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The conductance through a finite quantum dot network is studied as a function of interdot coupling. As the
coupling is reduced, the system undergoes a transition from the antidot regime to the tight binding limit, where
Coulomb resonances with on average increasing charging energies are observed. Percolation models are used
to describe the conduction in the open and closed regime and contributions from different blockaded regions
can be identified. A strong negative average magnetoresistance in the Coulomb blockade regime is in good
quantitative agreement with theoretical predictions for magnetotunneling between individual quantum dots.

DOI: 10.1103/PhysRevB.70.205306 PACS number(s): 73.23.Hk, 71.30.1h

I. INTRODUCTION

Arrays of insulating islands in two-dimensional electron
systems in the ballistic regime are often referred to as antidot
lattices.1,2 Features observed in the magnetoresistance in-
clude commensurability peaks corresponding to quasipinned
orbits around 1,4,9,…, antidots3,4 and Aharonov-Bohm-type
oscillations superimposed on the first commensurability
peak.5,6 The search for an artificial band structure atB=0 T
is still ongoing.

Here we present measurements on a finite array with a
very small lattice constant of 120 nm, where the global elec-
tron density can be varied continuously with a metallic top
gate. This allows us to monitor the transition from an antidot
to a quantum dot array, that takes place when the electron
density is reduced and the constrictions between neighboring
antidots enter the tunneling regime. Our sample is special in
the sense that the extremely small lattice constant raises the
charging energies to well observable levels and ensures that
the lattice enters the tunneling regime well before the leads
go insulating.

In the following we primarily focus on electronic trans-
port in the quantum dot network regime, which can be com-
pared to conduction through granular or disordered materi-
als. Related systems include arrays of metallic
nanocrystals,7–11 layers of semiconductor quantum dots,12,13

porous silicon,14 3D arrays of semiconductor
nanocrystals,15,16and organic molecular crystals.17 However,
unlike most experiments on macroscopic samples, we are
able to tune the inter dot coupling continuously and resolve
individual Coulomb resonances due to the mesoscopic di-
mensions of our system. The local and global properties of
the network are investigated by measuring across different
terminals and phase coherence is probed by applying a per-
pendicular magnetic field.

II. SAMPLE

Starting with a high quality GaAs/AlGaAs heterostruc-
ture hosting a two-dimensional electron system(2DES)
34 nm below the surface, we used AFM lithography to define

the nanostructure under study. This patterning method relies
on an atomic force microscope with a conducting tip to lo-
cally oxidize the surface of a GaAs heterostructure and
thereby locally depleting the underlying 2DES(see Refs. 18
and 19 for details). In this way a square lattice of 20320
insulating islands with a lattice constant ofa=120 nm was
fabricated and enclosed by an insulating cavity with open-
ings in the corners that serve as current and voltage leads
(see inset, Fig. 1). Later a TiAu top gate was evaporated over
the entire structure using a shadow mask technique.

III. MEASUREMENTS

At high electron densities clear commensurability peaks
around 1 and 4 antidots appear with superimposed ballistic
conductance fluctuations(see Fig. 1), comparable to mea-
surements taken on a similar sample with a larger lattice
constant by Schusteret al.6 This indicates that despite the
small period, we still have a very symmetric two-
dimensional potential modulation. It is worth noting, that
pronounced commensurability maxima in the magnetoresis-

FIG. 1. (Color online) Magnetoresistance measured from A to C
across diagonal 1 at different top gate voltages atT=90 mK, com-
mensurability peaks around 1 and 4 antidots are marked. Inset:
AFM-micrograph of the antidot lattice and the enclosing cavity.
Bright regions are oxidized and correspond to depletion in the un-
derlying two-dimensional electron system.
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tance even occur for values exceeding the resistance quan-
tum.

By applying suitable voltages to the top gate electrode,
the electron sheet density in the 2DES can be tuned from
about 2 to 5.531015 m−2. The carrier density in the lattice
is about 1.531015 m−2 lower than in the unpatterned 2DES
as determined from the Shubnikov-de Haas effect. Since the
resistance in the leads is smaller thanh/2e2 down to top gate
voltages below −100 mV it can be neglected in all measure-
ments discussed here. Figure 2(a) shows the conductivity
measured across diagonal 1 from corner A to C and across
diagonal 2 from corner B to D as a function of top gate
voltage atT=90 mK. As the voltage is lowered, the electron
sheet density and the conductivity decrease until the Cou-
lomb blockade regime is reached. This transition takes place
at a top gate voltage of about −50.8 mV, marked byVc in
Fig. 2(a). Towards even lower voltages a series of on average
decreasing Coulomb peaks is observed until conduction
completely ceases below about −90 mV. It is worth pointing
out, that the conductivity across both diagonals is very simi-
lar over the entire range of top gate voltages studied aside
from mesoscopic fluctuations of the conductance caused by
interference and interaction. This indicates the high symme-
try and homogeneity of our sample. We would like to stress
that the physics in the ballistic antidot regime at high elec-
tron densities is in marked contrast to the quantum dot net-
work regime close to and belowVc. In particular the linear
transport characteristics of an antidot lattice and the classical
ballistic trajectories responsible for the commensurability
maxima give way to nonlinearities owing to Coulomb charg-
ing and magnetotunneling between individual localized

states. During this transition the conductivity changes by
several orders of magnitude.

In order to gain more insight into the electronic properties
of the Coulomb blockade regime, we measured the current as
a function of top gate and bias voltage. As can be seen in Fig.
3, blockade is lifted at sufficiently high bias voltages and
clear “Coulomb diamonds” are resolved. In contrast to analo-
gous measurements on single quantum dots, overlapping dia-
monds as well as streches in top gate voltage without Cou-
lomb blockade are observed. This indicates the formation of
a network with blockaded regions connected in series and in
parallel. The charging energy for the individual resonances
can be determined from the bias voltage maximaVmax at the
tips of the Coulomb diamonds according to

Echarging= eVmax=
e2

C
+ DN, s1d

whereC is the capacitance andDN is the quantum mechani-
cal single-particle energy spacing for theNth state. Neglect-
ing DN, which makes a contribution of about 10% to the total
energy, and applying a plate capacitor model, the area of the
blockaded regions can be determined using

C = e0eGaAs
ACB

d
, s2d

whereACB is the area of the Coulomb blockaded region and
d is the distance between 2DES and top gate. This leads to an
average size of about 30 unit cells(or dots) at VTG
=−60 mV and about 4 unit cells atVTG=−80 mV, if the

FIG. 2. (Color online) (a) Conductance as a function of top gate
voltage across diagonal 1(A–C) and diagonal 2(B–D) at T
=90 mK. Bright regions are oxidized and correspond to depletion in
the underlying 2DES.(b) Schematic of the lattice illustrating quan-
tum dot formation and the bond percolation model.(c) Double loga-
rithmic plot of the averaged conductance overDkf =kf −kfpc with
kfpc=kf at Pc. The slope of the linear fit yields a value ofzs=1.2.

FIG. 3. Current as a function of top gate and bias voltage. White
regions represent absolute current values above 5 pA. The upper
two graphs are overview plots for diagonals 1 and 2, dashed lines
are guides to the eye and correspond to a scaling exponent of about
3 with respect tokF. The lower two graphs are blowups showing
well defined Coulomb diamonds. All measurements were taken at a
He bath temperature of 90 mK atB=0 T.
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diameter of the insulating discs is set to 80 nm based on the
oxide height profile.

IV. PERCOLATION ANALYSIS

In the following we apply percolation theory20 to analyze
these findings. This can be done by considering the conduc-
tance of the entire lattice as being dominated by the constric-
tions between neighboring insulating discs forming quantum
point contacts(QPC’s). The area enclosed by four insulating
islands can then be viewed as a quantum dot or artificial
atom with four terminals connecting it to its nearest neighbor
quantum dots[see Fig. 2(b)]. As the electron sheet density is
reduced, the conductivity of the QPC’s decreases until the
last channel pinches off and the QPC goes insulating. Owing
to small inhomogeneities inherent to the fabrication process
and the presence of stray background charges, the closing of
the QPC’s will be a statistical process. In a classical picture,
the QPC’s can then be viewed as either conducting or broken
resistors on a square bond-percolation lattice. Since the con-
ductance staircase of a QPC can be approximated to be linear
with respect to the Fermi wave numberkF=Î2pnsVTGd,
where nsVTGd is the top gate voltage dependent electron
sheet density in the lattice, this parameter is a natural choice
for further analysis. In addition we identify the percolation
thresholdPc for the open regime withVc=−50.8 mV and
assume the fraction of conducting bonds or QPC’s,P, to be
proportional toDkF=kFsVTGd−kFsVcd. The exact relation de-
pends on the width distribution of the QPC’s, but close to the
percolation thresholdPc=0.5,20 where half of the bonds are
expected to be insulating, this is a reasonable assumption.
This suggests a percolation transition with a characteristic
scaling behavior of the type20

s ~ sDkFdz, DkF = kFsVTGd − kFsVcd, s3d

where z is a critical exponent corresponding to a specific
quantity. From a double logarithmic plot of the conductance
averaged across both diagonals as a function ofDkF, we
extract a conductivity scaling exponentzs=1.2±0.2 in the
open regime[Fig. 2(c)]. This can be compared with the cal-
culated value of 1.32±0.02(Ref. 21) for bond percolation in
a classical square random resistor network, if phase coher-
ence is neglected. Theoretical work describing a similar sce-
nario has also been set forth by Meir22 in a model for the
metal insulator transition in two dimensions.

In the Coulomb blockade regime, we follow the “links,
nodes, and blobs model” introduced by Stanly23 and
Coniglio.24 In this picture, the spanning network is decom-
posed into multiply connected “blob bonds” and “dangling
bonds” forming “blobs,” that are in turn linked by individual
“cutting” bonds. In our system the blobs correspond to clus-
ters of strongly coupled quantum dots that constitute the
blockaded regions, while the “cutting bonds” act as tunneling
links. As the electron density is reduced, more and more
QPC’s pinch off and the clusters, or blobs, shrink, leading to
higher charging energies. The envelope functions in Fig. 3
correspond to a size scaling exponent of aboutzCB=3±1 as a
function of −DkF (Ref. 38) which is comparable to theoreti-
cal calculations for the blob size scaling exponentjB=2.06

−2.16 (Ref. 24) and the mean cluster sizeg=43/18<2.4.20

In order to make this interpretation more consistent, it
might be more appropriate to consider a two stage process.
First a QPC goes from openss.2e2/hd to tunneling
ss,2e2/hd, before becoming practically insulatingss,0d.
The first stage describes the transition from the open to the
Coulomb blockaded regime, while the second one induces
the transition from the Coulomb blockaded to an insulating
state. The spanning cluster abovekFsVcd then consists of
open QPC’s, while the cutting bonds in Coulomb blockade
are formed by QPC’s in the tunneling regime. In either case
the interpretation of the critical exponents should be viewed
as tentative owing to the experimental uncertainty concern-
ing the fractionP of open(tunneling) QPC’s. We also point
out, that a precise theoretical understanding of Coulomb
blockade scaling that includes effects from clusters con-
nected in series and in parallel is still outstanding.

Individual clusters of quantum dots in the network can be
monitored by measuring the shift of the Coulomb peaks as a
function of magnetic field across both diagonals(Fig. 4).
Since the magnetic field dependent energy variation of a
quantum state is related to the exact shape and symmetry of
its wave function, this variation can be regarded as a finger-
print of a specific cluster. Similar features in Fig. 4 can be
attributed to the same cluster being traversed by current flow
across both diagonals, whereas differing features originate
from clusters predominantly probed by transport across one
of the two diagonals. This demonstrates, that transport is not
dominated by a single quantum dot or small cluster close to
one of the leads.

V. PHASE COHERENCE

Phase coherence across the spanning network was inves-
tigated by measuring the magnetoconductance as a function

FIG. 4. (Color online) Conductance as a function of top gate
voltage and magnetic field across diagonals 1 and 2 at a He bath
temperature of 90 mK. Boxes highlight similar features associated
with the same blockaded regions, while ovals mark features unique
to one diagonal.
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of top gate voltage(Fig. 5). The averaged magnetoconduc-
tance in the blockaded regime shows an increase with mag-
netic field by a factor of approximately 3, which is signifi-
cantly higher than the value of 4/3 predicted by Alhassid25

and measured by Folket al.26 for single quantum dots. This
increase occurs on a magnetic field scale that corresponds to
one flux quantum per unit cell and is consistent with a mag-
netotunnling effect proposed by Raikh and Glazmann27 be-
tween elliptical “electron lakes.”39 They predict a low field
magnetoresistance of the form

dRsBd
Rs0d

< −
B2

B0
2 , s4d

whereB0 depends on the details of the tunnel barrier, but is
typically of the order ofh/e 1/d1d2, d1, and d2 being the
semiaxes of the two electron lakes. A best fit to the magne-
toconductance averaged with respect to top gate voltage in
the Coulomb blockade regime[dashed curve in Fig. 5(b)]

yields a value of 2.2 T forB0. This corresponds to an aver-
age radius of about 40 nm, which is compatible with a single
quantum dot confined to a unit cell. Evidence for this effect
has also been reported by Voiskovskii and Pudalov,28 how-
ever, without resolving the increase in conductivity of indi-
vidual Coulomb peaks. Since Ref. 27 assumes perfect coher-
ence within an electron lake and from the characteristic field
scale of a flux quantum through a unit cell, we conclude, that
the average dot radius can be considered as a lower bound
for the phase coherence length in the Coulomb blockade re-
gime. Remnants of this effect are still visible in the open
regime[Fig. 5(d)], but weak localization is more prominent.
From the dip around ±5 mT we extract a phase coherence
length of about 300 nm in the open regime.

VI. CONCLUSIONS

In conclusion we have presented measurements on a mul-
tiply connected multiterminal quantum dot network with tun-
able inter-dot coupling. Our sample is at a mesoscopic scale,
where collaboratively Coulomb blockaded regions can be
discriminated and related to macroscopic properties. For
strong coupling close to the percolation threshold, a classical
random resistor network model with superimposed quantum
fluctuations can be applied until charge quantization be-
comes important in the tunneling regime. For weak coupling,
Coulomb blockade dominates resulting in the theoretically
predicted29–31 and experimentally observed32,33 insulating
state for T→0 with current onset above a bias voltage
threshold and hopping transport at elevated temperatures. A
strong parabolic decrease in average magnetoresistance in
the Coulomb blockade regime aroundB=0 T, is in good
quantitative agreement with theoretical predictions by Raikh
and Glazman.27 These findings complement reports by
Wiebe et al.,36 who performed scanning tunneling experi-
ments, Ilaniet al.,34 who obtained local potential informa-
tion, and by Eytanet al.35 who did scanning near field optical
microscopy on two-dimensional percolating systems. We are
able to quantitatively distinguish two length scales that are of
fundamental importance for transport in the weak coupling
regime. The first represents the decreasing area of the Cou-
lomb blockaded clusters while the second one describes
wavefunction localization to within the individual unit cells.
Our measurements can also serve as an intuitive picture for
the formation of the so-called “Coulomb gap,”37 that opens
up around the Fermi energy as a function of electron local-
ization and Coulomb interactions.
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