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We present a numerical calculation of the weak localization peak in the magnetoconductance for a strobo-
scopic model of a chaotic quantum dot. The magnitude of the peak is close to the universal prediction of
random-matrix theory. The width depends on the classical dynamics, but this dependence can be accounted for
by a single parameter: the level curvature around zero magnetic field of the closed system.
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I. INTRODUCTION

Random-matrix theory(RMT) makes system-independent
(“universal”) predictions about quantum-mechanical systems
with a chaotic classical dynamics.1–4 The presence or ab-
sence of time-reversal symmetry(TRS) identifies two uni-
versality classes. RMT is also capable of describing the
crossover between the universality classes, e.g., when TRS is
broken by the application of a magnetic fieldB. The cross-
over is predicted to depend on a single system-specific pa-
rameter, namely, the mean absolute curvature of the energy
levelsEi aroundB=0. More precisely, a universal magnetic-
field dependence of spectral correlations is predicted whenB
is rescaled by the characteristic field

Bc = S 1

D
KUd2Ei

dB2 U
B=0
LD−1/2

, s1.1d

with D the mean level spacing. This prediction has been
tested in a variety of computer simulations.5–7

In open systems a similar prediction of universality for
transport properties exists, but now the characteristic field
also depends on the conductanceg of the point contacts that
couple the chaotic quantum dot to electron reservoirs.8–11

A universal magnetic field dependence is predicted ifB
is rescaled byBc

Îg, provided g is large compared to the
conductance quantume2/h. To provide a numerical test of
this prediction is the purpose of this paper.

We present a computer simulation of the open quantum
kicked rotator,12–15which is a stroboscopic model of a quan-
tum dot coupled to electron reservoirs by ballistic point con-
tacts. The ensemble averaged conductance increases upon
breaking of TRS, as a manifestation of weak localization.
The height, width, and line shape of the weak localization
peak are compared with the predictions of RMT.

The simulation itself is straightforward, but the formula-
tion of the model is not. There exist several ways to break
TRS in the closed kicked rotator16–19and related models.20–23

When opening up the system one needs to ensure that the
scattering matrix satisfies the reciprocity relation

Ss− Bd = STsBd, s1.2d

which holds under the assumption that the electrostatic po-
tential is B independent.(The superscriptT indicates the
transpose of the scattering matrixS.) We also require that

TRS is broken already at the level of the classical dynamics
(as it is in a quantum dot in a uniform magnetic field). Fi-
nally, we need to relate the TRS-breaking parameter in the
stroboscopic formulation to the flux enclosed by the quantum
dot. All these issues are addressed in Secs. II and III before
we proceed to the actual simulation in Sec. IV. We conclude
in Sec. V.

II. TIME-REVERSAL-SYMMETRY BREAKING
IN THE OPEN KICKED ROTATOR

A. Formulation of the model

The kicked rotator is a particle moving along a circle,
kicked periodically at time intervalst0.

1,17 The stroboscopic
time evolution of a wave function is given by the Floquet
operatorF. In addition to the stroboscopic timet0 and the
moment of inertiaI, which we set to unity,F depends on the
kicking strengthK and the TRS-breaking parameterg. We
require

Fs− gd = F Tsgd, s2.1d

which guarantees the reciprocity relation(1.2) for the scat-
tering matrix when we open up the model.

We will consider two different representations ofF, both
of which can be written as anM 3M unitary matrix. The
classical limit corresponds to a map defined on a toroidal
phase space. The difference between the two representations
is whether TRS breaking persists in the classical limit or not.
The simplest representation ofF has one kick per period. It
breaks TRS quantum mechanically, but not classically. This
would correspond to a quantum dot that encloses a flux tube,
but in which the magnetic field vanishes. A more realistic
model has TRS breaking both at the quantum mechanical
and at the classical level. We have found that we then need a
minimum of three kicks per period.

B. Three-kick representation

We will mainly consider the three-kick model, so we de-
scribe it first. In this model TRS is broken both quantum
mechanically and classically. Stroboscopic models with mul-
tiple kicks per period of different magnitude were studied
previously in the context of quantum rachets.21 Inspired by
that work, we study the time-dependent Hamiltonian
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Hstd =
p2

2
+

1

2
Vsudo

n

fdest − n + ed + dest − n − edg

+ g cossudo
n

dst − n + 1/3d

− g cossudo
n

dst − n − 1/3d , s2.2d

with e an infinitesimal. The angular momentum operatorp
=−i"eff]u is canonically conjugate to the angleuP f0,2pd.
The effective Planck constant is"eff="t0/ I. The
potential18,19,24,25

Vsud = K cosspq/2dcossud + 1
2K sinspq/2dsins2ud

s2.3d

with qÞ0 breaks the parity symmetry of the model. The
form of the potential is such that in the largeK limit the
diffusion constant does not depend onq. For g=0 there are
two kicks per period in Eq.(2.2), but since they are displaced
by an infinitesimal amount we still call this a “single-kick”
model. ForgÞ0 two more kicks appear with opposite sign
at finite displacement. We will see that this choice guarantees
the reciprocity criterion(2.1) for the Floquet operator.

The reduction of the Floquet operator

F = T expF−
i

"eff
E

0

1

HstddtG s2.4d

(with T the time ordering operator) to a discrete, finite form
is obtained only for special values of"eff, known as
resonances.17 We have to reconsider the usual condition for
resonances in the presence of additional, TRS-breaking
kicks. Here our analysis departs from the quantum rachet
analogy.21

The initial wave functioncsud evolves in one period to a

final wave functionc̄sud, given by

c̄sud = expf− iVsud/2"effgexpsi"eff]u
2 /6d

3expf− ig cossud/"effgexpsi"eff]u
2 /6d

3 expfig cossud/"effgexpsi"eff]u
2 /6d

3expf− iVsud/2"eff gcsud. s2.5d

One recognizes three factors describing free propagation
for 1/3 of a period, each followed by a kick. The resonance
condition for free propagation is"eff=2pr /M, with r an odd
integer andM an even integer.17 The free propagation

c1sud = expsi"eff]u
2 /6dcsud s2.6d

is then given by

c1Su +
2p

3M
nD =

1

3M
o

m,n8=0

3M−1

expS− i
2pr

3M
m2D

3expS− im
2p

3M
sn8 − ndDcSu +

2p

3M
n8D .

s2.7d

Resonance means that the initial and final wave functions
can be treated as discrete vectors on a 3M-point lattice, la-
beled by the indicesn,n8. The angleu is an arbitrary offset
parameter. Different values ofu are not coupled by the free
propagation. Putting together three iterations of Eq.(2.7) we
get three independent components ofcsu+2pn/3Md for n
=0,1,2smod 3d, each on anM-point lattice.

We find that the resonance property is preserved in the
presence of intervening TRS-breaking kicks, provided that
r =3 andM even, but not a multiple of 3. The free propaga-
tion (2.7) then is conveniently expressed in matrix notation.
The matrix acts on anM-component vectorcm=csu
+2pm/3Md, m=0, . . . ,M −1. We choose the arbitrary phase
u=0, so that

sc1dm = o
m8=0

M−1

sU†SUdmm8cm8. s2.8d

The matrices are defined by

Smm8 = dmm8e
−ipm2/M , s2.9d

Umm8 = M−1/2e−2pimm8/M . s2.10d

The matrix productU†SU can be evaluated in closed form,
with the result

Pmm8 = sU†SUdmm8 = M−1/2e−ip/4 expfisp/Mdsm8 − md2g.

s2.11d

Collecting results, we find that for"eff=6p /M the Floquet
operator(2.5) is represented by anM 3M unitary matrix, of
the form

Fmm8 = sXPY*PYPXdmm8, s2.12ad

Ymm8 = dmm8e
isMg/6pdcoss2pm/Md, s2.12bd

Xmm8 = dmm8e
−isM/12pdVs2pm/Md. s2.12cd

One readily verifies the reciprocity relation(2.1).
The classical map corresponding to this quantum me-

chanical model is derived in Appendix A. We show there that
TRS breaking of the classical map is broken forgÞ0 in the
three-kick model.

C. One-kick representation

TRS breaking in the one-kick model is constructed as a
formal analogy to the magnetic vector potential, by adding
an offsetd to the momentum of the kicked rotator.16–19,24–26

To obey reciprocity

Fs− dd = F Tsdd s2.13d

for odd M it is enough to symmetrize the expression of Ref.
16 by infinitesimally splitting the kick(as it was done in Ref.
15 for d=0). For evenM, which is more convenient for
application of the fast Fourier transform, one also needs to
redefine the lattice points in order to preserve reciprocity.27
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The model takes the form

Fmm8 = sX̃Ũ†P̃ŨX̃dmm8, s2.14ad

Ũmm8 = M−1/2e−2pifm−sM−1d/2gm8/M , s2.14bd

X̃mm8 = dmm8e
−isMK/4pdcoss2pm/M+fd, s2.14cd

P̃mm8 = dmm8e
−ipfm − sM − 1d/2 − dsM/2pdg2/M . s2.14dd

In addition to the TRS-breaking phased there is a phasef to
break the parity symmetry. The reciprocity property(2.13)
can easily be checked.

The classical map corresponding to this model is also dis-
cussed in Appendix A. It does not break TRS.

D. Scattering matrix

To model a pair ofN-mode ballistic point contacts that
couple the quantum dot to electron reservoirs, we impose
open boundary conditions in a subspace of Hilbert space
represented by the indicesmn

sad. The subscriptn=1,2, . . . ,N
labels the modes and the superscripta=1,2 labels the leads.
A 2N3M projection matrixP describes the coupling to the
ballistic leads. Its elements are

Pnm= H1 if m= n P hmn
sadj,

0 otherwise.
s2.15d

The mean dwell time istD=M /2N (in units of t0).
The matricesP and F together determine the scattering

matrix13–15

Ss«d = Pfe−i« − Fs1 − PTPdg−1FPT, s2.16d

where« is the quasienergy. The reciprocity condition(2.1) of
F implies that alsoS satisfies the reciprocity condition(1.2).

By grouping together theN indices belonging to the same
point contact, the 2N32N matrix S can be decomposed into
4 sub-blocks containing theN3N transmission and reflec-
tion matrices

S= S r t

t8 r8
D . s2.17d

The conductanceG (in units of e2/h, disregarding spin de-
generacy) follows from the Landauer formula

G = Tr tt†. s2.18d

III. RELATION WITH RANDOM-MATRIX THEORY

In RMT time-reversal symmetry is broken by means of
the Pandey-Mehta Hamiltonian28

H = H0 + iaA, s3.1d

which consists of the sum of a real symmetric matrixH0 and
a real antisymmetric matrixA with imaginary weightia. We
denote byMH the dimensionality of the Hamiltonian matrix.

The two matricesH0 and A are independently distributed
with the same Gaussian distribution. The variancen2

=ksH0di j
2l=kAij

2l si Þ jd determines the mean level spacing
D=pn /ÎMH at the center of the spectrum forMH@1 and
a!1.

To lowest order in perturbation theory the energy levels
Eisad depend on the TRS-breaking parametera according to

dEi = a2o
jÞi

Aij
2

Ei − Ej
, s3.2d

with dEi =Eisad−Eis0d and Ei ;Eis0d. The characteristic
valueac is determined by the mean absolute curvature

ac ; S 1

D
KUd2Ei

da2 U
a=0
LD−1/2

. s3.3d

From Eq.(3.2) we deduce thatac.D /n.1/ÎMH, up to a
numerical coefficient of order unity. A numerical calculation
gives

ac
ÎMH ; kRMT = 1.27. s3.4d

A real magnetic fieldB is related to the parametera of
RMT by

B/Bc = a/ac, s3.5d

whereBc is determined by the level curvature according to
Eq. (1.1). For a ballistic two-dimensional billiard(areaA,
Fermi velocity vF) with a chaotic classical dynamics, one
has2,5

Bc = c
h

eA
sDÎA/"vFd1/2, s3.6d

with c a numerical coefficient that depends only on the shape
of the billiard. The fieldBc corresponds to a flux through the
quantum dot of ordersh/edÎtergD /"!h/e, with the ergodic
time terg being the time it takes an electron to explore the
available phase space in the quantum dot.

The analog of Eqs.(1.1) and(3.5) for the quantum kicked
rotator considered here is

g/gc = a/ac, gc ; S M

2p
KUd2fi

dg2 U
g=0
LD−1/2

. s3.7d

Here g is the TRS-breaking parameter in the three-kick
model. The same relation applies to the one-kick model, with
g,gc replaced byd,dc.

To complete the correspondence between the kicked rota-
tor, RMT, and the real quantum dot, we need to determine
the two characteristic valuesgc and dc. In Appendix B we
present an analytical calculation deep in the chaotic regime
sK→`d, according to which

lim
K→`

gc = 12pM−3/2kRMT = 47.9M−3/2, s3.8d

lim
K→`

dc = 4Î3M−3/2kRMT = 8.80M−3/2. s3.9d

In Figs. 1 and 2 we show a numerical calculation for finiteK,
which confirms these analytical large-K limits.
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In the open system the characteristic field scale for TRS
breaking is increased by a factorÎg, with g the conductance
of the point contacts. We consider ballisticN-mode point
contacts, so thatg=N, measured in units ofe2/h. The con-
ductanceGsBd of the quantum dot is also measured in units
of e2/h. According to RMT, the weak localization magneto-
conductance is given by9,11

GsBd =
N

2
−

1

4
f1 + s2kRMTN−1/2B/Bcd2g−1. s3.10d

For the quantum kicked rotator we would therefore expect
a weak localization peak in the conductance given by

Gsgd = G` − 1
4f1 + s2kRMTN−1/2g/gcd2g−1, s3.11d

in the three-kick model. We define the weak localization cor-
rectiondGsgd=Gsgd−G`, with G` the conductance at fully
broken TRS. The expression in the one-kick model is similar,
with g /gc replaced byd /dc.

In the large-K limit we can use the analytical expressions
(3.8) and (3.9) for gc anddc to obtain

lim
K→`

dGsgd = − 1
4f1 + sM3/2N−1/2g/6pd2g−1, s3.12d

lim
K→`

dGsdd = − 1
4f1 + sM3/2N−1/2d/2Î3d2g−1. s3.13d

In Appendix C we show how these two results are consistent
with a semiclassical calculation.

IV. NUMERICAL RESULTS

The numerical technique we use to calculate the conduc-
tance was described in Refs. 15 and 29. The calculation of
the scattering matrix(2.16) is performed efficiently by use of
an iterative procedure and the fast-Fourier-transform algo-
rithm. We need to average over many system realizations
(varying lead positions and quasienergies) to suppress statis-
tical fluctuations. In addition, we need several points to plot
the g dependence. This makes the calculation for largeM
more time consuming than earlier studies of universal con-
ductance fluctuations in the same model at zero magnetic
field.29,30

First we present in Figs. 3 and 4 results for the weak
localization correctiondG in the three-kick model as a func-
tion of the TRS-breaking parameterg. The data are obtained
by averaging over 40 lead positions and 80 quasienergies.
The parametergc was calculated for the closed model using
Eq. (3.7), and the resulting RMT prediction(3.11) is also
shown(dotted curve).

To compare the simulation with RMT in more detail we
have fitted a Lorentzian

FIG. 1. The critical valuegc of the TRS-breaking parameter in
the closed three-kick model is presented for different system sizes
at fixedK. The parity-breaking parameter isq=0.2. The solid line
shows the large-K limit (3.8). The dashed lines are averages overM
of the numerical data.

FIG. 2. Same as Fig. 1, but now for the closed one-kick model.
The parity-breaking parameter isf=0.2p. The solid line shows the
large-K limit (3.9).

FIG. 3. Dependence of the average conductance on the TRS-
breaking parameterg. The three-kick model is characterized byK
=7.5, q=0.2, andtD=M /2N=25. The dotted line shows the RMT
prediction(3.11), with gc calculated from the mean level curvatures
(Fig. 1).

FIG. 4. Same as Fig. 3, but forK=41.
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dG = − 1
4f1 + sMg/g*d2g−1 s4.1d

to each data set. This is the RMT result(3.11) if g* =gRMT
*

;gcM
3/2/ s2Î2tDkRMTd. The largeK limit is

lim
K→`

gRMT
* = 6p/Î2tD. s4.2d

In Fig. 5 we plot the fitted crossover parameterg* as a func-
tion of M for fixed dwell time. The plot confirms the scaling
with tD

−1/2~g−1/2, and also shows good agreement with the
values of gRMT

* calculated from the mean level curvature
(dotted lines).

We also performed numerical calculations for the one-
kick model. The crossover scaled* extracted from a Lorent-
zian fit to the weak-localization peak was compared with the
value dRMT

* =dcM
3/2/ s2Î2tDkRMTd predicted by the mean

level curvature. The largeK limit of this value is

lim
K→`

dRMT
* = Î6/ÎtD. s4.3d

We show in Fig. 6 the ratiod* /dRMT
* for the one-kick model,

as well as the ratiog* /gRMT
* for the three-kick model. The

ratio is close to unity for both models if the dwell time is
sufficiently large. At the smallesttD there is some deviation
from unity in the one-kick model.

The magnitude of the weak localization peak in Figs. 3
and 4 shows a small(about 10%) discrepancy with the RMT
prediction. We attribute this to nonergodic, short-time trajec-
tories. We show in Fig. 7 the dependence of the magnitude of
the weak localization peakdGs0d on the dwell time. The
results suggest thatdGs0d+ 1

4 ~1/tD, a deviation from RMT
to be expected from the Thouless energy scale(which is
~1/tD). The deviation from unity in Fig. 6 has presumably
the same origin.

We could determine theM dependence ofg* and dGs0d
up to M =104 (for K=7.5 andtD=5). The motivation for
extending the calculation to large system sizes is to search
for effects of the Ehrenfest time.32,33Although the Ehrenfest
time tE<3.8 (estimating as in Ref. 15) was comparable to
tD=5, we did not find any systematicM-dependence ing* or
dGs0d, cf. Figs. 5 and 8.

V. CONCLUSIONS

In conclusion, we have studied time-reversal symmetry
breaking in quantum chaos through its effect on weak local-
ization. We have found an overall good agreement between
the universal predictions of random-matrix theory and the

FIG. 5. Dependence of the crossover parameterg* on the system
size. The data are obtained by fitting the Lorentzian(4.1) to the
numerical data of Figs. 3 and 4. The solid line shows the largeK
limit (3.8). The dotted lines are the RMT prediction forK=7.5 and
K=41, usinggc found from the level curvatures in the closed model
(Fig. 1).

FIG. 6. Dependence of the ratiog* /gRMT
* for the three-kick

model and the ratiod* /dRMT
* for the one-kick model on the dwell

time tD. Data points for a given dwell time are obtained by aver-
aging over system sizes in the range from 200 to 1000.

FIG. 7. Dependence of the amplitude of the weak localization
peakdGs0d (averaged over several system sizes) on the dwell time
tD. Dashed lines show a linear dependence on 1/tD, extrapolated to
the RMT valueudGs0du=1/4.

FIG. 8. Dependence ofdGs0d on the system sizeM for several
dwell times. Dashed lines show averages over system size.
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results for a specific quantum-mechanical model of a chaotic
quantum dot. In particular, the scaling~g−1/2 of the cross-
over magnetic field with the point contact conductanceg is
confirmed over a broad parameter range.

Deviations from RMT that we have observed scale in-
versely proportional with the mean dwell timetD, consistent
with an explanation in terms of non-ergodic short-time tra-
jectories. These deviations therefore have a classical origin.

More interesting deviations of a quantum mechanical ori-
gin have been predicted32,33 in relation with the finite Ehren-
fest timetE. This is the time scale on which a wave packet of
minimal initial dimension spreads to cover the entire avail-
able phase space. The theoretical prediction is that the weak
localization peakdGs0d~e−tE/tD should decay exponentially
oncetE exceedstD. Our simulation extends up totE.tD,
but shows no sign of this predicted decay. This is consistent
with the explanation advanced by Jacquod and Sukhorukov30

for the insensitivity of universal conductance fluctuations to
a finite Ehrenfest time, based on the effective RMT of Ref.
31. As pointed out in Ref. 29, the same effective RMT also
implies that weak localization should not depend on the rela-
tive magnitude oftE andtD.

Because our simulation could not be extended to the re-
gimetE.tD, this final conclusion remains tentative. It might
be that the exponential suppression ofdGs0d does exist, but
that our system was simply too small to see it.
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APPENDIX A: CLASSICAL MAP

Here we derive the classical map that is associated with
the quantum mechanical Floquet operator of the kicked rota-
tor with broken TRS. We consider the three-kick and one-
kick representations separately.

1. Three-kick representation

We seek the classical limit of the Floquet operator(2.12).
We consider the classical motion fromu0 at t=0 to uT at t
=T (in units oft0). Intermediate values of the coordinate are
denoted byut, t=0,1, . . . ,T. The classical actionS is the
sum

S = o
t=0

T−1

Ssut+1,utd. sA1d

Following the general method of Ref. 7 we derive

Ssu8,ud = Scsu8,u2d + Sbsu2,u1d + Sasu1,ud, sA2d

Sasu1,ud = 3
2su1 − u + 2psu1

d2 − 6psp1
u1 + g cossu1d

− 1
2Vsud, sA3d

Sbsu2,u1d = 3
2su2 − u1 + 2psu2

d2 − 6psp2
u2, sA4d

Scsu8,u2d = 3
2su8 − u2 + 2psu8d

2 − 6psp8u8 − g cossu2d

− 1
2Vsud. sA5d

The integerssu ,sp are the winding numbers of a classical
trajectory on a torus withuP f0,2pd and pP f0,6pd. The
map equations are derived from

p1 =
]

] u1
Sasu1,ud, p = −

]

] u
Sasu1,ud, sA6d

p2 =
]

] u2
Sbsu2,u1d, p1 = −

]

] u1
Sbsu2,u1d, sA7d

p8 =
]

] u8
Scsu8,u2d, p2 = −

]

] u2
Scsu8,u2d. sA8d

Equations(A6)–(A8) are equivalent to the following set
of six equations that map initial coordinatessu ,pd onto final
coordinatessu8 ,p8d after one period:

Hu1 = u + p/3 − V8sud/6 – 2psu1
,

p1 = p − g sin u1 − V8sud/2 – 6psp1
,

sA9d

Hu2 = u1 + p1/3 – 2psu2
,

p2 = p1 − 6psp2
,

sA10d

Hu8 = u2 + p2/3 + g sin u2/3 – 2psu8,

p8 = p2 + g sin u2 − V8su8d/2 – 6psp8.
sA11d

We denoteV8=dV/du. Winding numbers of a trajectory on
the torus in phase spacesu ,pd are denoted bysu,sp. These
integers are determined by the requirement thatu ,u1,u2,u8
P f0,2pd andp,p1,p2,p8P f0,6pd. TRS for a classical map
means that the pointsu8 ,−p8d maps tosu ,−pd. This property
is satisfied forg=0, but not forgÞ0. TRS is broken at the
classical level in the three-kick model.

2. One-kick representation

We now seek the classical limit of the Floquet operator
(2.14). The classical actionS after one kick is

Ssu8,ud = 1
2su8 − u + 2psud2 − 2pspu8 + dsu8 − ud + 2psd

−
1

2
Kfcossu + fd + cossu8 + fdg. sA12d

The map equations are derived from

p8 =
]

] u8
Ssu8,ud, p = −

]

] u
Ssu8,ud. sA13d

The mapping of initial coordinatessu ,pd onto final ones
su8 ,p8d after one kick is then
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5u8 = u + p +
1

2
K sinsu + fd − d − 2psu,

p8 = p +
1

2
Kfsinsu + fd + sinsu8 + fdg − 2psp.

sA14d

The constant 2psd in the action(A12), which has no dy-
namical effect in the classical limit, is determined by the
integers. This is the winding number after the first half of
the kick of the intermediate momentump1=u8−u+d+p
+2psP f0,2pg.

The canonical transformationp−d→ p̃, u+f→ ũ brings
the map to an equivalent form

Hũ8 = ũ + p̃ + 1
2K sin ũ − 2psu,

p̃8 = p̃ + 1
2Kssin ũ + sin ũ8d − 2psp.

sA15d

This form is manifestly invariant under the transformation

that mapssũ8 ,−p̃8d onto sũ ,−p̃d for any value off and d.
Hence TRS is not broken at the classical level in the one-
kick model.

APPENDIX B: DERIVATION OF EQS. (3.8) AND (3.9)

In the large-K limit the level curvature in the kicked ro-
tator can be related to the level curvature in the Pandey-
Mehta Hamiltonian. This leads to the relations(3.8) and(3.9)
between the TRS breaking parametersg (three-kick model)
and d (one-kick model), on the one hand, and the Pandey-
Mehta parametera, on the other hand.

Perturbation theory for eigenphasesfisdgd of a unitary
matrix Fsdgd gives the series expansion

fisdgd = fi + Wiidg + 1
2o jÞi

uWij u2sdgd2 cotansfi − f jd/2

+ 1
2Viisdgd2. sB1d

Here fi denotes an eigenphase of Fs0d
=U diagseif1, . . . ,eifMdU†. The Hermitian matricesW andV
are defined byW=Us−iF†]gFuy=0dU†, V=]gWug=0. Due to
reciprocity of F we find Wii =0. For the three-kick model
(2.12) the operatorsW, V are

W=
M

6p
UX†P†Y†P†s− CP + PCdYPXU†, sB2d

V = iS M

6p
D2

UX†P†Y†sCP†CP − P†CPCdYPXU†,

sB3d

where Cmm8=dmm8 coss2pm/Md. We assume that for
strongly chaotic systemssK@1d the matrix elementsWij and
Vii are random Gaussian numbers independent of the eigen-
phases. Average diagonal elements calculated in the three
kick model at g=0 are kViil=Tr V/M =0 and kWiil
=TrW/M =0. The variance of the off-diagonal elements is
kuWij u2l=Tr WW†/M2=M / s6pd2.

For the one-kick model(2.14) the operatorsW,V are

W= UX†Ũ†DŨXU†, V = −
1

2p
M , sB4d

with Dmm8=dmm8sm+1/2−M /2−dM /2pd. Average diagonal
elements atd=0 are kViil=Tr V/M =−M /2p and kWiil
=Tr W/M =0. The variance of the off-diagonal elements is
kuWij u2l=Tr WW†/M2=M /12.

For K@1 the eigenphasesfi are distributed randomly in
the circular ensemble, which is locally equivalent to the
Gaussian ensemble.1 We expand Eq.(B1) for small eigen-
phases difference, compare with Eq.(3.2), and substitute the
variances of matrix elements calculated above. For the one-
kick model we drop terms withVii as they are of order 1/M.
We finally arrive at Eqs.(3.8) and (3.9).

The explicit formula for the Pandey-Mehta parametera
describing the kicked rotator at largeK is

aÎMH =
gM3/2

12p
sB5d

for the three-kick model. The corresponding formula for the
one-kick model is

aÎMH =
dM3/2

4Î3
. sB6d

APPENDIX C: SEMICLASSICAL DERIVATION
OF THE WEAK LOCALIZATION PEAK

We present a semiclassical derivation of the weak local-
ization peak, adopting the method of Ref. 8 to the case of the
kicked rotator. The method cannot be used to determine the
amplitudedGs0d, but we use it for the crossover scale. This
serves as an independent check for the scaling predicted by
RMT.

The action difference in the three-kick model for a pair of
trajectories related by TRS is calculated as follows. The ac-
tion S0 for a trajectory with initial coordinateu0 and final
coordinateuT at g=0 is compared with the actionS for a
trajectory with the same initial and final coordinates, but at
small g. The result of linear expansion ing is

DS= S − S0 = go
t

fcosu1std − cosu2stdg, sC1d

where periods are numbered byt=0,1, . . . ,T−1 andu1std,
u2std denote the coordinate of the particle when TRS-
breaking kicks are applied.

The weak localization correction is

dG ~ kexps2iDS/"effdl, sC2d

where the average is taken with respect to all trajectories
connecting initial to final coordinates. Approximating the
distribution of the phase differenceDS for a single step by a
Gaussian, and taking the continuum limit of exponential
dwell-time probabilityPstd~e−t/tD, we derive
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dG ~ f1 + sMg/g*d2g−1, sg*d2 = 2"eff
2 /stDnd, sC3d

with n being the variance ofDS/g for a single step. The
resultn=1 for largeK (and largetD) is obtained by averag-
ing over random initial points in the whole phase space. We
thus find Eq.(4.2), the same result as the one obtained in
RMT.

The action difference for a pair of symmetry related tra-
jectories in the one-kick model is

DS= S − S0 = do
t

fu8std − ustd + 2psstdg, sC4d

to linear order ind. This leads to

dG ~ f1 + sMd/d*d2g−1, sd*d2 = 2"eff
2 /stDnd. sC5d

By averaging over random initial points in the whole phase
space for largeK andtD we findn=4p2/3. Hence we obtain
Eq. (4.3), the result of RMT.

1F. Haake,Quantum Signatures of Chaos(Springer, Berlin, 1992).
2C. W. J. Beenakker, Rev. Mod. Phys.69, 731 (1997).
3T. Guhr, A. Müller-Groeling, and H. A. Weidenmüller, Phys. Rep.

299, 190 (1998).
4Y. Alhassid, Rev. Mod. Phys.72, 895 (2000).
5O. Bohigas, M. G. Giannoni, A. M. Ozorio de Almeida, and C.

Schmit, Nonlinearity8, 203 (1995).
6Z. D. Yan and R. Harris, Europhys. Lett.32, 437 (1995).
7P. Shukla and A. Pandey, Nonlinearity10, 979 (1997).
8H. U. Baranger, R. A. Jalabert, and A. D. Stone, Phys. Rev. Lett.

70, 3876(1993); Chaos3, 665 (1993).
9Z. Pluhar, H. A. Weidenmüller, J. A. Zuk, and C. H. Lewenkopf,

Phys. Rev. Lett.73, 2115(1994).
10K. B. Efetov, Phys. Rev. Lett.74, 2299(1995).
11K. Frahm, Europhys. Lett.30, 457 (1995); K. Frahm and J.-L.

Pichard, J. Phys. I5, 847 (1995).
12Y. V. Fyodorov and H.-J. Sommers, JETP Lett.72, 422 (2000).
13A. Ossipov, T. Kottos, and T. Geisel, Europhys. Lett.62, 719

(2003).
14Ph. Jacquod, H. Schomerus, and C. W. J. Beenakker, Phys. Rev.

Lett. 90, 207004(2003).
15J. Tworzydło, A. Tajic, H. Schomerus, and C. W. J. Beenakker,

Phys. Rev. B68, 115313(2003).
16F. M. Izrailev, Phys. Rev. Lett.56, 541 (1986).
17F. M. Izrailev, Phys. Rep.196, 299 (1990).
18R. Blümel and U. Smilansky, Phys. Rev. Lett.69, 217 (1992).

19M. Thaha, R. Blümel, and U. Smilansky, Phys. Rev. E48, 1764
(1993).

20T. O. de Carvalho, J. P. Keating, and J. M. Robbins, J. Phys. A
31, 5631(1998).

21T. Dittrich, R. Ketzmeric, M.-F. Otto, and H. Schanz, Ann. Phys.
(Leipzig) 9, 755 (2000).

22P. H. Jones, M. Goonasekera, H. E. Saunders-Singer, and D. R.
Meacher, quant-ph/0309149.

23T. Jonckheere, M. R. Isherwood, and T. S. Monteiro, Phys. Rev.
Lett. 91, 253003(2003).

24G. Casati, R. Graham, I. Guarneri, and F. M. Izrailev, Phys. Lett.
A 190, 159 (1994).

25T. Kottos, A. Ossipov, and T. Geisel, Phys. Rev. E68, 066215
(2003).

26P. Shukla, Phys. Rev. E53, 1362(1996).
27M. C. Goorden and Ph. Jacquod(private communication).
28M. L. Mehta and A. Pandey, J. Phys. A16, 2655(1983).
29J. Tworzydło, A. Tajic, and C. W. J. Beenakker, Phys. Rev. B69,

165318(2004).
30Ph. Jacquod and E. V. Sukhorukov, Phys. Rev. Lett.92, 116801

(2004).
31P. G. Silvestrov, M. C. Goorden, and C. W. J. Beenakker, Phys.

Rev. Lett. 90, 116801(2003); Phys. Rev. B67, 241301(2003).
32I. L. Aleiner and A. I. Larkin, Phys. Rev. B54, 14 423(1996).
33I. Adagideli, Phys. Rev. B68, 233308(2003).

TWORZYDŁO, TAJIC, AND BEENAKKER PHYSICAL REVIEW B70, 205324(2004)

205324-8


