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Single-qubit gates and measurements in the surface acoustic wave quantum computer
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In the surface acoustic wave quantum computer, the spin state of an electron trapped in a moving quantum
dot comprises the physical qubit of the scheme. Via detailed analytic and numerical modeling of the qubit
dynamics, we discuss the effect of excitations into higher-energy orbital states of the quantum dot that occur
when the qubits pass through magnetic fields. We describe how single-qubit quantum operations, such as
single-qubit rotations and single-qubit measurements, can be performed using only localized static magnetic
fields. The models provide useful parameter regimes to be explored experimentally when the requirements on
semiconductor gate fabrication and the nanomagnetics technology are met in the future.
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I. INTRODUCTION vantage of being robust against small random errors.

Quantum computation promises enormous technological 1S Paper considers proposafsr implementing quan-
advances in the field of information processirfgand the UM gates on single SAW qubits using only static magnetic
quest for its realization has attracted many strong contendeft¢lds generated by surface magnetic gates. Detailed model-
in the field of physics and engineering. This paper is coning of the gate operation has been accomplished by means of
cerned with a scheme for quantum computation put forwardoth analytic solutions and numerical simulations of the
by Barnes, Shilton and Robinsényhich falls into the semi- Pauli equation. We show how electrostatically confined mov-
conductor quantum dot categdry? The proposal for quan- ing electrons behave under the influence of various magnetic
tum computation is based on the results of ongoing experifields and discuss the implications for quantum computing
ments that have demonstrated the capture and transport with surface acoustic wave electrons.
single electrons in moving quantum, déts!® The dots are The physics of the SAW-guided qubit is explained in
formed when a surface acoustic wag@AW) travels along more detail in Sec. Il. In Secs. Ill and 1V, we present results
the surface of a piezoelectric semiconductor containing ®n single-qubit unitary gates and single-qubit readout gates
two-dimensional electron gg8DEG). See Fig. 1 for a sche- based on the Stern—Gerlach effect. Section V discusses some
matic diagram of the device. When the SAW is made to pasef the decoherence processes involved in quantum-dot based
through a constriction in the form of a quasi-one-schemes. Section VIis a summary of the results with param-
dimensional channglQ1DO), the induced piezoelectric po- eter regimes of interest for future experiments.
tential drags electrons into and along the Q1DC. In certain
parameter regimes the device transports one electron per po-
tential minimum of the SAW* The spin on the trapped elec- Il. SCHEME FOR QUANTUM COMPUTATION
tron represents the physical qubit. Quantum computation in-
volves performing qubit operations on the trapped electrongC
as they move with the speed of the SAW.

Many schemes for quantum computation, such as conve

We begin by summarizing the quantum computation
heme proposed by Barnes, Shilton and Robifgtgure 1
shows a schematic diagram of the experimental setup origi-
. 15 U ONVETKally designed to demonstrate quantized currents in
tional quantum dotS;® doped silicorf” superconducting semiconductor$3-> A NiCr/Al interdigitated transducer is

18 . . . .
ggéﬁziic%\z‘:vleogugﬁfuérh Icn(;/rﬁlp\)/jt;rtagrf tgg%{i'emgnzuE;agfthpatterned on a GaAs/AlGaAs heterostructure. A narrow de-
“flying qubit” type, which include linear optics schems, Sleted Q1DC splits the 2DEG into two regions, the source

some ion trap schemes with ion shuttfidgand schemes and drain. When a high frequency AC signal is applied to the
based on coherent electron transport in quantum Wité$3 transducer, a SAW propagates through the 2DEG, producing

All these have in common that the carriers of quantum infor-
mation physically move through space during the computa-
tion. Flying qubits have the advantage of being able to dis-
tribute information quickly over large distances across the
quantum circuit when decoherence times are short and to
interface with quantum memory registers at fixed locations.
Another advantage of the SAW quantum computation
scheme is its ensemble nature. It intrinsically performs
time-ensemble computation, in much the same way NMR
quantum  computation  performs  molecular-ensemble FIG. 1. (Color onling Schematic diagram of an experimental
computationg*-?6Time-ensemble computation alleviates the device for producing quantized acoustoelectric currents through a
demand for single-shot spin measurements and has the agarrow Q1DC constriction.
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energy level spacings in the 2DEG well are on the order of
50—100 me\2® Further confinement in thg direction is
provided by an extended Q1DC, etched into the surface so as
to avoid screening the SAW-induced potential with metallic
surface gate?’ Finally, the confinement in the direction is

due to the SAW potential minimum which is approximately
sinusoidal. The SAW amplitude is typically 40 méWwhich

is sufficiently large to prevent qubits being lost via tunneling
into neighboring SAW minima.

There are two important aspects of the SAW quantum
computation scheme that distinguish it from other similar
quantum dot schemes. First, the scheme provides repetitions
of the same quantum computation with each passing of a
single wavefront of the SAW. Therefore, a statistical time-
ensemble of identical computations can be read out at the
end of the Q1DCs as a measurable current, alleviating the
need for single-electron measurements. Two sources of noise

FIG. 2. (Color onling Schematic diagram of a quantum gate
network in a SAW quantum computefa) two-qubit tunneling
gates;(b) one-qubit magnetic gate@n various orientations (c)

gate network for quantum computation with SAW electron spins. h . foll .
Gray lines running horizontally represent Q1DCs; blackened rell the measured current may be estimated as follows: The

gions indicate the SAW minima where the qubits reside; arrowsSHOt noise is largely determined by how well the current is

represent spin polarization; rings represent magnetic surface gatedtantized tol=efs,y and precisions 0f0.1% can be ex-
white squares represent readout gates. perimentally achieve® Johnson noise arises from the resis-

tance of the ohmic contacts and the 2DEG which are on the

a periodic piezoelectric potential across the 2DEG. The poerder of 100—100Q. At temperatures of 1 K they produce a
tential drags electrons in the source region through the narms volta_g_e noise spectral density on the order of
row Q1DC constriction into the drain. It has been shown10°V/\Hz at most. This cannot drive a current noise
experimentally that over a range of SAW power and gatehrough the SAW device since its effective intrinsic imped-
voltages, the current passing through the Q1DC is quantizeance of 10 M) is comparatively very large. See experimen-
in units of ef, wheree is the electronic charge arfdis the tal papers in Refs. 1315, 32, and 33 for more detailed dis-
frequency of the SAWS-2° The smallest quantized current cussions. The second key aspect of the scheme is the static
observed corresponds to the transport of a single electron inature of the gate components of the quantum circuit. This
each SAW minimum. Typically, the SAW in GaAs moves at alleviates the need for strong, targeted and carefully timed
2700 ms?! at a frequency of around 2.7 GHz, with an ap- electromagnetic pulses that can be difficult and expensive to
plied power of 3—7 dBn* These parameters produce cur- implement. The requirement of such expensive control re-
rents in the range of nanoamps. sources often limit the scalability of most quantum comput-

Given the ability to trap single electrons in the SAW ing implementations.
minima, the scheme for quantum computation is as follows. It would certainly be convenient, though not essential, to
It is possible for an array dil Q1DCs in parallel to capture have a means of preparing a pure fiducial qubit state. In
N qubits in everyMth minimum, with a single electron in NMR guantum computing, operations are carried out on en-
each Q1DC, producing a qubit register along the SAW wavesembles of replica qubits which remain close to a highly
front. M can be chosen sufficiently large to ensure that themixed state of thermal equilibrium. Nevertheless, a success-
Coulomb interaction between successive qubit registers dful readout of the computation is obtained because the sum
not interfere with each separate computation. The qubit®ver many identical computations provides a measurable sig-
move with the minima of the SAW, passing through a se-nal. Similarly in the SAW quantum computing scheme, states
guence of static one- and two-qubit gates before arriving atlose to the maximally mixed state are still useful because of
an array of spin readout devices. Single-qubit gates may btne time-ensemble nature of the scheme. However, in con-
operated by nanoscale electromagnetic fields. Where twdrast to NMR schemes, it is in principle possible to read out
gubit gates are needed, neighboring Q1DCs are allowed intsingle electrons in the SAW scheme. We will therefore begin
a tunnel contact controlled by a potential on a surface Yatewith nonensemble quantum computation in mind and only
The use of the Coulomb coupling between neighboringater exploit the advantages of ensemble computation to deal
Q1DCs is a common tool in spintronics which can bewith noise. Of course, the more pure the qubit states remain,
used to generate entangled states in dual-rail qubithe faster the computation will converge to the result. For
representation¥.?® Figure 2 illustrates the network of these reasons, we describe in this paper two simple methods
Q1DCs and qubit gates envisaged for performing a particulafor preparing pure fiducial qubit states.
quantum computation. In the original proposal for the SAW quantum compiter,

The SAW-trapped electron is well confined in all three it was noted that the application of an external magnetic field
spatial directions. In this paper we define Cartesian coordief about 1 T will influence which spin states of electrons are
nates such that the SAW propagates alongxthgis with the ~ favored in the capture proce¥sThis polarized capture pro-
z axis normal to the 2DEG. The 2DEG is produced by acess can be summarized as follows. The SAW is strongly
band-energy mismatch at the GaAs/AlGaAs interface whictscreened in the bulk 2DEG until it is raised above the Fermi
gives rise to a confining potential in thedirection. The energy and the quantum dot begins to form. When the
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%g,uBB-aw, whereB is the magnetic fieldp is the vector
form of the three Pauli operators amic-(«a,B) is a spinor.
The Bloch vectorn=(-2 ImlaB*],2 RdaB*],|al?-|8%
precesses about the direction of the magnetic field with an-
gular frequencygug|B|/7. A local static magnet may be pro-
duced by a magnetic force microscope or by evaporative
deposition of a ferromagnetic material such as Cobalt, or a
permalloy such as NiFe. Inevitably, different samples will
produce different strengths of magnetic field. But there are
methods to vary the strength and pattern of the field once the
sample has been fabricated. It has been demonstrated that

tron capture by means of Zeeman band splitting in the presence égrrotr)nagn%t_lfg grqurtle_s O;.th.l(r;#”m 3hD transrlltl?jn m(—:‘lgals
a uniform magnetic field: Arrows on electrons indicate spin polar-Can e modified via ion irradiatioft.Another method wou

izations; E; is the Fermi energy. The SAW is strongly screened inP€ 0 use oxidation techniques with the atomic force
the bulk 2DEG below the Fermi energy. As the SAW enters theMiCroscope®>” Only two independent directions of the
Q1DC constriction, the confining potential begins to form. The B-field are necessary to produce an arbitrary single-qubit ma-
probability of capturing spin-down is small at the point the minority Nipulation and we will choose these to be perpendicular to
spin-type dot formgupper curvg In contrast, the probability of the direction of the SAW, one aligned with and the other
capturing spin-up electrons is high when the majority spin-type doferpendicular to the 2DEG.
forms (lower curve. For idealized qubits with no spatial degree of freedom, the
above model for single-qubit rotations is complete. However,
higher-energy minority quantum dot forms for the higher-the trapped electron is a charged particle with a spatial dis-
energy subband of polarized electrons, the probability o]trlbunop within the dot. The fields cpuple to both the spatial _
capturing minority electrons is smatee Fig. 3, while the and spin degrees of freedom, causing the elec_tron tq experi-
probability of capturing electrons from the lower-energy sub-&Nce the Lorentz force as well as spin-precession. Itis there-
band is large. Once a cloud of approximately polarized e|ectqre clear that one cannot increase magnetic fields arbnrarlly,
trons is captured, the exchange interaction will generally enSince the Lorentz force will upset the confinement properties
tangle electrons in the same dot together, so that th&f t_he glectrpn. Nor can the direction of the field be chosen
subsequent loss of electrons into the Fermi sea will lead to @'Pitrarily without consequences for the robustness of the
decoherent process that could relax the remaining electroréte. To address these concerns, we analyze the behavior of
into the low-energy polarized state. A more detailed multi-the full spinor field,;,(x,t), under the action of gates oper-
particle analysis will be needed to determine the final state ofted by static magnets.
the remaining single electron, but the combination of the
above two processes is likely to lead to a high level of po-
larization.

The above method is conceptually simple and would be Assuming a uniform magnetic field in the lab frame, we
easy to implement in the laboratory. However, the macrosolve the Pauli equation for the spin field from which the
scopic magnetic field required in the capture region mayprobability density field and the Bloch vector field can be
need to be shielded from the rest of the device where thebtained.
guantum computation is to be carried out, and this may The qubit is trapped in a net electrostatic potential with
present a nontrivial problem. If we chose to drive spin flipscontributions from the Q1DC split gates, the 2DEG confin-
using microwave pulses, then the macroscopic field is in facing potential and the SAW piezoelectric potential. The pa-
required across the whole device. However, the problem witliameter regimes we consider allow us to neglect motion out
using microwaves is their relatively long wavelength, whichof the 2DEG plané’ The net confining potential in they
tends to affect every part the computation. Alternatively, weplane is modeled By
may use local, static magnetic fields to initialize, rotate and 5
read out single qubits without a global magnetic field. In Sec. /= Voipc+ Vsaw = Voy— + A1 - co$2m(x/\ - fO) ]}

IV, it will be demonstrated that spin-polarized electrons can 2w?
be prepared and measured using a gate driven by the Stern— (1)
Gerlach effect. First we turn to the implementation of single

qubit rotations using local static magnetic gates. The Q1DC split gate voltages are such that typically
~ 2800 meV. The width of the Q1D@ is typically between

lll. SINGLE-QUBIT UNITARY GATES 1 and 2um. The amplitude of the SAW i8~40 meV with
wavelengthh ~1 um and frequency ~2.7 GHz.

Single-qubit unitary operations may be carried out, in The appropriate nonrelativistic equation for the two-
principle, by allowing the trapped single electrons to passomponent spinor field is the Schrodinger equation with a
through regions of uniform magnetic field. If there is no Pauli Hamiltonian. For an electron moving in an arbitrary
spin-orbit coupling effect, the spin state of the qubit will vector potentialA and potential energy/, the Pauli Hamil-
evolve according to the Zeeman term in the Hamiltoniantonian reads

Position

FIG. 3. (Color onling Energy diagram showing polarized elec-

A. Pauli Hamiltonian with uniform magnetic fields
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1 ., ) 1 1 1 1 ¥
H= o (P +e(p-A) +2eA- p+ &A% + _gugo-B+V, = SVAUt SB O 0P+ Dgus oy V=ic g, (8)

(2 in which the potentiaV is given by(5). An effective poten-
wheree>0 is the electronic charggy=0.44 is the Landé tial _V+A2/2 can _be identified, WhiCh. r_ese_mbles a harmonic
g-factor andn* =0.067m, is the effective mass in GaAs. B oscillator but is time-dependent. Anticipating an analytic so-
simulating in the plane of the 2DEG we simplify to a 2+1 lution by separation of variables we apply the ansatz
dimensional model, with variableg,y,t). If the particle P (X,Y,1) = X(X, 1) ()& Enf[s yeSAEVZ, 9)
were chargeless but with an anomalous magnetic moment,
terms inH that explicitly involvee can be dropped. In such where ¢, are the harmonic oscillator eigenstates with ener-
a case, there is no Lorentz force acting on the particle, theies E;=wy(n+3), and|s)) are the eigenstates af, with
Schrédinger equation simplifies significantly and thereelgenvaluesy +1. We have introduced the oscillator fre-
would be no need to concern ourselves with the spatial bequencyw, = \VO/W and the Zeeman energy gayE=gugpB.
havior of the qubit. The energy eigenstates in thalirection are exactly the har-

Before proceeding further, it is convenient to transformmonic oscillator modes. The wavefunction in théirection
into the rest frame of the electron moving with the SAW is time-dependent and it is the solutionydk,t) to which we
speedv. We may use simple Galilean transformatiofisx  now turn. On substituting9) into (8), we obtain a PDE for
-ut, y'=y, t'=t, since the SAW velocity is nonrelativistic. y(x,t):

The potentials in the electron rest frame become, in the har-

monic oscillator approximation, - 53x + [5(Co+ )X+ Cixtly = iy, (10)
AX' 1) == B(X +ot'), (3)  with co=AkK* andc,=4°. Terms which depend only arhave
been dropped, as they merely contribute global, time-
2 X! dependent phases that do not affect the dynamics. A Gauss-
V(X',y') =V +A[1 cos< N )] (4) ian solution of(10) can be found with a further ansatz:

x(1) = exp f1(x° + Fo()x+ f5(t)]. (11)

Y2+ ékz ’2 (5) This system of time-dependent functions can be determined

2w? 2 ' self-consistently, assuming a Gaussian groundstate of the

SAW dot with standard widtls att=0. The resulting expres-
sions forfy, f,, f3 are complicated, but by noting a few gen-

. eral properties of the solution we can understand all the im-
* o —

L?,nmgih'z_tbmzew ?}r;dan%:ﬁrgg_ zb(;gorzs / Tesv ;gnsglo#'ln']he portant features of the dynamick(t) takes account of the
vy m’ v°=2.fouev, resp Y. normalization but is otherwise of no more interefstt) and
natural unit of magnetic field is 1.61mT. Parameters can nov¥ (t) together describe a groundstate Gaussian wavefunction

be assigned dimensionless values with respect to the above | g the time-d gd t vect tential. Th luti
units. In the electron rest frame, evolving in the time-dependent vector potential. The solution
is particularly simple in that it remains Gaussian throughout,

with k=27/\. A further convenience is to use a system of
natural units such that, m*, v, e are unity. The units of

1, . 1, 1 so we will only need to keep track of the position of the
- EV il AV + E(V A) |t EA AP -L By central peaku and the width(standard deviations of the
probability distribution|y(x,t)|*:
. d
+Vy= Iadf, (6) )= - 1Ref,(1)] | (12
2Re f(1)]

where the primes will subsequently be dropped from the co-
ordinates. We will further simplify the Hamiltonian by adopt- =r 3
ing the Coulomb gaug§-A:CF)). Y g P a(t) = %V_ Ref,(0)]. (13
The typical energy scales for the SAW electron encountered
in experiment puts the system in the regime whexel and
B. Qubit rotation: Uniform transverse magnetic field ¢, <. Expandingf; andf, to first order ins andc,/co, we
For a magnetic field in thg direction in the plane of the obtain the asymptotic behavior for the position of the peak:
2DEG and transverse to the Q1DC, we model the magnetic

field in the region of the single-qubit gate with a vector po- u(t) — —% t. (19
tential of the form CotC
AL(X) = - BX, @) From this result we see that the magnetic field introduces a

constant drift velocity of the peak in thex-direction. On
with A,=A,=0. Clearly this does not vanish at infinity, but exiting the interaction region, the peak will be off-center
we only consider interactions over regions of finite extentwith respect to the SAW dot and the probability distribution
This potential generates a uniform magnetic field of strengtiwill subsequently oscillate in the direction, perhaps excit-
B in they direction. With this potential Eq:6) becomes ing higher-energy orbital states of the dot. If the charge dis-
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tribution is pulled too far off-center, it is likely to escape the ot
SAW quantum dot. We could ask how long the electron can o0l
remain in the field before it is dragged a distancaway = _40
from the center of the dot in the direction: E 60t
o re 3 -80}
_GtG -100 |
Tmax= 26, \. (15 o0l
When this is compared with the time required for the Bloch 00 02 04 06 08 10
vector to rotate by some appreciable angle such ag@ta- tT
tion, we obtain the ratio 20
,8<Ak2 + /32>
Tonad T = = — 16 ~ 18
mad T = OB K Al (16) g
. ) S =16
which is about 10 for a 1 T field. Therefore, while it is pos- ©
sible that higher orbital states are excited as a consequence of 14
the interaction, there is little danger of the electron escaping ) ) ) ) )
the SAW quantum dot during the operation of the gate. We 000 002 004 006 008 0.10
now turn to the behavior of(t), the width of the Gaussian t/T
wavefunction, which in the limit, <c, oscillates according 1.0
to the simple expression 08
— -
/ 1/2 £
/C c —— 0.6
at) =/ ¢[1 +2cod(Vep+cy) |, (1) <
2(co+cy) Co £ 0.4
with c,=Ak?> and c,=8%. The frequency of the oscillation @02
increases with the energy of the dot and is typically much 0.0 |-

faster than the Zeeman spin precession frequency, i.e., rate of
precession of the qubit Bloch vector. These results are plot-
ted for a specific case in Fig. 4. The top two plots show the
evolution of  and 8. As the Bloch vector rotates about the FIG. _4. Gaussian evoluti_on_ of the probability distribution
field along they-axis, the Gaussian translates in thdirec-  [X(x,D)[? in a constant magnetic fielfl,. The top plot shows peak
tion with a rapidly oscillating width. The bottom plot of Fig. POsitionx and the middie plot shows the widé The bottom plot
4 shows probability amplitudes of excitation into higher- Shows the probability amplitudes,| of the nth SHO mode in the

. . : - direction: |C,J2 (long dash, |C,? (short dash The plot also
ner imple harmoni ill HO m in thex % 1 ' 12
zich%i)(/)nsof?hee ian?ur:dcz)stc atgSHO) modes the shows 14Cy|? (solid). Typical values for the SAW dot are taken:
N : . . A=40 meV; A=1.0um; magnetic field of 1 T.T=mu/gugB
Our conclusions are as follows. In addition to rotating thex0 08 ns is the time taken for & rotation of the Bloch vector
Bloch vector as requwed.’ the gate has. the eﬁ.eCt of d.ISplacmgbout they-axis. The initial Gaussian wavefunction was taken to be
the center of the Gaussian wavefunction which will increas

. 8he saw guantum dot groundstat€y=1). In the limit c;/cp<1
the energy of the bound state by an amount depending Ofjeak field, u(t) moves approximately linearly andit) undergoes
both the gate time and the field strength. Higher-energy orpqnded oscillations abo0)=s/+2.

bital states are likely to be excited, which could lead to de-

coherence via spin-orbit couplings or dipole coupling to. o : . .
phonons and photons. According to Fig. 4, the electron iéustatrlwal extension of the preceding analysis, since the 3D

almost completely out of the groundstate after/@ rotation rotz_;\tion_ symmetry i.S broken by the_mo_tion of the SAW_in the
of the Bloch vector. In the extreme case after many spi dlrlectlon. In practice, thy magnetic f'eld may be easier to

precessions, the qt.,lbit will leave the SAW quantum dot abricate than the magnetic field, since the latter passes
However fo,r quantum computations the gate time need onl. erpendicularly through the 2DEG structure. It could feasi-

. . ly be produced by layering oppositely aligned thin-film
be long enough to conduct a single orbit of the Bloch sphere : .
in which case the excitation into higher orbital states is negfnagnet;s Jbuslt beneath _anfc_J JlléSt f}b"g’? theh_ZEjE(;,_or by_apply-
ligible. These observations reveal some important features 6'?'% a gobaiz maggegc eld which 1S shielded In regions
the gate operation that are not revealed by an idealized spiHY ir(\e/étc;zrno;?eenetiatla .eneratin the unifor. maanetic
only model of the qubit. field is P 9 9 B, 9

C. Qubit rotation: Uniform perpendicular magnetic field Ady) == By, (18

To move the qubit state to an arbitrary point on the Blochwith A =A,=0. It should be noted that although the field is
sphere a second axis of rotation on the Bloch sphere ianiform and static in the laboratory frame, the electron sees a
needed, and to this end we consider a gate implemented byraoving uniform field. In the electron rest fram#, is time-
uniform magnetic field in the direction. This will not be independent and-independent, allowing a Hamiltonian in
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andy only. The chosen gauge facilitates numerical simula-
tions which follow shortly. An effective scalar potential that
is quadratic iny arises from theA? term in the Hamiltonian
(6). It is interesting to compare the strength of this confining
potential with the Q1DC potential, which is also approxi-
mately quadratic iry:

Energy of #term _ p?
Energy of Q1DC term Vy/w?’

(19

With magnetic fields of order 1 T and typical Q1DC ener-
gies, this ratio is of order unity. This means that for the
parameter values being considered the effective scalar poten-
tial arising form theA? term is comparable to the Q1DC
confinement potential. A stronger field would start to signifi-
cantly deform the shape of the dot. This will not be a prob-
lem as long as the evolution has occurred adiabatically dur-
ing the deformation. However, as we shall discuss in a
moment, the probability of excitation into higher orbital
states due to thB, field is not negligible.

The other interesting term in the Hamiltonian is the asym-
metric coupling +8yd, between thex andy variables. This is FIG. 5. Contour plots of electron probability density during the
expected to introduce rotational behavior, as we would intueperation of a qubit rotation gate. This is a numerical simulation in
itively anticipate some form of Landau orbital motion due to the xy (2DEG) plane of a SAW electron undergoingmd 2 rotation
the Lorentz force. gate about the axis, under a uniform magnetic fieB}, of strength

A Crank—Nicholsof? finite difference algorithngalternat- 1 T. Snap-shots are shown at the following timi@s): (a) 0, (b)
ing direction methoylwas used to simulate the operation of 2.89, (c) 11.6, (d) 20.3, (e) 28.9, (f) 37.6. The initial probability
the gate. We started with an initial Gaussian groundstate ofistribution is a Gaussian groundstate with standard widths
the dot with spin staté,) and subjected it to 1 T of mag- =26.0 ands,=20.6. The probability density rotates about #exis
netic field for a duration ofl,,,=7/2gug, which is the under the influencg of the Lorentz force gcting in bkyeplan_e.
gate time required for ar/2 rotation of the Bloch vector Moreover, an effective scalar potential contributed byAfieerm in
about thez axis. The evolution of the Bloch vector is simple the Hamiltonian is quadratic i, which spatially squeezes the ini-
due to the uniformity of the magnetic fieldn,(t) tial Gaussian distribution into the center of the dot.
=coggugpt), n(t)=sin(gugBt), andn,t)=0 All other pa-
rameters were assigned those values given just afte(‘lEq The above model is useful in aSSESSing the robustness of
The result of the simulation is shown in Fig. 5, which showsthe qubit and its susceptibility to decoherence due to orbital
time-shots of the probability distribution in the 2DE®y) ~ Motion. Population into this excited state is a problem for
plane. Losing its initial elliptic contours, the distribution de- decoherence, since the oscillating charge in the dot couples
velops two lobes which rotate about its midpoint. The den-ia dipole interactions to phonons and other charges outside
sity at the center increases due to the spatial squeezing frofie dot. However, provided we have sufficient control of the
the A term in the Hamiltonian. This clearly shows excitation 9ate time, we can us@0) to make the electron exit from the
into higher-energy orbital states. gate in its groundstate. Otherwise, a gate driven by radiofre-

Using perturbation theory to second order in the strengtiiuéncy pulses in the presence of a global magnetic field
of the field 8, with harmonic oscillator modes as the basis,could provide an alternative means to implement spin rota-
we found the following factsti) To second order of pertur- tOns about the axis.
bation theory, only the second excited state with SHO quan-
tum numbersn,=n,=1 becomes populatedii) The prob- IV. SINGLE-QUBIT INITIALIZATION AND
ability ratio with respect to the groundstate is MEASUREMENTS

®

-40 0 40 -40 0 40
X (nm)

In addition to single-qubit rotation gates, we require the
= (20) ability to initialize and measure qubits at the beginning and
wy(wx+ wy) end of the computation. Spin-polarized electrons can be ob-

tained from injection through a ferromagnetic conf®¢®
where w, and wy, are frequencies arising from the harmonic There is also a method to polarize spin using nondispersive
oscillator approximationiii ) The amplitude of the ratio ap- phasegAharonov-Bohm and Rashpavithout the need for
proaches unity when the field approaches 1iW). The ratio  ferromagnetic contacts.In the field of quantum computing,
of the spin precession frequency to the frequency of@hg  a well-known method for achieving readout of solid state
oscillation is about 1.&107° for typical SAW parameters spin qubits is to convert spin information into charge
[see just after Eq(l)]. informatiorf and subsequently use single-electron transistors

2 o Sift(w+ w)/2]

‘ Cu
COO
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the field inhomogeneity has the effect of correlating the spa-
_ tial location of a wavepacket to its spin stafdn most situ-
ations it is necessary to continue confining the qubit during
QIDC C the operation of the gate, because the spreadingtifoea
= [ & T
SAW

free Gaussian wavefunction is comparatively short—on the
LN

order of 1 ns. But the gate must cause a wavepacket splitting
<\ in order for the spin states to be resolved, hence the Q1DC
C must relax to allow for motion in theg direction. This is
¥, { achieved by patterning the Q1DC in a funnel shape, with an
opening angled (see Fig. 6, such that in the electron rest
~]—~_x - frame the potential looks like
Voinc= Voy?/2[w + tan())u(t)t]?, (21
FIG. 6. Schematic diagram of the spin readout/polarizing deViCQNhereu(t) is the step functionu(t<0)=0 andu(t=0)=1. A

based on the Stern—-Gerlach effect: SAW propagates from left t%egatively biased surface gate placed on xhexis can be

right transporting a single electron in a moving quantum dot. Q1DC a4 13 guide the electron into the channels. If necessary,
relaxes with a gradient té#) to partially delocalize the particle

during the gate operatior©,(C)) labels the Q1DC receiving elec- ngﬂdtzg got?rlgiozr;;];otrhg e;?géﬁgfszﬁ nggﬁiglﬂgdaeﬁgv-
tron flux in the spin ugdown) state of thes, operator. Magnetgof P P P

any geometry and polarityneed to produce a localized, inhomoge- tem_perature and ?Igh'va.cuum condltlons_ by erasable electro-
neous distribution of magnetic field. static lithography® We will study the quality of the readout

obtained from the gate for two different magnetic field con-

or point contacts to detect charge displacements or Ralfigurations, both sufficiently simple so as to be realizable in
oscillations*>43 However, recent theoretical results by Stacethe near future: the linearly inhomogeneous field and the 2D
and Barrett* argue the absence of coherent oscillations in edipole field.
continuously measured current noise, contrary to previous
results and assumptiofi3?® and therefore raise concerns
about the measurability of charge oscillations in similar sce- In the first model we will analyze a simple, unidirectional
narios. In any case, it is difficult to apply these methods tcand linearly inhomogeneous field pointing in thelirection:
qubits in moving quantum dots. We therefore turn towards a B,=- By 22)
quite different approach, one which enables the initialization y '
and readout of SAW electron spin qubits solely with the aidwith B,=B,=0. A wedge-shaped single domain surface mag-
of nanomagnets and ohmic contatts. net of appropriate dimensions can produce an inhomoge-

The readout gate we consider is based on the Sternseous magnetic field of this form near its center of symme-
Gerlach effect/~*In the 1920s Bohr and Pauli asserted thattry. A vector potential for this field isA.=-Byz with A,
a Stern—-Gerlach measurement on free electrons wasA,=0. This field exerts a spin-dependent force in the
impossible35! using arguments which combined the con- direction and it is the simplest field that induces the Stern—
cept of classical trajectories and the uncertainty principleGerlach effect. Although a dependence enters into the vec-
This subsequently led physicists to analyze single-electrotor potential, by considering motion only in tlze0 2DEG
Stern—Gerlach measurements within increasingly more rigotplane we may avoid contributions from terms involviAgn
ous quantum settings, ultimately ending the debate by showhe Hamiltonian, as well as the component of magnetic
ing that the measurement can indeed be done, albeit witfield. The absence ofin the potential immediately allows us
certain caveat®>* Thus Stern-Gerlach measurements onto write down harmonic oscillator modes for thkedepen-
free electrons have been extensively investigated, but littlelence. The remaininfy,t) dependent part obeys
attention has been given to such measurements on confined 1op 1
electrons An interesting semiclassical analysis of a Stern—  — 2V %Y.1) = 59ueBSyily.t) + Voipcly. ¥y, 1)
Gerlach type experiment with conduction electrons has been =iduy,b), (23)
reportect® in which the authors justifiably neglect the Lor-
entz force effects. In contrast, we analyze a single-electroiheres, is the eigenvalue +1 of the spin(s), andVq;pcis
Stern-Gerlach device, providing a full quantum mechanicagiven by(21). The initial state is again the Gaussian ground

Moving dot

A. Stern—Gerlach gate using a linearly inhomogeneous field

treatment and including all Lorentz force effects. state of the Q1DC. A solution t®3) is obtained by a time-
The electron confinement to low dimensions allows us todependent Gaussian ansgt2)
guide the electron through the magnetic field in ways that Wy,t) = exg f(Dy2 + Fo(t)y + f5()]. (24)

enhance the spin measurement and suppress the deleterious

effects of delocalization and the Lorentz force. Surface maghn a similar way as before, we solve the system of coupled
nets can be arranged in such a way as to produce a locardinary differential equations and derive the time depen-
magnetic field inhomogeneity. For example, two north poleglence of the standard deviatidékt) and the positionu(t) of
placed on either side of the Q1DC will produce a region ofthe probability distribution.

intense magnetic field gradient in betweeee Fig. . Via Let co=Vy/W? and C,=0gupPBsy. The width of the initial
the Zeeman interaction termo-B in the Pauli Hamiltonian, Gaussian groundstate wavefunctiorsiscy%. The behavior

205320-7



FURUTA, BARNES, AND DORAN PHYSICAL REVIEW B70, 205320(2004)

of the Gaussian solution is then characterized by its witith p(y,y)=g(y)gly)* ® o, (31
and peak positiom,

whereg(y) is the Gaussian groundstate of the dot ant
T

2 - 2 N the initial spin density matrix. In the inhomogeneous field
a7 27\;’00[ 4co+ a” costivyIn(n)/a) the spatial degrees of freedom couple to the spin degrees of
- . freedom, leading to
—avysinh(\VyIn(7)/a)], (25
- py.y' )= 2 gy.Ds(y .0 * oselsiS|. (32
/7TC s’ =1,
(7= ﬁ{ﬁz— cost\y In()/ ) s
@t After a gate timet, we post-select the state in, say, tGe
3a . channel and renormalize:
- —=sinh(\'yIn(7)/a) |, (26)
vy 1
where we have introduced ancillary variables tar(6)/w, Py’ 0= mz oss[ss] f dzdZ E,(y,2)g4(z,1)
y=a?-4cy and 7=1+at. The parametey is useful in deter- 5
mining when the trigonometric functions become oscillatory. Xgy(Z' ) * Ex(Z,y'). (33
If the angle @ is critical such that tai®)=2\V,, then y=0
and the width has an especially simple behavior: The probability yield in the channel is the normalizatist)
of the postselected state. The simplest projection kernel pro-
2_T|a_ 1 2 jecting into the support ofC; is E(y,y’')=aly-y")u(y),
A= a{l Inr+ 2(In 7 ] @7 where u(y) is the step-function defined i21). We finally

o define our fidelity as
For a weak magnetic field such thg>c,> «,

V 2vcy V w

— . o - 2
u(r):&[fz—\"rcoa(%)lm)]. (29 N(t)fo or(y.OF dy. (39

2¢

The width increases as\t and the position moves ast? as The yieldN(t) can be calculated without explicit knowledge
expected. We may compar&t) with the dispersion of a ©f 9, since the Gaussian solutions are related by reflection
Gaussian in free space symmetry: g;(y,t)=g,(-y,t). We choose various magnetic
field gradients ranging from 0.1 to 1004m™* and plot the
2 output fidelity of a maximally mixed input state as a function
450" (30)  of the Q1DC angled and the gate time(see Fig. J. Perfect
spin filtering corresponds to a fidelifty=1, and the worst-
which is linear int at large times. The broadening of the case fidelity iSF_:%- The density plots show how the optimal
width is suppressed due to the confinement potentials. ThBarameter regions increase with larger magnetic field gradi-
effect of the Stern—Gerlach gate can be pictured as followsSNts- This model is useful in determining the appropriate gate
Consider a qubit in the statb*y> entering the gate. The geometry and field gradients required to achieve good fideli-
Q1DC broadens as the qubit enters the field, allowing thd!€S- . . _
Stern-Gerlach effect to produce a spin-dependent shift in the e technology of nanoscale single domain magnets is
center of mass towards the chan@l However, the initial ~NOt yet capable of producing large fields in arbitrary configu-
localized distribution will delocalize due to the Q1DC broad- fations. The above linearly inhomogeneous magnetic field is
ening, allowing a small current to be detected in the wrongherefore a simple approximation to the real magnetic field
channelC,. Thus this gate is a spin polarizing filter with conﬁgurgnon on any partlcule}r device. In the next sub_sgctlon
some intrinsic error rate which is independent of decoher¥Ve consider the effect of a differeqperhaps more realistic
ence effects, shot noise and Johnson noise. It remains for (i§ld configuration, namely, the field near one of the poles of
to judge how well it performs, and to this end we introduce a2 dipole magnet.
fidelity measure of the gate.

8(t) = v/ 80)%+

C. Stern—Gerlach gate with dipole field
B. Fidelity of the Stern—Gerlach gate with linearly

. , In this subsection we study the quality of the readout ob-
inhomogeneous field

tained from a Stern—Gerlach type gate driven by a simple 2D
As an input to the Stern—Gerlach gate, we consider a derdipole field lying in the 2DEG plane, as shown in Fig. 8. In
sity matrix of the form the Appendix, we derive the magnetic vector potential
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/2

10}
g4 % o5
~ Q.
°% § 0.4
=02
Sy 0.0
© -03 -02 -041 00 01 02 03
98 y (um)
@® R FIG. 9. Three time-shoté&ee legendshowing the spatial elec-
tron probability density(normalized to pegk y is the direction
2| I . transverse to the Q1DC. This is a Stern—Gerlach type readout gate
0 20 40 60 80 100 20 40 60 80 100 using the 2D dipole field1 Tum™ at x=y=0) shown in Fig. 8.
t(ns) tns) Initial condition is a Gaussian wavepacket with sfiig). Sideways

translation of the probability density is suppressed due to both the

FIG. 7. F|de_l|ty Fy n the C; channel for a S_te_rn—(_aerlach gate strongly confining effective potential arising from thé term and
operated by a linearly inhomogeneous and unidirectional magnethe precessional motion of the Bloch vector in the non-

field in they direction. White regionsl F;=1. ¢ is the angle be- TR '
tween the Q1DC and SAW directiohis the gate time. Input state unidirectional field.

is a maximally mixed spin state in the groundstate of the SAWgtate is a Gaussian groundstate with spin é,ﬂ\@teThe simu-
quantum dot. Various magnetic field gradients have been chosen {:i,n shows no significant spatial displacement of the elec-
show the increase in the optimal parameter redishite) in the ., qensity in they directions, in contrast to the behavior
(t’de) pl?ne with i(;10rea§ing ﬂ?ld ghrad(isearzpnaleloo lnS s a Cl.rfUd.e exhibited under the linearly i,nhomogeneous figtd. Eq.
order of magnitude estimate for the s spin relaxation lifetime. L :

(26)]. This is partially due to the effect of the Lorentz force
generated by th&? term in the Hamiltonian, which contrib-
utes an effective potential that is highly confining in the
direction. TheA? confinement is so strong that the Q1DC
opening angled becomes irrelevant. Bohr and Pauli’s claim
that the Lorentz force washes out the Stern—Gerlach effect is
upheld in this particular scenario.

Another source of problems for this field configuration is
that the|Ty>, |iy> states are not eigenstates of the field as they
were with the linearly inhomogeneous field. Figure 10 shows
the evolution of the Bloch vector in a spin-only model of the
electron spin qubit. It demonstrates how the Bloch vector
?egins precessing about ttxecomponent of the magnetic
leld, causing the Stern—Gerlach force to act in different di-

BX

ATy -aP %

where 8 is a strength parameter ands the distance of the
2D dipole from the Q1DC.

Figure 8 shows that the gradient of the field in the
direction reverses direction at two poinks; +d. In order to
prevent the moving qubit from experiencing opposite field
gradients, we will restrict the gate time T6=2d so that the
qubit moves in the region H2<x<T/2 in the laboratory
frame. The question of how we are to shield the extraneou
field from the qubit does not have a simple solution. It has ~ - .
been suggeste(?j that a superconducting ngaterial such as Niroe_ctlons. Al.thOUQh Car.ef“' timing of the gate and p.OSSIb|e.
bium could be used to shield the magnetic field where it iscompe_nsatlon mechanisms could be put m_place, t_h|s gate s
not needed. essentially not robust. We draw the conclusion that in param-

The results of a 1D simulation of the wavefunction along 1.0
the x=z=0 direction are shown in Fig. 9. The numerical
method used was a Crank—Nicholson algorithm adapted to
the Pauli equation. The plot shows three time-shots of the

probability density|¢(y)?|, normalized to peak. The initial

(ox)(Ty),(02)
o
=)

d
d P X FIG. 10. (Color online Evolution of the Bloch vector in a 2D
dipole field (1 Tum™ at x=y=0): (o) (long-short dash (o)
(solid), (o (short dash Timet=0 corresponds to the starting point

x=-d (see Fig. 8 We have used a spin-only model of the electron
spin qubit to illustrate spin precession in the non-unidirectional
FIG. 8. Vector field plot in thexy (2DEG) plane showing the field. The Bloch vector changes direction rapidly, which in turn
magnetic field due to an infinite string of dipole moments runningcauses the Stern—Gerlach force to fluctuate during the operation of
parallel to thez axis at a distance from the Q1DC. the gate.
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eter regimes relevant to single-electron transport by SAW irforce puts limits on field strengths and gate times. Moreover,
GaAs, a field of this type will not be suitable for a Stern— simulations showed that field directions normal to the 2DEG
Gerlach measurement gate, and that field unidirectionality iexcite rotational states in the dot. Probabilities of excitation
generally an important requirement for quantum gates driveinto higher-energy orbitals were given. In terms of feasibil-
by static magnetic fields. ity, the models indicate that a field strength of about 80 mT
will be sufficient to conduct & rotation in about 1 ns, with-
out compromising the confinement properties of the trapped
qubit. SinceT; spin lifetimes of microseconds have been
The major effects of decoherence on this SAW quantunteportect® it is feasible for hundreds of single-qubit gates to
computing system have already been considered qualit@perate before all coherence is lost in the computation.
tively in the original proposal and subsequent papétsnd We also studied a device for single-qubit measurement
more specifically by a number of authors. These effects inand initialization based on the Stern—Gerlach effect. The
clude the following: The interaction of the electron qubit problematic Lorentz force can be partly suppressed by virtue
with other electrons in the 2DEG, surface gates, and dond®f the geometry of the 2DEG system, and for a unidirec-
impurities?1v59the coupling of qubits to phonoﬁgv,elnudear tional, linearly inhomogeneous field, the correlation between
sping and radio-frequency photof3. the spin states and spatial location of the qubit leads to a
The models we have presented here give rise to behavi@ood quantum measurement of its spin. For a 2D dipole
which was previously neglected in the original proposal forfield, the vector potential has a deleterious effect. Namely, it
the quantum computation schem&hey allow us to predict contributes an effective confining potential via thveterm in
the contribution to decoherence from excitation into higherthe Pauli Hamiltonian which suppresses the transverse mo-
orbital states and give their probabilities of occupation.  tion in they direction. Furthermore, the component of mag-
Any potential decoherence due to tunneling betweerhetic field in thex direction causes the Bloch vector to rotate
neighboring dots is negligible, and if needed the spatial sepdn undesired directions. The latter problem could be over-
ration of qubits can be increased by either introducing higheeome by using unitary gates prior to the Stern—Gerlach gate
harmonics of the SAW fundamental frequency or by activeto correct any spurious rotations, but it is unlikely that such a
gating at the entrance to each Q1DC. A major source of errdiinely tuned arrangement can be made robust. Magnetic
is the current fluctuations in the quantized single-electrorfields that are good approximations to a unidirectional and
SAW current. In recent experimeri&33errors in the current  linearly inhomogeneous field can provide a source of polar-
quantization(including shot and Johnson nojsef less than  ized electron qubit states in channés and C; with high
0.1% were observed. yield. The very same gate can be used to measure the ratio
The relevant decoherence timescales that underpin oudel?/|B/% for an input qubit statéy)=a|1,)+p]|,). The ad-
proposals is the spin lifetim€l; andT,) of single electrons Vvantages of this readout method are that the averaging time
in quantum dots. Fon-type bulk semiconductorsT; spin  of the measured current can be made long enough to render
lifetimes in GaAs of 100 ns have been reported, which givegnost noise source@.g., shot noise, input-referred noise of
a very crude ball-park figur® An estimate that is more the current pre-ampunimportant, and that missing electrons
relevant to the SAW electron system is the spin relaxatiofrom SAW minima do not contribute any error since we are
lifetime of a few nanoseconds, which was obtained frommeasuring the ratio of currents out of the two channels. Field
spin-resolved microphotoluminescence spectroscopy megtadients in the range 0.1-10Qu™* lead to gate times that
surements on photoexcited electréfigdowever, this is the are easily within the range of; spin lifetimes in GaAs.
worst-case scenario because the method of electron captuféese parameter regimes will need to be probed by experi-
we propose produces a conduction-band hole that is morement if we are to make progress towards feasible quantum
extended, short-lived and mixed than the photoexcited holecomputation with nanomagnets in the SAW quantum com-
Indeed, recent experiments on static GaAs quantum dots r@uter.
port a lower bound off; as long as 5Qus & which makes an
estimate of 100 ns for thg, lifetime of SAW electrons quite
reasonable in the light of current technology. ACKNOWLEDGMENTS
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magnetic gates to perform single-qubit initializations, rota-
tions and readouts. Applying the full Pauli Ham?ltonian, We  APPENDIX: DERIVATION OF THE 2D DIPOLE FIELD
described the quantum dynamlcs of both the_spm and orb|t_al VECTOR POTENTIAL
states of the qubit for various parameter regimes relevant in
SAW single-electron transport experiments. In the analysis We adopt cylindrical coordinates, ¢,y) about they axis,
of single-qubit unitary operations with localized uniform with r =\x?+Zz%. We consider the field due to an infinite string
magnetic fields, we showed that the effect of the Lorentaf dipoles passing parallel to the axis throughy=d as
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shown in Fig. 8. The resulting magnetic field has planar symin they direction and integrate over a obtaining

metry with respect to they (2DEG) plane. The Q1DC runs
along thex axis. A vector potential for this field can be con-
structed as follows. A magnetic dipole yatz=0 pointing in
the +y direction has a vector potentiél

, _ MoMmgdz r
Ay(r,y) = ar (12 +y?)2

(A1)

where A/=A,=0 and mg is the dipole moment per unit
length in thez direction. We now displace this potential dy

BX
M y-a? "
with A;=A,=0 and strength parametgd=uomg/2m. The
magnetic field can be derived by applying the curl in cylin-
drical coordinatesB,=-r"ta,(rA,) andB,=r"14,(rA,). Fig-
ure 8 shows the vector field plot of the resulting magnetic
field, which falls off asr~2 for larger.
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