
Anomalous scaling of conductivity in integrable fermion systems

P. Prelovšek,1,2 S. El Shawish,1 X. Zotos,3 and M. Long4
1J. Stefan Institute, SI-1000 Ljubljana, Slovenia

2Faculty of Mathematics and Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia
3Department of Physics, University of Crete, Crete and Foundation for Research and Technology-Hellas,

P.O. Box 2208, 71003 Heraklion, Greece
4Department of Physics, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom

(Received 11 June 2004; published 29 November 2004)

We analyze the high-temperature conductivity in one-dimensional integrable models of interacting fermions:
the t-V model(anisotropic Heisenberg spin chain) and the Hubbard model, at half-filling in the regime corre-
sponding to insulating ground state. A microcanonical Lanczos method study for finite size systems reveals
anomalously large finite-size effects at low frequencies while a frequency-moment analysis indicates a finite dc
conductivity. This phenomenon also appears in a prototype integrable quantum system of impenetrable par-
ticles, representing a strong-coupling limit of both models. In the thermodynamic limit, the two results could
converge to a finite dc conductivity rather than an ideal conductor or insulator scenario.
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I. INTRODUCTION

Transport of strongly interacting fermions in one-
dimensional(1D) systems have been so far the subject of
numerous theoretical as well as some experimental studies.1

While the ground-state and low-temperature properties, fol-
lowing the Luttinger-liquid universality, are well understood,
the transport properties still lack some fundamental under-
standing regarding the role of fermion correlations. It has
become evident in recent years, that with respect to transport
(in contrast to static quantities) integrable many-fermion
models behave very differently from nonintegrable ones.1,2

Some basic 1D fermion models are integrable, as thet-V
model(equivalent to the anisotropic Heisenberg spin model)
and the Hubbard model, and reveal in the metallic regime
dissipationless transport at finite temperatureT.0, well
founded due to the relation to conserved quantities.3–5 The
transport in the “insulating” regime of integrable models,
however, has been controvertial and is the issue of this paper.

Let us concentrate on the dynamical conductivity in the
1D system

ssvd = 2pDdsvd + sregsvd,

sregsv . 0d =
1 − e−bv

vL
ReE

0

`

dteivtk jstd js0dl, s1d

where j is the(total) particle current operator,b=1/T andL
is the number of sites in the chain(we set everywherekB
="=e0=1 as well as lattice spacinga0=1). At finite T the
charge stiffness(referred to also as Drude weight) DsTd mea-
sures the dissipationless component in the response, while
sregsvd is the “regular” part. The requirement that the ground
state is insulating6 is D0=DsT=0d=0. In the insulating re-
gime there are still several alternative scenarios for the be-
havior at finite temperatures. The system can atT.0 behave
as: (a) an “ideal conductor” withDsTd.0, (b) a “normal

resistor” with DsTd=0 but s0=ssv→0d.0, and (c) an
“ideal insulator” withDsTd=0 ands0=0.

A well-known T=0 insulator is thet-V model at half-
filling and V/ t.2. The model is equivalent in this regime to
an easy-axis anisotropicXXZ Heisenberg model withD.1.
It has been shown by one of the present authors7 that
DsT.0d is finite for V/ t,2 but decreasing towards
DsT.0d=0 at V/ t=2. This gives a strong indication that
DsTd=0 in the whole regimeV/ t.2, although there are also
alternative interpretations.8,9 The present authors speculated
in this case on a possible realisation of an “ideal insulator”3

where alsos0sT.0d=0. The argument is based on the ob-
servation that at least in theV/ t→` limit the soliton-
antisoliton mapping can be applied, where the eigenstates
cannot carry any current. However, the issue proved to be
more involved. Note that the transport of gapped spin sys-
tems described by the quantum nonlinear sigma model, when
treated by a semiclassical approach10 (mapping to a model of
classical impenetrable particles) indicates a “normal conduc-
tor” with a finite diffusion constant ands0sT.0d.0. On the
other hand, a Bethe ansatz approach11 concludes to a finite
Drude weightDsT.0d.0 and thus ballistic transport. It
should be reminded that theV/ t=2 case, corresponding to
the most studied isotropic Heisenberg model, is marginal
situation, with the long-standing open question whether the
diffusion constant(studied mostly atT→`) in this model is
finite.5,12 Another prominentT=0 insulator is the Hubbard
model at half-filling. Here even the question ofDsT.0d is
controvertial. On the basis of Bethe ansatz results13 and
Quantum Monte Carlo simulations14 it is claimed that
DsT.0d.0, i.e., an “ideal conductor” situation. More re-
cent analytical considerations15 seem to favorDsTd=0.

The aim of this paper is to present numerical evidence
that the dynamical conductivityssvd in the insulating re-
gime of several integrable 1D models is indeed very anoma-
lous. We consider in this context three 1D models: thet-V
model, the Hubbard model and a related model of impen-
etrable particles. First, finite-size scaling of results for all
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mentioned models indicates that indeedDsT.0d=0
(whereby the evidence is somewhat less conclusive for the
Hubbard model). Moreover, we show that on the one hand
small-system results reveal large pseudogap features in
ssv,0d and large finite size effects extending to high fre-
quencies; on the other hand, after the finite-size scaling in the
thermodynamic limit is performed, the results could be con-
sistent with a “normal” and featurelessssvd found by a
frequency-moment analysis. In this respect the behavior is
very different from the one in nonintegrable quantum many-
body models where even in small-size systems a “normal”
diffusive behavior is very evident.3,16

The paper is organized as follows: In Sec. II we present
two alternative numerical methods used to analyse the dy-
namical conductivity ssvd: the microcanonical Lanczos
method and the method of frequency moments. In Sec. III
results for three different 1D models in the insulating regime
are presented and discussed: thet-V model at half-filling, the
Hubbard model at half-filling, and the model of impenetrable
particles.

II. NUMERICAL METHODS

Microscopic models considered in this paper are 1D tight-
binding models with the hopping only among nearest neigh-
bors. We investigate within these models the dynamical
charge conductivityssvd (in the case of impenetrable par-
ticles the related spin conductivitysssvd) at T→` with an
emphasis on the lowv→0 behavior. The first approach we
apply is the full exact diagonalization(ED) of the Hamil-
tonian on a lattice withL sites and periodic boundary condi-
tions (p.b.c.) taking into account the number of fermionsN
and the wave vectorq as good quantum numbers. For ex-
ample, this allows for an exact solution ofssvd up to L
=20 for thet-V model. Larger systems can be studied using
the Lanczos method of ED.

Particularly appropriate at large enoughT is the microca-
nonical Lanczos method(MCLM ).17 The MCLM uses the
idea that dynamical autocorrelations(in a large enough sys-
tem) can be evaluated with respect to a single wave function
uCl provided that the energy deviation

de = skCusH − ld2uCld1/2 s2d

is small enough. Clearly,l determines here the temperature
T for which uCl is a relevant representative. SuchuCl can be
generated via a first Lanczos procedure using instead ofH a
modified projection operatorP=sH−ld2, performing M1

Lanczos steps to get the ground state ofP. The dynamical
correlations are then calculated using the standard Lanczos
procedure for dynamical autocorrelation functions, where the

modified uC̃l= j uCl is the starting wave function for the sec-
ond Lanczos iteration withM2 steps generating the continued
fraction representation ofssvd. The main advantage of the
MCLM is that it can reach systems equivalent in size to the
usual ground-state calculations using the Lanczos method.
For details we refer to Ref. 17; e.g., the largest available size
for the t-V model is thusL=28.

Besides thessvd spectra it is instructive to also show the
normalized integrated intensityIsvd. In tight-binding models

with n.n. hopping the(optical) sum rule forssvd is given by
k−Tl /2L, where T is the kinetic term in the Hamiltonian.
HenceIsvd can be expressed as

Isvd = D * +
2L

k− TlE
0+

v

dv8ssv8d, s3d

which is monotonously increasing function with the limiting
value Isv→`d=1 and well defined even for small systems.
Here,D* =2LD / k−Tl. It should be noted that in a full ED
calculation the Drude partD appears strictly atv=0, Eq.(1),
while in the MCLM it spreads into a windowde! t governed
by the number of Lanczos stepsM1. Still, choosing large
enoughM1,1000, de becomes very small, hence we get
well resolvable Drude contribution. Typically we use in the
calculations presented hereM1=1000,M2=5000. In order to
get smooth spectra especially for small system sizes, we ad-
ditionally performed an averaging overNl different l with
respect to the normal Gaussian distribution. Typically, we
usedNl,20 for smallestL and Nl,1 for largestL pre-
sented in figures below.

As will be evident from results further onssvd exhibits
huge finite-size effects. The latter are clearly a consequence
of the integrability since nonintegrable models do not exhibit
such features. In order to avoid such finite-size phenomena
we also perform an alternative analysis using the method of
frequency moments(FM). It is well known that atT=` one
can calculate for ssvd exact frequency momentsm2k

=pm2k/T as

m2k = TrsfH,fH, . . . ,fH, jgg ¯ g jd/Trs1d. s4d

Moments correspond here to an infinite systemL→` and
could be evaluated at fixed fermion concentrationn=N/L
using the linked cluster expansion and the diagrammatic
representation.18,19 Only clusters containing up tok+1 par-
ticles can contribute tom2k in an infinite system for models
with n.n. connections only. However, an analytic calculation
of moments for largerk becomes very tedious. Hence we use
the fact thatexact moments for an infinite systemcan be
obtained also via the ED results for small-system(with
p.b.c.)20 provided that the system sizeL is large enough. That
is,

m2k =
1

V
o
N=0

L

o
m,l

fNseNm− eNld2kukCNmu j uCNllu2, s5d

where uCNml refer to eigenstates forN fermions. In Eq.(5)
V=oNNstsNdfN and fugacityf =expsm /Td can be related to
the density

n =
1

VL
o
N

NNstsNdfN, s6d

whereNst is the number of states for givenN. Let us illus-
trate the feasibility of FM method for the 1Dt-V model.
Performing full ED for all fillings 0,N,L on a ring we get
exactly FM up tok=L /2−1 whereby even higherk.L /2
−1 moments are quite accurate. Using full ED forL=20 we
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thus reach for thet-V model exactly up tom18.
The next step is to reconstruct spectrassvd from m2k with

k=0, K. There are various strategies how to get the spectra
most representative forK→`, expecting a smooth function
ssvd. We follow here the procedure proposed by Nickel.21

First, a nonlinear transformationv=z+z2/z is performed
where z is chosen as the largest eigenvalue in a truncated
continued fraction representation ofssvd. For ssvd then a
Padé approximantfK1/K2g is found in terms of functions of
the novel variablez.

It should, however, be noted that FM are less sensitive to
the low-v regime, so a possible price to pay is an uncertainty
in the low frequency results. In this respect MCLM and FM
results really yield an alternative view of low-v dynamics.

III. RESULTS

A. t-V model

Let us first analyse the 1Dt-V model for interacting spin-
less fermions,

H = − to
i

sci+1
† ci + h.c.d + Vo

i

nini+1, s7d

with the repulsionV between fermions on n.n. sites and the
corresponding current operator

j = − to
i

sici+1
† ci + h.c.d. s8d

At half-filling, i.e., at the fermion densityn=1/2, theground
state is metallic forV/ t,2 and insulating forV/ t.2. Note
that by introducing a fictitious magnetic flux via the substi-
tution t→ teif the model turns into the anisotropicXXZ
Heisenberg model forf=p /L and even number of fermions.

In the following we present only results in the limitT
→`. From Eq.(1) it follows that s scales in this limit asb,
hence we present in Fig. 1(a) ssvd /b, calculated for even
number of fermions forV/ t=4 and various sizesL=16−28.
Results forD /b are plotted in the inset of Fig. 1(b) and
reveal an exponential decrease withL, which is at the same
time a challenging test for the feasibility and the sensitivity
of the MCLM at larger sizesL.

From the results in Figs. 1(a) and 1(b) several observa-
tions follow: (a) the dissipationless componentD becomes
negligible at largeL and the extrapolated value forL=` is
consistent withD=07, (b) there is a pseudogap at lowv
followed by a pronounced peak atv=vp and damped oscil-
latory features atv.vp, almost up to the bandwidth,4t,
(c) the peak and accompanied oscillations move downward
with the system size approximately asvp~1/L, (d) the
pseudogap inssv→0d is compensated by the peak intensity
as evident from the integratedIsvd which is essentially inde-
pendent ofL for v.vp, (e) Isv, td could approachIsvd
,s0v for largeL, indicative of a “normal” dc conductivity
s0 in the thermodynamic limit.

When applying the FM method to thet-V model we get

V = s1 − nd−L, f = n/s1 − nd. s9d

Using full ED for L=20 we reach exactly up tom18. In Figs.
1(a) and 1(b) we display results forssvd obtained via the
FM using K=9 and the correspondingf4/5g Padé approxi-
mant. The FM method proves to be very stable in particular
with respect to the most interesting and sensitive values0.
Namely the latter varies only slightly between, e.g.,f3/3g
and f4/5g Padé approximant. Results confirm the overall
agreement of MCLM and FM-method spectra apart from
evident finite-size phenomena atv,vp. It should be, how-
ever, mentioned that there are still some nonessential differ-
ences betweenIsvd results even at higherv.vp since the
MCLM results are for fixed fermion numberN=L /2,
whereas the FM corresponds to a grand canonical averaging
over all N so that even lowest moments differ slightly. The
general conclusion of the FM approach is that it does not
show any sign of pseudogap features and thus favors quite
featurelessssvd with finite s0. Essentially the same results
are reproduced forssvd analysing FM using the maximum-
entropy method.22

B. Hubbard model

Next let us consider the 1D Hubbard model

H = − to
i,s

seifci+1,s
† cis + h.c.d + Uo

i

ni↑ni↓,

FIG. 1. (a) Conductivityssvd /b and (b) integrated normalized
Isvd at T→` within the 1Dt-V model withV/ t=4, obtained using
the ED and the MCLM for systems with lengthL, and the fre-
quency moment expansion. The inset shows lnsD /bd vs L, where
the line is a guide to the eye.
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j = − to
i,s

sieifci+1,s
† cis + h.c.d, s10d

where we take into account a possible fictitious fluxf. We
study the model at half-fillingn=N/L=1 where the ground
state is insulating, i.e.,D0=0, for all U.0. In the limit L
→` the behavior should not depend onf. Nevertheless in
small systems low-v features, in particularDsfd, depend on
f. We present here calculations within the Hubbard model
using the ED and the MCLM atf=p / s2Ld since in this case
Dsf ,Td is at maximum. Relative to thet-V model, smaller
sizes are reachable for the Hubbard model atn=1, i.e., we
investigateL=10 performing full ED, while with the MCLM
systems up toL=16 can be studied.

Results for the intermediate caseU / t=4 and againT
→` are shown in Figs. 2(a) and 2(b). We note that several
features are similar to results for thet-V model: (a) D de-
creases withL, (b) a pseudogap appears forv,vp, (c) large
finite size effects extend up to frequencies of the order of the
bandwidth,(d) the pseudogap scale appears to close with the
increasing system size.

However, the dependence ofDsLd is not exponential, but
the scaling appears to followD~1/L [see the inset of Fig.
2(b)]. Although with less certainty than within thet-V model
we could again support the limiting valueDsTd=0. Also,
Isvd tends with increasingL to I ,s0v for v, t, here ap-
proaching from higher values in contrast to Fig. 1(b). In spite
of differences to thet-V model, results scaled to the thermo-

dynamic limit could be consistent with a smoothssvd and a
finite s0.

We also perform the FM analysis, using exact ED results
for systems with up toL=10 and 0,N,2L. Here, we use

V = s1 + fd2L, f = n/s2 − nd. s11d

The analysis is accurate up tom10 and correspondingf3/2g
Padé approximants. This is barely enough to reproduce gross
features of limitingssvd, nevertheless results are in agree-
ment with previous conclusions for thet-V model.

C. Impenetrable particles

The above results indicate that integrable models in the
“insulating” regime share similar features in the dynamical
conductivity ssvd. It has already been proposed3 that it is
helpful to consider the large interaction limit, i.e.,V@ t and
U@ t, where the dynamics of both models is simplified but
remains highly nontrivial. For a half-filled band in this limit
we are dealing with an excitation spectrum composed of split
subspaces with a fixed numberNs of oppositely charged
“soliton-antisoliton” sss̄d pairs. In such a limit, the solitons/
antisolitons—doubly occupied/empty sites in the Hubbard
model, occupied/empty n.n. sites in thet-V model—behave
as impenetrable quantum particles, since their crossing
would require virtual processes withDE=U, V.

The simplest prototype model which incorporates the
same physics—that of a system with two species of impen-
etrable particles—is the 1Dt-model,

H = − to
is

sc̃i+1,s
† c̃is + h.c.d, s12d

where projected fermion operators take into account that the
double occupation of sites is forbidden; the two species of
particles are represented by the up/down spin fermions. Thus
we consider within thet-model the spin current

js = to
is

sisc̃i+1,s
† c̃is + h.c.d, s13d

and the corresponding spin diffusivitysssvd.
The only relevant parameter within thet-model is the

electron densityn=n↑+n↓, where 0,n,1 and of interest is
the paramagnetic casen↑=n↓. The model(12) is also exactly
solvable. Moreover, the electron currentj commutes withH,
while the spin currentjs does not. It is plausible that in an
unpolarized ring,N↑=N↓, exact eigenstates do not carry any
spin current, i.e.,kCnu jsuCnl=0, and henceDsTd;0. This
becomes clear by introducing the fictitious flux byt→ teif.
Particles cannot cross, so all eigenergiesen are independent
of f. SinceDsTd can be related2 to ]2en/]f2 this leads to
DsTd;0. Still, this does not precludesssv.0d.0, since
kCnu jsuCmlÞ0 in general.

We studysssvd within the t-model again using the same
methods. With the full ED we reachL=12 while with the
MCLM up to L=20 sites. For the presentation we choose the
quarter-filled case,n=1/2, where most systems are avail-
able,L=8, 12, 16, 20. Results are shown in Figs. 3(a) and
3(b). As expected, finite-size features are very similar to

FIG. 2. (a) ssvd /b and (b) Isvd within the 1D Hubbard model
with U / t=4, obtained via the ED, the MCLM(finite L), and the FM
method. The inset showsD /b scaled vs 1/L, whereby the line is a
guide to the eye.
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those in Figs. 1 and 2, apart fromD;0. The pseudogap is
pronounced even more clearly, with the peak frequencyvp
~1/L. Particularly powerful for this model is the FM
method. Namely, from the full ED results we can evaluate
exactly moments up tom20. Since there is a single character-
istic scalet, the structure ofsssvd is simpler and better re-
producible via the FM method. Results corresponding to
f5/5g Padé approximant are presented in Figs. 3(a) and 3(b)
and again indicate on a “normal” diffusivity in the thermo-
dynamic limit.

IV. CONCLUSIONS

Let us summarize and comment obtained results. We have
shown that all considered 1D integrable models of interact-
ing fermions share several common features:

(a) The charge stiffness is eitherD;0 (t-model) or
appears to scale to zero, whereby the evidence is stronger for
the t-V model. Whereas the vanishingD is easy to under-
stand for impenetrable particles, it is a highly nontrivial
statement for the other two models.8,9,13–15The observations
can be rationalized in a way that thet-V and Hubbard model
at half-filling in the thermodynamic limitL→` remain to
behave as in the limitV, U→` where solitons and antisoli-
tons cannot cross.

(b) The pseudogap is pronounced for finite-size sys-
tems whereby the finite-size peak scales asvp~1/L.

(c) The extrapolation to the thermodynamic limit
could be compatible with a rather featureless and regular
ssv,0d and thus finites0. With respect to the last two
points the ED (including MCLM) and FM methods are
complementary. Whereas the FM method(valid for an L
→` system) cannot detect finite-size effects and appears to
converge to a featurelessssvd, the ED methods are evidently
sensitive to the effect of p.b.c. at finiteL.

A fundamental question raised by these observations is,
whether the large finite size effects observed at low frequen-
cies are reflected to the dynamics of bulk systems and in
particular, which features of the conductivity(e.g., q,
v-dependence) might be singular.

We restricted our results toT→`. The latter is clearly
most convenient for the FM method. Nevertheless, from the
MCLM results considered at finite but highT there appears
no evidence for any qualitative change on behavior. We also
presented results for a single parameter for thet-V and Hub-
bard model, and one filling for thet model, respectively. One
cannot expect any essential difference for other values within
the “insulating” regime, although numerical evidence be-
comes poorer, e.g., on approachingV→2 t within the t-V
model. Clearly, the most challenging case isV=2 t, corre-
sponding to the isotropic Heisenberg model. Our results re-
veal an increase ofs0 on approachingV=2 t. Still we are not
able to settle the well-known dilemma5,12 whether s0 re-
mains finite or diverges in this marginal case.
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