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The average resistances of both a finite fully-random chain and a finite disordered Fibonacci chain are
calculated as a function of the chain length. From these calculated average resistances, the localization lengths
are computed and analyzed. The more the randomness of the system, the stronger the localization behavior will
exhibit. The stronger the localization behavior, the smaller the localization length will be. A complete local-
ization behavior for the fully-random chain with a small localization length is reproduced from our study as
expected. However, only incomplete localization behavior is found for all the disordered Fibonacci chains with
pÞ0.5. Moreover, the values of localization lengths of all the disordered Fibonacci chains approach one larger
common value due to suppression of the weak randomness by the strong self-similarity of the disordered
Fibonacci chains. It turns out that the so-called disordered Fibonacci chain does not contain any more random-
ness than the pure Fibonacci chain. Our result agrees with the fact that the same Lyapunov exponent was found
for both a pure Fibonacci chain and a disordered Fibonacci chain with random tiling that introduces phason
flips at certain sites on the chain[see Phys. Rev. B61, 1043(2000)].
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I. INTRODUCTION

Technical advances in submicron physics have made it
possible for experimentalists to fabricate nearly ideal one-
dimensional wires.1 The connection between the electrical
conductance at zero temperature and the transmission coef-
ficient, provided by the well-known Landauer formula,2 in-
dicates that some experimentally measurable quantities can
be adequately explained when a simple infinite one-
dimensional array of short-range scatterers is considered.
The discovery of quasicrystals3 has stimulated interest in ex-
ploring the physical nature of quasiperiodic(e.g., Fibonacci
and Thue-Morse) sequences4 as well as commensurate-
incommensurate systems.5 Previous work on quasiperiodic
sequences included, for example, plasmon excitation,6

localization,7 neutron polarization,8 density-of-states,9

optical-phonon tunneling,10 nonlinear optical filters,11 optical
absorption in a random superlattice,12 electric-field-induced
localization,13 and defect-assisted tunneling.14 The quasi-
periodicity in an infinite chain leads to a self-similar struc-
ture in the transmission of electrons as a function of their
incident energy. The disorder(fully-random) chain intro-
duced in this paper leads to the Anderson localization only
when the chain becomes infinitely long. For a short disorder
chain discussed in this paper, there is no complete localiza-
tion, and only incomplete localization exists. However, when
the chain length practically exceeds a threshold value, i.e.,
the localization length, the electron transport behaves very
similar to that found when there is complete localization. In
this case, the transmission of a long chain with disorder is
extremely small.

The Fibonacci numbers, 1, 1, 2, 3, 5, 8, 13,… defined via
the recurrenceFn+1=Fn+Fn−1, have been found to relate to
the number of leaves, petals or seed grains in plants, and
ancestors of a drone in nature. A straightforward stochastic

modification of the Fibonacci sequence is to introduce both
additions and subtractions. The random Fibonacci recurrence
xn+1=xn±xn−1 results in sequences which behave erratically
for small generation indexn. In the limit n→`, however,
exponential growth occurs with unit probability as was es-
tablished by Furstenberg15 in 1963. For the random Fi-
bonacci recurrence where each6 sign is independent
and occurs with probability 1/2, the Lyapunov exponent
l=0.123 975 58. . . is found.16 Very recently, the
renormalization-group method has been generalized17 to
study the local electronic properties of large disordered Fi-
bonacci chains in which different generations of pure Fi-
bonacci chains and inverted Fibonacci chains(see the defi-
nition in the next section) are randomly mixed
(concatenation rule). The Lyapunov exponents for the weak
and strong disordered cases can also be calculated using a
perturbative expansion.18 The Lyapunov exponents of both
the pure and disordered Fibonacci chains were unexpectedly
found to be the same.19 An interesting question is whether
the random mix of two different types of Fibonacci chains in
a disordered Fibonacci chain will bring any additional ran-
domness to electrical resistances of the system.

In this paper, we will calculate the transmission coeffi-
cients, resistances, and localization lengths for both the fully-
random chain and the disordered Fibonacci chain. The more
the randomness of the system, the stronger the localization
behavior will exhibit. The stronger the localization behavior,
the smaller the localization length will be. We will demon-
strate how the localization is affected by the disorder and
quasiperiodicity or a combination of two. From an analysis
of the calculated localization lengths for the fully-random
and disordered Fibonacci chains, we find that the so-called
disordered Fibonacci chain with random tiling that intro-
duces phason flips at certain sites on the chain does not bring
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any additional randomness to the electrical resistances of the
system.

The organization of the paper is as follows. In Sec. II, we
introduce our model and theory for the calculation of resis-
tance through a chain and localization length with distributed
scatterers. Numerical results are displayed in Sec. III for the
transmission coefficients, resistances, distributions of scatter-
ers, and localization lengths of both the fully-random chain
and the disordered Fibonacci chain. The paper is briefly con-
cluded in Sec. IV.

II. MODEL AND THEORY

By taking "=2m* =1, the scaled one-dimensional
Schrödinger equation in the presence of scattering potential
Vssxd is written as

−
d2csxd

dx2 + Vssxdcsxd = Ecsxd, s1d

whereE is the incident energy of an electron andcsxd is the
one-dimensional electron wave function. The short-range
scattering potential forNs scatterers can be approximated by

Vssxd = o
j=1

Ns

v jdsx − xjd, s2d

wherev j represents the strength of thej th scatterer sitting at
x=xj. If the positions of the scatterers for thesn−1dth and
nth generations of a pure Fibonacci chain are
hy1,y2, . . . ,yFn−1

j and hz1,z2, . . . ,zFn
j, respectively, we can

obtain the positions of the scatterers for thesn+1dth genera-
tion at hx1,x2, . . . ,xFn+1

j from7

xj =H zj for j = 1, . . . , Fn

zFn
+ yj−Fn

for j = sFn + 1d, . . . , Fn+1.J s3d

with x1=b andx2=b+a, wherea andb are real numbers,Fn
is the nth number in a Fibonacci sequence
hF1,F2, . . . ,Fn−1,Fn,Fn+1, . . .j. The numbers in the Fi-
bonacci sequence are determined through the recurrence
Fn+1=Fn+Fn−1 starting fromF1=1 andF2=2.

In this paper, we will further define an inverted Fibonacci
chain. For this case, instead of using Eq.(3) we find the
positions of scatterers for thesn+1dth generation through a
concatenation rule17

xj =H yj for j = 1, . . . , Fn−1,

yFn−1
+ zj−Fn−1

for j = sFn−1 + 1d, . . . , Fn+1.J s4d

The disordered Fibonacci chain is based on the random mix
of the pure and inverted Fibonacci chains. We introduce a
random variableh which is uniformly distributed within the
interval (0, 1). For any given real number 0øpø1, we de-
fine a disordered Fibonacci chain as follows: the disordered
Fibonacci chain becomes the pure Fibonacci chain ifh,p,
while the disordered Fibonacci chain becomes the inverted
Fibonacci chain ifhùp. Therefore, the disordered Fibonacci
chain will simply reduce to the pure Fibonacci chain as
p=1. On the other hand, the disordered Fibonacci chain will

reduce to the inverted Fibonacci chain asp=0. When
p=1/2, however, there is an equal probability for the disor-
dered Fibonacci chain becoming either the pure or the in-
verted Fibonacci chain. In this case, the randomness of the
system reaches a maximum. The strength of thej th scatterer
is assumed to be distributed according to

v j = Hq1 for sj = a,

q2 for sj = b,
J s5d

whereq1 andq2 are real numbers, the separation between the
j th ands j −1dth scatterers issj =xj −xj−1 with s1=x1=b. For a
fully-random chain, we choose the separation between the
j th ands j −1dth scatterers randomly from 0,sj ,b, and the
strength of thej th scatter randomly from 0,v j ,q1.

Making use of the transfer matrix based on the boundary
conditions, we can obtain the relationship between the wave
functionsc j

sL,Rdsxd on the left(L) and right(R) sides of the
j th scatterer. For electrons moving from left to right, this
yields

c j
sRdsxjd = T jc j

sLdsxjd, s6d

where thes232d transfer matrixT j is found to be

T j = F1 − iv j/2k − iv j/2k

iv j/2k 1 + iv j/2k
G . s7d

Here,k=ÎE is the wave number of an incident electron along
the chain. The propagation of the right-going plane wave
between thej th ands j +1dth scatterers is related by

c j+1
sLd sxj+1d = D j+1c j

sRdsxjd, s8d

whereD j is the s232d displacement matrix, given by

D j+1 = Fexpsiksj+1d 0

0 exps− iksj+1d
G . s9d

The total(complex) transfer matrixMNs
for the chain with

Ns scatterers can be obtained from the product of a series of
matrixes,

MNs
= sTNs

DNs
d ^ sTNs−1DNs−1d ^ ¯ ^ sT2D2d ^ T1

= FM11
Ns M12

Ns

M21
Ns M22

Ns
G , s10d

where Ns=Fn for the nth generation disordered Fibonacci
chain. The total transmission coefficientTNs

skd through the
whole chain is given by7

TNs
skd =

1

uM22
Nsu2

. s11d

With calculated transmission coefficientTNs
skd, the dimen-

sionless resistance(in units ofh/2e2) RNs
skd can be obtained

by using the Landauer formula2

RNs
skd =

1 − TNs
skd

TNs
skd

. s12d

By considering an incident electron wave packet with central
wave numberk0 and broadenings0, we calculate the average
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resistance over an intervalkP fk0−3s0, k0+3s0g, given by

R̄sLd =
1

Imax+ 1o
i=0

Imax

Rsk0 + si − Imax/2dDkd, s13d

whereImax=6s0/Dk with Dk=5310−5 in the following nu-

merical calculations. The average resistanceR̄sLd depends
on how scatterers are distributed in a chain. It also depends
on the chain lengthL which equalssFn−2a+Fn−1bd (with
nù2) for the nth generation disordered Fibonacci chain and
equalso j=2

Ns yj for the fully-random chain withNs scatterers.

The localization lengthjlocsLd can be calculated fromR̄sLd
through7

jlocsLd =
L

lns1 + R̄sLdd
. s14d

For a complete localization,jlocsLd should be independent of
L. The more the randomness of the system, the stronger the
localization behavior will exhibit. The stronger the localiza-
tion behavior, the smaller the localization length will be. On
the other hand,jlocsLd depends onL in an oscillating way for
an incomplete localization.7

III. NUMERICAL RESULTS AND DISCUSSIONS

In our numerical calculations, we have takenq1=0.5,
q2=Î2/8, a=1, and b=t=sÎ5+1d /2 for a disordered Fi-
bonacci chain. For a fully-random chain, we choose
0,yj ,t and 0,v j ,0.5. For the incident electron wave
packet, we choosek0=0.675 ands0=1/12. The values ofp
and the generation indexn will be given in the captions.

Figure 1 displays the calculated transmission coefficients
TNs

skd as a function of electron wave numberk for the
thirteenth-generationsn=13d disordered Fibonacci chains
with p=0 (dashed curve), p=0.5 (solid curve), and p=1
(dashed-dotted curve). Here, the total number of scatterers is
Ns=F13. From the figure, we find thatTNs

skd with p=0.5

resembles both the puresp=1d and the invertedsp=0d
Fibonacci chains. This fact is further supported by the calcu-
lated resistanceRNs

skd in Fig. 2, where the main peak of
the disordered Fibonacci chain(indicated by an arrow)
at k=0.68 resembles that of the pure Fibonacci chain nearby,
while one of the side peaks of the disordered Fibonacci chain
(indicated by another arrow) slightly above k=0.66 re-
sembles that of the inverted Fibonacci chain at the same
place. Moreover, the self-similarity, i.e., one main peak sur-
rounded by multiple side peaks, can be seen from all
the Fibonacci chains. The results presented in Fig. 1 with
n=13 corresponds to a short chain, in contrast to those in a
long chain withn=17 (not shown in this paper). There are
many peaks ofTNs

skd close to unity as a function ofk for
several values ofp. Here, electrons in the short chain are
actually not localized.

As a comparison, we present in Fig. 3 the separationsj of
the j th ands j −1dth scatterers as a function of the site index
j for the thirteenth-generationsn=13d disordered Fibonacci
chains(solid and dashed curves withj andP, respectively)
with p=0.5 andp=1, and the fully-random chain(dashed-
dotted curve withm). Here,Ns=F13 again. Although the re-
sults of disordered Fibonacci chains withp=0.5 andp=1
resemble each other except for a shift, the result of the fully-
random chain looks much more randomized. This random-
ness enhancement can be seen very clearly from Fig. 4,
where the localization lengthsjlocsLd are shown as a function
of the chain lengthL for the disordered Fibonacci chains
(dotted, dashed, thick solid, dashed-dotted, dashed-dotted-
dotted curves) with p=0, 0.25, 0.5, 0.75, 1 and for the fully-
random chain(thin solid curve with upper and right scales
indicated by two arrows). From Fig. 4 we find thatjlocsLd
increases withL in a strong oscillating way(without local-
ization) for the disordered Fibonacci chains, and the values
of these localization lengths are bundled very well. On the
other hand, the localization of the fully-random chain exhib-
its an approximate localization behavior withjlocsLd becom-
ing approximately independent ofL whenL becomes large.

FIG. 1. Calculated transmission coefficientsTNs
skd as a function

of electron wave numberk=ÎE for thirteenth-generationsNs=F13d
disordered Fibonacci chains withp=0 (dashed curve), p=0.5 (solid
curve), and p=1 (dashed-dotted curve), where E is the incident
energy of an electron. The other parameters are given in the text.

FIG. 2. Calculated resistanceRNs
skd as a function of electron

wave numberk=ÎE for thirteenth-generationsNs=F13d disordered
Fibonacci chains withp=0 (dashed curve), p=0.5(solid curve), and
p=1 (dashed-dotted curve). The other parameters are given in the
text.
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Moreover,jlocsLd of the fully-random chain is more than an
order of magnitude smaller than those of the disordered Fi-
bonacci chains.

In order to demonstrate the complete localization behav-
ior, we show in Fig. 5 the calculated localization lengths
jlocsLd as a function of the chain lengthL for the
seventeenth-generationsn=17d disordered Fibonacci chains
(dotted, dashed, thick solid, dashed-dotted, dashed-dotted-
dotted curves) with p=0, 0.25, 0.5, 0.75, 1 and a longer
fully-random chain(thin solid curve with upper and right
scales indicated by two arrows). Here, the total number of
scatterers isNs=F17@F13. It is evident from this figure that
the complete localization behavior can be seen for the fully-
random chain withjloc<14 whenL exceeds 600. On the
other hand, the values of these localization lengthsjloc for all

values ofpÞ0.5 are bundled into one larger value around
300 in a weak oscillating way(incomplete localization) for
the range of chain length shown here. The localization length
of the disordered Fibonacci chain withp=0.5 (maximized
randomness) also approaches the same value 300 asL ex-
ceeds 2000 in a monotonic way. As a comparison between
Figs. 4 and 5, electrons in a short chain withn=13 are not
completely localized. This is reflected in the oscillating
jlocsLd as a function of chain lengthLø500 in Fig. 4. How-
ever, the localization of electrons is nearly accomplished in a
long chain withn=17, as shown in Fig. 5, whenL=3500 is
approached. This is reflected as a suppressed oscillation of
jlocsLd for large L in Fig. 5. There is, however, no phase
transition from metallic to insulator. When the chain length
approaches infinity, all the disorder Fibonacci chains with
0øpø1 have the same localization length. On the other
hand, the infinite fully-random chain will have a much
smaller localization length, implying a higher degree of ran-
domness in the system. This unexpected behavior implies
that the weak randomness in all the disordered Fibonacci
chains are mostly suppressed by the strong self-similarity of
them. This discovery qualitatively agrees with the fact that
the same Lyapunov exponentl was found for both the pure
Fibonacci chain and disordered Fibonacci chain19 with ran-
dom tiling that introduces phason flips at certain sites on the
chain sincejloc,1/l.

IV. CONCLUSIONS

In conclusion, we have calculated the average resistances
of both the fully-random chain and the disordered Fibonacci
chain as a function of the chain length, from which the lo-
calization lengths have been obtained and compared. From
our study, we have found a complete localization behavior
for the fully-random chain as expected. The more the ran-
domness of the system, the stronger the localization behavior

FIG. 3. Calculated separationsj between thej th and s j −1dth
scatterers as a function of scatterer position index 130ø j ø152 for
thirteenth-generationsNs=F13d disordered Fibonacci chains withp
=0.5 (solid curve withj) and p=1 (dashed curve withP). The
result for a fully-random chain(dashed-dotted curve withm) is also
shown for a comparison. The other parameters are given in the text.

FIG. 4. Calculated localization lengthjlocsLd as a function of
chain lengthL for thirteenth-generation disordered Fibonacci chains
with p=1 (dotted curve), p=0.75(dashed curve), p=0.5(thick solid
curve), p=0.25 (dashed-dotted curve), and p=0 (dashed-dotted-
dotted curve). The result for a fully-random chain(thin solid curve
with upper and right scales indicated by two arrows) is also shown
for a comparison. The other parameters are given in the text.

FIG. 5. Calculated localization lengthjlocsLd as a function of
chain lengthL for seventeenth-generation disordered Fibonacci
chains with p=1 (dotted curve), p=0.75 (dashed curve), p=0.5
(thick solid curve), p=0.25 (dashed-dotted curve), and p=0
(dashed-dotted-dotted curve). The result for a fully-random chain
(thin solid curve with upper and right scales indicated by two ar-
rows) is also shown for a comparison. The other parameters are
given in the text.
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will exhibit. The stronger the localization behavior, the
smaller the localization length will be. On the other hand, we
have found only incomplete localization behavior for all the
disordered Fibonacci chains withpÞ0.5 when the genera-
tion index is large. Moreover, we have discovered that the
values of localization lengths of all the disordered Fibonacci
chains approach one common value. This has proved the
unexpected suppression of the weak randomness by the
strong self-similarity in the disordered Fibonacci chains.
From this point of view, it seems that the so-called disor-
dered Fibonacci chain does not contain any more random-

ness than the pure Fibonacci chain. This discovery agrees
with the fact that the same Lyapunov exponent was found for
both pure Fibonacci chain and disordered Fibonacci chain
with random tiling that introduces phason flips at certain
sites on the chain.19
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