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Quantum well intersubband absorption with contributions from both valence and conduction subbands is
computed with a nonequilibrium Keldysh Green’s function formalism, assuming an optical pump and probe
scheme in undoped samples. The coupling between conduction and valence bands leads to contributions to the
TE mode from the electrons, which are enhanced due to Coulomb corrections and may be resolved even in the
presence of the dominating hole contributions. A strong contrast in the evolution of absorption spectra with
increasing carrier density is predicted between TM and TE polarizations. The influence of stronglyk-dependent
dipole moments in combination with many-body effects is analyzed for intersubband transitions, including the
evolution of the spectra with increasing excitation power. For the TE case, extra features appear in the spectra,
due to interplays between band structure and Coulomb effects which are not present in the TM mode. The
spectral evolution on both polarizations, broadening, number, and relative strength of the resolved peaks are in
strong contrast with free-carrier results. Numerical results are given for four different structures.
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I. INTRODUCTION

Many-body effects are crucial for a consistent explanation
of conduction intersubband absorption of quantum wells
(QW’s), a fact that has been demonstrated by detailed com-
parisons between theory and experiments.1–4 Typical inter-
conduction subband transitions can be described with para-
bolic dispersion relations and constant dipole moments.5,6 In
contrast, intervalence-band transitions are characterized by
strong nonparabolicity andk-dependent dipole moments.7,8

In this paper, we address the following issues:(i) interva-
lence subband contributions to the absorption have been
studied for free carriers,7–9 and thus, in view of importance
of Coulomb effects, we analyze the valence subband prob-
lem. We find that the strong band coupling and resulting
nonparabolicity andk dependence of the dipole moments
combined with Coulomb corrections lead to double features
in some of the multiple transitions, which are directly mea-
surable by comparing and contrasting the evolution of the TE
and TM modes with increasing excitation. The spectra are
radically different from free-carrier calculations.

(ii ) The combined contributions from both types of sub-
bands to the intersubband transitions including many-body
effects and nonparabolicity in all subbands are discussed.
That is possible by introducing a predictive numerical
scheme capable of simulating experiments similar to those
described in, e.g., Refs. 10,11, i.e., we assume a pump and
probe excitation scheme, with a strong pump pulse generat-
ing electrons in the conduction band and holes in the valence
bands, and a weak probe pulse in the infrared.

(iii ) The conduction band states are a mix of electrons and
holes, thus conduction band signatures are predicted in the
TE mode even in the presence of the larger hole contribution
due to a hitherto unexplored Coulomb enhancement of the

strongly nonparabolic conduction bands. The spectral posi-
tions and broadening, number of peaks, and the relative os-
cillator strengths of the spectra calculated with and without
Coulomb effects are radically different, further highlighting
the importance of our calculations.

II. MAIN EQUATIONS

Optical absorptiona at a given photon energy"v can be
calculated from the imaginary part of the optical susceptibil-
ity,

asvd =
4pv

cnb
Ihxsvdj, xsvd = 2 o

mÞn,kW
dmnxn,msk,vd. s1d

Here nb denotes the background refractive index,c is the
speed of light,dnm is the transition dipole moment between
the subbandsn andm, which are labeledm=1,2,… from the
top valence band. Thus in the discussion of numerical results
that follows, absorption of light with an electron being pro-
moted between, e.g., conduction subbandm=1 to n=2 is
called a(1,2) transition, while absorption with an electron
being promoted, e.g., from valence subbandm=3 to n=2 is
called a(3,2) transition.

By running over all subband indicesnÞm in Eqs.(1), we
do not apply the rotating wave approximation.

The susceptibility function,xn,msk,vd is related to the car-
rier Keldysh nonequilibrium Green’s function,G. Its time
evolution is described by a Dyson equation, with Coulomb
interactions as well as other scattering mechanisms included
in a self-energy,S.12,13

The carrier self-energy includes scattering and leads to
intersubband renormalization and spectral broadening, as
well as exchange and depolarization effects.
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The steady-state absorption spectra discussed have been
numerically computed assuming the carriers are thermalized
in quasiequilibrium in the various subbands, each subband
“l” characterized by the occupation functionflskd. We do
not use the electron-hole picture, and thus our notation is
valid for both conduction and valence band electrons and
occupation functions. The resulting integral equation for the
susceptibility function reads

f"v − enmskd + iGnmgxnmsk,vd − dfnmskd o
k8Þk

xnmsk8,vd

3 SVSnnmm

k − k8
D − 2VSnmmn

0
DD = dnmdfnmskd. s2d

The population difference is given bydfnmskd= fnskd
− fmskd, the bare Coulomb interaction matrix elements read

VSmnlb

k − k8
D =E dz dz8 fm

* szdfnszd

3
2pe2 exps− uk − k8uuz− z8ud

e0Auk − k8u
fl

* sz8dfbsz8d,

s3d

whereA, and e0 denote, respectively, a normalization area,
and the background dielectric constant,

enmskd = Enskd − Emskd − o
k8

fnsk8dVS nnnn

k − k8
D

+ o
k8

fmsk8dVSmmmm

k − k8
D

+ o
k8

ffnsk8d − fmsk8dgVSnmmn

k − k8
D , s4d

is the energy difference between the levels renormalized by
the exchange interaction, which we refer to as the subband
shift in the following. The calculated broadening,Gnm, is due
to electron-electron scattering. More details are given in the
Appendix.

The first term in brackets on the left-hand side of Eq.(2)
(exchange) is analogous to the excitonic coupling term in
interband transitions, while the second term gives rise to the
depolarization shift, which leads to a dynamic renormaliza-
tion.

In Eq. (2) we do not consider summations over all pos-
sible subband index, or in other words, we do not consider
Coulomb couplings between different subbands, in order to
reduce the size of the matrix to be inverted numerically as
discussed below. A more complete solution including these
terms will be the subject of future numerical studies. The
corresponding coupling matrix elements have a structure
similar to those in generalized Anderson models,14 that will
allow to reproduce effects like dynamical anticrossings be-
tween two resonant absorption resonances in the conduction
and valence subbands. Note that mid-infrared(MIR) picosec-
ond spectroscopy has demonstrated that interband excitons
do not play a role in the intersubband absorption of

GaAs/AlGaAs quantum well lasers.10 Especially for large
quantum well widths, the main many-body correction to in-
tersubband optical spectra is the depolarization shift. The
presence of an electron hole plasma does not significantly
alter the measured dynamic depolarization shift of the elec-
tronic intersubband resonance.11 However theoretical studies
predict a reduction in oscillator strength for electronic inter-
subband transitions if the energy of one electron subband
approaches the top of the well, and the effected is expected
to be of relevance in the design of quantum well devices
producing MIR.15

The presence of holes in the valence bands as well as
interband excitons should be more relevant in very small
band gap materials, where both interband and some intersub-
band transition energies are comparable, and could both con-
tribute to the far infrared spectrum. These issues will be ad-
dressed in future publications as discussed above, by
considering an extended numerical inversion scheme that al-
lows for Coulomb coupling between different transitions.

We obtain optical spectra, by computing exchange with
the bare Coulomb interaction. In a formal development,
screening appears only in higher-order diagonal and nondi-
agonal terms beyond Hartree–Fock, and detailed studies in-
cluding comparisons with experiments indicate that there are
strong compensations between diagonal and nondiagonal
terms for both intersubband,16 and interband transitions.17 A
detailed analysis of the interplay of diagonal and nondiago-
nal contributions in the nonparabolic band-coupling scenario
will be the subject of further research. Here we consider a
constant dephasing rate, evaluated for each transition using
carrier-carrier scattering. More details of the derivation are
given in the Appendix.

III. NUMERICAL RESULTS AND DISCUSSION

The numerical results presented here are for four different
structures. We start with structures that have been widely
studied in the interband case and samples can be easily ob-
tained to attract the interest of experimentalists. They are
GaAs/AlGaAs quantum wells with well widths of 5, 10, and
20 nm. Next we choose a structure that has been used for
high density interband lasing operation and thus it is reason-
able to look for effects that can be seen only at high electron
and hole density. It is a 9 nmthick compressively strained
InGaAsP QW(Eg unstrained 1.344 eV,e=−1.5%), embed-
ded in 5 nm tensile-strained GaAsP spacer layers(Eg un-
strained 1.826 eV,e=1.2%), and in AlGaAs(Eg 1.842 eV).
The band offsets were calculated according to model-solid
theory.20 We have chosen the QW described above for two
reasons:(i) it suits our purposes to demonstrate the band
coupling and Coulomb effects.(ii ) The design and constitu-
ent parameter choice is of technological interest. More de-
tails of the sample design can be found in Ref. 21.

After optical excitation, the total density of electrons is
equal to that of holes, and the occupation functions are given
by Fermi functions, with one chemical potential characteriz-
ing all electron subbands and one for all the hole subbands,
assumed to be thermalized atT=300 K. Only carrier-carrier
scattering is included in our calculations. Before we proceed
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to discuss numerical results, a brief summary of the numeri-
cal method is useful. We start by diagonalizing an 838k ·p
Hamiltonian. Thek ·p method uses a Kane-type Hamilton
operator including the lowest conduction band, the three up-
permost valence bands, all are assumed to be Kramers de-
generated. No axial approximation and no block diagonaliza-
tion is applied. The momentum operator is calculated
consistently with the Hamilton operator by evaluating thek
gradient.18 For quantum wells, the components of the
k-vector parallel to the growth direction are replaced by the
corresponding symmetrized spatial derivatives as outlined in
Ref. 8. Spurious solutions are eliminated by a proper choice
of the interband momentum matrix elementP similarly as
proposed in Ref. 19, and a rescaling of the momentum op-
erator. Next, for a given carrier density, the equilibrium
(Fermi) occupation functions, Coulomb matrix elements[Eq.
(3)], dephasing rates[Eq. (A13)] and renormalized energies
[Eq. (4)] are evaluated. Equation(A8) is then discretized
leading to a system of linear equations which is solved for
each photon frequency. A final numerical integration and
summation over all possible intersubband transitions yields
the final optical spectra[Eq. (1)]. K space is partitioned in
sections between 0 and a maximum valueKmax and the den-
sity of k points is doubled until the resulting numerical in-
version and integrations converge. A total of either 100 or
200 k points suffices for calculations with temperatures be-
tween 200 and 300 K.

Figure 1 compares and contrasts the TE and TM absorp-
tion of a 5 nmGaAs/AlGaAs quantum well as a function of
increasing carrier density with and without many-body ef-
fects. The electrons dominate the TM mode spectra but do
not contribute for TE polarization. The number of resolved
peaks as the carrier density increases is different with and
without many-body effects, which could lead to interesting
experimental investigations to test our theory. The main con-
tributions to the TE spectra forN=331012 cm2 are depicted
in detail in Fig. 2. The striking feature here is that the struc-

ture that appears around 50 meV is not due to another tran-
sition, but rather by a combination of band-structure and
many-body effects. The corresponding dipole moment is
shown in Fig. 3(c) as a solid line. It starts from zero atk
=0 evolves quickly to its maximum and falls also quickly to
zero. As a consequence, the availablek space is restricted
and the Coulomb corrections, actually dominated by the de-
polarization shift do not have strength to promote a full shift
of oscillator strength to the high energy side. The band struc-
ture for both valence and conduction bands are shown, re-
spectively in Figs. 3 and 4. Note that the TM dipole moments
for electrons and those corresponding to the main contribu-

FIG. 1. Intersubband absorption of a 5 nm GaAs/AlGaAsquan-
tum well with contributions from both conduction and valence
bands. Many-body effects are included in(a) and (c). Free-carrier
spectra are given in(b) and(d). TE polarization on(a) and(b), and
TM on (c) and (d). In all panels, from bottom to top, the curves
correspond to excitation with a total carrier densityN=0.1, 0.5, 1,
2, and 331012 cm2.

FIG. 2. Main contributions for the TE absorption of the quantum
well in Fig. 1. The carrier density isN=331012 cm2. Many-body
effects are included in(a). Free-carrier spectra are given in(b). In
both panels, from left to right, the solid, long-dashed, dotted-
dashed, and dotted lines correspond to the(2,1), (3,2), (4,2), and
(4,1) transitions among the valence subbands.

FIG. 3. (a) Valence subbands of the quantum well in Fig. 1.En,
obtained from the diagonalization of a 838 k ·p Hamiltonian.(b)
Selected TM transition dipole moments,dmn

TM, within the valence
subbands.(c) TE transition dipole moments,dmn

TE. The solid, long-
dashed, dotted-dashed, and dotted lines follow the convention of
Fig. 2 in (b) and(c). The curve with square symbols in(b) is for the
(3,1) transition(a0<8.0 nm).
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tions from valence bands show a small variation in the whole
region ofk space where the subbands are appreciably popu-
lated and thus contribute to the spectra. Consequently, the
many-body corrections, which manifest in the predicted
spectra as spectral shifts and redistribution of oscillator
strength are more effective, as shown in a comparison be-
tween Figs. 1(c) and 1(d).

Figure 5 is similar to Fig. 1, but for a 10 nm
GaAs/AlGaAs quantum well. Selected contributions for
both TE and TM modes are shown in Fig. 6.

In the low energy side of the TM mode, dominated by
hole transitions the number and shape of well resolved peaks
are different for free carriers and many-body spectra. The
structure around 67 meV is particularly interesting. It is not
present for free carriers and appears in the many-body spec-
trum as a combination of larger separation between the(4,1)-

dashed and(4,2)-dotted-dashed transitions combined with a
double peak that develops in the(3,1)-symbols structure.
Also the TE presents an interesting low-energy feature
around 16 meV, once more due to a single transition(2,1)
that evolves to a double featured one due to many-body ef-
fects and the sharply peaked dipole moment, highlighted as a
dashed line in Fig. 7(c). The double featured(5,1) transition
also contributes to change considerably the spectrum around
90 and 124 meV.

FIG. 4. (a) Conduction subbands of the quantum well in Fig. 1.
En, obtained from the diagonalization of a 838 k ·p Hamiltonian.
(b) TM transition dipole moment,dmn

TM, within the conduction sub-
bands.(c) TE transition dipole moment,dmn

TEsa0<8.0 nmd.

FIG. 5. Intersubband absorption of a 10 nm GaAs/AlGaAs
quantum well with contributions from both conduction and valence
bands. Many-body effects are included in(a) and (c). Free-carrier
spectra are given in(b) and(d). TE polarization on(a) and(b), and
TM on (c) and (d). In all panels, from bottom to top, the curves
correspond to excitation with a total carrier densityN=0.1, 0.5, 1,
2, and 331012 cm2.

FIG. 6. Main contributions to the absorption due to intervalence
band transitions for the quantum well of Fig. 5 excited with a total
carrier densityN=331012 cm2. Many body effects are included in
(a) and (c) and free-carrier curves are shown in(b) and (d). In all
panels the solid curves are the total valence subband contribution.
For TE polarization,(a) and (b), from left to right the main contri-
butions are(2,1) (3,2) (4,2) (4,1) (7,3) (5,1) (7,2) (7,1). The (2,1)
and (5,1) are highlighted by dashed and dotted-dashed curves, re-
spectively. For TM polarization,(c) and (d), from left to right the
main contributions are(2,1) (3,1), (3,2) (4,2) (5,3) (4,1) (5,1) (7,2).
The (3,1), (4,1), and (4,2) transitions are highlighted by symbols,
dashed and dotted-dashed curves, respectively.

FIG. 7. (a) Valence subbands of the quantum well in Fig. 5.En,
obtained from the diagonalization of a 838 k ·p Hamiltonian.(b)
Selected TM transition dipole moments,dmn

TM, within the valence
subbands. The(3,1), (4,1), and (4,2) transitions are highlighted by
symbols, dashed, and dotted-dashed curves, respectively.(c) TE
transition dipole moments,dmn

TE. The (2,1) and(5,1) are highlighted
by dashed and dotted-dashed curves, respectivelysa0<8.0 nmd.
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Strong differences between the number of resolved struc-
tures and the relative oscillator strengths for both TE and TM
modes are also found for the 20 nm structure, which has
however a large number of different transitions contributing
to the final spectra, so we skip a detailed analysis and show
only the evolution of total spectra with and without many-
body effects in Fig. 8.

We now complement the general discussion by analyzing
a 9 nm InGaAsP/GaAsP quantum well. Its design and struc-
tural parameters are given in detail in Ref. 21.

Probe absorption spectra including contributions from
both conduction and valence bands are shown for TM and
TE modes, respectively, in Figs. 9 and 10. Valence and con-
duction subbands as well as selected transition dipole mo-
ments are depicted in Figs. 11 and 12.

Direct comparison between dipole moments shows that,
as expected the conduction band electrons dominate the TM
mode absorption, while the valence bands dominate the TE
case. Without coupling between conduction and valence
bands, the TE transitions would be forbidden for the conduc-
tion subbands. However, the bands are coupled. The cou-
pling gives rise to the structure around 164 meV in Fig.
10(a), which originates from(2,4) and (1,3) transitions. The
corresponding dipole moments are, respectively, the solid
and long-dashed curves in Fig. 12(c). The Coulomb enhance-
ment is necessary to make the transitions visible. They are
not resolved for free-carriers[see Fig. 10(b)].

The conduction bands are parabolic in excellent approxi-
mation, but we find that the coupling with the valence band
leads to a small dispersion, i.e., from bottom to top, the ad-
justed effective masses are given byme,n=0.106, 0.119,
0.130, 0.127, and 0.1293m0, wherem0 is the free electron
mass. The TM dipole moments are roughly constant, and the
TE is stronglyk dependent, starting from zero atk=0. In
contrast, the valence bands are strongly coupled, as seen in
Fig. 11, and cannot be approximated by parabolic bands.

FIG. 8. Intersubband absorption of a 20 nm GaAs/AlGaAs
quantum well with contributions from both conduction and valence
bands. Many-body effects are included in(a) and (c). Free-carrier
spectra are given in(b) and(d). TE polarization on(a) and(b), and
TM on (c) and (d). In all panels, from bottom to top, the curves
correspond to excitation with a total carrier densityN=0.1, 0.5, 1,
2, and 331012 cm2.

FIG. 9. Intersubband absorption of a 9 nm InGaAsP/GaAsP
quantum well including contributions from both conduction and
valence bands with TM polarization. Many-body effects are in-
cluded in(a) and (c). Free-carrier spectra are given in(b) and (d).
From bottom to top on(a) and(b), the dotted, dotted-dashed, long-
dashed, and solid curves correspond to excitation with a total carrier
densityN=0.5, 1, 2.5, and 531012 cm2. The main contributions to
the spectrum withN=531012 cm2 are shown in(c) and (d). From
left to right, the dotted, and long-dashed curves are for the(2,1) and
(3,2) absorption transitions on the valence subbands. The solid and
dotted-dashed curves are for the(1,2) and (2,3) conduction
subbands.

FIG. 10. Intersubband absorption for the quantum well of Fig. 9
including contributions from both conduction and valence bands
with TE polarization. Many-body effects are included in(a) and(c).
Free-carrier spectra are given in(b) and(d). From bottom to top on
(a) and(b), the dotted, dotted-dashed, long-dashed, and solid curves
correspond to excitation with a total carrier densityN=0.5, 1, 2.5,
and 531012 cm2. The main contributions to the spectrum withN
=531012 cm2 are shown in(c) and (d). From left to right, the
dotted, long-dashed, solid, and dotted-dashed curves correspond to
absorption between the valence subbands(5,4), (3,2), (4,1), and
(5,1).
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Most dipole moments are stronglyk dependent on both TM
and TE modes. If, just to quantify the amount of band cou-
pling to compare with the conduction bands, we make a
parabolic least square fit, the resulting effective masses, from
the top valence band readmh,n=0.231, 0.307, 0.432, 0.273,
0.322, and 0.4203m0.

The valence contributions(2,1) and(3,2) in the TM mode
[respectively, given by the dotted and long-dashed curves in
Fig. 9(c)], as well as(5,4) and (3,2) for TE [respectively,

given by the dotted and long-dashed curves in Fig. 10(c)]
have a similar qualitative behavior.[Corresponding dipole
moments are depicted in Figs. 11(b) and 11(c).] In these four
cases, there is a strong subband dispersion(measured quan-
titatively by the different adjusted effective masses), and the
transition dipole moments are either roughly constant or
evolve quickly to large average value in a sizeable region of
k space leading to broad free-carrier absorption.

The different Coulomb contributions can effectively redis-
tribute the oscillator strength of the transitions leading to
well-defined peaks. However, the main valence band contri-
butions for the TE mode,(4,1) and (5,1) behave remarkably
differently. The dipoles are shown as solid and dotted-dashed
curves in Fig. 11(c). The k-space region where the dipole
moments are appreciable is restricted, and that leads, even in
the free carrier case, to sharper structures. There is conse-
quently not enoughk-space available to allow the Coulomb
interaction to redistribute the oscillator strength to a single
peak. Thus, combining all transitions, which corresponds to
an actual optical experiment and analyzing the TE spectrum
between 75 and 150 meV, the double-peaked feature evolves
to a three-peaked feature as we increase the density by in-
creasing pump density. The extra features are similar in ori-
gin to those depicted in Fig. 6, demonstrating that the under-
lying effect can appear in quantum well systems of different
composition and design characteristics, thus increasing the
generality of our analysis.

The spectra can be measured experimentally and the dif-
ferent conduction and valence band signatures can be located
by comparing and contrasting the evolution of TE and TM
absorption with increasing pump density. The extra features
are not present in free carrier calculations.

IV. SUMMARY

In summary, the following issues have been addressed in
this paper. A pump and probe scheme with optical excitation
that eliminates the need for doping in the sample has been
proposed to study intersubband transitions. The combined
contributions from conduction and valence subbands for the
intersubband transitions including many-body effects and
nonparabolicity in all subbands has been reported. The evo-
lution of TM and TE modes is remarkably different and extra
peaks can appear in the TE spectra due to the Coulomb in-
teraction in the valence bands. Furthermore, resolvable con-
duction band contributions can be found in the TE spectra
due to a combination of band-coupling and Coulomb correc-
tions, also demonstrated here for the first time. Four different
structures were analyzed confirming the general trends pre-
dicted by our theory: the spectral positions and broadening,
number of peaks and the relative oscillator strengths of the
spectra calculated with Coulomb effects are remarkably dif-
ferent from the free carrier case, further highlighting the rel-
evance of our calculations.
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FIG. 11. (a) Valence subbandsEn, obtained from the diagonal-
ization of a 838 k ·p Hamiltonian for the 9 nm InGaAsP/GaAsP
quantum well of Fig. 9.(b) Selected TM transition dipole moments,
dmn

TM, within the valence subbands. The dotted and long-dashed lines
are for the(2,1) and (3,2) transitions(c) TE transition dipole mo-
ments, dmn

TE. The dotted, long-dashed, solid, and dotted-dashed
curves are for the(5,4) (3,2) (4,1), and (5,1) transitions sa0

<8.5 nmd.

FIG. 12. (a) Conduction subbands of a 9 nm InGaAsP/GaAsP
quantum well, En, obtained from the diagonalization of a 8
38 k ·p Hamiltonian.(b) Selected TM transition dipole moments,
dmn

TM within the conduction subbands. The dotted-dashed and solid
lines are, respectively, for the(3,2) and (2,1) transitions.(c) TE
transition dipole moments,dmn

TE. The solid and long-dashed curves
correspond to the(2,4) and (1,3) transitionssa0<8.5 nmd.
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APPENDIX: DYSON EQUATIONS

The excited semiconductor is described by nonequilib-
rium Green’s functions for the interacting quasiparticles, car-
riers sGd and plasmonssWd,

i"Gs1I2Id = kCs1IdC†s2Idl,

Ws1I2Id =
dFeffs1Id
drexts2Id

, sA1d

where we have used a functional derivative with respect to a
external perturbation.13

The electric fieldEW , which appears later in the text is
classical, i.e., we have a semiclassical theory. A fully quan-
tized treatment would have a photon Green’s function as well
and will be the subject of further investigations. The quan-
tum mechanical averages are calculated along the double-
time Keldysh contour,C. Time arguments running alongC
are underlined, andTC denotes the time-ordering operator

along C. In other words, the notation 1I=RW 1,tI1 means that
time runs under the contour from −̀to +` on a positive
branch,tI1= t+ and back on a negative branch from +` to −`,
and thustI1= t−, e.g., for a given operatorM,

Meffs1Id = kMsRW 1,tI1dl =
trhr0TCfMsRW 1,tI1dSCgj

trhr0SCj
,

SC = TC expS− iE
C

HextstIddtID . sA2d

The Keldysh Green’s functions time evolution is de-
scribed by Dyson equations(sum over repeated arguments is
assumed)

fG0
−1s1I3Id − Ss1I3IdgGs3I2Id = ds1I2Id,

fW0
−1s1I3Id − ps1I3IdgWs3I2Id = ds1I2Id. sA3d

The carriers and plasmon self-energy, called for now on,
respectively, self-energy and longitudinal polarization func-
tion, read

Ss1I2Id = − i"eGs1I3IdWs4I1Id
dG−1s3I2Id
dFeffs4Id

,

ps1I2Id = − i"e
dGs1I1I±d
dFeffs2Id

. sA4d

The inverse free propagators are given by

G0
−1s1I3Id = Fi"

]

] tI1
− heffs1IdGds1I3Id,

W0
−1s1I2Id = −

e0

4pe2D1ds1I2Id. sA5d

Heree0 is the static dielectric function. The effective one-
particle Hamiltonian in the equation for the free carrier
propagator reads

heffs1Id = H0s1Id + Feffs1Id − eRW ·EW s1Id. sA6d

We are interested in the projection onto thefnmg coupling
that yields optical and tunneling transition rates between sub-
bandsn andm. If an eigenstate is characterized by the sub-
band labeln andk for the quasimomentum corresponding to
energy"enskd is denotedfnksRd , R;srW ,zd,

Anmsk,td =E fnk
* sR1dAsR1,R2dfnksR2ddR1 dR2. sA7d

The equation of motion in the physical limit,t1= t2= t, reads

i"S ]

] t
+ isen − emdDGnm

, sk,td + Ẁ nmskd ·EW std

3sGmm
, sk,td − Gnn

, sk,tdd − i"VSnmmn

0
D

3sGnn
, sk,td − Gmm

, sk,tddo
kW8

Gnm
, sk8,td + sGmm

, sk,td

− Gnn
, sk,tddo

kW8

Gnm
, sk8,tdi"VSnnmm

k − k8
D = Inmsk,td.

sA8d

The left-hand side has the Hartree–Fock contribution while
the right-hand side has correlation terms, which include, e.g.,
electron-electron scattering and nondiagonal dephasing. The
correlation contribution has a general structure,

Inmsk,td = o
l
E

−`

t

fSnl
, sk,tt8dGlm

. sk,t8td + Gnl
. sk,tt8dSln

, sk,t8td

− s. ⇔ , dg. sA9d

In what follows, we make the GW approximation for the
self-energy, i.e.,

S_s12d = i"W_s12dG_s12d. sA10d

Furthermore, we assume that the carriers reach steady-state
(although in principle still out of equilibrium) while the mi-
croscopic polarization is still evolving. Thus, in Eq.(A8), we
can write the diagonal terms likeGmm

, sk,td simply asGmm
, skd.

At this point, we can simplify the notation by introducing
occupation functionsfl=−i"Gll

, skd, and microscopic polar-
izations pnmsk,vd , −i"Gnm

, sk,vd, or equivalently, optical
susceptibilities,xnmsk,vd=pnmsk,vd/E0.

Only representative projection terms will be kept, since
solving the equations using the full Coulomb couplings that
originate from the projections is at present beyond our cur-
rent numerical capability. We separate the contributions into
a number of diagonal(subscriptd), and nondiagonal(sub-
script nd) contributions,

Inmsk,td = Id
nnnnsk,td + Id

mmmmsk,td + Ind
nnmmsk,td + Ind

mmnnsk,td

+ Id
nmmnsk,td + Id

mnnmsk,td + Ind
nmmnsk,td + Ind

mnnmsk,td.

sA11d

After Fourier transforming Eq.(A8), and keeping only the
first two diagonal terms in Eq.(A11), we obtain

INTERPLAY OF COULOMB AND NONPARABOLICITY … PHYSICAL REVIEW B 70, 205331(2004)

205331-7



Inmsk,vd = − iGnm
, sk,vdo

qW
Gnmsk,q,vd, sA12d

which can be further simplified by evaluation atk=0 and
v=els0d. In other words, we approximate the dephasing
mechanisms by a constant carrier-carrier scattering rate.

Inmsk,vd = − iGnmGnm
, sk,vd,

Gnm = − IfSnn
r s0,ens0dd + Smm

r s0,ems0dg,

Snn
r sk,vd = o

qW,qW8

UWrSnnnn

q
DU2

3
Fnsk,q,q8d

v − ensk − qd − ensq + q8d + ensq8d + ig
,

Fnsk,q,q8d = fnsk + qdfnsq + q8ds1 − fnsq8dd + s1 − fnsk + qdd

3s1 − fnsq + q8dfnsq8dd, sA13d

where we have the static single plasmon pole screened po-
tential, and actually take the limitg→0. Equation(2) in the
main part of this paper is thus obtained from the Fourier
transform of Eq.(A8) using Eq.(A13).
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