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We present a quantum mechanical model for the calculation of the excitonic splitting of conjugated molecu-
lar materials; both short- and long-range interchain effects are explicitly included. The model is based on the
time-dependent(TD) density functional approach and it introduces the effects of the proximate molecular
systems in a perturbative framework. The new important aspect of our model is that both the single chain
properties and the interchain effects are evaluated in the presence of an embedding environment which is
modeled to mimic the dielectric interactions of the distant chains. This environment is here approximated with
a continuum anisotropic dielectric. Such anisotropy is introduced to take into account the different dielectric
properties of crystals(or films) of conjugated molecular systems along and perpendicular to the direction of the
chains. In the model the dielectric environment is directly introduced in the quantum-mechanical equations
through proper operators to be added to the Hamiltonian. An application to oligomers of polyacetylene quan-
tifies the relative importance of the adjacent chains as well as of the dielectric medium showing the funda-
mental role played by the latter toward a direct comparison with experimental data.
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I. INTRODUCTION

One important area for application of conjugated materi-
als is in electro-optic devices such as plastic light-emitting
diodes (LEDs),1 photovoltaic and solar cells,2 and plastic
transistors.3 There are in particular many desirable features
of conjugated polymers that are not simultaneously available
in other materials; polymers are in fact so widely tunable
through chemical and morphological variations that they of-
fer immense potential for many different areas of applica-
tion.

Despite this enormous versatility for optoelectronic appli-
cations, some of the fundamental physics underlying the con-
struction or optimization of practical devices based on these
materials remains controversial or poorly understood. This
controversy is also due to a still incomplete understanding of
the interactions between conjugated polymer chains in high-
concentration solutions, films or single crystals.

Isolated conjugated molecules are almost one-
dimensional electronic systems; however, in the condensed
state, the electronic properties depend on three-dimensional
interactions.4 For example, interchain interactions in elec-
troluminescent organic conjugated solids cause a splitting of
the lowest excited electronic state into as many components
as the number of molecules in the unit cell. This excitonic
splitting (also known as Davydov splitting5) has been experi-
mentally measured, but still there is no a clear picture on
how it depends either on the structural properties of the
chains(especially the conjugation length) and on the inter-
chain interactions. This question is particularly important be-
cause the relative location of the excitonic components plays
a major role in determining the photophysics of these sys-
tems, and thus an accurate prevision on the bases of the type

and the 3D arrangement of the chains would constitute a
very important step farther in the in providing structure-
property relationships that are useful for the engineering of
materials with improved characteristics.

Up to these last years, most of the theoretical modeling
was at the level of a single conjugated chain: these models
have been powerful in describing many interesting electronic
and optical properties associated withp delocalization in a
chain. However, it is also true that in the condensed materials
(single crystals, thin films or bulk), interchain processes can
be equally important as intrachain processes. Due to different
reasons(for example, a still incomplete knowledge of the
chain packing, and computational difficulties) the impact of
interchain interactions has not yet been extensively studied
theoretically. Only recently, some papers appeared on theo-
retical models accounting for interchain effects.6–15

In this paper we present a new quantum-mechanical
model for the calculation of the excitonic splitting of conju-
gated materials.

The model is based on the time-dependent(TD) density
functional theory(DFT) approach and it introduces the ef-
fects of the proximate molecular systems in a perturbative
framework. In this aspect, our model resembles the conven-
tional exciton theories in which the interchain effects are
considered as a slight perturbation to the system and there-
fore the excited states of the complex are expressed on the
basis of the electronic wave functions of the individual
chains.16

The new important aspect of our model is that both the
single chain properties and the interchain effects are evalu-
ated in the presence of an “embedding” environment which
is modeled to mimic the dielectric interactions of the distant
chains. This environment is here approximated with a con-
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tinuum anisotropic dielectric. Such anisotropy is introduced
to take into account the different dielectric properties of con-
jugated materials like crystals, or films, of polymers, along
and perpendicular to the direction of the conjugated chains.
This kind of description has been already exploited to simu-
late screening interactions in bulk polymers,7,8,11,12 but our
use is different. In the model we have formulated the dielec-
tric environment is directly introduced in the QM equations
through proper operators to be added to the Hamiltonian. In
this way, we can account for embedding effects not only in
the screening of the Coulomb interaction but also in the
modification of the electronic densities of each chain.

The paper is organized as follows: In Sec. II we explain
the computational methods employed to calculate the exci-
tonic splitting in material systems. In Sec. III, we will
present results for a simple test case, the excitonic splitting
associated with the optically allowed 11Ag→1 1Bu transition
of aggregates of oligomers of polyacetylene when in a cofa-
cial and a herringbone arrangement. In Sec. IV we will dis-
cuss these results.

II. THEORETICAL METHOD

In the literature, there are two different models accounting
for the interchain effects in the optical properties of conju-
gated materials(Refs. 7, 8, 11, and 12), which introduce an
anisotropic dielectric screening effect. They are both based
on a pseudo-potential plane-wave DFT description and in
both models the dielectric screening due to long-range inter-
chain interactions is introduced by adding to the “bare” Cou-
lomb potential a screened potential defined in terms of a
dielectric tensor.

Our model is still based on a DFT scheme but no plane
waves are introduced, instead atomic orbitals routinely used
in standard molecular calculations are exploited. The method
couples the TDDFT approach for computing transition ener-
gies and transition densities of the chains and theintegral
equation formalism(IEF) (Ref. 17) version of thepolariz-
able continuum model(PCM) (Ref. 18) to account for the
embedding effects. Below we present some aspects of both
methodologies and, more in details, of their coupling.

A. IEFPCM

In the IEFPCM(Ref. 17) model, the effects of a dielectric
medium on a quantum-mechanical molecular system(from
now on indicated as the “solute”) is introduced by describing
such dielectric as a structureless continuum, characterized by
its macroscopic dielectric permittivity(either a scalar quan-
tity, for standard isotropic liquid solvents, or a tensor, for
anisotropic environments like ordered films or polymeric
matrices as in the present case). Even if the two classes of
systems(a solute in the liquid solution or an ordered poly-
meric matrix) seem quite different, however the basic idea
beyond them is the same: a given system(either a solvated
molecule or a polymer chain) polarizes its surrounding me-
dium and the back-effect of this induced polarization is re-
flected in the changes of its properties.

In both cases, the starting point is the introduction of a
proper separation between the two parts of the system: the

solute, or better the volume containing it(from now on indi-
cated as the “cavity”), and the dielectric medium. The result-
ing boundary(generally called “cavity surface”) is then used
to represent the polarization effects induced by the solute on
the dielectric with a significative reduction in the complexity
and the dimensionality of the problem with respect to ap-
proaches in which the entire system(both the “solute” and
the medium) is treated at the same level.

This reduction is made possible by introducing areaction
field originated by anapparent charges displaced on the
cavity surface. The charges is completely determined by
computing the electrostatic potentialVr due to the solute
charge densityr on the cavity surface, and by defining the
electrostatic response function of the medium. Such function
is completely determined once we know the dielectric per-
mittivity of the medium, the shape and the dimension of the
cavity surface, i.e., the three-dimensional structure of the sol-
ute, and the form of the electrostatic Green functions inside
sGid and outsidesGed the cavity. For example, for an aniso-
tropic medium characterized by a tensorial permittivitye, we
have

Gisx,yd = 1/ux − yu, s1d

Gesx,yd = sÎdeted−1fse−1sx − ydd · sx − ydg−1/2, s2d

where Ge in Eq. (2) reduces to 1/seux−yud if the tensorial
permittivity reduces to the scalar dielectric constant as in
isotropic media(the reader interested to the formal aspects of
the strategy followed in the IEF method can find all the
details in Ref. 17).

In the computational practice a boundary-element method
(BEM) (Ref. 19) is exploited: the cavity surface is subdi-
vided in small finite elements ands is expressed in term of
point charges, each one being placed at the representative
point of each element. As a result of this discretization every
integral involving s can be solved as a sum over surface
elements. In this framework the equation defining the appar-
ent point charges can be written as

qI = o
J

elements

QIJVJ,

whereqI are the apparent point-charges,QIJ is the elementIJ
of the response matrix connecting point charges placed on
the Ith and theJth surface element, andVJ is the solute
potential inJth element: more details can be found in Ref.
20.

The effects induced by the apparent chargesqI on the
solute(i.e., on its charge densityr), are explicitly introduced
in the Hamiltonian through a specific operator(the reaction
field operator) of the form

V̂r
PCM = o

I

r̂sr d
usI − r u

qIse,rd, s3d

where r̂sr d is the density operator. In this way the new, or
“effective,” solute Hamiltonian is a sum of two terms: one

refers to the isolated solutesĤ0d and the othersV̂r
PCMd de-
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scribes its interaction with the embedding environment,

namelyĤ=Ĥ0+V̂r
PCM.

In Eq. (3) we have explicitly indicated the functional de-
pendence of the apparent chargesqI on the solute charge
density (and on the solvent permittivity). This dependence
introduces a further source of nonlinearity in the Hamil-
tonian which can be solved through standard iterative tech-
niques: the main point is that at convergency both the solute
and the embedding medium are mutually or “self-
consistently” polarized.

The theoretical scheme presented above for the general
problem of an “embedded” molecular system, will be here
applied to a more specific problem, namely that of an or-
dered film (or a crystal) of conjugated polymers. In this
framework, what we have called “solute” and “medium” as-
sumes a different meaning: both are chains of the ordered
film, but among these identical chains, some of them(the
generalized solute) are considered as a QM system while the
others are introduced as an “embedding” medium. In the
following section we will show how this approach can be
introduced in the TDDFT scheme for the calculation of the
electronic properties of such a generalized solute.

B. The TDDFT approach and its perturbative (PT)
reformulation

For a system initially in the ground state(here the gener-
alized solute), the effect of a perturbation introduced into the
Kohn-Sham(KS), or the Hartree-Fock(HF), Hamiltonian by
turning on an applied time-dependent fieldsdvstdd is, in the
linear response framework, a first order variation in the elec-
tronic density. In the hole-particle, particle-hole formalism
(within the frequency domain) one obtains21

FS A B

B* A *
D − vS 1 x

x − 1
DGS dP

dP*
D = S − dv

− dv*
D , s4d

wheredP is the linear response of the KS density matrix in
the reference of unperturbed molecular orbitalsf. The ma-
trices A and B, sometimes called orbital rotation Hessians,
are defined as

Aia,jb = dabdi jsea − eid − Kia,jb,

Bia,jb = − Kia,bj, s5d

wherees are the orbital energies,Kia,bj is the coupling ma-
trix,

Kia,jb =E dr E dr 8fi
*sr 8dfasr 8dS 1

ur 8 − r u
+ gxcsr 8,r dD

3f jsr dfb
*sr d s6d

and gxc is the exchange-correlation kernel. Here we have
used the usual convention in labeling MO’s orbitals, i.e.,
si , j , . . .d for occupied;sa,b,c, . . .d for virtual; ss,t , . . .d for
general orbitals.

By introducing the effects of the rest of the chains through
the IEF-PCM approach described in the previous section, the
coupling matrix has to be corrected with an additional term,
Bia,jb

PCM,22

Bia,jb
PCM = V ia

+ ·q jb,

qjbsskd = Q ·V jb, s7d

where the index “1” indicates the transpose of the column
matrix V rs containing the electronic potential integrals[de-
termined by the elementary chargefr

*sr dfssr d] on the cavity
surface tesserae.

In the response theory, excitation energies are determined
as poles of the response functions, leading to zero eigenval-
ues on the left-hand side of Eq.(4). They can thus be deter-
mined as solutions to the following non-Hermitian eigen-
value problem:

MX = vX, M = S A B

B* A *
D, X = SXY D , s8d

wheredP=X and dP* = Y describe to first order transition
density of each excitation.

Let us now consider two “embedded” systems, 1 and 2
with a common resonance frequency,v0 when they do not
interact (in the present case such systems are two identical
chains 1;2). When an interaction is turned on, the transi-
tions of the two systems are no longer degenerate, but in-
stead two transition frequenciesv+ andv− are obtained. The
corresponding splittingD=fv+−v−g can be evaluated by
solving a system similar to(8), but twice as large; and now
referring not to a single solute but to the “supermolecule”
1% 2, namely,

M 8X = vSX, M 8 = SM 11 M 12

M 21 M 22
D, S= S I S12

S21 I
D ,

s9d

where the matrixS12 accounts for overlap between orbitals
of 1 and 2 andI is the unit matrix.

Recently, an alternative solution to system(9) has been
formulated for two chromophores in solution;23,24 here such
approach is generalized to the problem of computing exci-
tonic splitting for an ordered film or a crystal of conjugated
polymer chains.

Let us start from the theory presented in Ref. 24 and let us
apply it to the two “embedded” chains, 1 and 2. By consid-
ering the interaction as a perturbation, the splittingfv+

−v−g can be obtained without explicitly solving the system
(9). Instead, we rewrite the zero-order eigenvectorsX+ and
X− as linear combinations of the unperturbed orbitals

X± =
1
Î2

S X1

±X2
D , s10d

whereX1 andX2 are eigenvectors describing the transitions
of resonance frequencyv0 for the noninteracting chains; this
allows us to define a first-order perturbed(PT) splitting as24

D2
PT = 2sX1

TM 12X2 − v0X1
TS12X2d s11d

or, in terms of thetransition densitiesrX
Tsr d of the noninter-

acting systems 1 and 2:
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D2
PT = 2E dr E dr 8r1

Tpsr 8d
1

ur 8 − r u
r2

Tsr d

+ 2E dr E dr 8r1
Tpsr 8dgxcsr 8,r ,v0dr2

Tsr d

+ 2E drr1
Tpsr dFo

I

1

usI − r u
qIsr2

TdG
− 2v0E drr1

Tpsr dr2
Tsr d = DCoul + Dxc + DPCM − DOvl.

s12d

About Eq. (12) two aspects are worth mentioning. First, an
explicit dielectric termDPCM appears in the expression of the
splitting, and this term is determined in terms of apparent
charges induced by the transition density. Second, the pres-
ence of the embedding medium has also modified both the
unperturbed(ground state) orbitals (and orbital energies),
and the linear response of the density matrix. In this way, the
effects of the dielectric anisotropy of the embedding environ-
ment is taken into account in both the ground-state descrip-
tion and in the response scheme in a self-consistent way: to
the best of our knowledge this is the first time that this kind
of treatment is used to quantum-mechanically study ordered
films or crystals.

The theory can be further developed by enlarging the gen-
eralized solute, or, in other words, by switching chains from
the “embedding” medium to the QM part of the system. To
obtain an analytical expression for the resulting excitonic
splitting between the upper and the lower componentssv+

−v−d of the manifold of transitions, some approximations
have to be exploited.

As an example of the general procedure, let us first show
how the previous equations(10) and (11) change when we
pass from a two- to a three-chain QM system, let us say the
two previous chains(1 and 2) with a further chain(3) still
having the same transition frequencyv0 and, being the chain
2 placed between 1 and 3.

Now, if we assume that interactions are only between the
two closest neighbors, and thus 1–3 interactions(M 13, and
M 13), as well as the overlap of the corresponding densities
sS13,S13d, can be neglected with respect to the stronger 1–2
and 2–3 interactions, and we apply the same perturbative
technique(i.e., we rewrite the zero-order eigenvectorsX+
and X− as linear combinations of the unperturbed orbitals),
we obtain

X± =
1
Î21

1
Î2

X1

±X2

1
Î2

X3
2

and, for the splitting between the lower and the upper tran-
sitions, we get

D3
PT =

2
Î2

fsX1
TM 12X2 + X3

TM 32X2d

− v0sX1
TS12X2 + X3

TS32X2dg. s13d

Equation(13) further reduces to a simple scaling of Eq.(11)
if we have a symmetric system, i.e., if 1;3 and thusM 12
=M 32 (and S12=S32); in this case the splitting obtained by
considering a three-chain QM system isÎ2 times the split-
ting D2

PT obtained in the two-chain QM system[see Eq.(11)]

D3
PT = Î2DPT. s14d

By applying the same strategy to a QM system with an in-
creasing number of identical chains in a symmetric 3D ar-
rangement, we obtain that the splittingDn

PT between the up-
per and the lower terms in the manifold of the resulting states
rapidly converges to twice the two-chain splittingD2

PT of Eq.
(11), namely,25

Dn
PT . 2DPT with n ù 20. s15d

From the formulation above which we can indicate as a
“nearest-neighbor approximation,” we obtain that Eq.(11)
represents the only equation we need to study interchain ef-
fects within the perturbed time-dependent(PT-TD) DFT
scheme. This approach has its main advantage in the fact that
the heavy computation[i.e., the evaluation of the transition
density rTsr d] is limited to the system formed by a single
chain. The effects of the closest chain(s) is successively in-
troduced through simple Coulomb, exchange-correlation and
overlap integrals involving only single chain properties while
the effects of the rest of the chains(the “embedding” me-
dium) are introduced through a Coulomb-type integral[see
Eq. (11)]. The limited computational effort and the simple
form of the integrals(which can be solved with standard
numerical techniques) makes this approach suitable to study
rather large polymer chains on the one hand, and to introduce
accurate quantum mechanical level of calculations on the
other hand.

As far as concerns the inclusion of the “embedding” ef-
fects, it is interesting to make a more explicit comparison
with previous approaches.

As said above, the introduction of an effective screening
function by a constant diagonal dielectric tensor is not new,
examples of such approaches can be found in Refs. 7, 8, 11,
and 12; however, a basic difference between such approaches
and our model has to be noted. In all previous approaches the
effects of the dielectric tensor are introduced through an ex-
plicit screening function in the equation determining the ex-
citon states, here, on the contrary, we introduce dielectric
effects also in the calculation of the transition properties of
the reference system(the single chain). In this way, the so-
called “unperturbed system” is already affected by the polar-
ization of the other chains, and thus, in addition to the stan-
dard screening of the closest-neighbors interactions, we will
also have a modification of the response of each single chain:
this, as we shall show in the following sections, acts so to
enhance the splitting.

Another important difference with respect to previous
models, is that we use an explicit boundary between the QM
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system and the rest by defining the cavity; in this way, we
introduce an automatic switch for the definition of the region
of the interchain screening; in the previous approaches this
was obtained by introducing a smooth cutoff for distances
smaller than the interchain distance.7,8

As a final comment, we note that the theory has been here
presented for a DFT description but the same formulation
can be equivalently applied to the Hartree-Fock approach
[known as TDHF or equivalently random phase approxima-
tion, RPA(Ref. 26)] and to its simplified single configuration
interaction versions, generally known as CIS,27 as well as to
simpler descriptions like those introduced in the semiempir-
ical intermediate neglect of differential overlap(INDO/S)
approach.28 The only aspects that have to be modified with
respect to the theory presented above are the definition of
the elements ofA and B matrices (5); for example, the
exchange-correlation term(gxcsr 8 ,r) d of the coupling matrix
K of Eq. (6) reduces to the exact Hartree-Fock exchange
when we pass from TDDFT to TDHF. In addition, when we
work in the approximation of single configuration interac-
tions (like in the CIS version of TDHF or in the semiempir-
ical ZINDO) the elements of matrixB disappear.

III. NUMERICAL APPLICATIONS

Bulk material formed by conjugated polymers usually
consists of a distribution of conjugated chains with various
finite lengths, which can be better modelized as an ensemble
of interacting finite-size segments rather than as periodic
systems.29 Here, we focus on a model system of oligomers of
increasing size, arranged both in a face-to-face(or cofacial)
and a herringbone(or HB) configuration. In particular, we
adopt as a model the system formed of alltrans sCHdx poly-
acetylene chains and we apply the formalism presented in the
previous section to the description of the energy splitting
associated with the optically allowed 11Ag→1 1Bu transi-
tion. We have made this choice in order to be able to discuss
the evolution of the energy splitting as a function of struc-
tural and environmental aspects, interchain separation and
conjugation length, as well as number of interacting chains
and dielectric screening. In addition, this simple system al-
lows us to make detailed comparisons between the new per-
turbative approach and both dipole-dipole approximations,
and the “supermolecule” approach.

For parallel molecules and in-phase bond alignment, as in
the cofacial arrangement, intermolecular interactions in the
dimer lead to a splitting of the 11Bu state into a low exci-
tonic component which is symmetry-forbidden with respect
to the ground state and a high component which is dipole-
allowed. For this ideal cofacial arrangement we have consid-
ered three different interchain distances, namely 4, 5, and
6 Å, while for the herringbone arrangement, the experimen-
tal data of the orthorhombic crystal structure taken from
electron diffraction studies have been used.

The analysis of the results is split in two parts; in the first
we compare the PT-TDDFT(and PT-TDHF) approach pre-
sented in the previous section with the supermolecule ap-
proach. This comparison should quantify the accuracy of the
perturbed method: due to the large dimensions which can be

reached in the supermolecule approach only the two shortest
chains are considered and a 6-31G basis set is used for this
comparison.

In the second part we report an analysis of the effects of
interchain separation, conjugation lengths and of the “em-
bedding” environment on the energy splitting of the same
cofacial systems and of the alternative herringbone arrange-
ment: for this analysis a larger 6-31+Gsd,pd atomic basis set
is used.

All the calculations have been performed using a modified
version of theGAUSSIAN 03 suite of programs30 in which the
IEFPCM PT-TD DFT model has been implemented. All DFT
calculations exploit the hybrid functional which mixes the
Lee, Yang, and Parr functional for the correlation part and
Becke’s three-parameter functional for the exchange
(B3LYP);31 this functional, in the years, has shown to repre-
sent the best compromise between applicability and accu-
racy, and in fact it is nowadays the functional most widely
used in molecular calculations.

A. PT-TDDFT vs supermolecule

For obvious computational reasons, the comparison be-
tween the perturbative(PT) and the supermolecule approach
is performed on dimeric and trimeric systems only. In the
supermolecule approach, in fact, the splitting is computed as
difference of the excitation energies obtained by solving a
proper TDDFT scheme[for example the system(9) for a
dimer] and thus calculations rapidly become too expensive.
On the contrary, in the perturbed framework, the splitting is
always computed in terms of single molecule properties,
namely through Eqs.(11) and (13) [or more simply through
Eq. (14) as in this case 1;2;3]. This analysis is here per-
formed for “embedded” PT and supermolecule systems
where, the term “embedded” refers to dimers or trimers in
the presence of a surrounding continuum anisotropic dielec-
tric. When we introduce the effects of the anisotropic dielec-
tric, we have to define the boundary between the QM system
(here the dimer or the trimer) and the dielectric medium, and
the tensor defining the dielectric permittivity. Due to the
symmetry of the system we want to simulate, for the tensor
we can always assume a diagonal form with only two differ-
ent diagonal elements(ei ande') corresponding to directions
along and perpendicular to the polymer chains, respectively.
The values we have used(4 for ei and 2 fore') have been
taken from experimental data of optical reflectance for light
polarized parallel and perpendicular to the chain axis.33

The boundary has been obtained by considering the sur-
face resulting from the combination of spheres centered on
the carbon atoms of the chains and with radii determined by
the corresponding van der Waals(hereR=2.28 Å). The re-
sulting cavity is illustrated in Fig. 1 for a dimer.

The calculations, performed at HF/6-31G and B3LYP/6-
31G, have been repeated on two different chains containing
2, or 4 CvC units, respectively; and for four different in-
terchain separations(4, 4.5, 5, and 6 Å): in all cases a cofa-
cial arrangement has been used. In Fig. 2 we report only the
results of systems withN=4 as for systems withN=2 a
completely equivalent picture has been found.

EXCITONIC SPLITTING IN CONJUGATED MOLECULAR… PHYSICAL REVIEW B 70, 205212(2004)

205212-5



The results reported in Fig. 2 indicate a very good agree-
ment between the perturbative(PT) and the supermolecule
calculations for all interchain distances with the exception of
the shortest onesd=4 Åd. At this distance, the two ap-
proaches are no longer equivalent but with deviations which
are opposite if we use DFT or HF descriptions. For HF, in
fact, the PT values are lower than those obtained with the
supermolecule approach; in both dimers and trimers atd=4
the PT splittings are 20% lower than the supermolecule ones.
This result is not unexpected as, at such short distances, the
approximation for the eigenvectorsX+ andX− as linear com-
bination of the unperturbed orbitals of the isolated chain is
no longer valid.

Things are more complex when a DFT description is
used. In this case, in fact, the PT splitting atd=4 is larger
that the supermolecule one. This is indeed an unexpected
result, and such irregular behavior seems to be ascribed to
the supermolecule approach. In fact, instead of monotoni-
cally increasing with decreasing of the distance(as it is
physically expected and as it is observed for the HF descrip-
tion), the DFT splittings in the dimeric or trimeric supermol-
ecule increase fromd=6 to d=4.5 Å, but atd=4 the behav-
ior abruptly changes and we observe a significant decrease in
the splitting. On the contrary, the behavior of the PT split-
tings with distance is regular(and parallel to that observed
for HF).

The “unexpected” small values of the supermolecule
splittings atd=4 Å seem to indicate a difficulty of DFT to
correctly describe intermolecular interactions and, at the end,
it prevents one from a coherent comparison with the PT ap-
proach.

The limits of standard DFT functionals in the description
of some kinds of intermolecular interactions are well-known;
here, however, this intrinsic limit does not represent a real
problem, as the PT approach seems to keep the right physical

trend. Of course, detailed analyses could be done to further
investigate this aspect, for example we could test other func-
tionals and see if they show the same trend with the distance;
however, this kind of study would lead far beyond the scope
of the present paper. On the contrary, here it is interesting to
note that the shortest-distance cofacial arrangement repre-
sents a limit case, as in this system the intermolecular inter-
actions are extremely strong(the overlap between the elec-
tronic densities of the two chains is in fact maximized) and
thus we can expect that the supermolecule and the PT ap-
proach give different descriptions. If we pass from this limit
system to a more realistic one in which the two chains are no
longer parallel and with in-phase bond alignment(see Fig. 3
for a 3D representation), we immediately find a better agree-
ment between PT and supermolecule approaches also at very

FIG. 2. Comparison between perturbative(PT) (full line) and
supermolecule(dotted line) approaches to compute excitonic split-
tings of “embedded” cofacial C8H10 chains at HF/6-31G(upper
graph) and B3LYP/6-31G(lower graph) level. The circles refer to
two-chain systems and the squares to three-chain systems. All the
splittings are in eV and the interchain distancessdd are in
angstroms.

FIG. 1. Example of cavity used to simulate the “embedding”
effects.

FIG. 3. Schematic representation of the herringbone arrange-
ment of the twotrans-polyacetylene chains in the unit cell of the
orthorombic crystal structure.
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short distances. This is shown in Fig. 4 where we report
B3LYP/6-31G energy splittings for the sameN=4 oligomer
but with a herringbonelike arrangement(to get a more direct
comparison with the graph of Fig. 2, we have maintained the
same range for both axes).

It is also worth noting that the irregular behavior of the
supermolecule approach observed for the cofacial arrange-
ment is significantly reduced here and, in fact, we just find a
small change of curvature atd=4.

From the comparison with the supermolecule approach, it
clearly appears that the PT-TD scheme works very well for
intermolecular distances typical of crystals. When one is in-
terested in applying the model to very close chains with co-
facial arrangements, attention has to be paid to verify that the
description, still qualitatively correct, is also quantitatively
accurate.

On the basis of such a positive result, in the follow-
ing sections the PT-TD approach will be applied to a more
detailed analysis of the excitonic splitting oftrans-

polyacetylene and of its dependence on structural(namely
the chain length and the 3D crystalline arrangement) and
embedding effects.

B. Structural and embedding effects

We investigate now the evolution of the excitonic splitting
with the size of the individual conjugated polyacetylene
chains by considering segments containing up to 16 carbon
atoms(8 carbon-carbon double bonds,N=8). This analysis is
here repeated for isolated two- or three-chain systems as well
as for the “embedded” analogs(i.e., in the presence of a
surrounding continuum anisotropic dielectric). In this way
we can in fact separate the effects of the nearest explicit
chains from those of the rest represented in terms of the
anisotropic medium.

Let us first analyze the behavior of the splitting for iso-
lated two-chain systems(i.e., without the embedding effect)
in the cofacial arrangement with respect to the chain length,
and let us compare the parallel behavior obtained in the
point-dipole approximation, namely,

Dd−d

2
=

sm1
T · m2

Td
R3 − 3

sm1
T ·Rdsm2

T ·Rd
R5 =

smTd2

d3 ,

wheremT is the transition dipole moment of the single chain.
In Fig. 5, we display for three interchainsd=4–6d dis-

tances the 1/N evolution, with N denoting the number of
sCvCd units in the polyene chains of the splitting(hereN
=2, 4, 6, and 8); all the calculations have been done at the
B3LYP/6-31+Gsd,pd level.

It is clear from Fig. 5 that the point-dipole model provides
an erroneous estimate of the splitting for long conjugated
chains, both qualitatively, the splitting always increases with
N as the transition dipoles grow with conjugation length, and
quantitatively, the splitting energy is largely overestimated.

Contrary to that predicted by the dipole-dipole approxi-
mation, the PT-TD DFT splittings show a peak behavior with
respect to the chain length with a maximum which shifts
to longer chain lengths when the interchain separation is
raised. A very similar result was obtained by Brédas and
co-workers9 by using INDO/S calculations both in the frame-

FIG. 4. B3LYP/6-31G comparison between perturbative(PT)
(full line) and supermolecule(dotted line) approaches to compute
excitonic splittings of “embedded” C8H10 chains in a herringbone
arrangement. The circles refer to two-chain systems and the squares
to three-chain systems. All the splittings are in eV and the inter-
chain distancessdd are in angstroms.

FIG. 5. Chain length dependence of the PT
excitonic splitting(eV) computed at B3LYP/6-
31+Gsd,pd. Three interchain separations are
considered, namely 4, 5, and 6 Å. The dotted line
refers to the dipole-dipole approximation(see
text) and the corresponding values have been
scaled by 0.5.
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work of the exciton theory and in the supermolecular ap-
proach. The coincidence of our PT-TD DFT results with the
INDO/S calculations of Brédas and co-workers can be better
explained by comparing the two levels of calculation in the
framework of the same perturbed-TD scheme. As said above,
in fact the PT-TD scheme can be reformulated for semi-
empirical descriptions by starting from the linear response
theory known as INDO/S(or ZINDO).28

In Table I we thus report a comparison between B3LYP
and ZINDO perturbative splittingsD2

PT; for DFT data we also
explicitly indicate the three different components of the split-
ting [see Eq.(12), without the PCM termDPCM] while for
ZINDO only one term survives, namely that corresponding
to the Coulomb integral.

Results of Table I clearly show that for this kind of system
the Coulomb term is not only largely dominant but also quite
similar in the two completely different B3LYP/6-31
+Gsd,pd and INDO/S descriptions. This is the reason why
the behaviors reported in Fig. 4 resemble those obtained in
Ref. 9 with an INDO/S exciton model in which only the

Coulomb term is included. Clearly, this similarity between
the correlated DFT and the semiempirical INDO approach
cannot be generalized to any system; in this case however, it
appears that the simple INDO description captures the cor-
rect electronic picture and agree(both qualitatively and also
quantitatively) with more accurate descriptions.

We note that the decrease in splitting with chain length
we and previous quantum-chemical studies9,32 observed is
in agreement with the evolution of the Davydov splitting
when going from quaterthienyl to sexithienyl single crystals,
as determined experimentally from polarized absorption
measurements.34

Let us now pass to analyze the embedding effects.
As shown in the theoretical section, within the IEFPCM

approach, the dielectric effects of the surrounding chains are
present in both levels of calculation of the PT scheme. First
they modify the single-chain properties[rTsr d and the tran-
sition energy], i.e., they induce an “implicit” effect on the
splitting represented by the modification of theDCoul, Dxc,
andDOvl terms of Eq.(12) with respect to a chain in vacuum.
In addition, there is an explicit dielectric effect in the second
level of calculation which originates theDPCM term.

In Fig. 6 we report, as an example of a general trend, the
chain length dependence of the splitting in the embedded
system at an interchain distanced of 5 Å. Three sets of val-
ues are reported, the implicit termsDimplicit =DCoul+Dxc

−DOvld, the PCM termsDPCMd and their sumsD2
PTd; to have a

more direct comparison we also report the results obtained
for the correspoding isolated system[these values are indi-
cated as “D2

PTsgasd” ].
From Fig. 6 it comes out that the implicit and the explicit

dielectric effects act in two opposite directions: the implicit
effect induces an enhancement of the splitting with respect to
the isolated system[and in fact Dimplicit is larger than
D2

PTsgasd], while the explicit term(of opposite sign) screens
the interaction; as the second explicit effect is much larger
than the first, the net(or D2

PT) splitting in the “embedded”
system is always smaller than in the isolated system. This
result is not unexpected; other theoretical models have in fact

TABLE I. PT-TD energy splittings(in eV) of polyacetylene
chains of different lengths. Two different levels of calculation
(B3LYP/6-31+Gsd,pd and INDO/S), and two different interchain
distances(d=4 andd=5 Å) have been considered.

N DCoul Dxcs310d DOvls104d D2
PT D2,INDO

PT

d=4

4 0.518 −0.157 0.320 0.502 0.418

6 0.512 −0.088 0.146 0.504 0.426

8 0.476 −0.060 0.084 0.470 0.390

d=5

4 0.356 −0.052 0.060 0.350 0.304

6 0.378 −0.027 0.026 0.374 0.328

8 0.366 −0.009 0.014 0.365 0.312

FIG. 6. Chain length dependence of the PT
excitonic splitting(in eV) for chains at distance
d=5 Å when computed withoutsD2

PTsgasdd or
with the embedding effects. In the latter case
three sets of values are reported, the implicit term
sDimplicit =DCoul+Dxc−DOvld, the explicit PCM
term sDPCMd and their sumsD2

PTd.
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clearly shown that a dielectric medium screens the Coulomb
interactions between chains(see Refs. 7, 8, 11, and 12), how-
ever here such a result is obtained as a modulation of two
opposite contributions and thus according to our model it is
not impossible that for specific systems an enhancement of
the interchain coupling is found and a consequent increase of
the splitting is observed.

To further increase the realism of the system, we intro-
duce now a different arrangement of the chains, passing from
an ideal cofacial arrangement to a herringbonelike one. Elec-
tron diffraction studies, in fact, show thattranspolyacetylene
crystallizes in an orthorhombic structure with a herringbone
arrangement; the unit cell contains two chains(as shown in
Fig. 4) and the perpendicular unit-cell vectors are 7.32 and
4.24 Å.

For this HB arrangement we have repeated the
B3LYP/6-31+Gsd,pd calculations of the excitonic splitting
by considering couples of neighboring chains of different
lengths(hereN=4–8). Both isolated(gas) and “embedded”
chains have been considered. The behaviors corresponding to
the two-chain[D2

PT of Eq. (11)] and then-chain perturbation
schemes[Dn

PT of Eq. (15)] are reported in Fig. 7. We recall
that then-chain extrapolation corresponds to the systems ob-
tained by replicating the two chains along the diagonal axis
of the cell.

The results reported in Fig. 7 clearly show the import-
ant role acted by the dielectric screening: the significant
increment of the splitting passing from the simplified two-
chain schemesD2

PTsgasdd to the n-chain schemesDn
PTsgasdd

is almost completely nullified by the dielectric effects
sDn

PTsembeddeddd.
The final Dn

PTsembeddedd represents the quantity to be
directly compared with experimental data of excitonic split-
tings. Unfortunately such a direct comparison here is not
possible as the experimental value of the splitting fortrans-
polyacetylene is not known. The only experimental data we
can invoke are the photoinduced absorption band observed at
about 0.5 eV; if we assume that this coincides with the ex-
cited state absorption from the 21Ag state to the1Bu state, we
might identify this value as an upper bound for the
splitting.35 We stress, however, that geometric relaxation pro-

cesses occur following photoexcitation; the latter typically
lead to a confinement of the excitons on a single(or a few)
chains, thus implying that the photoinduced spectrum bears
no complete information on interchain effects.

A much more correct comparison is given by the theoret-
ical value of 0.37 eV obtained by van der Horstet al.36 using
the model we have briefly sketched at the beginning of Sec.
II. The good agreement between such a value and our
Dn

PTsembeddedd seems to confirm the validity of our ap-
proach.

Besides these comparisons, the graph reported in Fig. 7 is
also interesting for another aspect; it in fact explains why
calculations on isolated dimers often give very good results:
in those calculations the underestimation of the enhancing of
the splitting due to the interactions with the other chains
compensates the lack of the screening due to long-range di-
electric effects.

IV. CONCLUSIONS

In this paper we have presented a new quantum-
mechanical approach to study excitonic splittings in ordered
(films or crystals) conjugated materials. The model, which is
formulated within the TDDFT framework, introduces inter-
chain effects at two levels. On the one hand, it accounts for
the presence of the neighboring chains in a perturbative way,
on the other hand it includes the interaction with the rest of
the chains in terms of an “embedding” continuum medium
characterized by an anisotropic dielectric tensor. The two
different components of the tensor correspond to the dielec-
tric permittivity along and perpendicular to the main axis of
the polymer chain.

A numerical application is presented on a modellistic sys-
tem, oligomers of different length of the all-transpolyacety-
lene: even if extremely simple, this system has revealed
many interesting aspects. In particular, the results obtained
for cofacial and herringbone arrangements have quantified
the importance of interchain effects on the excitonic split-
tings and, at the same time, they have allowed us to achieve
information on the different terms generating these effects.
By switching on the two parts of the interactions sequen-

FIG. 7. PT excitonic splittings(in eV) of her-
ringbone polyacetylene in the two-chainsD2

PTd
and in then-chain approximationsDn

PTd. In the
latter case, results referring to the embedded sys-
tem sDn

PTsembeddeddd are also reported.
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tially, we have in fact separated the effects of the nearest
neighbors from those of the rest represented by the aniso-
tropic “embedding” medium. In addition, we have shown
that the latter induces two different effects, a polarization of
the chain leading to an enhancement of the splitting, and an
opposite, and larger, screening of the chain-chain interactions
leading to a quenching of the splitting.

More realistic studies have to be performed before the
model can be considered a valid tool in providing structure-
property relationships that are useful for the engineering of
materials with improved characteristics. However, the first
applications already have given an interesting result showing
the importance of the embedding effects in order to achieve a
correct description of the optoelectronic properties of the
conjugated polymer materials. This is a well-known issue,
but it is important to note here that the method we have
presented represents an alternative approach to the theoreti-
cal models developed so far to describe crystalline polymers.

The approach we have followed in fact introduces two new
“contaminations.” First, it generalizes a model commonly
used by chemists to study molecular systems in liquid solu-
tion, to the completely different environment of an ordered
film formed by polymer chains, and secondly, it applies stan-
dard theoretical tools in quantum chemistry(hybrid function-
als, atomic basis sets, etc.) to problems of material physics.
The present performances and the possible future extensions
of the method make us confident that such a mixing of
knowledge from different but interconnected areas of science
represent a fruitful strategy in the study of materials and of
their applications.
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