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Anomalous scaling of conductivity in integrable fermion systems
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We analyze the high-temperature conductivity in one-dimensional integrable models of interacting fermions:
the t-V model(anisotropic Heisenberg spin chaiand the Hubbard model, at half-filling in the regime corre-
sponding to insulating ground state. A microcanonical Lanczos method study for finite size systems reveals
anomalously large finite-size effects at low frequencies while a frequency-moment analysis indicates a finite dc
conductivity. This phenomenon also appears in a prototype integrable quantum system of impenetrable par-
ticles, representing a strong-coupling limit of both models. In the thermodynamic limit, the two results could
converge to a finite dc conductivity rather than an ideal conductor or insulator scenario.
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I. INTRODUCTION resistor” with D(T)=0 but oy=0(w—0)>0, and (c) an

. . . . “ideal insulator” withD(T)=0 ando,=0.
. Tran_sport of strongly interacting fermions in ON€ A well-known T=0 insulator is thet-V model at half-
dimensional(1D) systems have been so far.the SUbJeCt.Offilling and V/t>2. The model is equivalent in this regime to
numerous theoretical as well as some experimental stlidie

: ; n easy-axis anisotropXXZ Heisenberg model witih >1.
While the ground-state and low-temperature properties, fol; has been shown by one of the present authdhst

lowing the Luttinger-liquid universality, are well understood, D(T>0) is finite for V/t<2 but decreasing towards
the transport properties still lack some fundamental underD(T>0):0 at V/t=2. This gives a strong indication that
standing regarding the role of fermion correlations. It haSD(T):O in the whole regima//t> 2, although there are also

become evident in recent years, that with respect to transpofiternative interpretatiori The present authors speculated
(in contrast to static quantitipsintegrable many-fermion i, this case on a possible realisation of an “ideal insuldtor”

models behave very differently from nonintegrable ohs. \yhere alsooo(T>0)=0. The argument is based on the ob-
Some basic 1D fermion models are integrable, astiNe  geryation that at least in th¥/t—o limit the soliton-
model(equivalent to the anisotropic Heisenberg spin mpdel 5ntisoliton mapping can be applied, where the eigenstates
and the Hubbard model, and reveal in the metallic regimeannot carry any current. However, the issue proved to be
dissipationless transport at finite temperatdre- 03 well  more involved. Note that the transport of gapped spin sys-
founded due to the relation to conserved quantitiésthe  tems described by the quantum nonlinear sigma model, when
transport in the “insulating” regime of integrable models, {;eated by a semiclassical approdtimapping to a model of
however, has been controvertial and is the issue of this pap€fjassical impenetrable particlésdicates a “normal conduc-
Let us concentrate on the dynamical conductivity in thei \with a finite diffusion constant andy(T>0)>0. On the

1D system other hand, a Bethe ansatz apprdaaoncludes to a finite
(©) = 27D (w) + Tred @), Drude weight[_)(T> 0)>0 and thus ballistic transp(?rt. It
should be reminded that thé/t=2 case, corresponding to
" the most studied isotropic Heisenberg model, is marginal
1 —g B _ situation, with the long-standing open question whether the
Ored@w>0) = Ref dte®(j(1)j(0)), (1) diffusion constantstudied mostly af — «) in this model is

A finite 512 Another prominenfT=0 insulator is the Hubbard
model at half-filling. Here even the question BfT>0) is

wherej is the(total) particle current operatog=1/T andL  controvertial. On the basis of Bethe ansatz retilend
is the number of sites in the cha{we set everywherdg ~ Quantum Monte Carlo simulatioHs it is claimed that
=fh=ey=1 as well as lattice spacingy=1). At finite T the  D(T>0)>0, i.e., an “ideal conductor” situation. More re-
charge stiffnesgreferred to also as Drude weighd(T) mea-  cent analytical consideratiofsseem to favoD(T)=0.
sures the dissipationless component in the response, while The aim of this paper is to present numerical evidence
Tred @) is the “regular” part. The requirement that the groundthat the dynamical conductivitg(w) in the insulating re-
state is insulatinyjis Dy=D(T=0)=0. In the insulating re- gime of several integrable 1D models is indeed very anoma-
gime there are still several alternative scenarios for the bdous. We consider in this context three 1D models: the
havior at finite temperatures. The system cafat0 behave model, the Hubbard model and a related model of impen-
as: (&) an “ideal conductor” withD(T)>0, (b) a “normal  etrable particles. First, finite-size scaling of results for all
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mentioned models indicates that indeed(T>0)=0  with n.n. hopping thé€optical) sum rule foro(w) is given by
(whereby the evidence is somewhat less conclusive for thé-T)/2L, whereT is the kinetic term in the Hamiltonian.
Hubbard modegl Moreover, we show that on the one hand Hencel(w) can be expressed as

small-system results reveal large pseudogap features in

a(w~0) and large finite size effects extending to high fre- oL “
quencies; on the other hand, after the finite-size scaling in the l(w)=D* + f do'o(w'), (3)
thermodynamic limit is performed, the results could be con- =T o

sistent with a “normal” and featureless(w) found by a
frequency-moment analysis. In this respect the behavior ishich is monotonously increasing function with the limiting
very different from the one in nonintegrable quantum many-valuel(w—)=1 and well defined even for small systems.
body models where even in small-size systems a “normalHere, D*=2LD/(-T). It should be noted that in a full ED
diffusive behavior is very eviderit:® calculation the Drude paR appears strictly ab=0, Eq.(1),
The paper is organized as follows: In Sec. Il we presentyhile in the MCLM it spreads into a windoWe <t governed
two alternative numerical methods used to analyse the dyby the number of Lanczos stepd;. Still, choosing large
namical conductivity o(w): the microcanonical Lanczos enoughM;~ 1000, ¢ becomes very small, hence we get
method and the method of frequency moments. In Sec. Ilivell resolvable Drude contribution. Typically we use in the
results for three different 1D models in the insulating regimecalculations presented heké, =1000,M,=5000. In order to
are presented and discussed: thémodel at half-filling, the  get smooth spectra especially for small system sizes, we ad-
Hubbard model at half-filling, and the model of impenetrableditionally performed an averaging oved; different A with
particles. respect to the normal Gaussian distribution. Typically, we
usedN, ~20 for smallestL and N, ~1 for largestL pre-
sented in figures below.

Microscopic models considered in this paper are 1D tight- As Will be evident from results further oa(w) exhibits
binding models with the hopping only among nearest neighhuge finite-size effects. The latter are clearly a consequence
bors. We investigate within these models the dynamicaPf the integrability since nonintegrable models do not exhibit
charge conductivityr(w) (in the case of impenetrable par- Such features. In order to avoid such finite-size phenomena
ticles the related spin conductivitys(w)) at T—c with an ~ We also perform an alternative analysis using the method of
emphasis on the low— 0 behavior. The first approach we frequency momente=M). It is well known that aff == one

II. NUMERICAL METHODS

apply is the full exact diagonalizatiofED) of the Hamil- Ccan calculate foro(w) exact frequency momentsny
tonian on a lattice with. sites and periodic boundary condi- =7/ T as
tions (p.b.c) taking into account the number of fermiohs piae = THHLH, - [H T+ T)/Tr(). 4)

and the wave vectog as good quantum numbers. For ex-

ample, this allows for an exact solution efw) up to L Moments correspond here to an infinite systemc and

=20 for thet-V model. Larger systems can be studied usingcould be evaluated at fixed fermion concentrationaN/L

the Lanczos method of ED. using the linked cluster expansion and the diagrammatic
Particularly appropriate at large enouglis the microca- representatio®®° Only clusters containing up tk+1 par-

nonical Lanczos metho@CLM).'” The MCLM uses the ticles can contribute tguy, in an infinite system for models

idea that dynamical autocorrelatioia a large enough sys- Wwith n.n. connections only. However, an analytic calculation

tem) can be evaluated with respect to a single wave functior@f moments for largek becomes very tedious. Hence we use

|W) provided that the energy deviation the fact thatexact moments for an infinite systezan be
5 12 obtained also via the ED results for small-systéwith
e=((¥|(H=N)¥)) (2)  p.b.c)?provided that the system sitsis large enough. That
is small enough. Clearly, determines here the temperature 'S:
T for which| ) is a relevant representative. SUdh can be 1t
gengr_ated via} a first Lanczos procedurze using in;te&fﬂ af o=~ 2 2 N enm= end (P nmli ¥ a2, (5)
modified projection operatoP=(H-\)%, performing M; Q (o ml

Lanczos steps to get the ground statePofThe dynamical
correlations are then calculated using the standard Lancz
procedure for dynamical autocorrelation functions, where th

modified |W¥)=j| W) is the starting wave function for the sec-
ond Lanczos iteration witM, steps generating the continued 1
fraction representation of(w). The main advantage of the =00
MCLM is that it can reach systems equivalent in size to the
usual ground-state calculations using the Lanczos methodvhereNg, is the number of states for givew. Let us illus-
For details we refer to Ref. 17; e.g., the largest available sizé&rate the feasibility of FM method for the 1BV model.
for thet-V model is thud.=28. Performing full ED for all fillings 0O<KN<L on a ring we get
Besides ther(w) spectra it is instructive to also show the exactly FM up tok=L/2-1 whereby even highek>L/2
normalized integrated intensityw). In tight-binding models -1 moments are quite accurate. Using full ED Eor 20 we

here|W .y refer to eigenstates fdd fermions. In Eq.(5)
=3\Ng(N)fN and fugacityf=exp(u/T) can be related to
he density

= QLE NNg(N) N, (6)
N
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0.2 ' ' ; j=-t> (icf,,c + h.c). 8)
Vit=4 —-—- ED:L=16 i
———- ED:L=20 . i i )
e MCLM: L=24 At half-filling, i.e., at the fermion density=1/2, theground
A ——— MCLM: L=28 state is metallic foV/t<2 and insulating fol/t>2. Note
% 01} "\‘,( \~\ —— FM: [4/5] i that by introducing a fictitious magnetic flux via the substi-
. A

tution t—te'? the model turns into the anisotropéXZ
Heisenberg model fogp=/L and even number of fermions.

In the following we present only results in the limit
— o0, From Eq.(1) it follows that o scales in this limit ag3,
hence we present in Fig(d) o(w)/B, calculated for even
number of fermions fol//t=4 and various sizes=16-28.
Results forD/B are plotted in the inset of Fig.() and
reveal an exponential decrease wlithwhich is at the same
time a challenging test for the feasibility and the sensitivity
of the MCLM at larger sizeg.

From the results in Figs.(4) and Xb) several observa-
tions follow: (a) the dissipationless componebt becomes
negligible at largel and the extrapolated value far=o is

7 consistent withD=0’, (b) there is a pseudogap at low
,/’/ followed by a pronounced peak at=w, and damped oscil-
0.0 2z ) . latory features atv> w,, almost up to the bandwidth-4t,
) 1 2 3 4 (c) the peak and accompanied oscillations move downward
w/t with the system size approximately as,>1/L, (d) the

pseudogap imr(w— 0) is compensated by the peak intensity
FIG. 1. (a) Conductivity o(w)/B and(b) integrated normalized as evident from the integratétw) which is essentially inde-
|(w) at T— o within the 1Dt-V model withV/t=4, obtained using  pendent ofL for w> wy, () I(w<t) could approacH (w)

the ED and the MCLM for systems with length and the fre-  ~ 5/ for largeL, indicative of a “normal” dc conductivity
guency moment expansion. The inset show®IB) vs L, where 0, in the thermodynamic limit.

the line is a guide to the eye. When applying the FM method to theV model we get
thus reach for thé-V model exactly up tquqg. Q=(1-n" f=n/(1-n). (9)

The next step is to reconstruct speaif@) from wo with _ _
k=0, K. There are various strategies how to get the spectr¥Sing full ED for L=20 we reach exactly up ta;s. In Figs.
most representative fdf — o, expecting a smooth function (@ and Xb) we display results foir(w) obtained via the
o(w). We follow here the procedure proposed by NicKel. FM usingK=9 and the correspondirigt/5] Padé approxi-
First, a nonlinear transformatiom=z+¢2/z is performed Mmant. The FM method proves to be very stable in particular
where ¢ is chosen as the largest eigenvalue in a truncate®ith respect to the most interesting and sensitive vaige
continued fraction representation ofw). For o(w) then a  Namely the latter varies only slightly between, el@/3]
Padé approximariK,/K,] is found in terms of functions of and [4/5] Padé approximant. Results confirm the overall
the novel variable. agreement of MCLM and FM-method spectra apart from
It should, however, be noted that FM are less sensitive tgvident finite-size phenomena @t< w,,. It should be, how-
the low-w regime7 SO a possib|e price to pay is an uncertaint}ﬁver, mentioned that there are still some nonessential differ-
in the low frequency results. In this respect MCLM and FM ences betweeh(w) results even at highes > w, since the
results really yield an alternative view of low-dynamics.  MCLM results are for fixed fermion numbeN=L/2,
whereas the FM corresponds to a grand canonical averaging
over allN so that even lowest moments differ slightly. The
Ill. RESULTS general conclusion of the FM approach is that it does not
show any sign of pseudogap features and thus favors quite
featurelessr(w) with finite oy. Essentially the same results

Let us first analyse the 1BV model for interacting spin- are reproduced fos(w) analysing FM using the maximum-

A. t-V model

less fermions, entropy method?
H= _tE (CiT+1Ci +h.c) + VE NNy, ) B. Hubbard model
! ! Next let us consider the 1D Hubbard model
with the repulsionV between fermions on n.n. sites and the H=-t> (€%, Cis+h.c) +UX myny,
corresponding current operator is i
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FIG. 2. (a) o(w)/B and(b) I(w) within the 1D Hubbard model
with U/t=4, obtained via the ED, the MCLNMfinite L), and the FM
method. The inset show/ 3 scaled vs 1lL, whereby the line is a
guide to the eye.

j=-t2 (ie’cl,; cs +h.c), (10)

i,s

where we take into account a possible fictitious flaxWe
study the model at half-fillinqi=N/L=1 where the ground
state is insulating, i.eDy=0, for all U>0. In the limit L
— oo the behavior should not depend @n Nevertheless in
small systems low» features, in particulab(¢), depend on
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dynamic limit could be consistent with a smoatfw) and a
finite o,.

We also perform the FM analysis, using exact ED results
for systems with up t&.=10 and G<N<2L. Here, we use

Q=1+H%, f=n/(2-n). (12

The analysis is accurate up (0, and corresponding3/2]
Padé approximants. This is barely enough to reproduce gross
features of limitingo(w), nevertheless results are in agree-
ment with previous conclusions for thié/ model.

C. Impenetrable particles

The above results indicate that integrable models in the
“insulating” regime share similar features in the dynamical
conductivity o(w). It has already been proposethat it is
helpful to consider the large interaction limit, i.& >t and
U>t, where the dynamics of both models is simplified but
remains highly nontrivial. For a half-filled band in this limit
we are dealing with an excitation spectrum composed of split
subspaces with a fixed numbél; of oppositely charged
“soliton-antisoliton” (s9 pairs. In such a limit, the solitons/
antisolitons—doubly occupied/empty sites in the Hubbard
model, occupied/empty n.n. sites in th& model—behave
as impenetrable quantum particles, since their crossing
would require virtual processes witkE=U, V.

The simplest prototype model which incorporates the
same physics—that of a system with two species of impen-
etrable particles—is the 1Bmodel,

H=-t> @, &s+h.c), (12)
is

where projected fermion operators take into account that the
double occupation of sites is forbidden; the two species of
particles are represented by the up/down spin fermions. Thus
we consider within thé-model the spin current

js=t2 (iSTy Bs+hec), (13

is

¢. We present here calculations within the Hubbard model

using the ED and the MCLM abp=/(2L) since in this case
D(¢,T) is at maximum. Relative to theV model, smaller
sizes are reachable for the Hubbard modehat, i.e., we
investigatel =10 performing full ED, while with the MCLM
systems up td.=16 can be studied.

Results for the intermediate cas&#/t=4 and againT
— oo are shown in Figs. (@) and 2b). We note that several
features are similar to results for the¢/ model: (a) D de-
creases with., (b) a pseudogap appears 0K w, (c) large

and the corresponding spin diffusivity(w).

The only relevant parameter within themodel is the
electron densityn=n,+n;, where 0<n<1 and of interest is
the paramagnetic cage=n,. The model12) is also exactly
solvable. Moreover, the electron currgntommutes withH,
while the spin currenjs does not. It is plausible that in an
unpolarized ringN; =N, exact eigenstates do not carry any
spin current, i.e.{¥,|jd¥,)=0, and henceD(T)=0. This
becomes clear by introducing the fictitious flux by:tel?.

finite size effects extend up to frequencies of the order of théarticles cannot cross, so all eigenergigsire independent
bandwidth,(d) the pseudogap scale appears to close with thef ¢. SinceD(T) can be relatetito e,/ d¢? this leads to

increasing system size.

However, the dependence DfL) is not exponential, but
the scaling appears to follo® «1/L [see the inset of Fig.
2(b)]. Although with less certainty than within thieé/ model
we could again support the limiting value(T)=0. Also,
I(w) tends with increasind. to | ~ oyw for w<t, here ap-
proaching from higher values in contrast to Figh)L In spite

D(T)=0. Still, this does not preclude{w>0)>0, since
(P,id¥mw # 0 in general.

We studyo(w) within the t-model again using the same
methods. With the full ED we reach=12 while with the
MCLM up to L=20 sites. For the presentation we choose the
quarter-filled casen=1/2, where most systems are avail-
able,L=8, 12, 16, 20. Results are shown in Figga)3and

of differences to thé-V model, results scaled to the thermo- 3(b). As expected, finite-size features are very similar to
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at half-filling in the thermodynamic limit. —c remain to
behave as in the limi¥/, U— « where solitons and antisoli-
tons cannot cross.

(b) The pseudogap is pronounced for finite-size sys-
tems whereby the finite-size peak scalesogs 1/L.

(c) The extrapolation to the thermodynamic limit
could be compatible with a rather featureless and regular
o(w~0) and thus finiteoy,. With respect to the last two
points the ED(including MCLM) and FM methods are
complementary. Whereas the FM methoalid for an L
— oo system cannot detect finite-size effects and appears to
converge to a featurelessw), the ED methods are evidently
sensitive to the effect of p.b.c. at finite

A fundamental question raised by these observations is,
whether the large finite size effects observed at low frequen-
cies are reflected to the dynamics of bulk systems and in
particular, which features of the conductivitie.g., q,
w-dependengemight be singular.

We restricted our results td— . The latter is clearly

FIG. 3. (a) Spin diffusivity o(w)/ B and(b) the integrated(w) most convenient for the FM method. Nevertheless, from the
within the 1Dt-model atn=1/2, obtained via the ED, the MCLM, MCLM results considered at finite but highthere appears
and the FM method. no evidence for any qualitative change on behavior. We also

presented results for a single parameter fortthleand Hub-
those in Figs. 1 and 2, apart from=0. The pseudogap is bard model, and one filling for thtemodel, respectively. One
pronounced even more clearly, with the peak frequengy cannot expect any essential difference for other values within
«1/L. Particularly powerful for this model is the FM the “insulating” regime, although numerical evidence be-
method. Namely, from the full ED results we can evaluatecOmes poorer, e.g., on approachivg-2 t within the t-V
exactly moments up tp,o. Since there is a single character- model. Clearly, the most challenging caseVis2 t, corre-
istic scalet, the structure ofry(w) is simpler and better re- Sponding to the isotropic Heisenberg model. Our results re-
producible via the FM method. Results corresponding td/€al an increase af, on approachiny/=2 t. Still we are not
[5/5] Padé approximant are presented in Figs) and 3b) ~ able to settle the well-known dilemim& whether o re-
and again indicate on a “normal’ diffusivity in the thermo- Mains finite or diverges in this marginal case.
dynamic limit.

0.3 T T T (@) The charge stiffness is eith& =0 (t-mode) or
a) —-—- ED:L=8 appears to scale to zero, whereby the evidence is stronger for
——— ED:L=12 the t-V model. Whereas the vanishirig is easy to under-
02 L T MCLM: L=16 | stand for impenetrable particles, it is a highly nontrivial
) ~f '\\ N ——— MCLM: L=20 statement for the other two modél&13-15The observations
‘E—n A \\’,.,ﬂ; \ A —— FM:[5/5] can be rationalized in a way that th&/ and Hubbard model
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