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We have introduced a new perturbative approach fort-J-V model where Hubbard operators are treated as
fundamental objects. Using our vertices and propagators we have developed a controllable large-N expansion
to calculate different correlation functions. We have investigated charge density-density response and the phase
diagram of the model. The charge correlations functions are not very sensitive to the value ofJ and they show
collective peaks(or zero sound) which are more pronounced when they are well separated(in energy) from the
particle-hole continuum. For a givenJ a Fermi liquid state is found to be stable for dopingd larger than a
critical dopingdc. dc decreases with decreasingJ. For the physical region of the parameters and, ford,dc, the
system enters in an incommensurate flux or DDW phase. The inclusion of the nearest-neighbor Coulomb
repulsionV leads to a charge density wave phase whenV is larger than a critical valueVc. The dependence of
Vc with d andJ is shown. We have compared the results with other ones in the literature.
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I. INTRODUCTION

In the last few years a large part of the solid state com-
munity has been devoted to understanding the physics of
strongly electronic correlated models. The importance of this
study is supported by clear experimental facts. High-Tc
superconductors1 and organic superconductors2 are consid-
ered, for instance, electronic correlated systems. They show
that electronic properties are very different from those ex-
pected in usual metals.

For a better understanding of the physics of these systems,
it is very important to develop different methods for studying
models for correlated electrons. The two dimensional(2D)
t-J model is probably one of the most simple models we
should understand in the first place.

The t-J model is the strong coupling version of the Hub-
bard model.3 In spite of its simple form, there is no exact
solution for this model until now, and many analytical and
numerical4 methods have been developed and the obtained
results confronted each other.

In the t-J model double occupancy is forbidden, and the
model can be written in terms of the correlated or projected
operators, also known as HubbardX operators.5 Hubbard op-
erators verify complicated commutation rules which are very
different from the familiar commutation rules for usual fer-
mions and bosons. One of the common methods, used for
avoiding this problem, introduces slave particles3 in order to
decouple the originalX operator. These slave particles verify
usual commutation rules, but they are fictitious and some-
times it is not clear if the obtained results are genuine or
artifacts from merely decoupling. On the other hand, the de-
coupling scheme introduces a gauge degree of freedom
which requires a gauge fixing. The gauge fixing is a long
discussed fundamental problem(see, for example, Ref. 6).

Another problem in the treatment of thet-J model is the
absence of any small coupling parameter suitable for a per-
turbative expansion. To deal with this problem, strong-

coupling techniques have been developed. Between them,
what will be important for the present paper is the large-N
expansion whereN is the number of electronic degrees of
freedom per site(see below). The large-N expansion has
been used extensively in the context of slave-boson
approach7 (SBA) and, more recently, using Bayn-Kadanoff
functional theory(BKF) in terms ofX operators.8,9

On the basis of our Feynman path integral representation
for the t-J model,10 we developed a large-N approach11 for
the J=0 case(U-infinite Hubbard model). This method has
the advantage of working with Hubbard operators as funda-
mental objects without any decoupling procedure. Then, we
neither take care of gauge fluctuations nor Bose condensa-
tion as in the SBA.

The method developed in Ref. 11 was recently applied
to describe electronic properties of quarter-filled organic
molecular crystals.12 For instance, in Ref. 12 we have
calculated electronic self-energiesSsk,vd, spectral functions
Ask,vd, and the electronic density of statesNsvd which
are nontrivial calculations considering that they involve
fluctuations, in a controllable approach, above the mean
field. OurAsk,vd andNsvd were carefully compared12 with
similar results obtained by Lanczos diagonalization. Good
agreement has been found for the behavior of the dynamical
properties atJ=0.0.

Our previous studies forJ=0.0 motivate us to extend our
approach to the case of finiteJ. On the other hand, many
physical problems play with a finite value ofJ and therefore,
it is necessary to extend our approach to this case. This ex-
tension is the main topic of the present paper.

As our method is new and we claim it can be used to
simplify several calculations, we must show(a) how our
method explicitly works and(b) comparison of the results
with others in the literature in order to show the confidence
of the method. To satisfy(a) and (b) is one of the main
purposes of the present paper.

In Sec. II we develop the perturbative expansion and we
give the new Feynman rules which are used in the explicit
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calculation in Secs. III and IV. In Sec. III we show results for
the charge-charge correlation functions. In Sec. IV we study
different instabilities of the model. In Sec. V we give the
conclusions.

II. PERTURBATIVE APPROXIMATION: A LARGE- N
APPROACH

In this section, we present the large-N expansion for the
t-J-V model in the framework of the path integral represen-
tation for Hubbard operators. We will extend our formalism
of Ref. 11 to the case of finiteJ.

As in Ref. 11, our starting point for developing the large-
N approach is the path integral partition function written in
the Euclidean formsit →td,

Z =E DXi
ab dfXi

00 + o
s

Xi
ss − 1g dFXi

ss8 −
Xi

s0Xi
0s8

Xi
00 G

3 ssdetMABdi
1/2expS−E dt LEsX,ẊdD . s1d

In Eq. (1), the five HubbardX operatorsX̂ss8 andX̂00 are

bosonlike and the four HubbardX̂ operatorsX̂s0 andX̂0s are
fermionlike.5 The spin indexs is s=± (up and down state,
respectively).

There is also a superdeterminantssdetMABd1/2=1/f1/
s−Xi

00d2g formed with the set of all the second class con-
strains of the theory(see Ref. 11 and 10).

The Euclidean LagrangianLEsX,Ẋd in Eq. (1) is

LEsX,Ẋd =
1

2o
i,s

sẊi
0s Xi

s0 + Ẋi
s0 Xi

0sd
Xi

00 + HsXd. s2d

On the basis of HubbardX operators, thet-J-V Hamil-
tonian is of the form

HsXd = o
ki j l,s

stij X̂i
s0X̂j

0s + H.c.d +
1

2 o
ki j l;s

JijsX̂i
ss̄X̂j

s̄s − X̂i
ssX̂j

s̄s̄d

+ o
ki j l;ss8

Vij X̂i
ssX̂j

s8s8 − mo
i,s

X̂i
ss. s3d

Now, similarly to Ref. 11 we make the following changes
in the path integral(1).

(a) We integrate over the boson variablesXss8 using the
secondd function in Eq.(1).

(b) The spin indexs=±, is extended to a new indexp
running from 1 toN. In order to get a finite theory in the
N-infinite limit, we rescale the hoppingtij , the exchange pa-
rametersJij , and the nearest-neighbor Coulomb repulsionVij
to tij /N, Jij /N, andVij /N, respectively.

(c) The completeness conditionsXi
00+op Xi

pp=N/2d can
be exponentiated, as usual, by using the Lagrangian multipli-
ersli.

(d) The chargelike terms[the third and fourth term of Eq.
(3)] of the Hamiltonian, after extended to largeN, are written
in terms ofX00 using the completeness condition.

(e) We write X00 andl in terms of static mean-field val-

ues and dynamic fluctuations:Xi
00=Nr0s1+dRid, li =l0+dli.

(f) Finally, we make the following change of variables:
f ip
+ =s1/ÎNr0dXi

p0, f ip=s1/ÎNr0dXi
0p.

By following the steps(a)–(f), we find the effective
Lagrangian

Leff = −
1

2o
i,p

s ḟ ipf ip
+ + ḟ ip

+ f ipd
1

s1 + dRid
+ o

ki j l,p
stij rof ip

+ f jp + H.c.d

− sm − l0do
i,p

f ip
+ f ip

1

s1 + dRid
+ N r0o

i

dli dRi

+
1

2 o
ki j l,p,p8

Jij

N

fip
+ f ip8

s1 + dRid

f jp8
+ f jp

s1 + dRjd

+ Nr0
2o

ki j l
SVij −

1

2
JijDdRidRj

+ o
i,p

f ip
+ f ip

1

s1 + dRid
dli + Lghost. s4d

ssdetMABd1/2 leads toLghostsZd=−oip Zip
† f1/s1+dRidgZip

when is written in terms of complex boson ghost fieldZp.
11

Now, we treat the exchange termsJij . These can
be decoupled in terms of the bond variableDi j
through a Hubbard-Stratonovich transformation, where
Di j is the field associated with the quantity
opff jp

+ f ip /Îs1+dRids1+dRjdg.
Finally, the Lagrangian(4) results in

Leff = −
1

2o
i,p

s ḟ ipf ip
+ + ḟ ip

+ f ipd
1

s1 + dRid
+ o

ki j l,p
stij rof ip

+ f jp + H.c.d

− sm − l0do
i,p

f ip
+ f ip

1

s1 + dRid
+ N r0o

i

dli dRi +
2N

J

3o
ki j l

Di j
+ Di j − o

ki j l
So

p

f ip
+ f jp

Îs1 + dRids1 + dRjd
Di j + H.c.D

+ Nr0
2o

ki j l
SVij −

1

2
JijDdRidRj

+ o
i,p

f ip
+ f ip

1

s1 + dRid
dli + Lghost. s5d

At this point it is necessary to discuss similarities and
differences between the SBA and our approach.

(a) From step(f), we see that the fermionsfp are propor-
tional to the constrainedX0p operators. They are not associ-
ated with the spinons as in the SBA.

(b) From step(e), the fielddR is proportional to the real
X00 operator representing the number of holes(empty sites).
This is not associated with the holons as in the SBA.

(c) The bond variableDi j looks close to the valence bond
variable of the SBA. However,Di j besides to be a function of
the correlated fermionsfp, it is also a function ofdR through
the denominator.

Note thatLeff [Eq. (5)] contains several nonpolynomial
terms. These apparent complications are the price we have to
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pay for working in terms ofX operators. Since thet-J-V
model Hamiltonian is quadratic in theX’s, the strong elec-
tronic interactions are contained in the commutation rules
and the constraints. In the path integral formulation, the in-
formation contained in the Hubbard algebra was transferred
to the effective theory.

In the next sections we will show that present theory can
go beyond a formal level, and the obtained results can be
compared with others in the literature. Now, we write theDi j
fields in term of static mean-field values and dynamics fluc-
tuations Di

h=Ds1+r i
h+ iAi

hd, where h=x,y and r i
h and Ai

h

correspond to the amplitude and the phase fluctuations of the
bond variable, respectively.

To implement the 1/N expansion, the nonpolynomialLeff
should be developed, as in Ref. 11, in powers ofdR. Up to
order 1/N the following Lagrangian is sufficient:

Leff = −
1

2o
i,p

s ḟ ipf ip
+ + ḟ ip

+ f ipds1 − dRi + dRi
2d

+ o
ki j l,p

stij rof ip
+ f jp + H.c.d − mo

i,p
f ip
+ f ips1 − dRi + dRi

2d

+ N r0o
i

dli dRi + o
i,p

f ip
+ f ips1 − dRiddli

+
2N

J
D2o

ih

fsr i
hd2 + sAi

hd2g− Do
ki j l,p

sf ip
+ f jp + f jp

+ f ipd

3F1 −
1

2
sdRi + dRjd +

1

4
dRidRj +

3

8
sdRi

2 + dRj
2dG

− Do
ki j l,p

F f ip
+ f jpsr i

h + iAi
hdF1 −

1

2
sdRi + dRjdG + H.c.G

+ Nr0
2o

ki j l
SVij −

1

2
JijDdRidRj − o

ip

Zip
† s1 − dRi

+ dRi
2dZip, s6d

where we have changedm to m-l0 and dropped constant and
linear terms in the fields.

Looking at the effective Lagrangian(6), the Feynman
rules can be obtained as usual. The bilinear parts give rise to
the propagators and the remaining pieces are represented by
vertices. In addition, we assume that Eq.(6) was written in
the momentum space once the Fourier transformation was
performed.

In leading order of 1/N, we associate with the
N-component fermion fieldfp, connecting two generic com-
ponentsp andp8, the propagator

Gs0dpp8sk,nnd = −
dpp8

inn − sEk − md
s7d

which is Os1d.
In Eq. (7), Ek=−2str0+Ddscoskx+coskyd, is the electronic

dispersion in leading order, wheret is the hopping between
nearest neighbors sites on the square lattice.

The mean field valuesr0 andD must be determined mini-
mizing the leading order theory. From the completeness con-
dition r0 is equal tod /2 whered is the hole doping away
from half-filling. On the other hand, minimizing respect toD
we obtain D=sJ/2ds1/NsdokcosskxdnFsEk−md, where nF is
the Fermi function andNs is the number of sites in the
Brillouin zone (BZ). For a given dopingd, the chemical
potentialm andD must be determined self-consistently from
s1−dd=s2/Nsdok nFsEk−md.

We associate with the six component
dXa=sdR,dl ,rx,ry,Ax,Ayd boson field, the inverse of the
propagator, connecting two generic componentsa andb,

Ds0dab
−1 sq,vnd = N1

s4V − 2Jdr0
2scossqxd + cossqydd r0 0 0 0 0

r0 0 0 0 0 0

0 0
4

J
D2 0 0 0

0 0 0
4

J
D2 0 0

0 0 0 0
4

J
D2 0

0 0 0 0 0
4

J
D2

2 . s8d

The bare boson propagatorDs0dab [the inverse of Eq.(8)]
is Os1/Nd. As we will seeD0 is renormalized toD by an
infinite series of diagrams ofOs1/Nd. We associate with the
N-component ghost fieldZp, the propagator, connecting two

generic componentsp andp8, Bpp8=−dpp8 which is Os1d.
The expressions for three-leg and four-leg vertices are as

follows.
(a)
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La
pp8 = s− 1dF i

2
snn + nn8d + m + 2Do

h

cosSkh −
qh

2
D cos

qh

2
,

1,− 2 D cosSkx −
qx

2
D,− 2 D cosSky −

qy

2
D ,

F2 D sinSkx −
qx

2
D,2D sinSky −

qy

2
DGdpp8 s9d

represents the interaction between two fermions and one bo-
son.

(b) Lab
pp8, which represents the interaction between two

fermions and two bosons, is a 636 matrix where the only
elements different from zero are

LdRdR
pp8 = S i

2
snn + nn8d + m + Do

h

cosSkh −
qh + qn8

2
D

3Fcos
qh

2
cos

qn8

2
+ cos

qh + qn8

2
GDdpp8, s10d

LdRdl
pp8 =

1

2
dpp8, s11d

LdR rh
pp8 = − D cosSkh −

qh + qn8

2
Dcos

qn8

2
dpp8, s12d

LdR Ah
pp8 = D sinSkh −

qh + qh8

2
Dcos

qh8

2
dpp8. s13d

(c) Ga
pp8=s−1dsdpp8 ,0 ,0 ,0,0,0d represents the interaction

between two ghosts and one boson.

(d) Gab
pp8 is a 636 matrix, whereGdRdR

pp8 =dpp8 and, the oth-
ers components are zero. It represents the interaction be-
tween two bosons and two ghosts.

Each vertex conserves the momentum and energy and
they areOs1d. In addition, in each diagram there is a minus
sign for each fermion loop and a topological factor. Figure 1
summarizes the Feynman rules. After identifying the propa-
gators and vertices and the respective order of them, in the
next sections, we will calculate different physical quantities.

Before finishing this section, one remark is necessary.
From theN-extended completeness condition we can see that
the charge operatorX00 is OsNd, while the operatorsXpp are
Os1d. This fact will have the physical consequence that the
1/N approach weakens the effective spin interactions com-
pared to the one related to the charge degrees of freedom.
This is discussed in the next section.

III. CHARGE CORRELATIONS

In this section density-density correlations functions are
calculated. It will be shown that the developed formalism
can be used in explicit calculation of different correlation
functions and we will also compare our results with others in
the literature.

The density-density correlation function is defined as11,13

D̃ij =
1

No
pp8

kTtXi
ppXj

p8p8l. s14d

Using op Xi
pp=N/2−Xi

00 we find for D̃ in the Fourier
space

D̃sq,vnd = − NSd

2
D2

DdRdRsq,vnd. s15d

The charge correlation, inOs1d, needs the calculation of
all Os1/Nd contributions toDdRdRsq ,vnd. From the Dyson
equation sDabd−1=sDs0dabd−1−Pab, the dressed components
Dab of the boson propagator can be found after the evalua-
tion of the 636 boson self-energy matrixPab. Using the
Feynman rules we may evaluatePab through the diagramas
of Fig. 2. Note thatDdRdR is the elements1,1d of the 636
dressed propagator.

FIG. 1. Summary of the Feynman rules. Solid line represents the
propagatorGs0d (Eq. (7)) for the correlated fermionfp. Dashed line
represents the 636 boson propagatorDs0d (Eq. (8)) for the
6-component fielddXa. Note that the components1,1d of this
propagator is directly associated with theX00 charge operator. Dot-

ted line is the propagatorB for the boson ghost fieldZp. La
pp8 (Eq.

(9)) andLab
pp8 represent the interaction between two fermionsfp and

one and two bosonsdXa respectively.Ga
pp8 and Gab

pp8 represent the
interaction between two ghost fieldsZp and one and two bosons
dXa respectively.

FIG. 2. The four different contributionsPab
sid si =1,2,3,4d to the

irreducible boson self-energyPab.
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We note here an important difference with respect to the
SBA. In SBA, only in leading order, the charge-charge cor-
relation can be associated with the holon propagator. Beyond
leading order, the convolution of holon propagators(which
means the reconstruction of theX operatorX00) is necessary.
Meanwhile, in our case, it is not used any decoupling scheme
and then, the different correlation functions are directly as-
sociated with our field variables.

The density-density spectral function, which in principle
can be measured with electron energy loss scattering,14 is

defined asDsq ,vd=−ImfD̃sq ,vdg. The imaginary part is
taken as usual after performing the analytical continuation
ivn=v+ ih.

In Fig. 3 we show the density-density correlation function
for the physical valueJ=0.3 and for dopingd=0.20.
We plotted the densities for differentq vectors in the
BZ as a function ofv. The q vectors and the physical
parameters are the same as those used in the calculation of
the densities in Ref. 15. We usedh=0.1 in the analytical
continuation.

Comparing Fig. 3 with Fig. 3 of Ref. 15, we find a re-
markable agreement between both methods in spite of the
fact that the two approaches are very different. The density-
density correlation function is nearly independent ofJ. For
example, comparing Fig. 3(for J=0.3) with Fig. 2 in Ref. 11
(for J=0) for momentumq=sp ,pd, we find a well pro-
nounced collective peak(or zero sound) at v,3.5. (Note
that in Ref. 11v is in units of t while in Fig. 3 it is in units
of 2t in order to absorb the factor 1/N due to the rescaling of
the hopping term.)

The fact that the density correlations are nearly indepen-

dent ofJ means thatD̃sq , ivnd is dominated by charge fluc-
tuations. As we mentioned above, the present formalism
privileges charge over spin fluctuations. Another conse-
quence of this result is the absence, inOs1d, of collective
excitations(such as magnons) in the spin susceptibility. The
spin-spin correlation function is the electronic bubble with

renormalized band due to correlations.11,13 Meanwhile there
are collective effects in the charge sector inOs1d, that appear
in Os1/Nd in the spin sector.

The collective peaks are more pronounced when they
are present well above the particle-hole continuum as for
q=sp ,pd. For momentumq=s2p /5 ,p /5d the collective
peak is superimposed to the particle-hole continuum and it
appears broader. The broadening of the collective peak
q=sp ,pd is not intrinsic and it is only due to the finite value
of h we used in the analytical continuation.

At this point we can compare our results with those ob-
tained using exact diagonalization.16 Despite that the charge
correlation function in Ref. 16 was for dopingd=0.25 and
J=0.4 and our calculation is ford=0.20 andJ=0.3, there are
some similarities and differences to remark. For example,
Fig. 2 in Ref. 16 shows also a peak atq=sp ,pd. However,
(a) this peak appears at larger energies than our collective
peak, (b) the peak atsp ,pd obtained in Ref. 16 contains
more structure than ours, and(c) we must note also a differ-
ence atq=sp ,0d. In our calculation we found a collective-
like peak atv,2 and a broad and small continuum at low
energy. Lanczos diagonalization presents also this picture
but, in addition there is a peak at lower energy. As it was
already pointed out by Khaliullin and Horsch in Ref. 17(see
also Ref. 18), the inclusion of fluctuations beyond the mean
field level is probably responsible for the differences listed in
(a), (b), and(c). We think that the inclusion of fluctuations is
more important at lower than at larger doping. In Ref. 12, for
doping d=0.5, we found a better agreement between the
peak position forq=sp ,pd obtained by our approach and
that obtained by Lanczos.

IV. INSTABILITIES

A. Flux and bond-order phases

The theory developed in previous sections defines a ho-
mogeneous Fermi liquid(HFL) phase. InOs1d the mean field

FIG. 3. Density-density correlation functions
for J=0.3,V=0.0, andd=0.20 for differentq’s in
the BZ. The density-density correlation functions
contain collective peaks due to infinite diagram
summation seen in Fig. 2. The collective peaks
are well pronounced when they are above
the particle-hole continuum[see, for example,
q=sp ,0d]. They are less pronounced when they
are superimposed to the particle-hole continuum
[see, for example,q=s2p /5 ,p /5d]. v is in units
of 2t and t is considered to be 1.
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solution sr0,Dd was independent of sites. Therefore, atN
infinite, we have free fermions with renormalized bandEk
due to correlations.

In this section we will study the stability conditions for
the HFL. In leading order, there are collective effects in the
charge sector whereas there are not in the spin sector. There-
fore, in principle, we expect instabilities in the charge chan-
nel.

The HFL system is unstable when the static charge sus-

ceptibility RefD̃sq , ivn=0dg diverges. Theq vector, where
the instability occurssqcd, is the modulation of the new
phase.

Figure 4 shows the phase diagram of the model forV=0.
For a givenJ, below a critical dopingdc where the static
charge susceptibility diverges at a given vectorq in the BZ,
the HFL is not the stable phase.

In the limit J→0, dc→0 the HFL is stable for the whole
doping range except at half filling where the system is an
insulator because the band effective mass tends to infinite.
The instability is placed, for allJ, on the border of the BZ.
That is, qc=s1,xdp or qc=sx,1dp, where the parameter
x measures the degree of the incommensuration of the
instability.

In Fig. 5 we plot the incommensurationx as a function of
dc. For dc→0, x→1. Therefore, in the limit ofJ→0, we
found a phase with commensurate orderqc=sp ,pd.

It is easy to overlook the instability just by looking at
the static charge susceptibility. In Fig. 6 we plot the
static charge susceptibility, alongq=sp ,qd, for d=0.15 and
d=0.14 and for the physical valueJ=0.3. From Fig. 4 we
know that the HFL is not stable for dopingd=0.14 whereas
for d=0.15 it is stable. Both curves in Fig. 6 look similar
and, ford=0.14 there is no indication of the instability for
q,qc because it occurs in a very narrow region of momen-
tum nearqc. In practice, this means that the set ofq points in
Fig. 6 is not dense enough to localize the divergence of

RefD̃sq , ivn=0dg. As we will see below, this is related with

the fact that the instability is weakly coupled with the charge
sector.

To calculateD̃sq ,vnd we have to evaluate the inverse of
sDabd−1. Therefore, for a better determination of the instabil-
ity, we may look for the zeros of the determinant ofDab

−1.
In the inset of Fig. 6 we plot the detsDab

−1d as a function of
q=sp ,qd. For d=0.14 (close to the onset of the instability)
the determinant changes sign in a narrow region around
qc,sp ,2.7d making the HFL unstable. Meanwhile, for
d=0.15 the determinant is positive for allq and the system is
stable. A similar plot ford,0.14 shows, of course, a larger
negative region for detsDab

−1d.
In order to characterize the nature of the new phase,

we have studied the eigenvector corresponding to the

FIG. 4. Phase diagram in thedc-J plane forV=0.0. The solid
line defines the stability border for the homogeneous Fermi liquid
(HFL). For a givenJ the HFL is stable ford.dc. The thick dashed
line aroundJ,0.5 separates the flux phase(FP) from the bond
order phase(BOP).

FIG. 5. Incommensurationx vs dc for V=0.0. x is defined as
qc=s1,xdp. qc is theq vector, where the instability takes place. The
instability is incommensurate for allJ except for J→0 where
x→0 fqc→ sp ,pdg. At the separating border of the FP from the
BOP there is a jump in the value ofqc.

FIG. 6. Static charge susceptibility RefD̃sq , ivn=0dg vs
q=sp ,qd for J=0.3, V=0.0 and for d=0.15 and d=0.14. For
d=0.14 (solid line) the curve looks similar to the case ford=0.15
(dashed line). For d=0.14 the HFL is not stable and there is no
strong sign of the instability in the static charge susceptibility. In the
inset we plot the detsDab

−1d (see text for discussions) vs q=sp ,qd.
For d=0.14, the detsDab

−1d clearly changes sign in a small region
aroundqc,sp ,2.7d.
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zero eigenvalue ofsDabd−1. For doping d,dc,0.5 the
eigenvector corresponding to the zero mode is,s0,0,0,0,
−1,1d. Then, in the new phase, the fifth and sixth compo-
nents ofdXa (Ax andAy) are frozen.Ax andAy are associated
with the phase of the fieldDh and they take opposite values.
Therefore, as the instability occurs near the momentum
sp ,pd, this new phase is the well known flux phase(FP)
Refs.19 and 20 which opens a gap, withd-wave symmetry in
the normal state.

Recently, Chakravarty, Laughlin, Morr, and Nayak
considered the FP or DDW as a candidate to explain the
physics of the pseudogap in underdoped cuprates.21 The
first component of the eigenvector corresponding to zero ei-
genvalue is not zero exactly. It has a small value which
means that the FP is weakly coupled to the charge sector. It
means that the DDW is not completely hidden when it is
incommensurate. Although Bragg peaks are predicted,
they will show low intensity which would make their
observation very difficult. This is the reason by which any
charge probe is not very sensitive to show the FP instability.
Whenqc is exactlysp ,pd the eigenvector does not have any
mixing with the charge sector, and the flux phase is fully
hidden.

For dopingd.dc,0.5 the unstable eigenvector is of the
form ,s0,0,0,1,0,0d. This state is known as bond-order
phase(BOP).20,23 In the range of the studied parameters we
did not find indications for phase separation. In Fig. 5, for
J,0.5, near the crossover from the FP to BOP, there is a
jump in the incommensurationx.

The agreement with other methods20,23 is again remark-
able in spite of the fact that the present approach is,a priori,
very different from those ones. Taking into account that we
constantly find similar or even the same results by means of
different methods turn the results reliable. For example, for
the physical valueJ=0.3, the HFL is unstable against a FP.
This result is very robust, and many different methods agree
that the stable phase, for small doping, is a FP for the physi-
cal region of the parameters.19,20,22–24

B. Charge density wave phase

The inclusion of a nearest-neighbors Coulomb repulsion
V favors a charge density wave(CDW) state. In order to
investigate this instability, we have included a finite value of
V in the calculation.

The study of nearest-neighbor Coulomb repulsion in cor-
related models is important. In cuprates, there are
indications25 showing the existence ofV with a value close to
J. If J favors superconductivity and the value ofV is large, it
is reasonable to think that superconductivity will be dimin-
ished due the presence ofV. There are some analytical and
numerical works studying the competition betweenV andJ
on superconductivity. Meanwhile some papers indicate that
superconductivity in thet-J model vanishes forV,J;9 others
indicate that superconductivity survives up to values of
V@J.26

On the other hand, the presence ofV seems to be impor-
tant for understanding the physics of organic materials.27

Some peculiarities in the optical conductivity(and also su-

perconductivity) occur near the charge order and this picture
can be interpreted by the competition betweenV and the
kinetic energy in correlated models.28

Looking at Eq.(8) we see thatV is only present in the
elementDs0d

−1s1,1d. The Coulomb term enters in our approach
multiplied by sd /2d2 which means that the effect ofV, at low
doping, is strongly screened by the correlations.

We note that in the SBAV can enter in different manners
depending on the way chosen for the decoupling.

In Fig. 7 we show the phase diagram in theVc-d plane for
J=0 andJ=0.3. The curves show, as a function ofd, the
critical Coulomb repulsionVc where the CDW instability
takes place. ForV,Vc the HFL is stable. This result is in
agreement with numerical12 and analytical methods.29 In Ref.
29 the authors use coherent potential approximation and their
results are close to the ours.

A similar result was also recently found, atJ=0, in the
triangular lattice in the context of the new low dimensional
superconductor NaxCoO2.

30

For J=0.3 and dopingd=0.20, the HFL is stable atV
=0. WhenV=Vc,1.25 the system enters in a CDW state.
This Vc is , 40% larger than forJ=0 and the same doping.
There are two sources for this tendency.

(a) When J is finite, there is a contributionD to the ef-
fective hopping inEk. Then, the system wins kinetic energy
when J is finite, and a largerV is necessary in order to
localize the charges.

(b) As we see in the elements1,1d of Ds0d
−1, the effect ofV

is diminished whenJ is finite. The term 2J in the element
s1,1d comes from the charge-like termJijXi

ssXj
s̄s̄ of the pure

t-J model, which is of the same form of the Coulomb term
[see Eq.(3)].

In order to identify the main source for the increasing of
Vc we looked for the CDW instability without the charge-like
term in Eq. (3). Under this condition, forJ=0.3 and d
=0.20,Vc is Vc,1.0. This value is nearly the same asVc for
J=0. Therefore,(b) is the main source for the increasing of
Vc with increasingJ.

FIG. 7. Charge density wave(CDW) stability line Vc vs d for
J=0.0 (dashed line) andJ=0.3 (solid line). For a givend, the sys-
tem is in a CDW state forV.Vc. The value ofVc increases with
increasingJ. For J=0.3 the first presented doping isd=0.15. (For
J=0.3 the HFL is not stable ford,0.14 atV=0.0.)
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In contrast to the FP and BOP, the CDW instability can be
detected clearly by looking at the static charge susceptibility
Refxsq , ivn=0dg. In Fig. 8 we show, forJ=0.3 andd=0.25,
Refxsq , ivn=0dg vs q=sq,qd for V=1 (a little smaller than
the critical value 1.1) andV=0.5. In the figure, we see that
approachingVc, the static susceptibility tends to diverge near
q=sp ,pd. For V=0.5 sV!Vcd, the static charge susceptibil-
ity is flat.

In this case the eigenvector corresponding to the zero ei-
genvalue is,s1,0,0,0,0,0d. Then, the instability is mainly
in the pure charge sector.

From Fig. 8, in agreement with other methods,12 the in-
stability q vector is always atq=sp ,pd. Therefore, in the
CDW phase, the charges order themselves forming a check-
erboard pattern. For doping different to the commensurate
oned=0.5 we must interpret the CDW instability as the sys-
tem is charge ordered but remains metallic. These results
were obtained by different methods and the nature of the
instability for dopings other than the commensurate one is
still unclear. For the commensurate dopingd=0.5 in Ref. 12
we showed that the system is charge ordered atVc,0.6,
however, we also find an insulator because the quasiparticle
weight goes to zero exactly at thisVc value.

In order to compare the above results to the predictions
of the BKF method, we calculated the criticalVc using
the formulation of Refs. 8 and 9 forJ=0.3. For d=0.20
and d=0.60 we foundVc,1.25 andVc,0.9, respectively.
The agreement with our calculation is again very good
in spite of the fact that the Coulomb term enters BKF in a
different way.

V. CONCLUSIONS

From the path integral representation for the Hubbard
X operators we have developed a new perturbative theory
for the t-J-V model. Our formulation is free of slave

particles and theX operators are treated as fundamental
objects.

We have extended the large-N formalism, recently devel-
oped in Ref. 11, to the case of finiteJ. To work directly with
the X operators has several advantages upon the slave par-
ticles methods. For example, in the slave boson theory, the
decoupling procedure introduces a gauge degree of freedom
and then, an additional problem as the gauge fixing arises.
This problem does not occur in our formulation. On the other
hand, in the slave approaches, in contrast to our method,
beyond a mean field level, a convolution between slave-
particles propagators is necessary to reconstruct the original
physical propagator.

Figure 1 summarizes the Feynman rules of the present
approach where the propagators and vertices are written in
terms of the Hubbard operatorsXs0, X00, etc. It is important
to note that we cannot read the interaction vertices from the
t andJ terms of the Hamiltonian. They arise from the non-
polynomial effective theory defined byLeff in Eq. (6). All the
interactions caused by the Hubbard algebra(commutation
rules and constraints) were transfered toLeff.

The formalism developed in the present paper privileges
charge over spin fluctuations. While there are collective ef-
fects in the charge sector inOs1d, those appear inOs1/Nd in
the spin sector.

We have studied charge correlations functions and we
have investigated the role of collective effects. This study
shows the presence of collective peaks(or zero sound) which
are more evident when they are separated from the particle-
hole continuum. On the other hand, the collective peaks be-
come broader when they are superimposed to the particle-
hole continuum. One important characteristic of the charge
correlation function is the fact that this is not strongly depen-
dent on the value of the exchange interactionJ.

At largeN, the theory can be described as a homogeneous
Fermi liquid with renormalized band due to correlations. We
have studied the stability of this Fermi liquid phase. For a
given value ofJ, the Fermi liquid phase is stable for doping
d.dc. The critical dopingdc decreases with decreasingJ.
For doping belowdc the system enters in a flux or bond order
phase depending ifJ,0.5 orJ.0.5, respectively. These in-
stabilities are weakly coupled to the charge sector which
means that any charge-probe is not an efficient test to detect
them. One important characteristic of these new phases
is that they are incommensurate with a modulation vector
q=s1,xdp where the incommensurationx tends to 1 whenJ
goes to zero. It is important to note that, in agreement with
other theories, for low doping the Fermi liquid is unstable
against a flux ord-density wave phase for the physical region
of the parameters.

We also have investigated the role of a nearest-neighbor
Coulomb repulsionV on the stability conditions of the Fermi
liquid. WhenV is larger than a critical valueVc, the system
enters, at a given doping, in charge density wave state. The
value ofVc increases with increasingJ. We have identified in
the chargelike term of the puret-J model the main reason for
this increase.

We have continuously compared our results with similar
ones in the literature. The agreement of our results with those
obtained by other methods gives confidence to the results
and the approach of the present paper.

FIG. 8. Static charge susceptibility forJ=0.3 andd=0.25 vs
q=sq,qd for two different values ofV, V=1 andV=0.5. V=1 is
near (from below) the value ofVc=1.1. In contrast to Fig. 6, the
CDW instability has a clear signal in the static charge susceptibility.
For V=1 there is a clear indication of a divergence atsp ,pd. For
V=0.5 sV!Vcd, the static charge susceptibility is flat.
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At leading order, our formalism is in agreement with the
slave-boson approach. However, at the next to leading order
(which is necessary to calculate dynamical properties) the
differences between the two formulations are not yet com-
pletely established. We think that the complications that ap-
pear in the slave-boson method beyond mean field level as
gauge fixing, Bose condensation, regularizing factors6 are
not good for the advance of the field. In our case we do not
have these problems and we think that our approach can be

useful to go beyond the mean field level. With the formula-
tion for finite J in hand, we expect to continue in this direc-
tion as we did forJ=0 in Ref. 12.
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