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Electrical resistance of ballistic-electron transport through a finite disordered Fibonacci chain
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The average resistances of both a finite fully-random chain and a finite disordered Fibonacci chain are
calculated as a function of the chain length. From these calculated average resistances, the localization lengths
are computed and analyzed. The more the randomness of the system, the stronger the localization behavior will
exhibit. The stronger the localization behavior, the smaller the localization length will be. A complete local-
ization behavior for the fully-random chain with a small localization length is reproduced from our study as
expected. However, only incomplete localization behavior is found for all the disordered Fibonacci chains with
p# 0.5. Moreover, the values of localization lengths of all the disordered Fibonacci chains approach one larger
common value due to suppression of the weak randomness by the strong self-similarity of the disordered
Fibonacci chains. It turns out that the so-called disordered Fibonacci chain does not contain any more random-
ness than the pure Fibonacci chain. Our result agrees with the fact that the same Lyapunov exponent was found
for both a pure Fibonacci chain and a disordered Fibonacci chain with random tiling that introduces phason
flips at certain sites on the chaigee Phys. Rev. B51, 1043(2000)].
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I. INTRODUCTION modification of the Fibonacci sequence is to introduce both
Technical advances in submicron physics have made gdditions and subtractions. The random Fibonacci recurrence

possible for experimentalists to fabricate nearly ideal oneXh+1=XntXn-1 results in sequences which behave erratically
dimensional wires. The connection between the electrical for small generation index. In the limit n—c, however,
conductance at zero temperature and the transmission coefxponential growth occurs with unit probability as was es-
ficient, provided by the well-known Landauer forméli-  tablished by Furstenbel®yin 1963. For the random Fi-
dicates that some experimentally measurable quantities cdonacci recurrence where each sign is independent
be adequately explained when a simple infinite one-and occurs with probability 1/2, the Lyapunov exponent
dimensional array of short-range scatterers is considered.=0.12397558... is fount Very recently, the
The discovery of quasicrystdlbas stimulated interest in ex- renormalization-group method has been generalized
ploring the physical nature of quasiperiodi.g., Fibonacci study the local electronic properties of large disordered Fi-
and Thue-Morsg sequencés as well as commensurate- bonacci chains in which different generations of pure Fi-
incommensurate systePrevious work on quasiperiodic bonacci chains and inverted Fibonacci chaisse the defi-
sequences included, for example, plasmon excit&tionnition in the next section are randomly mixed
localization! neutron polarizatioi, density-of-state8, (concatenation rule The Lyapunov exponents for the weak
optical-phonon tunnelindf nonlinear optical filterd! optical ~ and strong disordered cases can also be calculated using a
absorption in a random superlattiteglectric-field-induced  perturbative expansiolf. The Lyapunov exponents of both
localization!® and defect-assisted tunnelity.The quasi- the pure and disordered Fibonacci chains were unexpectedly
periodicity in an infinite chain leads to a self-similar struc- found to be the sam®.An interesting question is whether
ture in the transmission of electrons as a function of theithe random mix of two different types of Fibonacci chains in
incident energy. The disordgifully-random) chain intro-  a disordered Fibonacci chain will bring any additional ran-
duced in this paper leads to the Anderson localization onlydomness to electrical resistances of the system.
when the chain becomes infinitely long. For a short disorder In this paper, we will calculate the transmission coeffi-
chain discussed in this paper, there is no complete localizazients, resistances, and localization lengths for both the fully-
tion, and only incomplete localization exists. However, whenrandom chain and the disordered Fibonacci chain. The more
the chain length practically exceeds a threshold value, i.ethe randomness of the system, the stronger the localization
the localization length, the electron transport behaves verpehavior will exhibit. The stronger the localization behavior,
similar to that found when there is complete localization. Inthe smaller the localization length will be. We will demon-
this case, the transmission of a long chain with disorder istrate how the localization is affected by the disorder and
extremely small. quasiperiodicity or a combination of two. From an analysis
The Fibonacci numbers, 1, 1, 2, 3, 5, 8, 13,defined via  of the calculated localization lengths for the fully-random
the recurrencé-,,,=F,+F,_;, have been found to relate to and disordered Fibonacci chains, we find that the so-called
the number of leaves, petals or seed grains in plants, andisordered Fibonacci chain with random tiling that intro-
ancestors of a drone in nature. A straightforward stochastiduces phason flips at certain sites on the chain does not bring
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any additional randomness to the electrical resistances of theduce to the inverted Fibonacci chain as0. When
system. p=1/2, however, there is an equal probability for the disor-

The organization of the paper is as follows. In Sec. I, wedered Fibonacci chain becoming either the pure or the in-
introduce our model and theory for the calculation of resis-verted Fibonacci chain. In this case, the randomness of the
tance through a chain and localization length with distributedsystem reaches a maximum. The strength ofjthescatterer
scatterers. Numerical results are displayed in Sec. Il for thés assumed to be distributed according to

transmission coefficients, resistances, distributions of scatter- {q fors —a
1 =
j

ers, and localization lengths of both the fully-random chain
g, forsj=b,

and the disordered Fibonacci chain. The paper is briefly con-
cluded in Sec. IV.

©)

whereq, andq, are real numbers, the separation between the
jth and(j - Dth scatterers is;=x;—x;_; with s;=x;=b. For a
Il. MODEL AND THEORY fully-random chain, we choose the separation between the
_ R , , jth and(j - 1)th scatterers randomly from<0s;<b, and the

BY. _takmg ﬁ-gm .'1’ the scaled one—dlmensmnal strength of thgth scatter randomly from €v; <g;.
Schrédinger equation in the presence of scattering potential Making use of the transfer matrix based on the boundary

Vs(x) is written as conditions, we can obtain the relationship between the wave

_ d?ux) functions w}L'R)(x) on the left(L) and right(R) sides of the
v +V(X)(X) = Eg(x), (1) jth scatterer. For electrons moving from left to right, this
yields

whereE is the incident energy of an electron aitk) is the (/f(R)(X‘) —Td/f”(x») 6)
one-dimensional electron wave function. The short-range IS
scattering potential foNg scatterers can be approximated by where the(2 X 2) transfer matrixZ; is found to be

T = 1—in/2k —iUl'/Zk
Vy(x) = E 68X =), (2) 7L vk 1+ivg2k ]

Here,k=1E is the wave number of an incident electron along
the chain. The propagation of the right-going plane wave
rebetween thgth and(j+1)th scatterers is related by

(7

wherev; represents the strength of tith scatterer sitting at
x=x;. If the positions of the scatterers for tiie—1)th and
nth generations of a pure Fibonacci chain
{yl,yz, ...,yFn_l'}' and {z,2, ...,z }, respectively, we can l//,(k)l(xjﬂ):l?jﬂzﬁ}m(xj). (8)
obtain the positions of the scatterers for e 1)th genera-

tion at{xy,X X} from’ whereD; is the (2X 2) displacement matrix, given by
! ety n+1

J forj=1,...,F, e {exp(lksm) O ]
! 0 exp(— iksj+1)

X = )
! {an+yj_Fn forj=(F,+1), ..., Fr.
The total(compley transfer matrlxMN for the chain with

with x,=b andx,=b+a, wherea andb are real numbers;,  \_scatterers can be obtained from the product of a series of
is the nth number in a Fibonacci sequence matrixes,

{F1,F5,....Fi-1,Fn,Fns1, ...} The numbers in the Fi-

Z.

9
3 9)

bonacci sequence are determined through the recurrence Mn,=(IyDn) © (Ty-1Dn-1) © -+ @ (1Dn) © Ty
F..1=F,*+F,; starting fromF;=1 andF,=2 MNs MmN

In this paper, we will further define an inverted Fibonacci [ 11 12} (10)
chain. For this case, instead of using E8) we find the M55 Mbs

positions of scatterers for th@+1)th generation through a

. where Ng=F,, for the nth generation disordered Fibonacci
concatenation rulé

chain. The total transmission coefﬂme‘ﬁ,l; (k) through the
{ Y forj=1,...,F 1, whole chain is given by
X =
j
YF

. (4)
L tge , forj=(Fn1+1), ..., Fn. 1

2
The disordered Fibonacci chain is based on the random mix M3
of the pure and Inverted FIbOﬂaCCI chalns We mtroduce Q/\/|th Ca|cu|ated transm|ss|on Coeff|c|eﬂ]'t‘I (k) the d|men_

interval (0, 1). For any given real numberOp=<1, we de- y using the Landauer formdla

fine a disordered Fibonacci chain as follows: the disordere
Fibonacci chain becomes the pure Fibonacci chain<fp, _TNS(k)
while the disordered Fibonacci chain becomes the inverted Ry (k) = IENCE
Fibonacci chain ifp= p. Therefore, the disordered Fibonacci Ns
chain will simply reduce to the pure Fibonacci chain asBy considering an incident electron wave packet with central
p=1. On the other hand, the disordered Fibonacci chain willvave numbek, and broadening,, we calculate the average

Ty, = (11)

(12
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FIG. 1. Calculated transmission coefﬂmefm(k) as a function FIG. 2. Calculated resstandﬁ, (k) as a function of electron
of electron wave numbek=1E for thirteenth- generatlo(NS F13) wave numbek=\E for thirteenth- generatlonN F.2) disordered
disordered Fibonacci chains wigh=0 (dashed curve p=0.5(solid Fibonacci chains witip=0 (dashed curve p=0.5(solid curve, and
curve), and p=1 (dashed-dotted curyewhereE is the incident p=1 (dashed-dotted curyeThe other parameters are given in the
energy of an electron. The other parameters are given in the text.text.

resistance over an intervile [kg— 30y, ko+30q], given by  resembles both the pur§p=1) and the inverted(p=0)
" Fibonacci chains. This fact is further supported by the calcu-
_ lated resistancéRy (k) in Fig. 2, where the main peak of
I maxt 1 E Riko + (i = Imad 2)AK), (13 the disordered Fibonacci chai(indicated by an arroyw
] ] ) atk=0.68 resembles that of the pure Fibonacci chain nearby,
wherelma= 600/ Ak with Ak=5X107° in the following nu-  \hile one of the side peaks of the disordered Fibonacci chain
merical calculations. The average resistafi.) depends (indicated by another arrowslightly above k=0.66 re-
on how scatterers are distributed in a chain. It also dependgembles that of the inverted Fibonacci chain at the same
on the chain lengti. which equals(F,_,a+F,_1b) (with  place. Moreover, the self-similarity, i.e., one main peak sur-
n=2) for the nth generation disordered Fibonacci chain androunded by multiple side peaks, can be seen from all
equaIsEJN;Zyj for the fully-random chain withiNg scatterers. the Fibonacci chains. The results presented in Fig. 1 with

The localization lengttt,.(L) can be calculated froﬂE(L) n=13 corresponds to a short chain, in contrast to those in a

R(L) =

througH long chain withn=17 (not shown in this papér There are
many peaks ofI'NS(k) close to unity as a function df for
B L several values op. Here, electrons in the short chain are
GioclL) = In(1 +7€(L))' (14) actually not localized.

As a comparison, we present in Fig. 3 the separagjai
For a complete localizatior,.(L) should be independent of the jth and(j—1)th scatterers as a function of the site index
L. The more the randomness of the system, the stronger thefor the thirteenth-generatiom=13) disordered Fibonacci
localization behavior will exhibit. The stronger the localiza- chains(solid and dashed curves wilk and @, respectively
tion behavior, the smaller the localization length will be. Onwith p=0.5 andp=1, and the fully-random chaitdashed-
the other handg,.(L) depends oi in an oscillating way for ~ dotted curve withA). Here,Ns=F;3 again. Although the re-

an incomplete localizatioh. sults of disordered Fibonacci chains wip=0.5 andp=1
resemble each other except for a shift, the result of the fully-
1. NUMERICAL RESULTS AND DISCUSSIONS random chain looks much more randomized. This random-

ness enhancement can be seen very clearly from Fig. 4,

In_our numerical calculations, we have takgp=0.5,  where the localization lengti#, (L) are shown as a function
0,=12/8, a=1, andb=7=(5+1)/2 for a disordered Fi- of the chain lengthL for the disordered Fibonacci chains
bonacci chain. For a fully-random chain, we choose(dotted, dashed, thick solid, dashed-dotted, dashed-dotted-
0<yj<7 and 0<v;<0.5. For the incident electron wave dotted curvepwith p=0, 0.25, 0.5, 0.75, 1 and for the fully-
packet, we choosk,=0.675 andoy=1/12. The values op =~ random chain(thin solid curve with upper and right scales
and the generation indaxwill be given in the captions. indicated by two arrows From Fig. 4 we find that(L)

Figure 1 displays the calculated transmission coefficientincreases with. in a strong oscillating waywithout local-
Ty (k) as a function of electron wave numberfor the ization) for the disordered Fibonacci chains, and the values
thirteenth-generation=13) disordered Fibonacci chains of these localization lengths are bundled very well. On the
with p=0 (dashed curvge p=0.5 (solid curve, and p=1  other hand, the localization of the fully-random chain exhib-
(dashed-dotted curyeHere, the total number of scatterers is its an approximate localization behavior wig.(L) becom-
Ns=F3 From the figure, we find thaTNS(k) with p=0.5 ing approximately independent a&fwhenL becomes large.
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FIG. 5. Calculated localization lengtfj,.(L) as a function of
chain lengthL for seventeenth-generation disordered Fibonacci
chains with p=1 (dotted curvg, p=0.75 (dashed curve p=0.5

FIG. 3. Calculated separatics between thejth and (j—-1)th
scatterers as a function of scatterer position index<1p& 152 for
thirteenth-generatio(Ns=F13) disordered Fibonacci chains with
=0.5 (solid curve withM) and p=1 (dashed curve witt®). The  (thick solid curve, p=0.25 (dashed-dotted curye and p=0
result for a fully-random chaitdashed-dotted curve with) is also ~ (dashed-dotted-dotted cupveThe result for a fully-random chain

shown for a comparison. The other parameters are given in the texthin solid curve with upper and right scales indicated by two ar-
rows) is also shown for a comparison. The other parameters are

.y iven in the text.
Moreover, &o.(L) of the fully-random chain is more than an 9"c" " ' X

order of magnitude smaller than those of the disordered Fi- .
bonacei chains. values ofp# 0.5 are bundled into one larger value around

In order to demonstrate the complete localization behay300 in @ weak oscillating wayincomplete localizationfor
ior, we show in Fig. 5 the calculated localization Iengthsthe range of chain length shown here. The localization length
£oL) as a function of the chain length. for the of the disordered Fibonacci chain witi=0.5 (maximized

seventeenth-generatidn=17) disordered Fibonacci chains ran%orr;ré)%%salso appro;’:lches the Zame value :'300_&?({
(dotted, dashed, thick solid, dashed-dotted, dashed-dotted$% IN @ monotonic way. As a comparison between
dotted curvep with p=0, 0.25, 0.5, 0.75, 1 and a longer igs. 4 and 5, elgctrons In a short chain .V""thl?’ are not
fully-random chain(thin solid curve with upper and right completely Iocal.lzed. Th|§ is reflected In the oscillating
scales indicated by two arroysHere, the total number of GioclL) as a fupcthn of chain Iengt.hssoo in Fig. 4'.HOW'.
scatterers iN=F-> Fy. It is evident from this figure that ever, the localization of electrons is nearly accomplished in a

the complete localization behavior can be seen for the fuIIy—Iong chain withn; 17' as shown in Fig. 5, wheln:35QO is_,
random chain withé,.~14 whenL exceeds 600. On the approached. This is reflected as a suppressed oscillation of

other hand, the values of these localization lengtsfor all ~ ¢loc(L) for large L in Fig. 5. There is, however, no phase
transition from metallic to insulator. When the chain length

approaches infinity, all the disorder Fibonacci chains with

0 50 100 150 200 250 300 o

1200 - - - - - 50 0=p=1 have the same localization length. On the other
= ¢ =1 hand, the infinite fully-random chain will have a much
N e P=0.75 14 smaller localization length, implying a higher degree of ran-
< sool —p=0.5 ) domness in the system. This unexpected behavior implies
*é; """"" p=0.253‘, 30 that the weak randomness in all the disordered Fibonacci
D o0} p=0 e chains are mostly suppressed by the strong self-similarity of
p= e P them. This discovery qualitatively agrees with the fact that
-% 400 PNy __‘,;;/" the same Lyapunov exponextwas found for both the pure
N B - 110 Fibonacci chain and disordered Fibonacci chainith ran-
g 200 v dom tiling that introduces phason flips at certain sites on the
S n|=13 chain sinceg .~ 1/\.

0
0

100 200 300 400 500
Chain Length L

IV. CONCLUSIONS

In conclusion, we have calculated the average resistances

FIG. 4. Calculated localization lengtf,.(L) as a function of ! i 4 -
chain lengthL for thirteenth-generation disordered Fibonacci chainsOf Poth the fully-random chain and the disordered Fibonacci

with p=1 (dotted curvg, p=0.75(dashed curvg p=0.5(thick solid  chain as a function of the chain length, from which the lo-

curve, p=0.25 (dashed-dotted curyeand p=0 (dashed-dotted- Calization lengths have been obtained and compared. From
dotted curvg The result for a fully-random chaifthin solid curve ~ our study, we have found a complete localization behavior
with upper and right scales indicated by two arrpigsalso shown  for the fully-random chain as expected. The more the ran-
for a comparison. The other parameters are given in the text. ~ domness of the system, the stronger the localization behavior
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will exhibit. The stronger the localization behavior, the ness than the pure Fibonacci chain. This discovery agrees
smaller the localization length will be. On the other hand, wewith the fact that the same Lyapunov exponent was found for
have found only incomplete localization behavior for all theboth pure Fibonacci chain and disordered Fibonacci chain
disordered Fibonacci chains wiih+# 0.5 when the genera- with random tiling that introduces phason flips at certain
tion index is large. Moreover, we have discovered that thesites on the chait®

values of localization lengths of all the disordered Fibonacci

chains approach one common value. This has proved the ACKNOWLEDGMENT

unexpected suppression of the weak randomness by the
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