibonding
state. The first peak(at eV=1 and corresponding to transmis-
sion through the one-electron bonding state) is also higher
than that one at equilibrium. One can observe a large en-
hancement of the peak ateV=4.6 corresponding to transfer
through the triplet state, whereas the singlet channel(at eV
=2.827) gives a smaller value ofG. The peaks ateV=1.827
andeV=2.6 are a bit stronger.

The bottom part of Fig. 6 presents the voltage dependence
of the correlators. The local occupancykni,sl is different for
the first and the second dot(see the solid curves). An elec-
tronic polarization effect appears in the system. In the low
voltage region(up toeV<2) the polarization is negative and
for large voltages the polarization is positive according the

electric field. This result is in qualitative agreement with the
Hartree-Fock approach used for the similar model,51 where
the polarization changed its sign and increased when the sec-
ond transmission channel became activated in transport. The
electron occupancy(in Fig. 6) saturates when the voltage
passes the first resonance level, but its value is smaller than
for the equilibrium case. This is not surprising, because elec-
trons flow from the left electrode into the 2qd system and
simultaneously flow out to the right electrode. The local elec-
tron occupancy depends on the Wigner distribution function,
which is a combination of the Fermi distribution functions
for both the electrodes. Therefore, when the chemical poten-
tial of the electrode passes the local energy levels of the
system, one can observe steps of the charge accumulation
with a fractional height. The voltage dependence ofkni,sl
shows two additional steps ateV=3 and ateV=4.6, i.e.,
when a large activation of the conducting channels occur.
Square of the local spinskSi

2l increase withV and their de-
pendences are similar to the local chargekni,sl. The short-
dashed curves in bottom of Fig. 6 represent the correlator
−kS1·S2l for the nonequilibrium and the equilibrium situa-
tion. The strong antiferromagnetic correlations at the singlet
state are reduced substantially when a high source-drain volt-

FIG. 6. Differential conductanceG (top figure) and correlators
(bottom figure): kni,+l—solid curve, kSi

2l—long-dashed curve,
−kS1·S2l—short-dashed curve, as a function of the applied source-
drain voltageV at e1−EF=e2−EF=2. Note that in the low voltage
region the values ofkni,+l and kSi

2l for i =1 are larger than those
ones fori =2, whereas in the high voltage regime the situation is
opposite and these quantities are higher fori =2. The parameters are
t12=1, U0=6, U1=1.6, GL=GR=0.1, andT=0. For comparison the
plot for the equilibrium situation is presented by the thin curves for
the zero-voltage conductanceG0 and the correlators as a function of
e1−EF (the top axis).
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age is applied. Moreover, some small ferromagnetic correla-
tions are found(at eV<3 andeV<6). These results suggest
that flowing currents reduce antiferromagnetic correlations.

Figure 7 shows the same quantities as in Fig. 6, now, for
e1−EF=e2−EF=−3, i.e., for double electron occupancy at
the equilibrium. In this case a negative voltageV is used to
scan the conductance spectrum. Once again four significant
peaks ofG are seen. In this case a strongest activation exhib-
its the triplet channel ateV=−2.4. The one-electron channel
transmission is much weaker and the corresponding conduc-
tance peak(at eV=−4) is much lower than the peak at the
equilibrium. Changes of the peaks for the singlet and the
triplet channels(at eV=−1.287 andeV=−0.4) are not so
large as in Fig. 6. The electronic chargekni,sl decreases and
one can see steps at the same position as for the high con-
duction peaks. The polarization effect occurs for this case as
well. For small voltages the polarization is opposite to the
electric field, in order to change its orientation for a high
voltage dropseV,−2d. The spin correlationskS1·S2l are re-
duced, although not so strong as in Fig. 6. One finds antifer-
romagnetic correlations again in the range −3.173,eV
,−2.4, which may be related to proximity of the excited
singlet channel.

IV. SUMMARY

In this work theoretical studies of coherent electronic
transport in the system of two coupled dots connected in

series with electrodes were performed within the two-
impurity Anderson model taking into account the intra- and
the interdot coulomb interactions. The conductance charac-
teristics were determined by means of the nonequilibrium
Green function technique using the equation of motion ap-
proach, in which all correlations inside the 2qd system were
treated exactly and a decoupling procedure for the Green
function connecting the 2qd system with the electrodes was
applied. Although the procedure neglects spin fluctuations, it
takes into account charge fluctuations. Therefore, it is reli-
able for temperatures higher than the Kondo temperatureTK
and for any value of the source-drain voltageV, also for
largeV.

Our attention was focused on electronic correlations, for-
mation of many-body states and their role in transport. The
analysis was done for the system of strongly coupled dots, in
which the interdot electron transfer is larget12.Ga and with
moderate Coulomb interactionsU0.U1. t12. In this case the
singlet and the triplet state are well separated, which gives a
good opportunity for analysis of transport through these
states. The analysis of the conductance was performed as a
function of the position of the dot levelsei shifted by the gate
voltage and for nonequilibrium as a function of the source-
drain voltage(at the constant position ofei). Apart from the
resonance peaks a significant contribution to transport
through excited many-particle states was found. The triplet
states give the significant contribution to the conductance
and we predict that this should be a measurable effect in a
wide range of temperatures. In the present procedure all
many-body correlators were determined in a self-consistent
way. A detailed analysis of the spin-spin correlation function
showed an antiferromagnetic coupling connected with a for-
mation of the singlet state, for which the total magnetic mo-
ment is strongly compensated. However, when the triplet
state starts to participate in transport the antiferromagnetic
coupling is reduced, the spins are loosely coupled and
strongly fluctuate. Such the situation occurs in a wide range
of the gate voltages when the Fermi energy lies in the Hub-
bard gap and in a wide range of temperatures, provided that
the on-site Coulomb repulsion is strong enough(U0.2u tu
for U1=0) and the energy splitting between the lowest
singlet state and the triplet state is relatively small. Note,
however, that in an improved treatment of the model one can
expect a quantitative modification of the observed tendency
to suppression of the spin-spin correlations in the lowest
temperatures, where the(neglected here) correlations respon-
sible for the Kondo effect become important.

For the nonequilibrium situation the procedure kept the
position of the poles of the Green functions and therefore,
sweeping the source-drain voltage one scans the electronic
spectrum of the system. The conductance characteristics ob-
tained in this way showed a strong activation of the trans-
mission through excited states with the conductance peaks so
high as the resonant peaks. The activation of the channels
depended on the equilibrium position of the system. For an
empty system(with the energy levelsei @EF) at the equilib-
rium the conductance corresponding to the one-electron
states was strongly enhanced, whereas for the system with
two electrons atV=0 (ei −EF in the Hubbard gap) the triplet
states were activated for the large voltages. As one could

FIG. 7. Differential conductanceG (top figure) and correlators
(bottom figure): kni,+l—solid curve, kSi

2l—long-dashed curve,
−kS1·S2l—short-dashed curve, as a function of the applied source-
drain voltageV at e1−EF=e2−EF=−3. The parameters aret12=1,
U0=6, U1=1.6,GL=GR=0.1. For comparison the plot for the equi-
librium situation is presented by the thin curves for the zero-voltage
conductanceG0 and correlators as a function ofe1−EF (the top
axis).
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expect, the analysis showed smaller spin-spin correlations
and a reduction of the antiferromagnetic coupling.

The main drawback of the approach used here is the ne-
glect of electron correlations leading to the Kondo effect
what limits our results toT.TK range. Within the frame-
work of the EOM method one can try to extend our work to
low-T regime, by taking into account electron correlators in-
volving both the lead and the 2qd degrees of freedom at the
same time, following the approach presented by Lacroix.52

One should be aware, however, the enormous complications
which would arise in the present case due to necessity of
treatment of the large number of correlators on equal footing
in order to keep the proportions between the various excita-
tion processes.

Although the address of the present work is to the
system of the two quantum dots, the same model can be
used for studies of transport through single molecules.
As an example let it be thesN,N8 ,N9-trimethyl-1 ,4,7-
triazacyclononaned2-V2sCNd4sm-C4N4d molecule, which was
used recently by Lianget al.7 for the conductance measure-
ments. The molecule contains two vanadium centers, and
therefore, it can be described by the same model.
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APPENDIX: SINGLE-DOT CASE

Let us present the decoupling procedure for the Green
functions for the case of the single dot. The calculations are
much simpler and one can see better the approximations
made during this procedure. From the EOM one finds the
retarded single-particle and the two-particle Green functions
at the dot as

sv − e1dkkc1,suc1,s
† llv

r

= 1 +o
a

tao
k

kkcka,suc1,s
† llv

r + Ukkc1,sn1,−suc1,s
† llv

r ,

sA1d

sv − e1 − Udkkc1,sn1,−suc1,s
† llv

r

= kn1,−sl + o
a

tao
k

fkkcka,sn1,−suc1,s
† llv

r

− kkc1,scka,−s
† c1,−suc1,s

† llv
r

+ kkc1,sc1,−s
† cka,−suc1,s

† llv
r g. sA2d

In the second step of the EOM one finds

o
k

kkcka,suc1,s
† llv

r = taga
r svdkkc1,suc1,s

† llv
r , sA3d

where ga
r svd is the retarded Green function in thea elec-

trode, and which is taken asga
r svd=okf1/sv−ek+ i0dg

<−ipra. In Eq. (A2) for two-particle Green function we

neglect the resonance broadening terms related to the simul-
tanuous hopping of electron pairs to and out of the 2qd:
kkc1,scka,−s

† c1,−s uc1,s
† llv

r andkkc1,sc1,−s
† cka,−s uc1,s

† llv
r (the sum

of these terms vanish in the Hartree-Fock decoupling), effec-
tively closing the system of equations for the Green func-
tions. In the case of the single-dot this procedure is equiva-
lent to the one used by Pals and MacKinnon,41 who showed
that it compares favorably well with the results of approxi-
mation of Meir et al.,53 and gives reliable results for
T.TK.52 Note, however, that in the case of 2qd additional
terms are generated by interdot hopping and the interaction,
leading to appearance of novel interdot correlation functions.
In the paper of Pals and MacKinnon41 these correlation func-
tions were decoupled in a mean-field way, whereas here we
compute all such correlations selfconsistently using the
Green functions.

For the case of the single-dot this approximation leads to
the following retarded Green function:

kkc1,suc1,s
† llv

r = s1 − kn1,−sldG0
r svd + kn1,−slGU

r svd,

sA4d

where e1
r =e1+ iG, G=GL+GR, G0

r svd=1/sv−e1
r d, and

GU
r svd=1/sv−e1

r −U0d. (Note the larger energy level broad-
ening for the single-dot system than for two quantum dots.)
Using the symmetrization procedure from Sec. II one derives
the lesser Green function as

kkc1,suc1,s
† llv

, = 2i f 1svdhs1 − kn1,−sldImfG0
r g + kn1,−slImfGU

r gj,

sA5d

where f1svd=gLfLsvd+gRfRsvd and ga=Ga /G. The local
density of electrons is expressed by

kn1l = o
s

kn1,sl ; o
s
E dv

2ip
kkc1,suc1,s

† llv
,

= S1 −
kn1l
2

Dh0 +
kn1l
2

hU, sA6d

wherehn=edvf1svdImfGn
r g /p is the occupancy of uncorre-

lated electrons at the energy levelEn=0=e1 and En=U=e1
+U0. It is useful to introduce the function

Fsma − End ; E dv

p
fasvdImfGn

r g

= 1 +
2

p
ImFCS1

2
−

ma − En − iG

2pikBT
DG , sA7d

whereC the digamma function. At the temperature T=0 this
function is simply expressed asF0sma−End=1+s2/pd arc
tanfsma−End /Gg. Therefore,hn=oa gaFsma−End and from
Eq. (6) one getskn1l=2h0/ s2+h0−hUd.

Inserting Eqs.(A4) and(A5) into (5) one gets the current

I = S1 −
kn1l
2

DI0 +
kn1l
2

IU, sA8d

where
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In =
e

"

4GLGR

G
E dv

p
ffRsvd − fLsvdgImfGn

r g sA9d

for n=0, U. Using (A7) one can express

In =
2e

h

8GLGR

G
ImFCS1

2
−

mR − En − iG

2pikBT
D

− CS1

2
−

mL − En − iG

2pikBT
DG . sA10d

The conductance can be derived as

G = S1 −
kn1l
2

DG0 +
kn1l
2

GU + sIU − I0d
]kn1l
2]V

, sA11d

where Gn is the conductance of uncorrelated electrons
through the energy levelEn. Assuming the chemical poten-
tials in the electrodesmR=EF+eV and mL=EF one can ex-
pressGn as

Gn =
2e2

h

8GLGR

2pkBTG
ReFC8S1

2
−

EF + eV− En − iG

2pikBT
DG ,

sA12d

whereC8 denotes the derivative of the digamma function. At
T=0 it is simply

Gn =
2e2

h

4GLGR

sEF + eV− End2 + G2 . sA13d

In the zero-voltage limit the conductance reaches its
maximal value at the resonancesEn. The average number of
electrons iskn1l=2/3 at E0 and kn1l=4/3 at EU. It means
that within our decoupling procedure the conductance peaks
can reach the value maxhGj=s2/3d3 s2e2/hd. For larger
voltages also the last term of(A11) plays a role and it can
change the height of the conductance peaks.
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