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Weak localization of the open kicked rotator
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We present a numerical calculation of the weak localization peak in the magnetoconductance for a strobo-
scopic model of a chaotic quantum dot. The magnitude of the peak is close to the universal prediction of
random-matrix theory. The width depends on the classical dynamics, but this dependence can be accounted for
by a single parameter: the level curvature around zero magnetic field of the closed system.
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I. INTRODUCTION TRS is broken already at the level of the classical dynamics

i . r (as it is in a quantum dot in a uniform magnetic fiel&i-
Random-matrix theoryRMT) makes system-independent nally, we need to relate the TRS-breaking parameter in the

( l_JnlversaI) predlctlo_ns about qL_Jantum-mechamcaI SyStemsstroboscopic formulation to the flux enclosed by the quantum
with a chaotic classical dynamiés® The presence or ab-

sence of time-reversal symmet(JRS) identifies two uni- dot. All these issues are addressed in Secs. Il and Il before
. y - we proceed to the actual simulation in Sec. IV. We conclude
versality classes. RMT is also capable of describing th

crossover between the universality classes, e.g., when TRS‘?% Sec. V.

broken by the application of a magnetic fiedd The cross-
over is predicted to depend on a single system-specific pa- Il. TIME-REVERSAL-SYMMETRY BREAKING
rameter, namely, the mean absolute curvature of the energy IN THE OPEN KICKED ROTATOR
levelsE; aroundB=0. More precisely, a universal magnetic- A. Formulation of the model

field dependence of spectral correlations is predicted vithen

is rescaled by the characteristic field The kicked rotator is a particle moving along a circle,

kicked periodically at time intervals,.»*” The stroboscopic
(1 d’E; -2 time evolution of a wave function is given by the Floquet

Be= A\ | dB? | aep ' (1D operator. In addition to the stroboscopic timg and the
moment of inertid, which we set to unityF depends on the

with A the mean level spacing. This prediction has beerkijcking strengthK and the TRS-breaking parametgr We
tested in a variety of computer simulatiotts. require

In open systems a similar prediction of universality for
transport properties exists, but now the characteristic field F=y=F(v), (2.9
also depends on the conductamgcef the point contacts that
couple the chaotic quantum dot to electron resenfoirs.
A universal magnetic field dependence is predicted if
is rescaled byB.Vg, providedg is large compared to the

cqnductqnqe q.uanturezlh. To prov!de a numerical test of classical limit corresponds to a map defined on a toroidal
this prediction is the purpose of this paper.

. ; hase space. The difference between the two representations
We present a computer simulation of the open quantun;

kicked rotator215which i trob ic model of | whether TRS breaking persists in the classical limit or not.
cred rotator, €N IS a Sroboscopic Mode! of a quan- , simplest representation &f has one kick per period. It
tum dot coupled to electron reservoirs by ballistic point con

tacts. The ensemble averaged conductance increases u'breaks TRS quantum mechanically, but not classically. This
g 9 : N uld correspond to a quantum dot that encloses a flux tube,
breaking of TRS, as a manifestation of weak localization,

. . . -~~~ “but in which the magnetic field vanishes. A more realistic
The height, width, and line shape of the weak Iocallzatlonmodel has TRS breaking both at the quantum mechanical
peak are compared with the predictions of RMT.

The simulation itself is straightforward, but the formula- and at the classical level. We have found that we then need a

tion of the model is not. There exist several ways to breakmlnlmum of three kicks per period.
TRS in the closed kicked rotat§ri®and related modefd23
When opening up the system one needs to ensure that the
scattering matrix satisfies the reciprocity relation We will mainly consider the three-kick model, so we de-
S-B)=5(B) 1.2 scribe it_ first. In this model TRS is broken both qu_antum
' ' mechanically and classically. Stroboscopic models with mul-
which holds under the assumption that the electrostatic pdiple kicks per period of different magnitude were studied
tential is B independent(The superscripfl indicates the previously in the context of quantum rachétdnspired by
transpose of the scattering mati$) We also require that that work, we study the time-dependent Hamiltonian

which guarantees the reciprocity relatigh?) for the scat-
tering matrix when we open up the model.

We will consider two different representations Bf both
of which can be written as aWM X M unitary matrix. The

B. Three-kick representation
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p> 1 Resonance means that the initial and final wave functions
H(t) = o EV(G)E [6(t-n+e€)+5(t-n-¢)] can be treated as discrete vectors onMint lattice, la-
n beled by the indices,n’. The angled is an arbitrary offset
+ycod), s(t-n+1/3) parameter. Different values @fare not coupled by the free
n propagation. Putting together three iterations of &q7) we

get three independent componentsydf+27n/3M) for n
- ycogH)> t-n-1/3), (2.2 =0,1,2(mod 3, each on arM-point lattice.

" We find that the resonance property is preserved in the
with € an infinitesimal. The angular momentum operagpor presence of intervening TRS-breaking kicks, provided that
=—ifedy iS canonically conjugate to the angbe= [0, 2m). r=3 andM even, but not a multiple of 3. The free propaga-
The effective Planck constant ishes=firo/l. The tion (2.7) then is conveniently expressed in matrix notation.

potential819.24.25 The matrix acts on anM-component vector =y (6
o ) +27m/3M), m=0, ... M-1. We choose the arbitrary phase
V() =K cogmq/2)cod ) + 5K sin(7q/2)sin(26) #=0, so that
(2.3 M-1
with q#0 breaks the parity symmetry of the model. The (W)m= 2 (UTSU) oy i - (2.9
form of the potential is such that in the larde limit the m’'=0

diffusion constant does not depend gnFor y=0 there are  The matrices are defined by
two kicks per period in Eq2.2), but since they are displaced

by an infinitesimal amount we still call this a “single-kick” S = 5mme-iwm2/'\/', (2.9
model. Fory+ 0 two more kicks appear with opposite sign
at finite displacement. We will see that this choice guarantees -

e disp ee c g € Uy = M~ 12 2mimm' /M (2.10

the reciprocity criterion2.1) for the Floquet operator.

The reduction of the Floquet operator The matrix productU'SU can be evaluated in closed form,

it with the result
F= Texp{— ﬁfo H(t)dt] (2.9 I, = (UTSU), 0 = M~Y2e74 exdi (/M) (m'’ = m)?].

(with 7 the time ordering operatpto a discrete, finite form (2.17

is obtained only for special values ofey, known as Collecting results, we find that fdi.s=67/M the Floquet
resonance¥’ We have to reconsider the usual condition for operator(2.5) is represented by ail X M unitary matrix, of
resonances in the presence of additional, TRS-breakinghe form

kicks. Here our analysis departs from the quantum rachet

analogy?! Fromr = (XITY TIYIIX) gy, (2.129
The initial wave functiony(6) evolves in one period to a .
final wave functiony(6), given by Yy = Oy € (M7/6mcOS2mmM), (2.12b
(6) = exi{= IV(0)/2heqlexplificnd? 16) Ko = Oy € MAZPVZTM) (2.12¢
xexf~ iy cod 0)/fie]explifiend /6) One readily verifies the reciprocity relatiga.1).

X exliy cos(&)/heﬁ]exp(iheﬁag /6) Th_e classica_l map cor_respondin_g to this quantum me-

_ chanical model is derived in Appendix A. We show there that
xexfg—iV(6)/2fies JyA6). (2.5  TRS breaking of the classical map is broken 4c# 0 in the

One recognizes three factors describing free propagatioWree'kiCk model.

for 1/3 of a period, each followed by a kick. The resonance
condition for free propagation &.4=27r /M, with r an odd

) . . C. One-kick representation
integer andM an even integer’ The free propagation

TRS breaking in the one-kick model is constructed as a
1(0) = explitiend? 16) Y 6) (2.6)  formal analogy to the magnetic vector potential, by adding
an offsets to the momentum of the kicked rotafr.1924-26

is then given by To obey reciprocity

27 \_ 1% 2t F-8)=FT(o) (2.13
il 0+ =—n|==— > exp —i——n?
M M m,n’=0 3M for odd M it is enough to symmetrize the expression of Ref.
o 2 16 by infinitesimally splitting the kickas it was done in Ref.
Xexp(—imS—M(n’ —n)>¢/x(0+ Wn’). 15 for 6=0). For evenM, which is more convenient for

application of the fast Fourier transform, one also needs to
(2.7 redefine the lattice points in order to preserve reciprddity.
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The model takes the form The two matricesH, and A are independently distributed
~~~~~ with the same Gaussian distribution. The variancge
Fromt = (XUTTIUX) (2143 =((Ho)j)=(A}) (i#]) determines the mean level spacing
A=mv/ \M—H at the center of the spectrum ft,>1 and
Omm — M—l/ze—Zﬂ-i[m—(M—l)lzjm’/M’ (2.14b a<<l.

To lowest order in perturbation theory the energy levels
Ei(a) depend on the TRS-breaking parameteaccording to

Xmm’ — 5mme_i(MK/47T)COS(27TWM+¢), (2140

A2
8E; = o? E—'JE (3.2
gimm= (M = 1)/2 - &M/2m M (2.149 j#i B T B

In addition to the TRS-breaking phasehere is a phase to with oB;=Ei(2)~E(0) and E;=E(0). The characteristic
break the parity symmetry. The reciprocity prope(/13 value o, is determined by the mean absolute curvature
can easily be checked. 1/ | % -1/2

The classical map corresponding to this model is also dis- ac = (Z do? ) . (3.3
cussed in Appendix A. It does not break TRS. a=0 o
From Eq.(3.2 we deduce that,=A/v=1/YMy, up to a
numerical coefficient of order unity. A numerical calculation
gives

Hmm = 5mnf

D. Scattering matrix

To model a pair ofN-mode ballistic point contacts that —
couple the quantum dot to electron reservoirs, we impose ac\My = kpur = 1.27. (3.9
open boundary conditions in a subspace of Hilbert space A  qog magnetic fieldB is related to the parameter of
represented by the indiceq(f). The subscripn=1,2,... N RMT by
labels the modes and the supersctiptl, 2 labels the leads.
A 2N X M projection matrixP describes the coupling to the B/B. = ala, (3.5

ballistic leads. Its elements are whereB, is determined by the level curvature according to

1 if m=ne{m®}, Eq. (1.1). For a ballistic two-dimensional billiardareaA,
m= . (2.19  Fermi velocity vg) with a chaotic classical dynamics, one
0 otherwise. hags
The mean dwell time isp=M/2N (in units of 7). h _
The matricesP and F together determine the scattering B.=c—(AVA/fivp) Y2, (3.6)
matrixt3-15 eA
S(e) = P[e” - F(1 - PTP)]"LFPT (2.16 with ¢ a numerical coefficient that depends only on the shape

of the billiard. The fieldB, corresponds to a flux through the

wheree is the quasienergy. The reciprocity conditighl) of  quantum dot of ordeth/e) \f're,gA/ﬁ< h/e, with the ergodic

F implies that als& satisfies the reciprocity conditiqi..2). time 7,4 being the time it takes an electron to explore the

By grouping together thal indices belonging to the same available phase space in the quantum dot.
point contact, the B X 2N matrix S can be decomposed into  The analog of Eqg1.1) and(3.5) for the quantum kicked
4 sub-blocks containing thl X N transmission and reflec- rotator considered here is
2 -1/2
ol ™ e

d'yz y=0

tion matrices M
rot Vye=dlag, v.= <—<
S= R (2.17
Here y is the TRS-breaking parameter in the three-kick

2
tor
The conductanc& (in units of €/h, disregarding spin de- model. The same relation applies to the one-kick model, with
generacy follows from the Landauer formula v,y replaced bys,é..
: + To complete the correspondence between the kicked rota-
G=Trut. (2.18 tor, RMT, and the real quantum dot, we need to determine
the two characteristic valueg. and &.. In Appendix B we
present an analytical calculation deep in the chaotic regime

ll. RELATION WITH RANDOM-MATRIX THEORY (K— ), according to which
In RMT time-reversal symmetry is broken by means of lim v, = 127M 32k = 47.9M 732, (3.9
the Pandey-Mehta Hamiltoni&h Ko
H=Ho+iaA, (3. lim 8, = 4V3M ¥2qyr = 8.80M 32 (3.9

K00

which consists of the sum of a real symmetric mattixand
a real antisymmetric matriA with imaginary weighi«. We  In Figs. 1 and 2 we show a numerical calculation for fitdte
denote byMy the dimensionality of the Hamiltonian matrix. which confirms these analytical lardgfefimits.
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FIG. 1. The critical valuey. of the TRS-breaking parameter in
the closed three-kick model is presented for different system sizes FIG. 3. Dependence of the average conductance on the TRS-
at fixed K. The parity-breaking parameter ds=0.2. The solid line  breaking parametey. The three-kick model is characterized Ky
shows the largé limit (3.8). The dashed lines are averages dver =7.5,0=0.2, andrp=M/2N=25. The dotted line shows the RMT

of the numerical data. prediction(3.11), with vy, calculated from the mean level curvatures
(Fig. 1).
In the open system the characteristic field scale for TRS _
breaking is increased by a factog, with g the conductance lim 6G(8) = — 3[1 +(M¥2N25/2y3)2]L.  (3.13
of the point contacts. We consider ballisfismode point Koo

contacts, so thag=N, measured in units o#/h. The con-  |n Appendix C we show how these two results are consistent
ductanceG(B) of the quantum dot is also measured in unitsyith a semiclassical calculation.

of €/h. According to RMT, the weak localization magneto-
conductance is given 85}1 IV. NUMERICAL RESULTS

The numerical technique we use to calculate the conduc-
N 1 1o _— tance was described in Refs. 15 and 29. The calculation of
G(B) = 5” 211 CrrurNTEBBYTT. (3.10 the scattering matrik2.16) is performed efficiently by use of
an iterative procedure and the fast-Fourier-transform algo-
For the quantum kicked rotator we would therefore expectithm. We need to average over many system realizations
a weak localization peak in the conductance given by (varying lead positions and quasienergigssuppress statis-
tical fluctuations. In addition, we need several points to plot
- _1 -1/2 21-1 the y dependence. This makes the calculation for lave
Gy =G 3[1+ CrueN 5% TS, 1D 0 fime consuming than earlier studies of universal con-
ductance fluctuations in the same model at zero magnetic
in the three-kick model. We define the weak localization corje|d.29.30
rection 6G(y)=G(y) - G.., with G, the conductance at fully  First we present in Figs. 3 and 4 results for the weak
broken TRS. The expression in the one-kick model is similarjocalization correctiondG in the three-kick model as a func-

with /. replaced bys/ 4. _ ~tion of the TRS-breaking parametgr The data are obtained
In the largeK limit we can use the analytical expressions by averaging over 40 lead positions and 80 quasienergies.
(3.8) and(3.9) for y, and &, to obtain The parametet, was calculated for the closed model using

Eq. (3.7), and the resulting RMT predictio(3.11) is also
lim bt—:‘('y) =— %[1 + (M3/2N_l/2’y/677)2]_1, (312) ShOWn(dOtted curve

K—oo To compare the simulation with RMT in more detail we
have fitted a Lorentzian
10 | ! .
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FIG. 2. Same as Fig. 1, but now for the closed one-kick model. M
The parity-breaking parameter ¢s=0.27r. The solid line shows the
largeK limit (3.9). FIG. 4. Same as Fig. 3, but f&¢=41.
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FIG. 5. Dependence of the crossover paramgteam the system FIG. 7. Dependence of the amplitude of the weak localization

size. The data are obtained by fitting the Lorentz{drl) to the  peakdG(0) (averaged over several system sjzas the dwell time
numerical data of Figs. 3 and 4. The solid line shows the l&ge 7. Dashed lines show a linear dependence om léxtrapolated to
limit (3.8). The dotted lines are the RMT prediction f¢=7.5 and  the RMT value|6G(0)|=1/4.

K=41, usingy, found from the level curvatures in the closed model

(Fig. ). ratio is close to unity for both models if the dwell time is
sufficiently large. At the smallest; there is some deviation
8G=—-3[1+(Myly)?™? (4.1  from unity in the one-kick model.
o e The magnitude of the weak localization peak in Figs. 3
to eacgzdata}iet. This is the RMT res(8t1]) if ¥ =yzur  and 4 shows a smalabout 10% discrepancy with the RMT
= ¥M**/(2\27pKru7). The largeK limit is prediction. We attribute this to nonergodic, short-time trajec-
tories. We show in Fig. 7 the dependence of the magnitude of
the weak localization peakG(0) on the dwell time. The
_ _ . results suggest thaG(0)+ 3 = 1/7, a deviation from RMT
In Fig. 5 we plot the fitted crossover paramejeras a func- g pe expected from the Thouless energy salbich is
tion of M for fixed dwell time. The plot confirms the scaling «1/75). The deviation from unity in Fig. 6 has presumably
with 752«g™12, and also shows good agreement with thejhe same origin.
values of Yau7 Calculated from the mean level curvature We could determine th&! dependence of’ and 5G(0)
(dotted lines. _ , up to M=10* (for K=7.5 and7,=5). The motivation for
_ We also performed numerical calculations for the one-gyianging the calculation to large system sizes is to search
kick model. The crossover scaf extracted from a Lorent- for effects of the Ehrenfest timi&:33Although the Ehrenfest
zian fit to the weak-localization peak was compared with thg; o 7.~3.8 (estimating as in Ref. )5vas comparable to

value Sgyr=8:M¥2/(2\2rpKryr) predicted by the mean 75=>5, we did not find any systematid-dependence iy’ or
level curvature. The larg limit of this value is 8G(0), cf. Figs. 5 and 8.

im Yoy = 67\ 27 (4.2)
K—o

im Sy = V6 7. 4.9
K—o

. V. CONCLUSIONS
We show in Fig. 6 the rati@"/ 5 for the one-kick model,

as well as the ratiOy*/y;MT for the three-kick model. The In conclusion, we have studied time-reversal symmetry

breaking in quantum chaos through its effect on weak local-
ization. We have found an overall good agreement between

1-5 Ll T T T Ll . . . .
the universal predictions of random-matrix theory and the
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FIG. 6. Dependence of the ratip / vz for the three-kick 1tn

model and the rati&5"/ 55\ for the one-kick model on the dwell
time mp. Data points for a given dwell time are obtained by aver- FIG. 8. Dependence a¥G(0) on the system sizM for several
aging over system sizes in the range from 200 to 1000. dwell times. Dashed lines show averages over system size.
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results for a specific quantum-mechanical model of a chaotic S)(65,6,) = 3(92 -6, + 270, )% - 6o, 0, (A4)

quantum dot. In particular, the scalingg™2 of the cross- 2 2

over magnetic field with the point contact conductangcs 3 5

confirmed over a broad parameter range. S(8',6,) = 5(8' = O+ 2m0y)” = 6moy ' = y COH6,)
Deviations from RMT that we have observed scale in- ~1y(p) (A5)

versely proportional with the mean dwell timg, consistent 2 '

with an explanation in terms of non-ergodic short-time tra-The integersoy, o, are the winding numbers of a classical

jectories. These deviations therefore have a classical originyajectory on a torus withd e [0,2m) and pe[0,6m). The
More interesting deviations of a quantum mechanical orimap equations are derived from

gin have been predicté3in relation with the finite Ehren-

fest timere. This is the time scale on which a wave packet of d d

minimal initial dimension spreads to cover the entire avail- P1= (9_(913&(91’ 0), p=- (9_93&(91’ 0), (A6)
able phase space. The theoretical prediction is that the weak

localization peakdG(0) xe €™ should decay exponentially

once g exceedsry. Our simulation extends up te-= p, P, = iso( 6,,6,), pPL=- 133(92, 6y), (A7)
but shows no sign of this predicted decay. This is consistent d 6, d 6y

with the explanation advanced by Jacquod and Sukhofdkov

for the insensitivity of universal conductance fluctuations to J J

a finite Ehrenfest time, based on the effective RMT of Ref. p'= (9_0’3:(0,’02)' P2=-— (9—02%(9',02)- (A8)

31. As pointed out in Ref. 29, the same effective RMT also

implies that weak localization should not depend on the rela- Equations(A6)—(A8) are equivalent to the following set

tive magnitude ofrg and 7p. of six equations that map initial coordinate p) onto final
Because our simulation could not be extended to the reeoordinateq ¢’ ,p’) after one period:

gime 7= > 7p, this final conclusion remains tentative. It might

be that the exponential suppression&&(0) does exist, but 61=0+p/3-V'(0)/6 - 2may,
that our system was simply too small to see it. D =p—ysin 6, - V' (6)/2 - 60, (A9)
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APPENDIX A: CLASSICAL MAP We denoteV’ =dV/d6. Winding numbers of a trajectory on

the torus in phase spacé,p) are denoted byry,o,. These
Here we derive the classical map that is associated witintegers are determined by the requirement that , 6, 0’
the quantum mechanical Floquet operator of the kicked rota= [0, 27) andp,p;,p,,p’ €[0,6m). TRS for a classical map
tor with broken TRS. We consider the three-kick and one-means that the poiri®’ ,—p’) maps to(é, —p). This property
kick representations separately. is satisfied fory=0, but not fory# 0. TRS is broken at the

classical level in the three-kick model.
1. Three-kick representation

We seek the classical limit of the Floquet operg@d 2). 2. One-kick representation
We consider the classical motion frosg at t=0 to 6; at't
=T (in units of 7p). Intermediate values of the coordinate are
denoted byé, t=0,1,...T. The classical actiors is the

We now seek the classical limit of the Floquet operator
(2.14). The classical actio® after one kick is

sum S(6,6)=4(0' - 0+ 2102~ 2w, 0 + &0 - 6) + 2m0S
T-1
1
S§=2 01, 6). (A1) - SKlcos6+ @) + cos ¢’ + ). (A12)
t=0
Following the general method of Ref. 7 we derive The map equations are derived from

5(0’1 0) = S:( 0,1 02) + SO( 621 01) + S-l( 011 0)1 (AZ)

d d
'=—9¢',0), p=-—9¢'6). Al13
pr="yS0.0, p=--"96.0) (A13)

Su(61,0) = 3(61 =~ 0+ 270,)” = 670, 61+ COL0y) _ . , ,
L The mapping of initial coordinatesd,p) onto final ones
-35V(), (A3)  (¢',p’) after one kick is then
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1 For the one-kick mode(2.14) the operatordV,V are
0 =60+p+ EK sin(6+ ¢) — 65— 2moy,
~, o~ 1
1 w=UXx'U'Duxu’, v=--—Mm, (B4)
p'=p+ EK[sin(0+ @) +sin8' + )] - 270, 2m
(A14) With Dy = Sy (M+1/2-M/2-5M/27). Average diagonal
elements até=0 are (V;;)=TrV/IM=-M/27 and (W;)
The constant Zoé in the action(A12), which has no dy- =TrW/M=0. The variance of the off-diagonal elements is
namical effect in the classical limit, is determined by the(|w;[%=Tr WW/M?=M/12.

integero-. This is the Wlndlng number after the first half of For K>1 the eigenphaseﬁi are distributed rand0m|y in
the kick of the intermediate momentumy=6'-6+6+7  the circular ensemble, which is locally equivalent to the

+27moe[0,2m]. B Gaussian ensembleWe expand Eq(B1) for small eigen-
The canonical transformatiop—6—p, 6+¢— 6 brings  phases difference, compare with K8.2), and substitute the

the map to an equivalent form variances of matrix elements calculated above. For the one-
o _ kick model we drop terms with; as they are of order M.
' = 0+P+ 3K sin §- 2o, We finally arrive at Eqs(3.8) and(3.9).
g~ (A15) The explicit formula for the Pandey-Mehta parameater
P’ =P+ 3K(sin +sin §') - 2mar,. describing the kicked rotator at lardgeis

This form is manifestly invariant under the transformation M2

that maps(¢’,—p’) onto (6,-p) for any value ofé and 6. ayMy, = 7 (B5)

Hence TRS is not broken at the classical level in the one- 12

kick model.

for the three-kick model. The corresponding formula for the
one-kick model is

APPENDIX B: DERIVATION OF EQS. (3.8) AND (3.9) —  Mm32
. . . avMy = = - (B6)
In the largeK limit the level curvature in the kicked ro- "7 o43

tator can be related to the level curvature in the Pandey-
Mehta Hamiltonian. This leads to the relatiaids8) and(3.9)
between the TRS breaking parameterghree-kick model APPENDIX C: SEMICLASSICAL DERIVATION
and 6 (one-kick mode), on the one hand, and the Pandey- OF THE WEAK LOCALIZATION PEAK
Mehta parametew, on the other hand.

Perturbation theory for eigenphased dy) of a unitary
matrix F(5y) gives the series expansion

We present a semiclassical derivation of the weak local-
ization peak, adopting the method of Ref. 8 to the case of the
kicked rotator. The method cannot be used to determine the

Gi(8y) = & + W, Sy + %E#i W, [2(87)? cotar( e, — ¢;)/2 amplitudeaG(Q), but we use it for the crossover scale_. This

serves as an independent check for the scaling predicted by
+3Vi(y)2. (B1) RMT.
The action difference in the three-kick model for a pair of
Here ¢  denotes an eigenphase of 7(0)  trajectories related by TRS is calculated as follows. The ac-
=U diage®, ... ,@?)U'. The Hermitian matrice®V andV  tion S, for a trajectory with initial coordinated, and final
are defined bywW=U(=iF'9,F,-0)U", V=0,W,-o. Due to  coordinated; at y=0 is compared with the actio§ for a
reciprocity of 7 we find W;=0. For the three-kick model trajectory with the same initial and final coordinates, but at

(2.12 the operatordV, V are small y. The result of linear expansion ipis
M
w= G—UXTHTYT (- CI + TIC)YIIXU',  (B2) AS= S8~ 8o= 2, [cosh(t) - co,(1)], (Cy
o t
M \2 where periods are numbered by0,1,... T-1 and 6,(t),
V= |<6_> UXTITYT(CIICII - ITTCIIC) YIIXUT, 6,(t) denote the coordinate of the particle when TRS-
™ breaking kicks are applied.
(B3) The weak localization correction is
where Cppyy=6nw cO427mm/M). We assume that for 5G o (exp(2iAS o)), (C2)

strongly chaotic system& > 1) the matrix elementsV; and

Vj; are random Gaussian numbers independent of the eigewhere the average is taken with respect to all trajectories
phases. Average diagonal elements calculated in the thregnnecting initial to final coordinates. Approximating the
kick model at y=0 are (V;)=TrV/M=0 and (W) distribution of the phase differend®S for a single step by a
=TrWw/M=0. The variance of the off-diagonal elements isGaussian, and taking the continuum limit of exponential
(W;[H=Tr WW/M?=M/(6m)% dwell-time probabilityP(t) <& V™, we derive

205324-7
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SG o [1+(Myly )2, (¥)?=2h5¢/(mpv), (C3) AS=8-8y= 82 [0'(t) - 6(t) + 2ma(t)],  (C4)
t

with v being the variance oAS/y for a single step. The ) ] ]

resultv=1 for largeK (and larger) is obtained by averag- 0 linear order iné. This leads to

ing over random initial points in the whole phase space. We 21-1 2_ 932

thus find Eq.(4.2), the same result as the one obtained in 8G = [1+(MAS)T?, (5=l (mp1).  (CH)

RMT. By averaging over random initial points in the whole phase
The action difference for a pair of symmetry related tra-space for largd and r, we find v=472/3. Hence we obtain

jectories in the one-kick model is Eq. (4.3), the result of RMT.
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