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In the surface acoustic wave quantum computer, the spin state of an electron trapped in a moving quantum
dot comprises the physical qubit of the scheme. Via detailed analytic and numerical modeling of the qubit
dynamics, we discuss the effect of excitations into higher-energy orbital states of the quantum dot that occur
when the qubits pass through magnetic fields. We describe how single-qubit quantum operations, such as
single-qubit rotations and single-qubit measurements, can be performed using only localized static magnetic
fields. The models provide useful parameter regimes to be explored experimentally when the requirements on
semiconductor gate fabrication and the nanomagnetics technology are met in the future.
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I. INTRODUCTION

Quantum computation promises enormous technological
advances in the field of information processing1–4 and the
quest for its realization has attracted many strong contenders
in the field of physics and engineering. This paper is con-
cerned with a scheme for quantum computation put forward
by Barnes, Shilton and Robinson,5 which falls into the semi-
conductor quantum dot category.6–12 The proposal for quan-
tum computation is based on the results of ongoing experi-
ments that have demonstrated the capture and transport of
single electrons in moving quantum, dots.13–15 The dots are
formed when a surface acoustic wave(SAW) travels along
the surface of a piezoelectric semiconductor containing a
two-dimensional electron gas(2DEG). See Fig. 1 for a sche-
matic diagram of the device. When the SAW is made to pass
through a constriction in the form of a quasi-one-
dimensional channel(Q1DC), the induced piezoelectric po-
tential drags electrons into and along the Q1DC. In certain
parameter regimes the device transports one electron per po-
tential minimum of the SAW.14 The spin on the trapped elec-
tron represents the physical qubit. Quantum computation in-
volves performing qubit operations on the trapped electrons
as they move with the speed of the SAW.

Many schemes for quantum computation, such as conven-
tional quantum dots,6,16 doped silicon,17 superconducting
boxes,18 and ion traps,19 involve static qubits. The surface
acoustic wave quantum computer, on the other hand, is of the
“flying qubit” type, which include linear optics schemes,20

some ion trap schemes with ion shuttling21 and schemes
based on coherent electron transport in quantum wires.5,22,23

All these have in common that the carriers of quantum infor-
mation physically move through space during the computa-
tion. Flying qubits have the advantage of being able to dis-
tribute information quickly over large distances across the
quantum circuit when decoherence times are short and to
interface with quantum memory registers at fixed locations.
Another advantage of the SAW quantum computation
scheme is its ensemble nature. It intrinsically performs
time-ensemble computation, in much the same way NMR
quantum computation performs molecular-ensemble
computations.24–26Time-ensemble computation alleviates the
demand for single-shot spin measurements and has the ad-

vantage of being robust against small random errors.
This paper considers proposals5 for implementing quan-

tum gates on single SAW qubits using only static magnetic
fields generated by surface magnetic gates. Detailed model-
ing of the gate operation has been accomplished by means of
both analytic solutions and numerical simulations of the
Pauli equation. We show how electrostatically confined mov-
ing electrons behave under the influence of various magnetic
fields and discuss the implications for quantum computing
with surface acoustic wave electrons.

The physics of the SAW-guided qubit is explained in
more detail in Sec. II. In Secs. III and IV, we present results
on single-qubit unitary gates and single-qubit readout gates
based on the Stern–Gerlach effect. Section V discusses some
of the decoherence processes involved in quantum-dot based
schemes. Section VI is a summary of the results with param-
eter regimes of interest for future experiments.

II. SCHEME FOR QUANTUM COMPUTATION

We begin by summarizing the quantum computation
scheme proposed by Barnes, Shilton and Robinson.5 Figure 1
shows a schematic diagram of the experimental setup origi-
nally designed to demonstrate quantized currents in
semiconductors.13–15 A NiCr/Al interdigitated transducer is
patterned on a GaAs/AlGaAs heterostructure. A narrow de-
pleted Q1DC splits the 2DEG into two regions, the source
and drain. When a high frequency AC signal is applied to the
transducer, a SAW propagates through the 2DEG, producing

FIG. 1. (Color online) Schematic diagram of an experimental
device for producing quantized acoustoelectric currents through a
narrow Q1DC constriction.
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a periodic piezoelectric potential across the 2DEG. The po-
tential drags electrons in the source region through the nar-
row Q1DC constriction into the drain. It has been shown
experimentally that over a range of SAW power and gate
voltages, the current passing through the Q1DC is quantized
in units of ef, wheree is the electronic charge andf is the
frequency of the SAW.13–15 The smallest quantized current
observed corresponds to the transport of a single electron in
each SAW minimum. Typically, the SAW in GaAs moves at
2700 ms−1 at a frequency of around 2.7 GHz, with an ap-
plied power of 3–7 dBm.14 These parameters produce cur-
rents in the range of nanoamps.

Given the ability to trap single electrons in the SAW
minima, the scheme for quantum computation is as follows.
It is possible for an array ofN Q1DCs in parallel to capture
N qubits in everyMth minimum, with a single electron in
each Q1DC, producing a qubit register along the SAW wave-
front. M can be chosen sufficiently large to ensure that the
Coulomb interaction between successive qubit registers do
not interfere with each separate computation. The qubits
move with the minima of the SAW, passing through a se-
quence of static one- and two-qubit gates before arriving at
an array of spin readout devices. Single-qubit gates may be
operated by nanoscale electromagnetic fields. Where two-
qubit gates are needed, neighboring Q1DCs are allowed into
a tunnel contact controlled by a potential on a surface gate.5

The use of the Coulomb coupling between neighboring
Q1DCs is a common tool in spintronics which can be
used to generate entangled states in dual-rail qubit
representations.27,28 Figure 2 illustrates the network of
Q1DCs and qubit gates envisaged for performing a particular
quantum computation.

The SAW-trapped electron is well confined in all three
spatial directions. In this paper we define Cartesian coordi-
nates such that the SAW propagates along thex axis with the
z axis normal to the 2DEG. The 2DEG is produced by a
band-energy mismatch at the GaAs/AlGaAs interface which
gives rise to a confining potential in thez direction. The

energy level spacings in the 2DEG well are on the order of
50–100 meV.29 Further confinement in they direction is
provided by an extended Q1DC, etched into the surface so as
to avoid screening the SAW-induced potential with metallic
surface gates.30 Finally, the confinement in thex direction is
due to the SAW potential minimum which is approximately
sinusoidal. The SAW amplitude is typically 40 meV,31 which
is sufficiently large to prevent qubits being lost via tunneling
into neighboring SAW minima.

There are two important aspects of the SAW quantum
computation scheme that distinguish it from other similar
quantum dot schemes. First, the scheme provides repetitions
of the same quantum computation with each passing of a
single wavefront of the SAW. Therefore, a statistical time-
ensemble of identical computations can be read out at the
end of the Q1DCs as a measurable current, alleviating the
need for single-electron measurements. Two sources of noise
in the measured current may be estimated as follows: The
shot noise is largely determined by how well the current is
quantized toI =efSAW and precisions of,0.1% can be ex-
perimentally achieved.32 Johnson noise arises from the resis-
tance of the ohmic contacts and the 2DEG which are on the
order of 100–1000V. At temperatures of 1 K they produce a
rms voltage noise spectral density on the order of
10−10 V/ ÎHz at most. This cannot drive a current noise
through the SAW device since its effective intrinsic imped-
ance of 10 MV is comparatively very large. See experimen-
tal papers in Refs. 13–15, 32, and 33 for more detailed dis-
cussions. The second key aspect of the scheme is the static
nature of the gate components of the quantum circuit. This
alleviates the need for strong, targeted and carefully timed
electromagnetic pulses that can be difficult and expensive to
implement. The requirement of such expensive control re-
sources often limit the scalability of most quantum comput-
ing implementations.

It would certainly be convenient, though not essential, to
have a means of preparing a pure fiducial qubit state. In
NMR quantum computing, operations are carried out on en-
sembles of replica qubits which remain close to a highly
mixed state of thermal equilibrium. Nevertheless, a success-
ful readout of the computation is obtained because the sum
over many identical computations provides a measurable sig-
nal. Similarly in the SAW quantum computing scheme, states
close to the maximally mixed state are still useful because of
the time-ensemble nature of the scheme. However, in con-
trast to NMR schemes, it is in principle possible to read out
single electrons in the SAW scheme. We will therefore begin
with nonensemble quantum computation in mind and only
later exploit the advantages of ensemble computation to deal
with noise. Of course, the more pure the qubit states remain,
the faster the computation will converge to the result. For
these reasons, we describe in this paper two simple methods
for preparing pure fiducial qubit states.

In the original proposal for the SAW quantum computer,5

it was noted that the application of an external magnetic field
of about 1 T will influence which spin states of electrons are
favored in the capture process.31 This polarized capture pro-
cess can be summarized as follows. The SAW is strongly
screened in the bulk 2DEG until it is raised above the Fermi
energy and the quantum dot begins to form. When the

FIG. 2. (Color online) Schematic diagram of a quantum gate
network in a SAW quantum computer:(a) two-qubit tunneling
gates;(b) one-qubit magnetic gates(in various orientations); (c)
gate network for quantum computation with SAW electron spins.
Gray lines running horizontally represent Q1DCs; blackened re-
gions indicate the SAW minima where the qubits reside; arrows
represent spin polarization; rings represent magnetic surface gates;
white squares represent readout gates.
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higher-energy minority quantum dot forms for the higher-
energy subband of polarized electrons, the probability of
capturing minority electrons is small(see Fig. 3), while the
probability of capturing electrons from the lower-energy sub-
band is large. Once a cloud of approximately polarized elec-
trons is captured, the exchange interaction will generally en-
tangle electrons in the same dot together, so that the
subsequent loss of electrons into the Fermi sea will lead to a
decoherent process that could relax the remaining electrons
into the low-energy polarized state. A more detailed multi-
particle analysis will be needed to determine the final state of
the remaining single electron, but the combination of the
above two processes is likely to lead to a high level of po-
larization.

The above method is conceptually simple and would be
easy to implement in the laboratory. However, the macro-
scopic magnetic field required in the capture region may
need to be shielded from the rest of the device where the
quantum computation is to be carried out, and this may
present a nontrivial problem. If we chose to drive spin flips
using microwave pulses, then the macroscopic field is in fact
required across the whole device. However, the problem with
using microwaves is their relatively long wavelength, which
tends to affect every part the computation. Alternatively, we
may use local, static magnetic fields to initialize, rotate and
read out single qubits without a global magnetic field. In Sec.
IV, it will be demonstrated that spin-polarized electrons can
be prepared and measured using a gate driven by the Stern–
Gerlach effect. First we turn to the implementation of single
qubit rotations using local static magnetic gates.

III. SINGLE-QUBIT UNITARY GATES

Single-qubit unitary operations may be carried out, in
principle, by allowing the trapped single electrons to pass
through regions of uniform magnetic field. If there is no
spin-orbit coupling effect, the spin state of the qubit will
evolve according to the Zeeman term in the Hamiltonian:

1
2gmBB·sc, whereB is the magnetic field,s is the vector
form of the three Pauli operators andc=sa ,bd is a spinor.
The Bloch vectorn=s−2 Imfab* g ,2 Refab* g , uau2− ubu2d
precesses about the direction of the magnetic field with an-
gular frequencygmBuBu /". A local static magnet may be pro-
duced by a magnetic force microscope or by evaporative
deposition of a ferromagnetic material such as Cobalt, or a
permalloy such as NiFe. Inevitably, different samples will
produce different strengths of magnetic field. But there are
methods to vary the strength and pattern of the field once the
sample has been fabricated. It has been demonstrated that
ferromagnetic properties of thin-film 3D transition metals
can be modified via ion irradiation.34 Another method would
be to use oxidation techniques with the atomic force
microscope.35–37 Only two independent directions of the
B-field are necessary to produce an arbitrary single-qubit ma-
nipulation and we will choose these to be perpendicular to
the direction of the SAW, one aligned with and the other
perpendicular to the 2DEG.

For idealized qubits with no spatial degree of freedom, the
above model for single-qubit rotations is complete. However,
the trapped electron is a charged particle with a spatial dis-
tribution within the dot. The fields couple to both the spatial
and spin degrees of freedom, causing the electron to experi-
ence the Lorentz force as well as spin-precession. It is there-
fore clear that one cannot increase magnetic fields arbitrarily,
since the Lorentz force will upset the confinement properties
of the electron. Nor can the direction of the field be chosen
arbitrarily without consequences for the robustness of the
gate. To address these concerns, we analyze the behavior of
the full spinor field,cssx ,td, under the action of gates oper-
ated by static magnets.

A. Pauli Hamiltonian with uniform magnetic fields

Assuming a uniform magnetic field in the lab frame, we
solve the Pauli equation for the spin field from which the
probability density field and the Bloch vector field can be
obtained.

The qubit is trapped in a net electrostatic potential with
contributions from the Q1DC split gates, the 2DEG confin-
ing potential and the SAW piezoelectric potential. The pa-
rameter regimes we consider allow us to neglect motion out
of the 2DEG plane.67 The net confining potential in thexy
plane is modeled by31

V = VQ1DC+ VSAW = V0
y2

2w2 + Ah1 − cosf2psx/l − ftdgj.

s1d

The Q1DC split gate voltages are such that typicallyV0
,2800 meV. The width of the Q1DCw is typically between
1 and 2mm. The amplitude of the SAW isA,40 meV with
wavelengthl,1 mm and frequencyf ,2.7 GHz.

The appropriate nonrelativistic equation for the two-
component spinor field is the Schrödinger equation with a
Pauli Hamiltonian. For an electron moving in an arbitrary
vector potentialA and potential energyV, the Pauli Hamil-
tonian reads

FIG. 3. (Color online) Energy diagram showing polarized elec-
tron capture by means of Zeeman band splitting in the presence of
a uniform magnetic field: Arrows on electrons indicate spin polar-
izations;Ef is the Fermi energy. The SAW is strongly screened in
the bulk 2DEG below the Fermi energy. As the SAW enters the
Q1DC constriction, the confining potential begins to form. The
probability of capturing spin-down is small at the point the minority
spin-type dot forms(upper curve). In contrast, the probability of
capturing spin-up electrons is high when the majority spin-type dot
forms (lower curve).
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H =
1

2m*
sp̂2 + esp̂ ·Ad + 2eA· p̂ + e2A2d +

1

2
gmBs ·B + V,

s2d

wheree.0 is the electronic charge,g.0.44 is the Landé
g-factor andm* .0.067me is the effective mass in GaAs. By
simulating in the plane of the 2DEG we simplify to a 2+1
dimensional model, with variablessx,y,td. If the particle
were chargeless but with an anomalous magnetic moment,
terms inH that explicitly involvee can be dropped. In such
a case, there is no Lorentz force acting on the particle, the
Schrödinger equation simplifies significantly and there
would be no need to concern ourselves with the spatial be-
havior of the qubit.

Before proceeding further, it is convenient to transform
into the rest frame of the electron moving with the SAW
speedv. We may use simple Galilean transformationsx8=x
−vt , y8=y, t8= t, since the SAW velocity is nonrelativistic.
The potentials in the electron rest frame become, in the har-
monic oscillator approximation,

Asx8,t8d = − bsx8 + vt8d, s3d

Vsx8,y8d = V0
y82

2w2 + AF1 − cosS2px8

l
DG s4d

.
V0

2w2y82 +
A

2
k2x82, s5d

with k=2p /l. A further convenience is to use a system of
natural units such that" , m* , v , e are unity. The units of
length, time and energy become" /m* v=0.640mm,
" /m* v2=0.237 ns andm* v2=2.78meV, respectively. The
natural unit of magnetic field is 1.61mT. Parameters can now
be assigned dimensionless values with respect to the above
units. In the electron rest frame,

−
1

2
¹2c − iFA · ¹ +

1

2
s¹ ·AdGc +

1

2
A2c +

1

2
gmBs ·Bc

+ Vc = i
]

]t
c, s6d

where the primes will subsequently be dropped from the co-
ordinates. We will further simplify the Hamiltonian by adopt-
ing the Coulomb gauge¹ ·A=0.

B. Qubit rotation: Uniform transverse magnetic field

For a magnetic field in they direction in the plane of the
2DEG and transverse to the Q1DC, we model the magnetic
field in the region of the single-qubit gate with a vector po-
tential of the form

Azsxd = − bx, s7d

with Ax=Ay=0. Clearly this does not vanish at infinity, but
we only consider interactions over regions of finite extent.
This potential generates a uniform magnetic field of strength
b in the y direction. With this potential Eq.(6) becomes

−
1

2
¹2c +

1

2
b2sx + td2c +

1

2
gmBbsyc + Vc = i

]

]t
c, s8d

in which the potentialV is given by(5). An effective poten-
tial V+A2/2 can be identified, which resembles a harmonic
oscillator but is time-dependent. Anticipating an analytic so-
lution by separation of variables we apply the ansatz

c±sx,y,td = xsx,tdfnsyde−iEntusyle−isyDEt/2, s9d

wherefn are the harmonic oscillator eigenstates with ener-
gies En=vysn+ 1

2
d, and usyl are the eigenstates ofsy with

eigenvaluessy= ±1. We have introduced the oscillator fre-
quencyvy=ÎV0/w and the Zeeman energy gapDE=gmBb.
The energy eigenstates in they direction are exactly the har-
monic oscillator modes. The wavefunction in thex direction
is time-dependent and it is the solution ofxsx,td to which we
now turn. On substituting(9) into (8), we obtain a PDE for
xsx,td:

− 1
2]x

2x + f 1
2sc0 + c1dx2 + c1xtgx = i]tx, s10d

with c0=Ak2 andc1=b2. Terms which depend only ont have
been dropped, as they merely contribute global, time-
dependent phases that do not affect the dynamics. A Gauss-
ian solution of(10) can be found with a further ansatz:

xsx,td = expff1stdx2 + f2stdx + f3stdg. s11d

This system of time-dependent functions can be determined
self-consistently, assuming a Gaussian groundstate of the
SAW dot with standard widths at t=0. The resulting expres-
sions forf1, f2, f3 are complicated, but by noting a few gen-
eral properties of the solution we can understand all the im-
portant features of the dynamics.f3std takes account of the
normalization but is otherwise of no more interest.f1std and
f2std together describe a groundstate Gaussian wavefunction
evolving in the time-dependent vector potential. The solution
is particularly simple in that it remains Gaussian throughout,
so we will only need to keep track of the position of the
central peakm and the width(standard deviation) d of the
probability distributionuxsx,tdu2:

mstd = −
1

2

Reff2stdg
Reff1stdg

, s12d

dstd = 1
2
Î− Reff1stdg. s13d

The typical energy scales for the SAW electron encountered
in experiment puts the system in the regime wheres!1 and
c1!c0. Expandingf1 and f2 to first order ins andc1/c0, we
obtain the asymptotic behavior for the position of the peak:

mstd → − c0

c0 + c1
t. s14d

From this result we see that the magnetic field introduces a
constant drift velocity of the peak in the −x direction. On
exiting the interaction region, the peak will be off-center
with respect to the SAW dot and the probability distribution
will subsequently oscillate in thex direction, perhaps excit-
ing higher-energy orbital states of the dot. If the charge dis-
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tribution is pulled too far off-center, it is likely to escape the
SAW quantum dot. We could ask how long the electron can
remain in the field before it is dragged a distancel away
from the center of the dot in thex direction:

Tmax.
c0 + c1

2c0
l. s15d

When this is compared with the time required for the Bloch
vector to rotate by some appreciable angle such as ap rota-
tion, we obtain the ratio

Tmax/Tp = gmB
b

k
SAk2 + b2

Ak2 D , s16d

which is about 10 for a 1 T field. Therefore, while it is pos-
sible that higher orbital states are excited as a consequence of
the interaction, there is little danger of the electron escaping
the SAW quantum dot during the operation of the gate. We
now turn to the behavior ofdstd, the width of the Gaussian
wavefunction, which in the limitc1!c0 oscillates according
to the simple expression

dstd =Î Îc0

2sc0 + c1dF1 +
c1

c0
cos2sÎc0 + c1tdG1/2

, s17d

with c0=Ak2 and c1=b2. The frequency of the oscillation
increases with the energy of the dot and is typically much
faster than the Zeeman spin precession frequency, i.e., rate of
precession of the qubit Bloch vector. These results are plot-
ted for a specific case in Fig. 4. The top two plots show the
evolution ofm andd. As the Bloch vector rotates about the
field along they-axis, the Gaussian translates in thex direc-
tion with a rapidly oscillating width. The bottom plot of Fig.
4 shows probability amplitudes of excitation into higher-
energy simple harmonic oscillator(SHO) modes in thex
direction of the quantum dot.

Our conclusions are as follows. In addition to rotating the
Bloch vector as required, the gate has the effect of displacing
the center of the Gaussian wavefunction which will increase
the energy of the bound state by an amount depending on
both the gate time and the field strength. Higher-energy or-
bital states are likely to be excited, which could lead to de-
coherence via spin-orbit couplings or dipole coupling to
phonons and photons. According to Fig. 4, the electron is
almost completely out of the groundstate after ap /2 rotation
of the Bloch vector. In the extreme case after many spin
precessions, the qubit will leave the SAW quantum dot.
However, for quantum computations the gate time need only
be long enough to conduct a single orbit of the Bloch sphere,
in which case the excitation into higher orbital states is neg-
ligible. These observations reveal some important features of
the gate operation that are not revealed by an idealized spin-
only model of the qubit.

C. Qubit rotation: Uniform perpendicular magnetic field

To move the qubit state to an arbitrary point on the Bloch
sphere a second axis of rotation on the Bloch sphere is
needed, and to this end we consider a gate implemented by a
uniform magnetic field in thez direction. This will not be

just a trivial extension of the preceding analysis, since the 3D
rotation symmetry is broken by the motion of the SAW in the
x direction. In practice, they magnetic field may be easier to
fabricate than thez magnetic field, since the latter passes
perpendicularly through the 2DEG structure. It could feasi-
bly be produced by layering oppositely aligned thin-film
magnets just beneath and just above the 2DEG, or by apply-
ing a globalz magnetic field which is shielded in regions
where it is not needed.

A vector potential generating the uniformBz magnetic
field is

Axsyd = − by, s18d

with Ay=Az=0. It should be noted that although the field is
uniform and static in the laboratory frame, the electron sees a
moving uniform field. In the electron rest frame,Ax is time-
independent andz-independent, allowing a Hamiltonian inx

FIG. 4. Gaussian evolution of the probability distribution
uxsx,tdu2 in a constant magnetic fieldBy. The top plot shows peak
positionm and the middle plot shows the widthd. The bottom plot
shows the probability amplitudesuCnu2 of thenth SHO mode in the
x direction: uC1u2 (long dash), uC2u2 (short dash). The plot also
shows 1−uC0u2 (solid). Typical values for the SAW dot are taken:
A=40 meV; l=1.0 mm; magnetic field of 1 T. T=p /gmBb
<0.08 ns is the time taken for ap rotation of the Bloch vector
about they-axis. The initial Gaussian wavefunction was taken to be
the SAW quantum dot groundstatesC0=1d. In the limit c1/c0!1
(weak field), mstd moves approximately linearly anddstd undergoes
bounded oscillations aboutds0d=s/Î2.
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and y only. The chosen gauge facilitates numerical simula-
tions which follow shortly. An effective scalar potential that
is quadratic iny arises from theA2 term in the Hamiltonian
(6). It is interesting to compare the strength of this confining
potential with the Q1DC potential, which is also approxi-
mately quadratic iny:

Energy of A2 term

Energy of Q1DC term
=

b2

V0/w
2 . s19d

With magnetic fields of order 1 T and typical Q1DC ener-
gies, this ratio is of order unity. This means that for the
parameter values being considered the effective scalar poten-
tial arising form theA2 term is comparable to the Q1DC
confinement potential. A stronger field would start to signifi-
cantly deform the shape of the dot. This will not be a prob-
lem as long as the evolution has occurred adiabatically dur-
ing the deformation. However, as we shall discuss in a
moment, the probability of excitation into higher orbital
states due to theBz field is not negligible.

The other interesting term in the Hamiltonian is the asym-
metric coupling −iby]x between thex andy variables. This is
expected to introduce rotational behavior, as we would intu-
itively anticipate some form of Landau orbital motion due to
the Lorentz force.

A Crank–Nicholson38 finite difference algorithm(alternat-
ing direction method) was used to simulate the operation of
the gate. We started with an initial Gaussian groundstate of
the dot with spin stateu↑xl and subjected it to 1 T of mag-
netic field for a duration ofTp/2=p /2gmBb, which is the
gate time required for ap /2 rotation of the Bloch vector
about thez axis. The evolution of the Bloch vector is simple
due to the uniformity of the magnetic field:nxstd
=cossgmBbtd, nystd=sinsgmBbtd, and nzstd=0 All other pa-
rameters were assigned those values given just after Eq.(1).
The result of the simulation is shown in Fig. 5, which shows
time-shots of the probability distribution in the 2DEGsxyd
plane. Losing its initial elliptic contours, the distribution de-
velops two lobes which rotate about its midpoint. The den-
sity at the center increases due to the spatial squeezing from
theA2 term in the Hamiltonian. This clearly shows excitation
into higher-energy orbital states.

Using perturbation theory to second order in the strength
of the field b, with harmonic oscillator modes as the basis,
we found the following facts:(i) To second order of pertur-
bation theory, only the second excited state with SHO quan-
tum numbersnx=ny=1 becomes populated.(ii ) The prob-
ability ratio with respect to the groundstate is

UC11

C00
U2

= b2vx sin2ftsvx + vyd/2g
vysvx + vyd2 , s20d

wherevx andvy are frequencies arising from the harmonic
oscillator approximation.(iii ) The amplitude of the ratio ap-
proaches unity when the field approaches 1 T.(iv) The ratio
of the spin precession frequency to the frequency of theuC11u
oscillation is about 1.6310−5 for typical SAW parameters
[see just after Eq.(1)].

The above model is useful in assessing the robustness of
the qubit and its susceptibility to decoherence due to orbital
motion. Population into this excited state is a problem for
decoherence, since the oscillating charge in the dot couples
via dipole interactions to phonons and other charges outside
the dot. However, provided we have sufficient control of the
gate time, we can use(20) to make the electron exit from the
gate in its groundstate. Otherwise, a gate driven by radiofre-
quency pulses in the presence of a global magnetic field
could provide an alternative means to implement spin rota-
tions about thez axis.

IV. SINGLE-QUBIT INITIALIZATION AND
MEASUREMENTS

In addition to single-qubit rotation gates, we require the
ability to initialize and measure qubits at the beginning and
end of the computation. Spin-polarized electrons can be ob-
tained from injection through a ferromagnetic contact.39,40

There is also a method to polarize spin using nondispersive
phases(Aharonov-Bohm and Rashba) without the need for
ferromagnetic contacts.41 In the field of quantum computing,
a well-known method for achieving readout of solid state
spin qubits is to convert spin information into charge
information6 and subsequently use single-electron transistors

FIG. 5. Contour plots of electron probability density during the
operation of a qubit rotation gate. This is a numerical simulation in
thexy (2DEG) plane of a SAW electron undergoing ap /2 rotation
gate about thez axis, under a uniform magnetic fieldBz of strength
1 T. Snap-shots are shown at the following times(ps): (a) 0, (b)
2.89, (c) 11.6, (d) 20.3, (e) 28.9, (f) 37.6. The initial probability
distribution is a Gaussian groundstate with standard widthssx

=26.0 andsy=20.6. The probability density rotates about thez axis
under the influence of the Lorentz force acting in thexy plane.
Moreover, an effective scalar potential contributed by theA2 term in
the Hamiltonian is quadratic iny, which spatially squeezes the ini-
tial Gaussian distribution into the center of the dot.
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or point contacts to detect charge displacements or Rabi
oscillations.42,43 However, recent theoretical results by Stace
and Barrett44 argue the absence of coherent oscillations in a
continuously measured current noise, contrary to previous
results and assumptions,45,46 and therefore raise concerns
about the measurability of charge oscillations in similar sce-
narios. In any case, it is difficult to apply these methods to
qubits in moving quantum dots. We therefore turn towards a
quite different approach, one which enables the initialization
and readout of SAW electron spin qubits solely with the aid
of nanomagnets and ohmic contacts.5

The readout gate we consider is based on the Stern–
Gerlach effect.47–49In the 1920s Bohr and Pauli asserted that
a Stern–Gerlach measurement on free electrons was
impossible,50,51 using arguments which combined the con-
cept of classical trajectories and the uncertainty principle.
This subsequently led physicists to analyze single-electron
Stern–Gerlach measurements within increasingly more rigor-
ous quantum settings, ultimately ending the debate by show-
ing that the measurement can indeed be done, albeit with
certain caveats.52–54 Thus Stern–Gerlach measurements on
free electrons have been extensively investigated, but little
attention has been given to such measurements on confined
electrons.55 An interesting semiclassical analysis of a Stern–
Gerlach type experiment with conduction electrons has been
reported,56 in which the authors justifiably neglect the Lor-
entz force effects. In contrast, we analyze a single-electron
Stern–Gerlach device, providing a full quantum mechanical
treatment and including all Lorentz force effects.

The electron confinement to low dimensions allows us to
guide the electron through the magnetic field in ways that
enhance the spin measurement and suppress the deleterious
effects of delocalization and the Lorentz force. Surface mag-
nets can be arranged in such a way as to produce a local
magnetic field inhomogeneity. For example, two north poles
placed on either side of the Q1DC will produce a region of
intense magnetic field gradient in between(see Fig. 6). Via
the Zeeman interaction term~s ·B in the Pauli Hamiltonian,

the field inhomogeneity has the effect of correlating the spa-
tial location of a wavepacket to its spin state.57 In most situ-
ations it is necessary to continue confining the qubit during
the operation of the gate, because the spreading time68 for a
free Gaussian wavefunction is comparatively short—on the
order of 1 ns. But the gate must cause a wavepacket splitting
in order for the spin states to be resolved, hence the Q1DC
must relax to allow for motion in they direction. This is
achieved by patterning the Q1DC in a funnel shape, with an
opening angleu (see Fig. 6), such that in the electron rest
frame the potential looks like

VQ1DC= V0y
2/2fw + tansudustdtg2, s21d

whereustd is the step function:ust,0d=0 andustù0d=1. A
negatively biased surface gate placed on thex axis can be
used to guide the electron into the channels. If necessary,
both the position of the electrode and the opening angleu
could be optimized for a particular sample device under low-
temperature and high-vacuum conditions by erasable electro-
static lithography.58 We will study the quality of the readout
obtained from the gate for two different magnetic field con-
figurations, both sufficiently simple so as to be realizable in
the near future: the linearly inhomogeneous field and the 2D
dipole field.

A. Stern–Gerlach gate using a linearly inhomogeneous field

In the first model we will analyze a simple, unidirectional
and linearly inhomogeneous field pointing in they direction:

By = − by, s22d

with Bx=Bz=0. A wedge-shaped single domain surface mag-
net of appropriate dimensions can produce an inhomoge-
neous magnetic field of this form near its center of symme-
try. A vector potential for this field isAx=−byz, with Ay
=Az=0. This field exerts a spin-dependent force in they
direction and it is the simplest field that induces the Stern–
Gerlach effect. Although az dependence enters into the vec-
tor potential, by considering motion only in thez=0 2DEG
plane we may avoid contributions from terms involvingA in
the Hamiltonian, as well as thez component of magnetic
field. The absence ofx in the potential immediately allows us
to write down harmonic oscillator modes for thex depen-
dence. The remainingsy,td dependent part obeys

− 1
2¹2csy,td − 1

2gmBbsyycsy,td + VQ1DCsy,tdcsy,td

= i]tcsy,td, s23d

wheresy is the eigenvalue ±1 of the spinorusyl, andVQ1DC is
given by(21). The initial state is again the Gaussian ground
state of the Q1DC. A solution to(23) is obtained by a time-
dependent Gaussian ansatz(11)

csy,td = expff1stdy2 + f2stdy + f3stdg. s24d

In a similar way as before, we solve the system of coupled
ordinary differential equations and derive the time depen-
dence of the standard deviationdstd and the positionmstd of
the probability distribution.

Let c0=V0/w2 and c1=gmBbsy. The width of the initial
Gaussian groundstate wavefunction iss=c0

−1/4. The behavior

FIG. 6. Schematic diagram of the spin readout/polarizing device
based on the Stern–Gerlach effect: SAW propagates from left to
right transporting a single electron in a moving quantum dot. Q1DC
relaxes with a gradient tansud to partially delocalize the particle
during the gate operation;C↑sC↓d labels the Q1DC receiving elec-
tron flux in the spin up(down) state of thesy operator. Magnets(of
any geometry and polarity) need to produce a localized, inhomoge-
neous distribution of magnetic field.
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of the Gaussian solution is then characterized by its widthd
and peak positionµ,

dstd2 =
t

2gÎc0

f− 4c0 + a2 coshsÎg lnstd/ad

− aÎg sinhsÎg lnstd/adg, s25d

mstd =
Îtc1

2s2a2 + c0dFt3/2 − coshsÎg lnstd/ad

−
3a

Îg
sinhsÎg lnstd/adG , s26d

where we have introduced ancillary variablesa=tansud /w,
g=a2−4c0 andt=1+at. The parameterg is useful in deter-
mining when the trigonometric functions become oscillatory.
If the angleu is critical such that tansud=2ÎV0, then g=0
and the width has an especially simple behavior:

dstd2 =
t

a
F1 − ln t +

1

2
sln td2G . s27d

For a weak magnetic field such thatc0@c1@a,

dstd =Î t

2Îc0

= ds0dÎ1 + tansud
t

w
, s28d

mstd =
c1

2c0
Ft2 − Ît cosSÎc0

a
lntDG . s29d

The width increases as,Ît and the position moves as,t2 as
expected. We may comparedstd with the dispersion of a
Gaussian in free space

dstd =Îds0d2 +
t2

4ds0d2 , s30d

which is linear in t at large times. The broadening of the
width is suppressed due to the confinement potentials. The
effect of the Stern–Gerlach gate can be pictured as follows.
Consider a qubit in the stateu↑yl entering the gate. The
Q1DC broadens as the qubit enters the field, allowing the
Stern–Gerlach effect to produce a spin-dependent shift in the
center of mass towards the channelC↑. However, the initial
localized distribution will delocalize due to the Q1DC broad-
ening, allowing a small current to be detected in the wrong
channelC↓. Thus this gate is a spin polarizing filter with
some intrinsic error rate which is independent of decoher-
ence effects, shot noise and Johnson noise. It remains for us
to judge how well it performs, and to this end we introduce a
fidelity measure of the gate.

B. Fidelity of the Stern–Gerlach gate with linearly
inhomogeneous field

As an input to the Stern–Gerlach gate, we consider a den-
sity matrix of the form

rsy,y8d = gsydgsy8d * ^ s, s31d

wheregsyd is the Gaussian groundstate of the dot ands is
the initial spin density matrix. In the inhomogeneous field
the spatial degrees of freedom couple to the spin degrees of
freedom, leading to

rsy,y8,td = o
s,s8=↑,↓

gssy,tdgs8sy8,td * sss8uslks8u. s32d

After a gate timet, we post-select the state in, say, theC↑
channel and renormalize:

r̃sy,y8,td =
1

Nstdo
s,s8

sss8uslks8u E dzdz8 E↑sy,zdgssz,td

3gs8sz8,td * E↑sz8,y8d. s33d

The probability yield in the channel is the normalizationNstd
of the postselected state. The simplest projection kernel pro-
jecting into the support ofC↑ is E↑sy,y8d=dsy−y8dusyd,
where usyd is the step-function defined in(21). We finally
define our fidelity as

F↑ =E dy k↑ ur̃sy,y,tdu↑l s34d

=
s↑↑
NstdE0

`

ug↑sy,tdu2 dy. s35d

The yieldNstd can be calculated without explicit knowledge
of g↓, since the Gaussian solutions are related by reflection
symmetry: g↑sy,td=g↓s−y,td. We choose various magnetic
field gradients ranging from 0.1 to 100 Tmm−1 and plot the
output fidelity of a maximally mixed input state as a function
of the Q1DC angleu and the gate timet (see Fig. 7). Perfect
spin filtering corresponds to a fidelityF=1, and the worst-
case fidelity isF= 1

2. The density plots show how the optimal
parameter regions increase with larger magnetic field gradi-
ents. This model is useful in determining the appropriate gate
geometry and field gradients required to achieve good fideli-
ties.

The technology of nanoscale single domain magnets is
not yet capable of producing large fields in arbitrary configu-
rations. The above linearly inhomogeneous magnetic field is
therefore a simple approximation to the real magnetic field
configuration on any particular device. In the next subsection
we consider the effect of a different(perhaps more realistic)
field configuration, namely, the field near one of the poles of
a dipole magnet.

C. Stern–Gerlach gate with dipole field

In this subsection we study the quality of the readout ob-
tained from a Stern–Gerlach type gate driven by a simple 2D
dipole field lying in the 2DEG plane, as shown in Fig. 8. In
the Appendix, we derive the magnetic vector potential

FURUTA, BARNES, AND DORAN PHYSICAL REVIEW B70, 205320(2004)

205320-8



Az =
bx

x2 + sy − dd2 , s36d

whereb is a strength parameter andd is the distance of the
2D dipole from the Q1DC.

Figure 8 shows that the gradient of the field in they
direction reverses direction at two points,x= ±d. In order to
prevent the moving qubit from experiencing opposite field
gradients, we will restrict the gate time toT=2d so that the
qubit moves in the region −T/2,x,T/2 in the laboratory
frame. The question of how we are to shield the extraneous
field from the qubit does not have a simple solution. It has
been suggested that a superconducting material such as Nio-
bium could be used to shield the magnetic field where it is
not needed.5

The results of a 1D simulation of the wavefunction along
the x=z=0 direction are shown in Fig. 9. The numerical
method used was a Crank–Nicholson algorithm adapted to
the Pauli equation. The plot shows three time-shots of the
probability densityucsyd2u, normalized to peak. The initial

state is a Gaussian groundstate with spin stateu↑yl. The simu-
lation shows no significant spatial displacement of the elec-
tron density in they directions, in contrast to the behavior
exhibited under the linearly inhomogeneous field[cf. Eq.
(26)]. This is partially due to the effect of the Lorentz force
generated by theA2 term in the Hamiltonian, which contrib-
utes an effective potential that is highly confining in they
direction. TheA2 confinement is so strong that the Q1DC
opening angleu becomes irrelevant. Bohr and Pauli’s claim
that the Lorentz force washes out the Stern–Gerlach effect is
upheld in this particular scenario.

Another source of problems for this field configuration is
that theu↑yl, u↓yl states are not eigenstates of the field as they
were with the linearly inhomogeneous field. Figure 10 shows
the evolution of the Bloch vector in a spin-only model of the
electron spin qubit. It demonstrates how the Bloch vector
begins precessing about thex component of the magnetic
field, causing the Stern–Gerlach force to act in different di-
rections. Although careful timing of the gate and possible
compensation mechanisms could be put in place, this gate is
essentially not robust. We draw the conclusion that in param-

FIG. 7. FidelityF↑ in the C↑ channel for a Stern–Gerlach gate
operated by a linearly inhomogeneous and unidirectional magnetic
field in the y direction. White regions⇒F↑=1. u is the angle be-
tween the Q1DC and SAW direction.t is the gate time. Input state
is a maximally mixed spin state in the groundstate of the SAW
quantum dot. Various magnetic field gradients have been chosen to
show the increase in the optimal parameter region(white) in the
st ,ud plane with increasing field gradient.tmax<100 ns is a crude
order of magnitude estimate for the GaAs spin relaxation lifetime.

FIG. 8. Vector field plot in thexy (2DEG) plane showing the
magnetic field due to an infinite string of dipole moments running
parallel to thez axis at a distanced from the Q1DC.

FIG. 9. Three time-shots(see legend) showing the spatial elec-
tron probability density(normalized to peak). y is the direction
transverse to the Q1DC. This is a Stern–Gerlach type readout gate
using the 2D dipole field(1 Tmm−1 at x=y=0) shown in Fig. 8.
Initial condition is a Gaussian wavepacket with spinu↑yl. Sideways
translation of the probability density is suppressed due to both the
strongly confining effective potential arising from theA2 term and
the precessional motion of the Bloch vector in the non-
unidirectional field.

FIG. 10. (Color online) Evolution of the Bloch vector in a 2D
dipole field (1 Tmm−1 at x=y=0): ksxl (long-short dash), ksyl
(solid), kszl (short dash). Time t=0 corresponds to the starting point
x=−d (see Fig. 8). We have used a spin-only model of the electron
spin qubit to illustrate spin precession in the non-unidirectional
field. The Bloch vector changes direction rapidly, which in turn
causes the Stern–Gerlach force to fluctuate during the operation of
the gate.
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eter regimes relevant to single-electron transport by SAW in
GaAs, a field of this type will not be suitable for a Stern–
Gerlach measurement gate, and that field unidirectionality is
generally an important requirement for quantum gates driven
by static magnetic fields.

V. DECOHERENCE EFFECTS

The major effects of decoherence on this SAW quantum
computing system have already been considered qualita-
tively in the original proposal and subsequent papers,5,31 and
more specifically by a number of authors. These effects in-
clude the following: The interaction of the electron qubit
with other electrons in the 2DEG, surface gates, and donor
impurities,31,59the coupling of qubits to phonons,60,61nuclear
spins7 and radio-frequency photons.62

The models we have presented here give rise to behavior
which was previously neglected in the original proposal for
the quantum computation scheme.5 They allow us to predict
the contribution to decoherence from excitation into higher
orbital states and give their probabilities of occupation.

Any potential decoherence due to tunneling between
neighboring dots is negligible, and if needed the spatial sepa-
ration of qubits can be increased by either introducing higher
harmonics of the SAW fundamental frequency or by active
gating at the entrance to each Q1DC. A major source of error
is the current fluctuations in the quantized single-electron
SAW current. In recent experiments,32,33errors in the current
quantization(including shot and Johnson noise) of less than
0.1% were observed.

The relevant decoherence timescales that underpin our
proposals is the spin lifetime(T1 andT2) of single electrons
in quantum dots. Forn-type bulk semiconductors,T1 spin
lifetimes in GaAs of 100 ns have been reported, which gives
a very crude ball-park figure.63 An estimate that is more
relevant to the SAW electron system is the spin relaxation
lifetime of a few nanoseconds, which was obtained from
spin-resolved microphotoluminescence spectroscopy mea-
surements on photoexcited electrons.64 However, this is the
worst-case scenario because the method of electron capture
we propose5 produces a conduction-band hole that is more
extended, short-lived and mixed than the photoexcited hole.
Indeed, recent experiments on static GaAs quantum dots re-
port a lower bound onT1 as long as 50ms,65 which makes an
estimate of 100 ns for theT1 lifetime of SAW electrons quite
reasonable in the light of current technology.

VI. SUMMARY

We have analyzed in detail a proposal5 for implementing
quantum computation on electron spin qubits trapped in
SAW-Q1DC electrostatically defined dots, using only static
magnetic gates to perform single-qubit initializations, rota-
tions and readouts. Applying the full Pauli Hamiltonian, we
described the quantum dynamics of both the spin and orbital
states of the qubit for various parameter regimes relevant in
SAW single-electron transport experiments. In the analysis
of single-qubit unitary operations with localized uniform
magnetic fields, we showed that the effect of the Lorentz

force puts limits on field strengths and gate times. Moreover,
simulations showed that field directions normal to the 2DEG
excite rotational states in the dot. Probabilities of excitation
into higher-energy orbitals were given. In terms of feasibil-
ity, the models indicate that a field strength of about 80 mT
will be sufficient to conduct ap rotation in about 1 ns, with-
out compromising the confinement properties of the trapped
qubit. SinceT1 spin lifetimes of microseconds have been
reported,65 it is feasible for hundreds of single-qubit gates to
operate before all coherence is lost in the computation.

We also studied a device for single-qubit measurement
and initialization based on the Stern–Gerlach effect. The
problematic Lorentz force can be partly suppressed by virtue
of the geometry of the 2DEG system, and for a unidirec-
tional, linearly inhomogeneous field, the correlation between
the spin states and spatial location of the qubit leads to a
good quantum measurement of its spin. For a 2D dipole
field, the vector potential has a deleterious effect. Namely, it
contributes an effective confining potential via theA2 term in
the Pauli Hamiltonian which suppresses the transverse mo-
tion in they direction. Furthermore, the component of mag-
netic field in thex direction causes the Bloch vector to rotate
in undesired directions. The latter problem could be over-
come by using unitary gates prior to the Stern–Gerlach gate
to correct any spurious rotations, but it is unlikely that such a
finely tuned arrangement can be made robust. Magnetic
fields that are good approximations to a unidirectional and
linearly inhomogeneous field can provide a source of polar-
ized electron qubit states in channelsC↑ and C↓ with high
yield. The very same gate can be used to measure the ratio
uau2/ ubu2 for an input qubit stateucl=au↑yl+bu↓yl. The ad-
vantages of this readout method are that the averaging time
of the measured current can be made long enough to render
most noise sources(e.g., shot noise, input-referred noise of
the current pre-amp) unimportant, and that missing electrons
from SAW minima do not contribute any error since we are
measuring the ratio of currents out of the two channels. Field
gradients in the range 0.1–100 Tmm−1 lead to gate times that
are easily within the range ofT1 spin lifetimes in GaAs.
These parameter regimes will need to be probed by experi-
ment if we are to make progress towards feasible quantum
computation with nanomagnets in the SAW quantum com-
puter.
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APPENDIX: DERIVATION OF THE 2D DIPOLE FIELD
VECTOR POTENTIAL

We adopt cylindrical coordinatessr ,f ,yd about they axis,
with r =Îx2+z2. We consider the field due to an infinite string
of dipoles passing parallel to thez axis throughy=d as
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shown in Fig. 8. The resulting magnetic field has planar sym-
metry with respect to thexy (2DEG) plane. The Q1DC runs
along thex axis. A vector potential for this field can be con-
structed as follows. A magnetic dipole aty=z=0 pointing in
the +y direction has a vector potential66

Af8 sr,yd =
m0mBdz

4p

r

sr2 + y2d3/2, sA1d

where Ar8=Ay8=0 and mB is the dipole moment per unit
length in thez direction. We now displace this potential byd

in the y direction and integrate over allz, obtaining

Az =
bx

x2 + sy − dd2 , sA2d

with Ax=Ay=0 and strength parameterb=m0mB8 /2p. The
magnetic field can be derived by applying the curl in cylin-
drical coordinates:Br =−r−1]ysrAfd andBy=r−1]rsrAfd. Fig-
ure 8 shows the vector field plot of the resulting magnetic
field, which falls off asr−2 for large r.
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