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We present a detailed analysis of spin-orbit couplings in zinc-blende narrow-gap parabolic quantum dots
built in the plane of a two-dimensional electron gas. Such couplings are related to both bulk(Dresselhaus) and
surface(Rashba) inversion asymmetry terms in the Hamiltonian of the system. We start by focusing on how the
pure Fock-Darwin spectrum of an InSb quantum dot is modified by the addition of separate terms of spin-orbit
coupling; we then deal with the presence of all spin-orbit terms in the numerical diagonalization of the
single-particle model. We also consider a two-electron quantum dot—by antisymmetrizing the one-electron
basis—and study the competition between electron-electron and spin-orbit interactions. All these effects are
analyzed in the presence of a magnetic field perpendicular to the quantum dot. Selection rules for spin-orbit-
induced level anticrossings, as well as critical fields and energy minigaps related to them, zero-field energy
splittings, and the role of theg-factor on the spectrum are also addressed.
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I. INTRODUCTION

The creation and manipulation of spin populations in
semiconductor nanostructures1 has been receiving growing
attention, mainly because of the Datta-Das proposal2 for a
spin field-effect transistor, whose working is based on the
Rashba spin-orbit(SO) coupling of the electrons in a two-
dimensional electron gas(2DEG). Such a device has practi-
cally given origin to spintronics research,3–5 where not only
the charge of electron but also its spin is able to transport
information; recently, the inclusion of the Dresselhaus SO
coupling in this dispositive has been proposed as an alterna-
tive to its original concept.6 Another reason for the growing
interest in spintronics is the possibility of building quantum
computation devices, whose working is based on a coherent
superposition of states in a two-level system by using, for
example, quantum dots(QDs).7–9 For those reasons, a clear
understanding of spin relaxation mechanisms10–13 caused,
among others, by SO effects, is essential. Studies about the
distinct SO couplings are carried out, for example, in quan-
tum wells in Refs. 14 and 15, in heterostructures in Refs. 16
and 17, and in zinc-blende nanocrystals in Ref. 18. In this
work, we are interested in the SO effects induced in the
Fock-Darwin (FD) spectrum of parabolic zinc-blende
narrow-gap QDs defined in a 2DEG.

In zinc-blende structures, the implicit bulk inversion
asymmetry(BIA ) induces a SO coupling in the electronic
states of the material known as the Dresselhaus effect,19

which is cubic in the electronic momentumk. If a confine-
ment potential is applied to the structure so that a 2DEG is
formed in the plane perpendicular to the confinement, the
resulting bidimensional system also acquires a surface inver-
sion asymmetry(SIA), which imposes another SO coupling
in the structure known as the Rashba effect,20 which is linear
in k. Under this two-dimensional confinement, the BIA
mechanism produces another contribution that is linear ink.
Notice also that further lateral confinement to define the QD
produces anotherk-linear SIA coupling, which affects the

electronic structure of the system. We will show how these
four possible SO terms are derived; two other possible terms
vanish, as we will see.

In wide-gap QDs like GaAs, a unitary transformation21–25

has been used in the full SO Hamiltonian. It yields, in a
perturbative fashion,26 only an effective diagonal SO term so
that no state mixture—or level anticrossing(AC)—is ob-
served in the QD spectrum. This approach is justifiable for
wide-gap materials such as GaAs, since their SO couplings
are small. However, in narrow-gap material QDs like InSb,
where both BIA and SIA effects are stronger,27 the treatment
of the original full SO Hamiltonian is required. Here we
consider a numerical diagonalization for both one- and two-
particle QD problems. Among some of the few works that
have dealt with narrow-gap nanostructures, Refs. 28–30, re-
spectively, study spectroscopic properties, magneto-optical
properties, and conduction band nonparabolicity effects of
InSb QDs. Experiments in this material have explored the
far-infrared response in lithographically defined dots,30 as
well as photoluminescence features in self-assembled dots.31

However, Refs. 32 and 33, which deal with SO effects in the
spectrum of InSb QDs, have a closer relationship with our
work; the former takes into account both SIA terms due to
the perpendicular and lateral confinements, where clear level
ACs are visible in the spectrum, while the latter considers
only the SIA term related to the lateral confinement, and no
AC is observed in the spectrum.

We analyze in this work the role of each SO term in the
definition of the electronic properties of narrow-gap QDs.
For example, we will see which SO terms are able to induce
ACs in the spectrum at given magnetic fields, where a strong
and intrinsic(no phonon-assisted) spin mixing, and conse-
quently intense SO-induced spin-flip relaxation processes are
present. Other features related to ranges of critical magnetic
fields, QD vertical and lateral sizes,g-factor, zero-field en-
ergy splittings and their possible cancellation by tuning SO
terms, energy minigaps opened at the ACs, electron-electron
interaction, and ground state singlet-triplet mixture for a two-
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electron QD are also detailed. We find that the Rashba term
is the one responsible for inducing level ACs, and the critical
fields where they occur are shifted by the linear Dresselhaus
term; the cubic BIA term becomes visible only at higher
interfacial electric fields, when cancellation of linear BIA
and SIA terms also occurs. For the two-electron problem, a
singlet-triplet AC involving the QD ground state is observed,
and the SO coupling is shown to act against(in favor of) the
direct (exchange) Coulomb interaction.

The paper is organized as follows: Sec. II describes the
theoretical approach embodying all the terms present in the
full Hamiltonian; Sec. III explores the selection rules of each
SO term, the critical field for the lowest energy(anti)cross-
ing, and an important feature of theg-factor sign; Sec. IV
shows the results for a one-electron QD, where an initial
study is done separately for the influence of each SO term in
the FD spectrum, and only then analysis of the simultaneous
addition of all SO terms is done for different parameters
defining the QD; Sec. V shows the results for a two-electron
QD, where states are constructed by antisymmetrizing the
FD basis, by looking at the competition between SO and
electron-electron energies and also by discussing the mixture
involving its ground state; at last, in Sec. VI we include our
main conclusions.

II. THEORETICAL METHOD

A. Fock-Darwin spectrum

We assume the perpendicular confinementVszd, which de-
fines the 2DEG where the QD is built, to be strong enough so
that the electronic states are completely localized in the first
conduction subband of the system(a quantum well or a het-
erojunction); for example, in a triangular well,Vszd=−eE0z,
E0 being the interfacial electric field. We consider also that
the magnetic field is applied perpendicularly to the 2DEG
plane,B=B0s0,0,1d. We assume further that the lateral con-
finement Vsrd defining the QD is parabolic; that is,Vsrd
=mv0

2r2/2, wherem sv0d is the electronic effective mass
(confinement frequency). In the absence of SO interactions,
the Hamiltonian for the cylindrical QD so built is

H0 =
"2

2m
k2 +

mv0
2

2
r2 +

gmB

2
B · s, s1d

where k =−i ¹ +eA / s"cd, A =B0rs−sinf ,cosf ,0d /2 is the
vector potential in the symmetric gauge,mB=e" / s2m0cd is
the Bohr magneton,g is the material bulkg-factor, ands
stands for the Pauli matrices. The analytical solution ofH0
yields the well-known Fock-Darwin spectrum,34–36

EnlsZ
= s2n + ul u + 1d"V +

l

2
"vc + gmBB0

sZ

2
, s2d

where sZ= ±1; n=0,1,2, . . . andl =0, ±1, ±2, . . . are, re-
spectively, the radial and azimuthal quantum numbers;vc

=eB0/ smcd and V=Îv0
2+vc

2/4 are, respectively, the cyclo-
tron and effective frequencies of the system, and the QD
typical length scales arel0=Î" / smv0d, lB=Î" / smvcd, and
l=Î" / smVd, which refer, respectively, to the confinement,

magnetic, and effective sizes of the system. The eigenfunc-
tions of H0 are given by

CnlsZ
sx,f,sZd =

1
Î2p

Rnul usxdeilfxsZ
, s3d

wherex=r /l, xsZ
is the spin eigenfunction, and the radial

functions

Rnul usxd =Î 2n!

l2sn + ul ud!
xul ue−x2/2Ln

ul usx2d s4d

are given in terms of the associated Laguerre polynomials
Ln

ul u.37 It is interesting to rewriteH0 in units of "V, as

H0

"V
= −

1

2x

]

]x
Sx

]

]x
D +

LZ
2

2x2 +
x2

2
+

vc

2V
SLZ +

gm̃

2
sZD ,

s5d

wherem̃=m/m0 andLZ=−i] /]f is thez-orbital angular mo-
mentum.

B. Rashba effect

Because of the surface inversion asymmetry originated
from the perpendicular confinement defining the 2DEG, as
well as the lateral confinement defining the QD, the SIA SO
coupling must be added toH0 for a correct description of the
problem. Its usual Hamiltonian is

HSIA= as · s¹V 3 kd, s6d

where Vsr d=Vsrd+Vszd is the total confinement potential
anda is the SO coupling parameter. After averaging over the
quantizedz direction, this SO coupling can be decomposed
asHSIA=HR+HSIA

D +HK, where

HK

"V
= i

a

l0
2

v0

V
xlkkzlss+L− − s−L+d s7d

is zero becausekkzl=0,

HSIA
D

"V
=

a

l0
2

v0

V
sZSLZ +

vc

V

x2

2
D s8d

is the spin-diagonal contribution due to the lateral confine-
ment, and

HR

"V
= −

1

"V

a

l

dV

dz
fs+L−A− + s−L+A+g s9d

is the well-known Rashba20 term induced by the perpendicu-
lar confinement. In these equations,L±=e±if, s±
=ssX± isYd /2, and

A± = 7
]

]x
+

LZ

x
+

vc

2V
x. s10d

Notice that both nonzero terms are written in units of"V, are
linear ink and, in principle, are tunable:HSIA

D depends on the
confinement frequencyv0, while HR depends on the interfa-
cial field dV/dz (in a triangular well, for example,dV/dz
=−eE0).
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It is interesting to mention that if the total HamiltonianH
of the problem was only the sum ofH0+HSIA

D , it would have
an analytical solution.33 Its spectrum would be the same as
given in Eq. (2), with the substitution V by VsZ

=Îv0
2+vc

2/4+sZsa / l0
2dv0vc, and the added contribution

sZlsa / l0
2d"v0 to that equation. Its radial functions would be

the same as given in Eq.(4), with l substituted bylsZ

=Î" / smVsZ
d, changing also thex variable to r /lsZ

. The
inclusion ofHR makesH a nondiagonal operator.

C. Dresselhaus effect

If the QD is built in a zinc-blende crystalline structure
material, its implicit lack of bulk inversion symmetry gives
origin to the so-called Dresselhaus19 SO coupling, or BIA
term, which must also be added toH0 in order to get an
appropriate description of the system. The bulk BIA Hamil-
tonian is

HBIA = gfsXkxsky
2 − kz

2d + sYkyskz
2 − kx

2d + sZkzskx
2 − ky

2dg,

s11d

whereg is the SO coupling parameter. After thez quantiza-
tion defining the 2DEG in thexy plane,HBIA can be sepa-
rated asHBIA=HD

L +HD
Q+HD

C, where HD
L =gkkz

2lfsYky−sXkxg
is linear in k, HD

Q=gsZkkzlskx
2−ky

2d is quadratic ink, and
HD

C=gfsXkxky
2−sYkykx

2g is cubic ink. One can notice that the
quadratic(spin diagonal) term can be written as

HD
Q

"V
=

1

"V

gkkzl
l2 sZfL+

2B+ + L−
2B−g, s12d

where we have defined

B± = S−
]

]x
+

1 ± 2LZ

x
±

vc

V
xD1

2

]

]x

− S±2 + LZ

x2 +
vc

V
DLZ

2
−

vc
2

8V2x2. s13d

This term corresponds to a mass renormalization in the
2DEG plane, which would then become spin dependent and
would be different inx and y directions; however, such a

term vanishes sincekkzl=0. The linear contribution can be
written as

HD
L

"V
= −

i

"V

gkkz
2l

l
fs+L+A+ − s−L−A−g, s14d

wherekkz
2l=sp /z0d2 if an infinite well defines the 2DEG,z0

being the typical length scale in thez direction. As for the
cubic contribution, after some algebra,38,39 it can be ex-
pressed as

HD
C

"V
=

i

"V

g

l3Hs−L+
3FA1 +

vc

V
B1 +

vc
2

V2C1 +
vc

3

V3D1G
+ s+L−

3FA2 +
vc

V
B2 +

vc
2

V2C2 +
vc

3

V3D2G
+ s−L−FA3 +

vc

V
B3 +

vc
2

V2C3 +
vc

3

V3D3G
+ s+L+FA4 +

vc

V
B4 +

vc
2

V2C4 +
vc

3

V3D4GJ , s15d

where the abbreviations

Ai = Ai1
]3

]x3 + Ai2
1

x

]2

]x2 + Ai3
1

x2

]

]x
+ Ai4

1

x3 ,

Bi = Bi1x
]2

]x2 + Bi2
]

]x
+ Bi3

1

x
,

Ci = Ci1x
2 ]

]x
+ Ci2x,

Di = Di1x
3, s16d

with i =1,2,3,4, areintroduced, and are given in Table I.
One must point out that in a magnetic field the matrix

elements ofHD
C are not Hermitian, so that the usual symme-

trization procedure is required;13,40at zero field, such a prob-
lem does not occur.18 Notice that alsoHD

L can, in principle,
be varied by changing the sizez0, and that both nonzero BIA
terms are written in units of"V.41

TABLE I. All of the terms present in the expression for the cubic Dresselhaus SO contribution, Eq.(16).

Term i =1 i =2 i =3 i =4

Ai1 −1
4 −1

4
1
4

1
4

Ai2
3
4s1+LZd 3

4s1−LZd 1
4s1+LZd 1

4s1−LZd
Ai3 −1

4s3+5LZ+3LZ
2d −1

4s3−5LZ+3LZ
2d −1

4s1+3LZ+LZ
2d −1

4s1−3LZ+LZ
2d

Ai4
1
4s8LZ+4LZ

2+LZ
3d 1

4s−8LZ+4LZ
2−LZ

3d 1
4s4LZ

2−LZ
3d 1

4s4LZ
2+LZ

3d
Bi1

3
8 −3

8
1
8 −1

8

Bi2 −3
8s1+2LZd −3

8s−1+2LZd −1
8s5+2LZd −1

8s−5+2LZd
Bi3

3
8s2LZ+LZ

2d 3
8s2LZ−LZ

2d −3
8s2LZ+LZ

2d −3
8s2LZ−LZ

2d
Ci1 − 3

16 − 3
16 − 1

16 − 1
16

Ci2
3
16LZ − 3

16LZ − 1
16s8+3LZd − 1

16s8−3LZd
Di1

1
32 − 1

32 − 1
32

1
32
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D. Electron-electron interaction and total Hamiltonian

For the inclusion of the Coulomb interaction in the QD,
we expand the quantityur 1−r 2u−1 in the HamiltonianHee
=e2/ s«ur 1−r 2ud in terms of Bessel functions37 Jp; this yields,
in units of "V,

Hee

"V
=

l

aB
o

p=−`

`

eipsf1−f2dE
0

`

djJpsjx1dJpsjx2de−jz0/l, s17d

where « is the material dielectric constant andaB
=«"2/ sme2d is the effective Bohr radius in the material. The
two-particle states are properly antisymmetrized in the con-
struction of Slater determinants based on the one-particle
functions of Eq.(3), so that both direct and exchange Cou-
lomb contributions are included; such states may be labeled
by the projections of the orbitalsMLd and spinsMSd total
angular momenta. Even though thep-sum in Eq.(17) is in-
finite, in practice, when one makes the angular integration of
an element likekMLMSuHeeuML8MS8l, which involves calcula-
tions ofkCis1dC js2duHeeuCks1dCls2dl, one has only one non-
zero p contribution obeyingdl i+l j,lk+l l

. Therefore, the Cou-
lomb matrix elements must satisfydML,ML8

as expected,42 and
certainly they also satisfydMS,MS8

, since the Coulomb interac-
tion is not spin dependent.

After separately exposing Eqs.(5), (8), (9), (14), (15), and
(17), all Hamiltonians must be taken into account in the full
diagonalization of the system, so that the QD total one-
particle HamiltonianH is given by

H = H0 + HSIA
D + HR + HD

L + HD
C; s18d

when an interacting two-particle QD is studied, its total

HamiltonianH̃ will then be given by

H̃ = o
i=1

2

H + Hee. s19d

III. SELECTION RULES, CRITICAL FIELD, AND
g-FACTOR SIGN

Before showing spectra of parabolic QDs under the influ-
ence of SO coupling, the way in which Eqs.(5), (8), (9),
(14), (15), and(17) were written allows us to anticipate some
general features of the SO influence on the system. The se-
lection rules describe which levels will cross or anticross at a
given magnetic field. Notice immediately thatHSIA

D , HR, and
HD

L have only linear dependence on the magnetic fieldB0,
while HD

C has linear, quadratic, and cubic contributions on
B0.

The various Hamiltonian terms yield explicit selection
rules dictating which levelshn, l ,sZj of H0 will be influenced
by the distinct SO effects. At zero field and due to thesZLZ
term, HSIA

D splits the FD spectrum according to the total
z-angular momentum,j = l +sZ/2. At a finite field, HR in-
duces a set of ACs in the FD spectrum wheneverDl = ±1
=−DsZ/2; due to thes±L7 terms, mostly negativel ’s are
affected since their magnetic dispersions allow for crossings,

and the lowest AC occurs between the levelsh0,0,−1j and
h0,−1, +1j at a given critical fieldBC. In addition, at a finite
field and via thes7L±

3 terms,HD
C is able to induce sets of

ACs in levels whereDl = 73 andDsZ/2= ±1, the first(sec-
ond) one at low energies involving the levels:h0,1,−1j and
h0,−2, +1j (h0,0,−1j and h0,−3, +1j). The termss±L± in
both HD

L and HD
C do not induce ACs at low energies, but

rather split and shift the FD spectrum due to matrix elements
whereDl = ±1=DsZ/2. Notice that matrix elements between
states with differentn’s are in general nonzero, so that the
full diagonalization involves mixings with variousn values.

The pureH0 spectrum at zero field has three lowest en-
ergy shells that contain, in increasing energy, the states:
h0,0, ±1j; h0,−1, ±1j andh0,1, ±1j; h0,−2, ±1j, h1,0, ±1j,
and h0,2, ±1j. Inclusion of SO couplings produces the first
shell to havej =1/2, while the second(third) shell is subdi-
vided in j =1/2 and 3/2(j =1/2, 3/2, and 5/2). A finite
magnetic field lifts orbital and spin degeneracies of the states
(so that levels with negativel and positivesZ acquire lower
energies in a QD having a negativeg-factor) and introduces
a competition between external magnetic field and SO effects
in the one-electron QD spectrum. In the two-electron case,
such competition also involves both direct and exchange
Coulomb interactions.

Becauseg,0 in an InSb QD, its ground state hasl =0
andsZ= +1, while the lowest energy crossing ofH0, related
to the statesh0,0,−1j and h0,−1, +1j, occurs at a critical
magnetic field given byE00−1=E0−1+1, which yields

BC
0 =

"v0

mB

m̃

Îm̃ugusm̃ugu + 2d
. s20d

Notice thatBC
0 may be decreased by reducing the QD con-

finement energy. Its moderate value in InSb(which we an-
ticipate to be around 2.5 T for"v0=15 meV) is a direct
consequence of its highg-factor; on the other hand, in a
GaAs QD, even in a weak confinements"v0=2 meVd, we
haveBC

0 .9.5 T, a field where the Landau levels are already
well defined. As already discussed, the inclusion ofHR trans-
forms such crossing into an AC, opening an energy gap at
BC.BC

0; we will see below how the linear BIA term is able
to shift such a field to higher values.

There is an interesting feature related to the influence of
the g-factor sign on the QD spectrum. We have just men-
tioned that in ag,0 QD, HR induces ACs in the low-energy
FD spectrum whileHD

L shifts them to higher fields. On the
other hand, in ag.0 QD, the level sequence is permuted
and consequently the roles ofHD

L andHR are interchanged; to
visualize such a fact, it is enough to verify that the ground
state turns to havel =0 and sZ=−1, while the lowest FD
crossing is between the statesh0,0, +1j andh0,−1,−1j, and
to remember out the form of the operators in Eqs.(9) and
(14). Notice that in a silicon QD(being a non-zinc-blende
material having positiveg), for example, the BIA Hamil-
tonian is absent while the SIA term is not able to induce
those ACs in the spectrum.

RegardingHee, at zero field the Coulomb interaction is
able to split the spectrum in singlets and triplets. A magnetic
field may alter the sequence of levels; for example, the QD
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ground state may oscillate between singlet and triplet states
as the field is increased. Inclusion of SO couplings is able to
mix such states at different critical fields and to induce in-
trinsic (non-phonon-assisted) mixing involving the QD
ground state, as we will see below.

IV. RESULTS FOR ONE-ELECTRON QDS

It is important to emphasize that the perturbative approach
used in GaAs QDs is not valid in narrow-gap materials,
which are the focus of this work, so that an exact diagonal-
ization of the full Hamiltonian becomes necessary. For a bet-
ter understanding of the one-particle full spectrum ofH as a
function of B0 in an InSb QD, we will progressively discuss
the changes in the FD spectrum ofH0 as induced by each of
the four possible SO terms; next, we consider all SO terms
simultaneously. In the numerical diagonalization we consider
all states in the FD basis havingnø4 and ul uø9, which is
equivalent to the first ten energy shells at zero field and em-
bodies a basis of 110 states. The defining parameters of the
QD are given in Table II if no other numbers are specified.
The SO and Coulomb energies are taken from their respec-
tive prefactors, that is,ESIA

D =sa / l0
2d"v0, ER=sa /lddV/dz,

ED
L =gkkz

2l /l, ED
C=g /l3, and Eee=sl /aBd"V; the a and g

values are the ones of Ref. 33, although they cannot be taken
as unique: for example, Ref. 27 yieldsg=220 eV Å3. Cer-
tainly, such typical energies vary for different levels, and
change with magnetic field and QD material, although they
provide a measure of the relative importance of various
Hamiltonians terms; notice thatED

L is comparable toEee and
that ER can be made equal toED

L by quadruplicatingdV/dz.
To avoid repetition in the following, one should keep in

mind that the next 10 figures—from Fig. 1 to Fig. 10—have
the same structure: panels A show QD spectra for the full FD
basis(110 states); panels B show a zoom of the three lowest
energy shells, with insets showing another zoom of the four
levels of the second energy shell; panels C and D show,
respectively, theB0 evolution of the expectation values of the
spin operatorkYusZuYl=ksZl and of the corresponding angu-
lar momentumkYuLZuYl=klZl for each stateuYl obtained af-
ter diagonalization ofH for the full FD basis, while their
insets do the same, but only for the seven lowest energy
levels. Parameters of Table II are used from Fig. 1 to Fig. 8,
while Fig. 9 (Fig. 10) considers a doubledz0 size (a four
times strongerdV/dz field). One has to keep in mind that,
when referring to state labels in this work, the FD quantum
numbers will be used even when SO coupling is present,

TABLE II. Parameters for the InSb QD used in our calculations, if no other numbers are specified. See text for definitions of different
quantities.

EH (meV) dV/dz smeV Å−1d g seV Å3d aB (Å) a (Å) « m̃ g

23 −0.5 160 625 500 16.5 0.014 −51

"v0 (meV) ESIA
D (meV) ER (meV) ED

C (meV) ED
L (meV) Eee (meV) l0 (Å) z0 (Å)

15 0.2 1.3 0.02 5.2 4.5 190 40

FIG. 1. H0 FD spectrum of an
InSb QD as defined by parameters
in Table II (no SO terms). Notice
the energy shell structure at zero
magnetic field, and the presence
of several accidental degeneracies
at finite fields. The states arepure,
since the expectation values of
spin and orbital angular momenta
are only integer numbers at any
field.
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where then the FD levels are certainly no longer pure.
As a starting and reference point, we show in Fig. 1 the

pureH0 spectrum, with no SO effects. The main features in
panel A are the zero-field QD energy shell structure(with
separation of 15 meV between successive shells), the lifting
of spin and orbital degeneracies by a finite field, the presence
of accidental degeneracies at specific magnetic fields, the
largerB0 dispersion of thel .0 orbitals, and the formation of
well defined Landau levels at high fields. It is easier to see in
panel B the level sequence for the first three shells men-
tioned before; for example, atB0=0.5 T, before any acciden-
tal degeneracy point, the twelve lowest states, in increasing
energy, areh0,0, +1j, h0,0,−1j, h0,−1, +1j, h0,−1,−1j,
h0,1, +1j, h0,1,−1j, h0,−2, +1j, h0,−2,−1j, h1,0, +1j,
h1,0,−1j, h0,2, +1j, and h0,2,−1j. Notice also thatBC

0

.2.6 T gives the lowest energy crossing. In the inset of this
panel we show that the second shell, away from accidental
degeneracy points, presents no further level crossing in the
FD spectrum. Panels C and D and their insets confirm that no
level mixture is present in theH0 spectrum, since every state
takes only integer values:ksZl= ±1 and −9, klZl,9. All of
these general features are clear signatures of parabolic QDs.

A. Influence of SIA terms

The addition of the diagonal SIA termHSIA
D to H0, shown

in Fig. 2, causes small splittings in the zero-field spectrum,
but it is not able to shift the accidental degeneracy points
present at finite fields(panel A), so that the critical fieldBC
where the first level crossing occurs is not altered byHSIA

D ,
and then one hasBC.BC

0 .2.6 T (panel B). The splittings,
however, induce new level crossings at low fields, as exem-
plified in the inset of panel B for the second shell; this result
is due to the fact thatHSIA

D orders states according to theirj
value, and the highest(lowest) zero-field energy level hasj
=3/2 s j =1/2d in this shell, where it can be noticed that for

B0*0.2 T the “normal” ordering of states(existent in the
absence of SO terms) for g,0 is restored:h0,−1, +1j, h0,
−1,−1j, h0,1, +1j, h0,1,−1j in increasing energy(also no-
tice that bothj =3/2 and j =1/2 states are equidistant from
the pureH0 value of 30 meV atB0=0). This competition
between SO and magnetic field effects is identical to the
Zeeman and Paschen-Back regimes of real atoms;43 the same
level ordering is observed in Ref. 33, where the SIA termHR
is not taken into account. Panels C and D and their insets
confirm that this diagonal SO Hamiltonian does not intro-
duce any level mixture in the FD states, and so the QD levels
continue to be pure even underHSIA

D effects.
The addition of the Rashba SIA termHR to H0, shown in

Fig. 3, introduces a strong state mixture, whatever be the
magnitude ofa, whenever a pair of FD levels satisfyingDl
=−DsZ/2= ±1 cross in a given accidental degeneracy of the
H0 spectrum(panel A). This mixture converts the crossing in
BC

0 into an AC and opens an energy gap at a slightly shifted
critical field BC.2.5 T&BC

0 (panel B). Panels C and D and
their insets show that higher energy levels also satisfying that
selection rule exhibit ACs approximately at this sameBC
value, giving origin to the “x” collapse seen in bothksZl and
klZl values around 2.5 T; the range of critical fields(between
2.1 and 2.6 T), as well as the size of the energy gaps opened
at those ACs, are proportional to the magnitude ofa, such
that BC decreases upon increasinga. HR also induces small
splittings in the zero-field spectrum and slightly shifts acci-
dental degeneracy points at finite fields. Notice in the inset of
panel B that the zero-field level sequence in the second shell
is opposite to the previous figure, that is,j =1/2 s j =3/2d
state has the highest(lowest) energy, and thej =1/2 state has
practically the same value as forH0; for B0*0.1 T, the nor-
mal ordering of states is restored. Notice in panel D that
every originally negative evenl statesl =−2,−4,−6,−8d an-
ticrosses, while only some of the states having an original
negative odd value ofl also anticross.

FIG. 2. QD spectrum when
only the diagonal SIA termHSIA

D is
added toH0. States continue to be
pure at any field, and new acci-
dental degeneracies are induced in
the low-field spectrum as exempli-
fied in inset of panel B; this intro-
duces a competition between SO
and magnetic field effects in QD
electronic properties.
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Figure 4 shows the simultaneous addition of both SIA
terms,HSIA

D and HR, to H0. Observe in the inset of panel B
that the ordering of states is the one derived fromHSIA

D , how-
ever, their energies(j =3/2 at 30 meV andj =1/2 at a
slightly smaller value), as well as the fieldsB0*0.1 Td
where the normal state ordering is restored, are determined
by HR. The range of critical fields is wider(between 2.2 and
3.6 T in panel C), and one can see in panel D that orbitals
having klZl,0sklZl.0d present ACs at fields smaller
(greater) than the fieldBC.2.55 T of the first AC(shown in
insets of panels C and D). For future comparison, notice in
panel B that the first AC involvingn=1 states(.50 meV,
related toh0,1,−1j andh1,0, +1j levels) occurs at that same
BC value; in general, ACs between states with anyn value

happen inside the same range of critical fields, which is clear
in panels C and D. It is important to remember that both SIA
influences can be reduced by decreasingv0 (in HSIA

D ) or
dV/dz (in HR).

B. Influence of BIA terms

The addition of the cubic Dresselhaus termHD
C to H0 (Fig.

5) has practically no effect on the pureH0 spectrum, as seen
in panelsA andB. In panels C and D, small state mixtures
are visible atB0.1 T and B0.5 T, both involving ACs
satisfyingDl = 73 andDsZ/2= ±1; the first AC at 1 Ts5 Td
is between statesh0,1,−1j and h0,−2, +1j (h0,0,−1j and
h0,−3, +1j). HD

C is also able to induce zero-field splittings in

FIG. 3. QD spectrum when
only the Rashba SIA termHR is
added toH0. Strong level mixtures
occur atBC.2.5 T for all states
satisfying the selection rules,
causing the observed ACs(panels
C and D). Notice the inverted
level crossing in inset of panel B
when compared to Fig. 2.

FIG. 4. QD spectrum when
both SIA terms,HSIA

D and HR, are
added to H0. The critical field
range for ACs becomes wider
(panels C and D), even though the
first AC happens practically at the
same field of the previous figure
(BC.2.55 T in insets of those
panels). Anticrossings involving
l ,0 sl .0d orbitals are shifted to
lower (higher) fields as seen on
panel D.
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the FD spectrum due to matrix elements whereDl = ±1
=DsZ/2; however, such splittings and gaps opened at the
ACs are negligible because of the weak influence of this
cubic term when it is considered separately from the other
SO terms. Its influence will be more important when we later
consider the fullH for the QD.

The addition of the linear Dresselhaus termHD
L to H0 (Fig.

6) drastically changes the general features of the FD spec-
trum, inducing strong zero-field splittings and shifting the
accidental degeneracies to higher fields(panels A and B).

The respective matrix elementssDl = ±1=DsZ/2d are not
able to introduce low energy ACs in the system, as seen on
insets of panels C and D(the ACs visible around 8.5 T on
these panels are related to higher energy levels). As seen on
Panels A and B, the zero-field splittings are so strong that
QD states cease to be pureeven at zero field, as shown in
panels C and D. As an example, notice in panel C that at
B0=0, values ofuksZlu.0 are found for higher energy states,
while in its inset, related only to the seven lowest energy
levels, one finds values ofuksZlu.0.5. As an example of the

FIG. 6. QD spectrum when only the linear BIA termHD
L is added toH0. HD

L is not able to induce low energy ACs. However, it drastically
alters the spectrum by introducing enormous zero-field splittings and large shifts of several crossings at finite fields(panels A and B); for
example, the first crossing has moved to about 3.3 T. Even the lowest energy states cease to be pure at low fields(insets of panels C and D).
Notice only one crossing of the second shell levels in inset of panel B, instead of two as in previous figures.

FIG. 5. QD spectrum when
only the cubic BIA termHD

C is
added to H0. The influence of
such term on the QD electronic
properties is practically negligible
for the parameters of Table II; it
will be important for the full H
when we later consider the
Rashba effect.
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shifting of the level crossings to higher fields, observe that
the first one occurs atBC.3.3 T (remember thatBC

0

.2.6 T). Other essential feature ofHD
L is shown in inset of

panel B: only one crossing is present in the second shell(at
about 0.45 T), the second one occurring only at a field
around 3.5 T, so that the normal state ordering is no longer
restored with field. This makes impossible the identification
of distinct Zeeman and Paschen-Back regimes in the QD
spectrum as has been happening with the previous SO terms.
HD

L is responsible for most of the QD states being no longer
pure atany field, a point which will be essential later in the
discussion of the full Hamiltonian spectrum. As a note, in
that same panel B inset, the highest(lowest) energy state at
zero field hasj =3/2 at 30meV, the same energy of the pure
H0 (j =1/2 ataround 27 meV). Remember also that the in-
fluence ofHD

L in the spectrum can be decreased by increasing
the well sizez0.

Figure 7 shows the simultaneous addition of both BIA
terms,HD

C andHD
L , to H0. It is visible on panels A and B, as

expected from the last paragraphs, that the linear contribu-
tion dominates over the cubic one in the overall features of
the QD spectrum and in the strong mixing of levels. For low
energy states, notice in insets of panels C and D the strong
mixing at low fields(due to HD

L ) and the AC(due to HD
C)

shifted to 5.7 T(from 5 T in Fig. 5). We emphasize, how-
ever, that the influence of the cubic term will be larger when
we later consider nonzero Rashba fields.

C. Influence of all SO terms

Figure 8 finally shows the QD spectrum when all SO
terms are simultaneously taken into account; that is, the one-
particle full H spectrum from Eq.(18). From the previous
isolated term discussions, one may identify which SO
mechanisms are dominant in each of the main features of the
spectrum. An enormous state mixture even at magnetic fields

close to zero(panels C and D and their insets), as well as
splitting, position, and ordering of states(panels A and B) are
dominated byHD

L , although with contributions from the SIA
terms. From the two sets of low energy ACs(insets in panels
C and D), the one aroundBC.3.3 T is due to theHR selec-
tion rules, while the other around 5.7 T is due toHD

C. These
ACs are shifted by.0.7 T to a higher field because of the
influence of HD

L : remember that in Fig. 4 we hadBC
.2.55 T, while in Fig. 5 the respective AC happened at 5 T.
High energy ACs inside those sets(mainly at 3.3 T) have
their respective magnetic fields slightly decreased due to
HSIA

D . The distinct feature of the fullH spectrum is the clear
presence of more than one value of critical fields where ACs
occur. By comparing panels A and C, and considering mainly
the ACs originated from the Rashba term(as those gaps are
the largest), one notes that the first family of ACs(around
3.3 T, related to states between 20 and 70 meV) involves
only n=0 levels, occurring between pairs such ash0,0,−1j
and h0,−1, +1j, h0,−1,−1j and h0,−2, +1j, h0,−2,−1j and
h0,−3, +1j, etc. The second family of ACs(around 5 T, re-
lated to states between 70 and 120 meV) involves only n
=1 levels (except the first one), involving statesh0,1,−1j
and h1,0, +1j, h1,0,−1j and h1,−1, +1j, h1,−1,−1j and
h1,−2, +1j, etc. The third family of ACs(around 8 T, related
to states between 130 and 180 meV) involves onlyn=2 lev-
els (except the first and second), involving statesh0,2,−1j
and h1,1, +1j, h1,1,−1j and h2,0, +1j, h2,0,−1j and h2,
−1, +1j, etc. Although the main ACs in the QD spectrum are
caused by theHR mixtures, one can conclude that the pres-
ence ofHD

L in the full H dislocates them in such a way as to
group ACs related to a samen value around the same critical
field. The reason for that can be understood by comparing
panels B and their insets in Figs. 4 and 6. In the former, there
are two crossings at low fields in the second shell, so that the
rearrangement of levels produces the first AC involving an
n=1 level (between h0,1,−1j and h1,0, +1j around

FIG. 7. QD spectrum when
both BIA terms,HD

C and HD
L , are

added toH0. Under the parameters
of Table II, the linear Dresselhaus
contribution dominates over the
cubic one. The strong mixings at
low fields are due toHD

L , while the
low energy ACs are due toHD

C.
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50 meV) at the same critical field as the ACs involvingn
=0 levels; in the latter, the existence of only one crossing at
low fields in the second shell displaces the AC between
h0,1,−1j andh1,0, +1j to a higher field and energy. For this
same reason, the ACs at 1 T due toHD

C and visible in Fig. 5
no longer occurs in the fullH.

In the next two figures we consider a QD defined by dis-
tinct values from those in Table II. In Fig. 9 we consider a
wider well QD by using a doubledz0 size, which is equiva-
lent to reducing the influence of the linear BIA term in the
system. As expected, the spectrum becomes very similar to
that one of Fig. 4, where only SIA terms are included. Notice
that the first AC is shifted back toBC.2.55 T (panel B and
insets of panels C and D), and everyHR-induced AC occurs

again around this critical field(panels C and D), since theHD
L

contribution is no longer strong enough to dislocate and
group ACs involving states with differentn values. However,
as HD

L is not zero, the range of critical fields aroundBC is
wider than in Fig. 4. The ACs seen in panels C and D around
1 and 5 T are again related to the small influence of theHD

C

term.
In Fig. 10 we simulate the case where the zero-field split-

tings are cancelled even in the presence of all SO terms,
which is reasonably obtained by taking an interfacial field
dV/dz four times stronger than in Table II; this clearly en-
hances the influence of the Rashba termHR in the system.
Notice in panels A and B that not only the zero-field split-
tings reasonably vanish, but also that the Zeeman splittings

FIG. 8. One-particle full H
spectrum of an InSb QD as de-
fined by parameters in Table II(all
SO terms simultaneously added to
H0). Basically, HR induces the
main low energy ACs, while those
due toHD

C are also noticed. Both
sets are shifted byHD

L to higher
fields. The HSIA

D term is able to
shift higher energy ACs to slightly
smaller fields. The remarkable
feature of the simultaneous inclu-
sion of all SO terms is that ACs
related to distinctn values are
grouped at different values of
critical fields.

FIG. 9. Full H spectrum of an
InSb QD with doubledz0 size
(other parameters as in Table II).
Because of the reduction ofHD

L in-
fluence, the spectrum shows very
similar features to the ones seen in
Fig. 4, even though a wider range
of critical fields is present here.
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are practically suppressed at low fieldssB0&1.5 Td. At zero
magnetic field, an energy shell structure identical to that of
the pureH0 (Fig. 1) is formed but displaced to smaller ener-
gies, with the same level separation of 15 meV. In the inset
of panel B one sees that the energy of thej =3/2 level is
reduced to the one ofj =1/2, going from 30 to 26.5 meV
(compare with the same inset of Fig. 8). While the zero-field
splittings vanish, on the other hand, the energy gaps opened
at the ACs are even bigger, as seen in panel B. In addition,
the critical field is moved back toBC.2.7 T, close to the
value of 2.55 T of Fig. 4, where no BIA terms are included;
the same occurs for the AC due toHD

C, which has moved
back to.5 T; that is, the value in Fig. 5. The rearrangement
of electronic levels is so remarkable that the other set of ACs
related to the cubic BIA term become visible at.1.1 T
(compare insets of panels C and D in this figure with the
ones in Figs. 5 and 8), involving the statesh0,1,−1j and
h0,−2, +1j, as well ash1,0,−1j andh0,−3, +1j, and visible
in panel B at 33 and 44 meV, respectively. One must empha-
size that even though the electronic levels disperse less than
in Fig. 8, the SO-induced state mixture is much stronger and
it is no longer possible to define narrow ranges of critical
fields for higher energy ACs, as visible in panels C and D.
Notice also that even at low fields, the lowest QD levels have
uksZlu,0.5, only the ground state havinguksZlu.0.7.

D. QD size dependence

Although decreasing the influence ofHD
L may, in prin-

ciple, seem similar to increasing the influence ofHR in the
system, observe that Figs. 9 and 10 are totally different,

showing the intricate competition between the possible SO
terms in the definition of the electronic properties of narrow-
gap QDs. Comparison of three of such properties—zero-field
energy splittings, critical magnetic fields where ACs occur,
and energy gaps opened at those ACs—is made in the next
two figures. Figure 11(12) shows results as function of the
QD lateral radiusl0 (vertical width z0); in both figures, the
left panel shows the zero-field splitting between statesj
=3/2 and j =1/2 of the second energy shell, the middle
panel shows the critical magnetic field where the second and
third QD lowest energy levels exhibit an AC, and the right
panel shows the energy gap opened at such AC. In these two
figures, curves having square, circle, and triangle as symbols
refer, respectively, to a QD as defined in Table II, a QD with
doubledz0, and a QD with four times strongerdV/dz; the
arrows atl0=190 Å andz0=40 Å indicate the QD dimen-
sions for which the spectra of Figs. 1–8 were calculated,
while the dotted line in the middle panels indicates theBC

0

field as given in Eq.(20), where the first crossing of the pure
FD levelsh0,0,−1j and h0,−1, +1j occurs.

Starting with the zero-field splittings, one should remem-
ber that they are dominated byHD

L if a weak Rashba field is
considered. Notice in Fig. 11 that they decrease by increasing
l0, going to 1.8 meV whenl0=330 Å s"v0=5 meVd for the
parameters of Table II. Observe that such a drop is faster if
one increasesz0 or dV/dz, almost cancelling the splitting
when l0.250 Å. The same behavior, and for the same rea-
son, is observed with respect toz0 in Fig. 12 for the param-
eters of Table II, where the splitting almost vanishes when
z0.120 Å; in this figure we also verify that ifdV/dz is
made four times stronger in az0=40 Å QD, the splitting
practically vanishes as discussed in Fig. 10, and increases

FIG. 10. Full H spectrum of an InSb QD with four times stronger Rashba fielddV/dz (other parameters as in Table II). Notice the
cancellation not only of the zero-field energy splittings but also of the spin splittings at low fields(panels A and B). Under such stronger
Rashba coupling, the set of ACs related to theHD

C selection rules becomes visible around 1.1 T(panel B and insets of panels C and D), while
BC for the first AC is shifted back to about 2.7 T, the same occurring for the ACs around 5 T due toHD

C. Notice also the enormous state
mixture in panel C. At zero field, most states haveuksZlu,0.5, except for the ground state(inset), with uksZlu.0.7.

SPIN-ORBIT AND ELECTRONIC INTERACTIONS IN… PHYSICAL REVIEW B 70, 205315(2004)

205315-11



with z0 until saturation at 2.6 meV forz0.100 Å. To pro-
duce cancellation of level splittings, authors in Ref. 6 cite the
possibility of achieving this in a 2DEG by including onlyHD

L

andHR contributions; however, the inclusion ofHD
C andHSIA

D

terms is also necessary in order to get precise values in
narrow-gap QDs. In our InSb QDs, for example, the needed
values ofz0 or dV/dz for such cancellation are about 10%
smaller than those obtained by considering onlyHD

L andHR.
Regarding the critical fields where ACs occur, we have

seen that they are mostly determined byHR (for the pair of
levels considered) and have values close toBC

0 when BIA
terms are not present; the inclusion ofHD

L is able to shiftBC
to higher fields. Observe in Fig. 11, for the parameters of

Table II, thatBC decreases by increasingl0 in a similar way
to BC

0 as given in Eq.(20) (dotted line). Increasing the field
dV/dz produces sizeable changes only at larger radii; atl0
=330 Å, for example,BC goes from 1.6 to 1.1 T. As ex-
pected, by increasingz0, BC becomes practically identical to
BC

0. Notice in this figure that critical fields lower than 1 T are
feasible; effects at such low fields are perhaps easier to verify
experimentally. It is clear in Fig. 12 that, depending on the
field dV/dz, BC saturates at 2.5 or 2.6 T(close toBC

0, dotted
line) whenz0.100 Å. Now it is interesting to make a com-
parison of our results with the ones from Ref. 32, where an
InSb QD with l0=270 Å s"v0=7.5 meVd was considered
without taking into account BIA terms, andBC.1.7 T was

FIG. 12. Zero-field energy splittings for second energy shell states(left panel), critical magnetic field for the lowest level AC(middle
panel), and energy gaps opened at that AC(right panel) as function of the QD vertical widthz0. Squares and triangles indicate, respectively,
a QD defined by parameters in Table II, and a QD having a four times stronger Rashba fielddV/dz. The dotted line showsBC

0 as per Eq.(20).
Arrows atz0=40 Å show QD width where spectra from Figs. 1–8 were calculated.

FIG. 11. Zero-field energy
splittings for second energy shell
states (left panel), critical mag-
netic fields for the lowest level AC
(middle panel), and energy gaps
opened at that AC(right panel) as
function of the QD lateral radius
l0. Squares, circles, and triangles
indicate, respectively, a QD de-
fined by parameters in Table II, a
QD having doubledz0, and a four
times strongerdV/dz. Dotted line
showsBC

0 as per Eq.(20). Arrows
at l0=190 Å show QD radius
where spectra from Figs. 1–8
were calculated.
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found. At l0=270 Å in Fig. 11, one sees that the critical field
decreases from 2.1 to 1.8 and then to 1.5 T by, respectively,
increasingdV/dz and z0; this last value is the one in our
calculations that better simulates Ref. 32, since theHD

L influ-
ence is almost negligible. The 0.2 T difference is probably
due to the fact that such reference takes into account nonpa-
rabolicity effects of the InSb conduction band which can, in
fact, shiftBC to a slightly higher field.

For the gap opened at the AC occurring atBC, the main
contribution comes from the Rashba term(for the pair of
levels considered). Notice in Fig. 11 that the gap decreases
by increasing the QD lateral radius; an enhancement in
dV/dz drastically widens the gap, that goes from
1 to 4.2 meV atl0=190 Å, for example; the influence of a
largerz0 seems important only at larger radii. Observe in Fig.
12 the enhancement of the gap withz0 until it saturates at
aroundz0=100 Å. Notice again the enormous enhancement
of the energy gap opened at this AC if a larger Rashba field
dV/dz is considered.

A measurement of the quantities in Figs. 11 and 12 in
similar samples would be able, in principle, to yield better
estimates for thea andg SO coupling parameters, and pro-
vide experimental bounds to the broad range of values avail-
able in the literature for nominally the same material.

V. RESULTS FOR TWO-ELECTRON QDS

After having described in detail the one-particle QD prob-
lem, we are now in a position to deal with the two interacting
electron problem. The QD defining parameters are again
given in Table II, and we have opted to not detail the isolated
influence of each of the SO terms. The construction of the
antisymmetrized two-particle states includes 20 one-particle
orbitals havingul uø3 andnø1 (they complete the first four
energy shells at zero field ofH0), amounting to 190 possible
two-particle states that can be labeled, in the absence of SO
interactions, by the projections of orbitalML and spinMS
total angular momenta, as already mentioned. When SO cou-

pling is included(full H̃), in analogy with the single-particle

problem, one can define the expectation values of the total
spin operator askSZl and of the corresponding total angular
momentum askMZl.

Figure 13 shows the two interacting particle QD spectrum
without SO couplings; that is, in Eq.(19) one assumesH
=H0. If the two electrons inside the QD were noninteracting,
we would have, at zero field, energy shells between 30 and
120 meV, separated again by 15 meV; under a magnetic
field, states having negativeML and positiveMS (again be-
cause of the InSb negativeg-factor) would acquire smaller
energy. The presence of Coulomb interaction, however, shifts
those shells to higher energies, and also introduces zero-field
splittings in the spectrum. Although the left panel shows all
states obtained from the numerical diagonalization, it is the
zoom in the right panel that yields a better appreciation of
the interacting QD levels. If only the direct Coulomb energy
were effective(by not taking into account the antisymmetric
nature of the QD wave functions), the zero-field energies
would be shifted up by about 5 meV; in such a case, the
ground state(two electrons in the firstH0 shell) would be at
35 meV, the first excited shell(one electron in the first and
other in the secondH0 shell) at 50 meV, and the second
excited shell(one electron in the first and other in the third,
or two electrons in the secondH0 shell) at 65 meV. How-
ever, the presence of the exchange Coulomb energy is able to
break apart the degeneracy of states at zero field—except
obviously for the singlet ground state—and induce splittings
in the spectrum, even with no SO interaction. For example,
notice the first excited energy shell: while two singlets re-
mains at 50 meV, two triplets are shifted down by the ex-
change contribution to 47.5 meV(the singlet ground state
remains at 35 meV). A small magnetic fields&0.1 Td yields
the normal sequence of QD states for increasing energy:
hML ,MSj=h0,0j for the singlet ground state;h−1,1j,
h−1,0jT, h−1,−1j, {1,1}, h1,0jT, h1,−1j for the first excited
triplets; and h−1,0jS, h1,0jS for the first excited singlets,
where the superscriptsS/T have obvious meaning. For the
following discussion, it is useful to remark three features: the

FIG. 13. Two interacting par-
ticle QD spectrum when no SO
terms are taken into account in
Eq. (19). The left panel shows ev-
ery state obtained from the nu-
merical diagonalization, while the
right panel shows a zoom focus-
ing on the singlet ground state and
on the zero-field splittings as in-
duced by the exchange energy for
the lowest excited states.
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lowest level crossing occurs atBC
0s2ed=2.1 T involving the

states{0,0} and h−1,1j; at 0.75 T, h−1,0jS becomes the
fourth QD state, with energy that parallels the third state,
h−1,0jT; the two statesh−1,0jS/T cross with the lowest state
from the next energy shell,h−2,1j, respectively, at 2.1 and
2.6 T. The B0 evolution of kSZl and kMZl values is not
shown, as they are obviously pure states, taking only the
integer values −6ø kMZlø6 andkSZl=0, ±1 at any field.

Figure 14 shows the QD spectrum obtained by consider-

ing the full two-particle HamiltonianH̃ of Eq. (19). One may
identify in panel A similar features to the one-electron case;
for example, the linear Dresselhaus term almost destroys the
energy shell structure at zero field by shifting level crossings
and inducing new zero-field splittings, while the Rashba term
introduces level ACs and opens energy gaps in the spectrum.
It is in panel B that one can appreciate more details of the
competition between Coulomb and SO interactions in the
narrow-gap QD spectra. Observe that the SO interaction, at
zero field, acts against the direct Coulomb term and, essen-
tially, favors the effect of exchange; the ground state, for
example, is shifted back from 35(Fig. 13) to 31 meV, close
to the noninteracting value of 30 meV, while the first excited
shell starts with energies even lower than its noninteracting
value of 45 meV, within the range of 43 to 47 meV. Other
important feature can be seen, for example, in this first ex-
cited shell, where the original triplets are broken into their
three possible components according to the projection of the
total angular momentum,MJ=ML+MS. Notice that, at zero
field, such components are the statesh−1,1j and h1,−1j
sMJ=0d, h−1,0jT and h1,0jT suMJu=1d, h−1,−1j and {1,1}
suMJu=2d, with increasing energy, while the ground({0,0},
MJ=0) and first excited(h−1,0jS and h1,0jS, uMJu=1) sin-
glets remain the same. At finite field, one sees that ACs due
to HR occur at around 3 T, as evident in panels C and D. The
first AC is between states{0,0} and h−1,1j at BC

s2ed=2.7 T,
so that the difference betweenBC

s2ed and BC
0s2ed s,0.6 Td is

basically the same as betweenBC and BC
0 s,0.7 Td for the

one-electron problem; this means that the critical field shift
caused byHD

L on this AC appears not to be affected by the
QD occupation, even though the critical fields themselves are
decreased by such occupation. Whether such a result is valid
for higher occupations and also for other parameters is still a
point under investigation. That crossing at 0.75 T(Fig. 13)
involving the stateh−1,0jS now occurs at around 1 T, and
those two statesh−1,0jS/T now exhibit ACs with the state
h−2,1j at fields of 2.6 and 3.2 T, respectively, instead of the
crossings at 2.1 and 2.6 T of the previous figure. The ACs
visible in the rectangle of panel B, as well as in panels C and
D, are again due to the Rashba term and are displaced by the
linear BIA term to higher fields.

To clarify the two lowest ACs, we show in Fig. 15 theB0
evolution of kSZl and kMZl values for the states indicated in
the rectangle of panel B of Fig. 14. Panels A and B include
the ten QD lowest energy levels, while panels A1 and B1
(A2 and B2) separately show the 2(3) states that participate
in the first (second) AC occurring at around 39s46d meV;
labels 1 to 5 indicate the level sequence in increasing energy.
The AC between states 1 and 2({0,0} and h−1,1j) clearly
occurs atBC

s2ed=2.7 T. The AC involving states 3, 4, and 5
(h−1,0jT, h−1,0jS, and h−2,1j) has distinct features; notice
that first a mixture between states 4 and 5 occurs at 2.6 T,
followed by another mixture at 3.2 T involving states 4 and
3. In this way, state 4 acts as an intermediary of two ACs,
and thekSZl and kMZl values of such state, before and after
this region of critical fields, are conserved(exchanged
twice); this gives the appearance of only one effective AC
between states 3 and 5. These ACs obey a selection rule
DML= ±1=−DMS similar to that of the one-particle Rashba
problem. As discussed for the one-electron problem, when
the parameters of Table II are used, the influence of the cubic
Dresselhaus term is small on the opening of gaps in the spec-
trum; its selection rule becomesDML= 73 andDMS= ±1,
and the first possible ACs due toHD

C involve the states

FIG. 14. Two interacting par-
ticle QD spectrum when all pos-
sible SO terms are taken into ac-
count in Eq.(19). Comparing the
ground and first excited states in
panel B with those in right panel
of Fig. 13, one can see that SO
energy acts against the direct Cou-
lomb term and favors the ex-
change electron-electron inter-
action. The first excited triplets, at
zero field, are split according to
the MJ values. ACs at around 3 T
[panelsC skSZld andD skMZld] are
due to the Rashba term; the lowest
ACs are indicated by the rectangle
in panel B, detailed on Fig. 15.
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h−2,1j andh1,0jS/T. Similarly to what happens with the one-
particle case, they become visible in the spectrum for higher
interfacial fieldsdV/dz.

A very important difference between the one- and two-
particle problems must be emphasized. While in a one-
particle QD there is no AC involving its ground state, notice
that the lowest energy AC in a two-particle QD does involve
its ground state, and is related to asinglet-triplet mixture.
Observe also that the critical magnetic field where this first
AC occurs decreases by increasing the QD occupation, going
from BC=3.3 T to BC

s2ed=2.7 T; in Ref. 32(where different
QD parameters are used), it goes from 1.7 to 1 T, which
yields basically the same field variation, and the small dif-
ference may again be attributed to the conduction band non-
parabolicity effects considered in that reference. One should
remember from Eq.(20) that such critical fields may be re-
duced by decreasing the QD confinement energy. The strong
intrinsic (i.e., no-phonon-assisted) singlet-triplet mixture in-
volving the QD ground state at low magnetic fields can, in
principle, be explored in the implementation of quantum
computing devices, as one could envision state swapping(ro-
tation) of the two-electron QD controlled by an external
magnetic field.44

VI. CONCLUSIONS

We have analyzed in detail the influence of different SO
mechanisms originating from both surface and bulk inver-
sion asymmetries in the FD spectrum of parabolic zinc-
blende narrow-gap QDs. We have shown that the SIA Hamil-
tonian is decomposed in twok-linear contributions—one

diagonal and the other the so-called Rashba term, while the
BIA Hamiltonian is also separated in two contributions: one
k-linear and the otherk-cubic. We have seen thatHSIA

D intro-
duces small zero-field energy splittings;HR produces strong
state mixtures and level ACs at critical magnetic fields that
depend on QD parameters;HD

C has relatively small influence
for a certain range of QD parameters; andHD

L induces large
state admixture(mainly at low fields) but without introduc-
ing ACs in the low energy FD spectrum. When all SO con-
tributions are taken into account in the diagonalization, we
have seen thatHD

L shifts the critical fields ofHR-produced
ACs to higher fields, and it is also able to group ACs related
to the samen value. We have shown that when the interfacial
field dV/dz is larger, a number of features appear in the
spectrum: the zero-field energy splittings can be made to
vanish, the spin splitting is cancelled at low fields, ACs re-
lated toHD

C selection rules arise in the low energy spectrum,
and a strong state mixturesuksZlu,0.5d is induced at close-
to-zero magnetic fields even for the lowest energy states. The
negative sign of theg-factor, as well as the relatively large
value of the SO constants(in comparison with those in
GaAs, for example), are essential for the appearance of such
features.

For the two interacting electron QD problem, we have
shown that the direct Coulomb interaction increases QD
level energies, while the exchange interaction decreases
them, as well as induces zero-field splittings in the spectrum.
The SO interaction, in a sense, acts against the direct Cou-
lomb while it favors exchange, and also creates zero-field
splittings in the spectrum. The critical field where the lowest
AC occurs decreases when compared with the one-particle

FIG. 15. B0 dependence ofkSZl (upper panels) andkMZl (lower panels) values for the lowest ACs shown in the rectangle of panel B in
Fig. 14. Panels A and B include all the ten states present in that rectangle. The right panels include only the five lowest states, labeled by their
ordering in increasing energy: panels A1 and B1 are related to the first AC between states 1 and 2, while panels A2 and B2 are related to the
next two ACs. Although it appears that only one AC between states 3 and 5 is effective, state 4 acts as an intermediate state for this
three-state mixture.
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QD. The difference between this field and the lowest cross-
ing without any SO coupling is basically the same as in the
one-particle QD; the behavior under higher occupations is
still to be investigated. An interesting fact that, in principle,
could be better explored for qubit design is that, differently
from what happens with the one-particle problem, the inter-
acting QD ground state also exhibits AC, where strong in-
trinsic spin-flip processes occur. Such state rotation may
have an easier experimental access given that the critical
magnetic field be relatively low, especially for properly cho-
sen QD material and parameters.

We conclude by drawing attention to the importance that
the SO-induced energy splittings have on the spin lifetimes.
Many schemes for quantum computing rely on a well-

defined spin, so that careful attention has to be paid to
phonon-assisted13 or hyperfine45 spin-flips. The intrinsic
mixtures described here provide an inherent upper bound to
the spin lifetime in QDs, given bytSO=" / s2pDd, whereD is
the energy gap at the AC, tunable by changing the QD pa-
rameters(see Figs. 11 and 12). The application of magnetic
fields could then produce undesirably smalltSO in a given
QD, which proper qubit design would have to address.
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