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A quantum dot interacting with two resonant cavity modes is described by a two-mode Jaynes-Cummings
model. Depending on the quantum dot energy level scheme, the interaction of a singly doped quantum dot with
a cavity photon generates entanglement of electron spin and cavity states or allows one to implement aSWAP

gate for spin and photon states. An undoped quantum dot in the same structure generates pairs of polarization
entangled photons from an initial photon product state. For realistic cavity loss rates, the fidelity of these
operations is of order 80%.
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I. INTRODUCTION

The electron spin in quantum dots(QD’s) is among the
most promising candidates for quantum information process-
ing in the solid state.1,2 Optical selection rules make it pos-
sible to control and measure spins in QD’s optically.3–6 For
pairs of QD’s embedded in a cavity, in the strong-coupling
limit cavity photons can mediate an effective exchange inter-
action between electron spins.3,4 The Faraday rotation of a
single photon interacting with an off-resonant QD has re-
cently been discussed for the implementation of Bennet’s
quantum teleportation scheme and the generation of spin-
photon entanglement.7 Because the coupling of cavity pho-
tons to an off-resonant QD is weak, such schemes require
long electron spin decoherence times, a high cavityQ-factor,
and control of the cavityQ-factor on a picosecond time
scale.

Recent progress in microcavity design has led to mode
volumes close to the theoretical limitsl /nd3 andQ-factors of
order 53103, approaching the strong-coupling limit for QD
cavity-QED.8,9 A QD coupled to one circularly polarized
cavity mode is described by the Jaynes-Cummings model10

and is expected to show phenomena such as vacuum Rabi
oscillations. Here, we theoretically study the coherent dy-
namics of a QD coupled to two cavity modes 1 and 2 with
different spatial distribution and polarization[schematically
shown in Fig. 1(b) for orthogonal propagation directions].
The design of a cavity with small mode volume and two
degenerate, orthogonal modes with circular and linear polar-
ization at the site of the QD is difficult, but possible in prin-
ciple (see Sec. V below). The aim of this paper is to show
that such a system has interesting applications as interface
between electron spins and photons because the second cav-
ity mode gives rise to intriguing effects. Most notably, pho-
ton transfer between the cavity modes via an intermediate
trion state is controlled by the spin state of the QD, opening
a wide range of possible applications. We show that(i) for
cavity modes in resonance with the heavy hole(hh)-trion
transition, entanglement of the electron spin and the cavity
modes, i.e., the photonpropagation directionis generated.
(ii ) For cavity modes in resonance with the light hole
(lh)-trion transition, the strong-coupling dynamics can be
used to implement aSWAP of spin and photon states, an op-

eration which would allow one to transport a spin quantum
state over large distances.11 The quantum state of the photon
is encoded in the occupation amplitudes of the two cavity
modes. Hence, the system discussed here provides a natural
interface between spins and linear-optics quantum informa-
tion schemes.7,12 For cavities with switchableQ-factors, the
fidelity of all operations, 1−Osg/Dd.1, is limited only by
off-resonant transitions, whereg is the coupling constant for
the trion transition andD the hh-lh splitting. However, even
for lossy cavities without time-dependent control parameters,
the fidelity is of order 80% for realistic cavity loss rates. We
also show that(iii ) an undoped QD efficiently generates pairs
of entangled photons from initial photon product states.

We consider a QD with an anisotropy axisz determined
by crystal or shape anisotropy which leads to a splittingD of
hh and lh states at theG point (Fig. 1). The ground state of a
singly doped QD is determined by the spin of the excess
electron,au↑ l+bu↓ l. In the following, we evaluate the dy-
namics of the QD-cavity system after injection of a photon in
state us1

+l at t=0. For quantitative estimates, we consider
CdSe nanocrystals and adopt the model of Ref. 13 where the
anisotropy is treated perturbatively in the quasicubic ap-
proximation. The coupling constantg for a photon with po-
larization vectore resonant with the hh(lh)-trion transition is
determined by the interband matrix element of the momen-

FIG. 1. (a) Characteristic level scheme of, e.g., a CdSe
nanocrystal. The crystal anisotropy leads to a splittingD of hh
su jzu=3/2d and lhsu jzu=1/2d states.(b) Schematic representation of
the cavity-QD system. The circularly polarized modeus1

+l propagat-
ing along direction 1(aligned with the QD anisotropy axisz) and
the linearly polarized modeuy2l propagating along 2 are resonant
with the hh-trion transition.(c) The trion state can decay by emis-
sion of a photon into stateus1

+l or uy2l.
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tum operator,e·p̂, and the overlap integral of the 1Se and
1S3/2 s1S1/2d electron and hh(lh) wave functions. In addition
to the strong-coupling criterion thatg/" be large compared
to the QD spontaneous emission rate and the cavity loss rate,
we also assume thatg/" is large compared to the hole spin
relaxation rate.

In the following, we show that systems such as the one
shown in Fig. 1(b) allow one to generate entanglement be-
tween an electron spin and the cavity state(Sec. II), to imple-
ment a spin-photonSWAP gate (Sec. III), and to efficiently
generate pairs of polarization-entangled photons(Sec. IV). In
Sec. V, we discuss how a microcavity with the mode struc-
ture shown in Fig. 1(b) can be engineered and illustrate that
the implementation of the schemes discussed in Secs. II–IV
is feasible for microcavities withQ-factors exceeding 104.

II. SPIN-PHOTON ENTANGLEMENT

The interaction of a QD with a hh valence band ground
state [Fig. 1(a)] with the circularly polarized cavity mode
propagating along 1,us1

+l, and the linearly polarized cavity
mode with polarization vectorey propagating along 2,uy2l, is
described by a two-mode Jaynes-Cummings model. A pho-
ton injected intous1

+l at t=0 induces transitions fromu↑l to

the trion stateuX−l= ĉ+
†ĉ−

†ĥ−uGl, whereuGl is the ground state

of the QD without excess charge andĉ± sĥ±d the electron
annihilation operator for the 1Se conduction band level with
sz= ±1/2 (the 1S3/2 hh level with jz= ±3/2). The trion state
uX−l has two possible decay paths via emission of a photon in
state us1

+l or uy2l [Fig. 1(c)]. In both cases, the QD spin
remains unaltered by the cycle of photon absorption and sub-
sequent emission because spin-flip transitions involving the
lh component are dipole forbidden within the model of Ref.
13. The interaction of QD and cavity modes is

ĤI = g1sâ1ĉ−
†ĥ− + H.c.d + g2fâ2sĉ−

†ĥ− + ĉ+
†ĥ+d + H.c.g, s1d

where â1 sâ2d is the photon annihilation operator for mode
us1

+l suy2ld andg1 sg2d the corresponding coupling constant.

The free HamiltonianĤ0=dsâ1
†â1+ â2

†â2d is determined by
the detuningd between the photon frequencyv and the trion
transition energy.

While u↓ ;s1
+l is an energy eigenstate because of Pauli

blocking, the QD stateu↑l is coupled to both cavity modes.

The time evolution governed byĤ=Ĥ0+ĤI leads to transi-
tions from an initial stateu↑ ;s1

+l to u↑ ;y2l via the trion state
uX−;0l, whereu0l is the photon vacuum. Because the dynam-
ics are controlled by the QD spin, photon absorption and
re-emission leads to entanglement of the electron spin
and the photon cavity mode. This effect is maximal for
g1=g2=g andd=0, where14

Ĥ = guX−;0lsk↑ ;s1
+u + k↑ ;y2ud + H.c. s2d

The initial stateuCs0dl=au↑ ;s1
+l+bu↓ ;s1

+l evolves to

uCstdl = afcos2sEt/2"du↑;s1
+l − sin2sEt/2"du↑;y2l

− si/Î2dsinsEt/"duX−;0lg + bu↓;s1
+l, s3d

whereE=Î2g [Fig. 2(a)]. At times tn=s2n+1dh/Î8g, n inte-
ger,

au↑;s1
+l + bu↓;s1

+l → uCstndl = − au↑;y2l + bu↓;s1
+l. s4d

This demonstrates that, similarly to atom-photon
entanglement,15–17 spin-photon entangled states of the form
of Eq. (4) can be obtained in QD cavity-QED. Alternative
schemes for the generation of spin-photon entanglement
have been discussed in Refs. 7 and 18.

According to Eq.(3), the spin-photon entangled state pe-
riodically evolves back into the original product state. In
order to maintain the stateuCel=−au↑ ;y2l+bu↓ ;s1

+l the
photon must be extracted from the cavity. In principle, this is
possible by a sudden increase of the cavity loss rate attn.
However, cavity loss without time-dependent control is also
sufficient to generateuCel with a fidelity approaching unity if
the photon loss ratesk1,2 for modesus1

+l and uy2l fulfill

k1 , g/" . k2. s5d

In this regime, a photon in stateuy2l leaves the cavity before
it is scattered back intous1

+l, thus terminating the time evo-
lution in Fig. 2(a) on average after one half-period. The con-
dition k1,g/" ensures at least one oscillation be completed.
For a quantitative estimate, we integrate the master equation
for the density matrix of the QD-cavity system,

ṙ̂std = − si/"dfĤ,r̂stdg + L̂lr̂, s6d

where cavity loss fromus1
+l and uy2l into free modes propa-

gating along directions 1 and 2, respectively, is described by
the standard Liouville operator,

FIG. 2. (a) Time evolution ofuCs0dl= u↑ ;s1
+l. The probabilities

uk↑ ;s1
+ uCstdlu2 (dashed), uk↑ ;y2uCstdlu2 (solid), and ukX−;0uCstdlu2

(dotted) are shown as a function of time.(b) Probability for photon
detection outside the cavity in direction 2(solid) and 1 (dashed)
obtained from numerical integration of Eq.(6) for k1=0.2g/",
k2=g/", and r̂s0d= u↑ ;s1

+lk↑ ;s1
+u. (c) Fidelity of spin-photon en-

tanglement generation forg1Þg2. (d) Fidelity of spin-photon en-
tanglement generation as a function of QD misalignment.
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L̂lr̂ = − o
i=1,2

ki

2
sâi

†âir̂ + r̂âi
†âi − 2âi

†r̂âid. s7d

The overall fidelityF for generation of a spin-photon en-
tangled state as in Eq.(4) is determined by the dynamics of
r̂s0d= u↑ ;s1

+lk↑ ;s1
+u, where photon loss from mode 2 corre-

sponds to successful photon transfer from 1 to 2. The prob-
ability for photon loss along 1 and 2 as a function of time can
be obtained from numerical integration of Eq.(6) [shown in
Fig. 2(b) for k1=0.2g/" andk2=g/"]. For t→`, the prob-
ability p2 for photon loss into a mode propagating along 2 is
calculated from the Fourier-Laplace transform of Eq.(6),

p2 = k2E
0

`

dtk↑ ;y2urstdu↑;y2l =
4k2sg/"d2

sk1 + k2df4sg/"d2 + k1k2g
.

s8d

For the parameters in Fig. 2(b), p2=79%. If the photons
propagate freely outside the cavity, the entanglement of the
QD spin and the photon propagation direction is preserved
even after photons are ejected from the cavity. In the regime
of Eq. (5), the fidelityF=p2 for generating spin-photon en-
tanglement approaches unity.

In the ideal casep2.100%, a (maximally entangled)
Bell state is obtained for an electron spin prepared in
su↑ l+ u↓ ld /Î2, which evolves according tosu↑ ;s1

+l
+ u↓ ;s1

+ld /Î2→ s−u↑ ;y2l+ u↓ ;s1
+ld /Î2.19 We next quantify

the entanglement of the final state for a lossy cavity. As
long as the photons are not detected outside the cavity and
loss in the propagating modes is negligible, the initial state
evolves into a pure state,17,20–22for which the entanglement
E is given by the von Neumann entropy of the reduced
density matrix.23,24 The entanglement can be expressed
in terms of p2 in Eq. (8). Defining l±=s1±Î1−p2d /2,
Esp2d=−os=±ls log2 ls. Of particular interest are the limit-
ing cases of large and smallp2, where limp2→1−Esp2d=1
−s1−p2d /4 ln 2+Oss1−p2d2d and limp2→0+Esp2d=s1+ln 4
−ln p2dp2/4 ln 2+Osp2

2d, respectively. We illustrate the quali-
tative dependence ofE on k2 for fixed k1!g/". For
g/",k2&4sg/"d2/k1, loss along direction 2 is dominant for
the spin stateu↑l, such thatp2.1 [Fig. 2(b) and Eq.(8)] and
E is of order unity. By contrast, for large cavity loss
k2*4sg/"d2/k1, p2.4sg/"d2/k1k2 approaches zero be-
cause the large linewidth ofuy2l renders photon transfer be-
tween the cavity modes inefficient. The entanglementE de-
creases to zero because the photon leaves the cavity along
direction 1 irrespective of the spin state on the QD.

Generation of spin-photon entanglement requires fine
tuning of the cavity design to ensureg1=g2 (Ref. 25)
and alignment of the nanocrystal. We next quantify errors
for g1Þg2, finite detuning dÞ0, QD misalignment, and
transitions involving lh states. In the ideal case, an initial
state u↑ ;s1

+l evolves to u↑ ;y2l with 100% fidelity, while

F=maxtuk↑ ;y2uexps−iĤt /"du↑ ;s1
+lu2 quantifies the fidelity

for nonideal situations. Forg1Þg2, F=1−fsg1
2−g2

2d / sg1
2

+g2
2dg2, which remains close to unity forug1−g2u / ug1+g2u

&1/2 [Fig. 2(c)]. A finite detuningd of the cavity modes
relative to the hh-trion transition leads toF=1−Osd /gd2 for

d&g, which demonstrates the pivotal importance of resonant
modes. Misalignment of the QD relative to the photon propa-
gation directions modifies the optical selection rules. For
definiteness, consider a nanocrystal with an anisotropy axis
rotated byu in the plane of the cavity. ForuÞ0, the coupling
energy ofus1

+l and transitions from thejz= ±3/2 hhstates is
gs1±cosud /2. The dynamics of the system remain periodic
for uÞ0 and F=f2s1+cosud / s3+cos2 udg2.1−u4/8 for
u→0, i.e., the fidelity decreases slowly foru&0.5 [Fig.
2(d)]. Transitions involving lh states are suppressed relative
to hh processes by the small factorg/D.

III. SPIN-PHOTON SWAP

We show next that, for a QD with a lh valence band
maximum, the interaction with two cavity modes allows one
to implement aSWAP gate of spin and photon states.26 We
consider a cavity with the geometry shown in Fig. 1(b), for
which the circularly polarized modeus1

+l and the linearly
polarized modeuz2l are in resonance with the lh-trion transi-
tion while uy2l is off-resonant. Whileu↑ ;s1

+l is an energy
eigenstate because of Pauli blocking, the stateu↓ ;s1

+l exhib-
its dynamics similar to Eq.(2). Photon absorption induces

transitions to the lh-trion stateuXl
−l= ĉ+

†ĉ−
†l̂−uGl, where l̂± an-

nihilates an electron in the lh state withjz= ±1/2 [Fig. 3(a)].
Because bothus1

+l and uz2l are resonant with the trion tran-
sition, uXl

−l has two different decay channels[Fig. 3(b)]. Op-
tical selection rules imply that, by emission of a photon in
stateus1

+l, the QD returns to its original spin stateu↓ l while
emission into modeuz2l leaves the QD inu↑ l. Hence, transfer
of a photon fromus1

+l to uz2l is accompanied by a spin flip on
the QD, which is described by the Hamiltonian14

Ĥ = g1uXl
−;0lk↓ ;s1

+u − g2uXl
−;0lk↑ ;z2u + H.c. s9d

with coupling constantsg1,2. The dynamics of an initial state
uCl=au↑ ;s1

+l+bu↓ ;s1
+l are readily evaluated. In particular,

for g1=g2=g,27 we find that at timetn=hs2n+1d /Î8g,

au↑;s1
+l + bu↓;s1

+l → uCstndl = au↑;s1
+l + bu↑;z2l, s10d

i.e., the QD spin state is swapped onto the photon state en-
coded in the amplitudes of modes 1 and 2, respectively. This
SWAP gate is based on optical selection rules which enforce
that photon transfer between the modes is accompanied by a
spin flip on the QD. In contrast to schemes such as in Ref. 7,
no additional spin measurements are required. The reverse
process of Eq.(10), in which the photon stateaus1

+l+buz2l is

FIG. 3. (a) Absorption process involving lh valence band states.
(b) The lh-trion stateuXl

−l can decay by emission of a photon into
mode us1

+l or uz2l. The requirement thatus1
+l and uz2l are the only

resonant modes ensures that photon emission intouz2l is accompa-
nied by a spin flip.
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transferred onto a QD prepared in an initial stateu↑ l can also
be realized by time evolution under Eq.(9). Then,au↑ ;s1

+l
+bu↑ ;z2l→au↑ ;s1

+l+bu↓ ;s1
+l. Photon states of the form

aus1
+l+buz2l, in which one photon propagates in spatially

separated modes, serve as logical basis for linear optics
quantum computing.12 The SWAP operation in Eq.(10) pro-
vides a natural interface between such coherent photon states
and spins. A photon ejected from the cavity can be converted
into the standard logical basisauz1l+buz2l by linear optical
elements.

Implementation of the spin-photonSWAP gate with unity
fidelity requires the interaction between photons and QD be
terminated attn. For cavity loss rates which fulfill Eq.(5), no
time-dependent control of the cavity parameters is required
because cavity loss from mode 2 is sufficient to terminate the
dynamics. The fidelityF=p2 derived in Eq.(8) approaches
unity. For k1=0.2g/" andk2=g/", F=79%.

IV. GENERATION OF ENTANGLED PHOTON PAIRS

Similarly to an atom coupled to two cavity modes,28 an
undopedQD with symmetry axisz at 45° relative to the
propagation directions of modes 1 and 2[Fig. 4(a)] acts as
entangler for photon pairs. We consider a QD with the level
scheme in Fig. 1(a) and assume that the four photon states
us1,2

± l are resonant with the lowest(hh) exciton transition.
Absorption of photons from mode 1 and re-emission into 2
generates polarization entangled pairs from an initial product
stateus1

+lus1
−l. The interaction strength ofus1,2

+ l and the ex-
citon statesuX±l= ĉ7

† ĥ7uGl is parametrized by the coupling
constantsgs1±1/Î2d /2. Because transitions fromus1,2

± l to
uX±l are dominant, for short timest,h/g an initial state
prepared by injecting a photon pairus1

+lus1
−l into the cavity

evolves predominantly according to the sequenceus1
+lus1

−l
^ uGl→ sus1

+l ^ uX−l + us1
−l ^ uX+ld /Î2→ sus1

+lus2
−l+ us1

−lus2
+ld

^ uGl /Î2.
Rigorously, all allowed transitions must be taken into

account, Ĥ=goa,b=±;i=1,2ua·bâi,auXblkGu+H.c., where
u±=s1±1/Î2d /2 and âi,± annihilates a photon in stateusi

±l.
Becauseg is small compared to the biexciton shift, biexciton
states can be neglected. Integrating the Schrödinger equation,
we obtain

uCstdl = −
1 − coss2u+gt/"dcoss2u−gt/"d

2Î2
uC+l

−
sins2u+gt/"dsins2u−gt/"d

2Î2
uF+l + uC̃l s11d

with the Bell statesuC+l=sus1
+lus2

−l+ us1
−lus2

+ld ^ uGl /Î2 and

uF+l=sus1
+lus2

+l+ us1
−lus2

−ld ^ uGl /Î2. uC̃l represents compo-
nents with zero photons in one of the modes. Figure 4
shows the projection ontouC+l (solid line) and uF+l (dashed
line) as a function of time. As expected, fort&h/g the tran-
sition to the polarization entangled stateuC+l is dominant. At
tn=hn/4u±g, the uF+l component vanishes. While instanta-
neous reduction of the cavityQ-factor attn would allow one
to extractuC+l from the cavity with a fidelity limited only by
off-resonant transitions, cavity loss ratesk1,2.g/" are also
sufficient to terminate the coherent dynamics in Fig. 4(b).
Hence, an undoped QD strongly coupled to several modes of
a lossy cavity acts as efficient entangler of photon pairs.

V. DISCUSSION OF EXPERIMENTAL PARAMETERS

While our calculations in Secs. II–IV show that a QD
interacting with two cavity modes has interesting applica-
tions as interface between spin and photon quantum states,
the system is difficult to implement experimentally. Cavities
based on Bragg reflectors can sustain degenerate circularly
and linearly polarized modes, but mode volumes of orderl3

are impossible to reach because of diffraction. We show next
how the two-mode Jaynes-Cummings Hamiltonian in Eq.(2)
[Fig. 1(b)] can in principle be implemented with optical mi-
crocavities, where small mode volumes can be achieved. Be-
cause the coupling constants in Eq.(2) are determined by the
electric fields at the site of the QD only, it is sufficient that
the modeus1

+l is circularly polarizedlocally, at the site of the
QD. For definiteness, we focus on the defect modes in a
triangular photonic crystal, with a central hole(the defect)
with radius rd and dielectric constanted which is different
from that of all other holes in the triangular lattice. The de-
fect modes with electric field in the cavity plane(TM) and
perpendicular to the cavity plane(TE) have been analyzed in
detail for some specific realizations of the background and
hole medium.29–31The defect mode energies are proportional
to rd/Îed and can be tuned across the optical band gap by
varying rd anded.

29–32

The following steps allow one to experimentally imple-
ment the two-mode Jaynes-Cummings model in Eq.(2): (i)
Chooseed and rd such that a doubly degenerate TE mode
(e.g., theE1 or E2 mode30) is degenerate with one TM mode.
For a triangular photonic crystal with hexagonal holes, the
coexistence of degenerate TE and TM defect modes has re-
cently been demonstrated.33 We refer to the modes of the
TE-doublet asuTE1/2l and to the TM mode asuTMl. uTE1l
anduTE2l are related by ap /2 rotation.30 (ii ) Identify the set
of pointshPj=hsx,yd uEuTE1l=EuTMlj in the cavity plane where
the electric field amplitudesEuTE1l and EuTMl of uTE1l and
uTMl are equal. The pointshPj typically form a set of several
lines. For every point inhPj, us1

+l=suTE1l+ i uTMld /Î2 lo-
cally generates an electric field with circular polarization.
(iii ) In hPj, identify a pointsxQD,yQDd where the electric field
amplitudeEuTE2l of uTE2l lies within 30% ofEuTE1l /Î2.34 For
a QD atsxQD,yQDd with anisotropy axis oriented perpendicu-
lar to the electric field ofuTMl in the cavity plane, the QD-
cavity interaction is described by the Hamiltonian Eq.(2)
with ug2/g1−1uø0.3, which guarantees a theoretical fidelity

FIG. 4. (a) Setup for the generation of photon entanglement by

strong-coupling dynamics.(b) Projection ofuCstdl=e−iĤt/"us1
+lus1

−l
^ uGl onto the Bell statesuC+l (solid line) and uF+l (dashed line).
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of at least 90%[Fig. 2(c)]. Note that high cavityQ-factors
are maintained for a wide range ofed and rd.

29–31

Additional requirements for the dynamics discussed in
Secs. II and III include a cavity loss ratek2 large compared
to k1 and the injection of a single photon intous1

+l. Because
uTE2l is predominantly localized along one direction of the
photonic crystal,30 the corresponding cavity loss ratek2 can
be increased by reducing the size of the photonic crystal in
this direction, i.e., by removing holes at the outside. While
this changes the energies of all three modes,uTE1,2l and
uTMl, the energy shifts are negligible for cavities with large
Q-factors. Injection of a single photon into modeus1

+l can be
achieved by irradiation of the microcavity with a single-
photon source. For TE defect modes in small cubic photonic
crystals, the injection efficiency was calculated to be of order
50%.35 Photon injection into us1

+l=suTE1l+ i uTMld /Î2 is
more complicated because coupling efficiencies can be dif-
ferent for TE and TM modes and depend on the direction of
incidence relative to the photonic crystal. One can overcome
this problem by determining the directions for which the
coupling efficiencies foruTE1l and uTMl are comparable, us-
ing numerical techniques similar to those in Ref. 35. Alter-
natively, a source of elliptically polarized photons can be
used, where the TE and TM field amplitudes compensate the
difference in coupling efficiencies. We also note that a high
photon injection efficiency is not required as long as unsuc-
cessful injection attempts can be excluded by post-selection.

For a quantitative estimate, we consider spherical
CdSe nanocrystals with a mean radiusa=5 nm. The energy
of the lowest exciton state 1S3/2-1Se in an undoped QD is

EX=1.93 eV (Refs. 13 and 36) while the trion transition is
redshifted by 0.5 meV. The hh-lh splitting of a spherical
QD, D.20 meV, is large compared to the coupling constant
g. For a mode volumesl /nd3, with n the refractive index of
the cavity, the electric field amplitude of the cavity modes is
of orderE=Î2EXn/e0l3=53105În V/m. With the Kane in-
terband matrix elementkSup̂yuYl,36 g=seE/mvdukSup̂yuYlu
.0.2 meV. Strong-coupling phenomena requireg to be
large compared to both the spontaneous QD emission rate
and the cavity loss ratesk1,2. PL linewidths of 0.12 meV,g
have been observed for individual CdSe nanocrystals.37 For
cavity Q-factors of order 104, k=v /Q&g/h. In addition, the
phenomena discussed here require a hole spin relaxation
time long compared toh/g.20 ps. Recent PL studies of
CdSe QD’s suggest that hole spin relaxation times are of
order 10 ns.38 These values show that the strong-coupling
dynamics discussed above is within experimental reach for
CdSe nanocrystals in a microcavity. The main challenge is to
design microcavities with two modes with different polariza-
tion, spatial distribution, and loss rates which are strongly
coupled to a QD. As shown here, this system would allow
one to generate spin-photon entanglement, implement a spin-
photonSWAP gate, and create polarization entangled photon
states.
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