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We have introduced a new perturbative approachtfd#V model where Hubbard operators are treated as
fundamental objects. Using our vertices and propagators we have developed a controllabi\edapgesion
to calculate different correlation functions. We have investigated charge density-density response and the phase
diagram of the model. The charge correlations functions are not very sensitive to the valaedbthey show
collective peaksor zero soungwhich are more pronounced when they are well sepai@eshergy from the
particle-hole continuum. For a giveha Fermi liquid state is found to be stable for dopifidarger than a
critical dopingé,. &, decreases with decreasidgFor the physical region of the parameters and &aré., the
system enters in an incommensurate flux or DDW phase. The inclusion of the nearest-neighbor Coulomb
repulsionV leads to a charge density wave phase wiMes larger than a critical valu¥.. The dependence of
V. with § andJ is shown. We have compared the results with other ones in the literature.
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[. INTRODUCTION coupling techniques have been developed. Between them,
what will be important for the present paper is the lakye-

In the last few years a large part of the solid state comexpansion wheréN is the number of electronic degrees of
munity has been devoted to understanding the physics dfeedom per sitgsee beloyw The largeN expansion has
strongly electronic correlated models. The importance of thideen used extensively in the context of slave-boson
study is supported by clear experimental facts. High- approach (SBA) and, more recently, using Bayn-Kadanoff
superconductotsand organic superconductdrare consid- functional theory(BKF) in terms ofX operators}?
ered, for instance, electronic correlated systems. They show On the basis of our Feynman path integral representation
that electronic properties are very different from those exJor the t-J model!® we developed a largl-approacht for
pected in usual metals. the J=0 case(U-lnflmte_ Hubl_)ard model This method has

For a better understanding of the physics of these system1€ advantage of working with Hubbard operators as funda-
it is very important to develop different methods for studying mental objects without any decoupling procedure. Then, we
models for correlated electrons. The two dimensici2) neither take care of gauge fluctuations nor Bose condensa-

: : tion as in the SBA.
t-J model is probably one of the most simple models we . .
should understand in the first place. The method developed in Ref. 11 was recently applied

The t-J model is the strong coupling version of the Hub- to describe electronic properties of quarter-filled organic

bard modek | ite of its smole f th . tmolecular crystal$? For instance, in Ref. 12 we have
ard modet. In spite of Its simple form, there 1S NO Exact .qjjated electronic self-energiB¢k, w), spectral functions

solution for this model until now, and many analytical andA(k ), and the electronic density of stat®w) which
numericat methods have been developed and the ObtaInE’gre nontrivial calculations considering that they involve

results confronted each other. , _ fluctuations, in a controllable approach, above the mean
In the t-J model double occupancy is forbidden, and thefie|q Our Ak, w) andN(w) were carefully comparédwith
model can be written in terms of the correlated or projectedimjjar results obtained by Lanczos diagonalization. Good

operators, also known as Hubbatdperators. Hubbard op-  agreement has been found for the behavior of the dynamical
erators verify complicated commutation rules which are veryyroperties ati=0.0.

different from the familiar commutation rules for usual fer-  Qyr previous studies faf=0.0 motivate us to extend our
mions and bosons. One of the common methods, used fe{pproach to the case of finitt On the other hand, many
avoiding this problem, introduces slave partiélesorder to  physical problems play with a finite value dfand therefore,
decouple the originaX operator. These slave particles verify it is necessary to extend our approach to this case. This ex-
usual commutation rules, but they are fictitious and sometension is the main topic of the present paper.
times it is not clear if the obtained results are genuine or As our method is new and we claim it can be used to
artifacts from merely decoupling. On the other hand, the desimplify several calculations, we must shaa) how our
coupling scheme introduces a gauge degree of freedommethod explicitly works andb) comparison of the results
which requires a gauge fixing. The gauge fixing is a longwith others in the literature in order to show the confidence
discussed fundamental probldisee, for example, Ref.)6 of the method. To satisfya) and (b) is one of the main
Another problem in the treatment of the] model is the purposes of the present paper.
absence of any small coupling parameter suitable for a per- In Sec. Il we develop the perturbative expansion and we
turbative expansion. To deal with this problem, strong-give the new Feynman rules which are used in the explicit

1098-0121/2004/1Q0)/2051239)/$22.50 70205123-1 ©2004 The American Physical Society



A. FOUSSATS AND A. GRECO PHYSICAL REVIEW B0, 205123(2004)

calculation in Secs. Il and IV. In Sec. 11l we show results for ues and dynamic quctuationXOO—Nro(1+6R,) Ni=Ng+ O\;.
the charge-charge correlation functions. In Sec. IV we study (f) Finally, we make the foIIowmg change of variables:

different instabilities of the model. In Sec. V we give the f; b=(1N Nro)x (1/\ Nro)x Op,
conclusions. By followmg the steps(a)—f), we find the effective
Lagrangian

Il. PERTURBATIVE APPROXIMATION: A LARGE- N 1
APPROACH Lo =~ 52 (fipfﬁ) fip) =
ip

In this section, we present the larjeexpansion for the
t-J-V model in the framework of the path integral represen- :
tation for Hubbard operators. We will extend our formalism (= }‘O)E flpf'P(l 5R) *N rozi ONi OR
of Ref. 11 to the case of finité.

As in Ref. 11, our starting point for developing the large-
N approach is the path integral partition function written in

+ E (tijro fIp ip+H.C)

(1+ 5R) (j)p

_2 Ji Fiofipr fiorfin

/N (1+6R) (1+6R)

the Euclidean forntit — 7), 2o’
00 X +NP2 ( u> SRR
Z= DXIQB 6[)(' + E XIUC" — 1] S Xlo'g' _ W ~
v i
' fofip = O\ +L (4)
X (SdeMAB)illzeX[{— f dr Le(X, X)) . 1) 2 p Ip(l 5R|) i ghost

_ ., o0 (sdelMAB)”Z leads toLgnos{ 2)==Sip ZH[1/(1+R)]1Z
In Eq. (1), the five Hubbard operatorsX”” andX™are  \yhen is written in terms of complex "boson ghost fiedgl1!

bosonlike and the four Hubba§doperator§("° and X% are Now, we treat the exchange termy;. These can
fermionlike® The spin indexo is o=+ (up and down state, be decoupled in terms of the bond variabla;;
respectively. through a Hubbard-Stratonovich transformation, where

There is also a superdeterminafadetM g)2=1/[1/ Aj is the field associated with the quantity
+ /—
(=X79?] formed with the set of all the second class con-Z[f fip/(1+8R)(1+dR)].
strains of the theorysee Ref. 11 and 10 Finally, the Lagrangiari4) results in

The Euclidean LagrangiahE(X,X) in Eg. (1) is

1w - .,
XiOU XIUO+ )'(ioO XIOU) B EE (fipfip Ip) (1 (SR) + E (t'Jr flp ip + H'C')

-1
Le(X,X) =52 ( % +HX). (2 P W.p
255 Xi E 1 E
N i fio—————+ N 15>, O\ + —
On the basis of HubbarX operators, thd-J-V Hamil- ~ (=R 2 fip P(1+6R) 0< R
tonian is of the form f
+ 1P
~ “ 1 e ~ ~— Xz A A” _E (E | 1B A” + HC)
HX) = 3 (4 XOX% +H.c) + = X Jj(X77X7 = X77X) i i\ p V(1 +8R)(L+6R)
(ijho (ij)o
AO'O'AO'IU'/ A(T(T +Nr ) 6R
2 VXX - w2 X 3 (IJ)< 2%
(ijioo’ Lo
Now, similarly to Ref. 11 we make the following changes E f|pflp(1 6R,) O\ + Lgnost (5)
in the path integrall).
(a) We integrate over the boson variabhé&”’ using the At this point it is necessary to discuss similarities and
seconds function in Eq.(1). differences between the SBA and our approach.
(b) The spin indexo=%, is extended to a new index (@ From step(f), we see that the fermiorfg are propor-

running from 1 toN. In order to get a finite theory in the tional to the constrained® operators. They are not associ-

N-infinite limit, we rescale the hoppingy, the exchange pa- ated with the spinons as in the SBA.

rameters];, and the nearest-neighbor Coulomb repulsign (b) From step(e), the field 4R is proportional to the real

to /N, J;;/N, andV;;/N, respectively. X9 operator representing the number of halesipty sites
(c) The completeness conditiciX?°+=, XPP=N/2) can  This is not associated with the holons as in the SBA.

be exponentiated, as usual, by using the Lagrang|an multipli- (c) The bond variablé\;; looks close to the valence bond

ersa;. variable of the SBA. Howevel; besides to be a function of
(d) The chargelike termgthe third and fourth term of Eq. the correlated fermionf,, it is also a function obR through

(3)] of the Hamiltonian, after extended to laryeare written  the denominator.

in terms of X°° using the completeness condition. Note thatL.s [EQ. (5)] contains several nonpolynomial
(e) We write X°° and\ in terms of static mean-field val- terms. These apparent complications are the price we have to
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pay for working in terms ofX operators. Since theJ-V ) 1 .

model Hamiltonian is quadratic in thé's, the strong elec- +NG V- 51 | ORiORy -2 ZH1- R

tronic interactions are contained in the commutation rules @) P

and the constraints. In the path integral formulation, the in- + 5Ri2)zip, (6)

formation contained in the Hubbard algebra was transferred
to the effective theory. v_vhere we haye changadto m-\g and dropped constant and
In the next sections we will show that present theory carlN€@r terms in the fields.

g0 beyond a forma fevel, and the ohaned resus can be, LO0KTG 5L e efeche Lagangae) e Fermen
compared with others in the literature. Now, we write the : P 9

fields in term of static mean-field values and dynamics fIuc-f,lertﬁ:reospal%a;%rgit?onnd ws ;ir:l?rlr? elzn?hgtlelgg)svsgi (Eﬁtﬁsﬂemed by
tuations Aiﬂ:A(lHiﬂﬂA_in)' where 7=x,y and r/’ an_d A the momentum space once the Fourier transformation was
correspond to the amplitude and the phase fluctuations of trﬁerformed_
bond variable, respectively. . In leading order of 1N, we associate with the

To implement the 1N expansion, the nonpolynomiék;  N-component fermion field,, connecting two generic com-
should be developed, as in Ref. 11, in powersSef Up to  ponentsp andp’, the propagator
order 1N the following Lagrangian is sufficient:

Gy (ko) =~ —— P (7)
P vy = (B )
1 . . S
L.=-= f 5 +FF )1 - SR + SR? which is O(1).

of ZiE,p( pfip * fipfip)(1 = R, + o) In Eq. (7), Ex=—2(tro+A)(cosk,+cosk,), is the electronic
dispersion in leading order, whetds the hopping between

+ 2 (trofipfjp + H.C) - ME fifip(1 = OR; + OR?) nearest neighbors sites on the square lattice.
(ii»p i,p The mean field valueg, andA must be determined mini-

o YE o1 oo sy mizing the leading order theory. From the completeness con-

*N fozi ONi OR +|2p fipfip(1 = OR) AN, dition ry is equal tod/2 where§ is the hole doping away

from half-filling. On the other hand, minimizing respectdo
we obtain A=(J/2)(1/NgZ,cogk)ne(Ex— ), where ng is
the Fermi function and\ is the number of sites in the
L . 3 Brillouin zone (BZ). For a given dopings, the chemical
_( . N g Do SR 4 2 sR2 potentialu andA must be determined self-consistently from
X[l 2R IR+ ORRy* g (OR ”RJ'Z)} (1-5)=(2/Ng S, Ne(E—p)
1 We associate with the SixX component
—AY [fﬁafjp(ri’”iAi’/)[l——(gRi +6Rj)] + H.c.] SXB=(SR, O\, r*, Y, AX,AY) boson field, the inverse of the
Gip 2 propagator, connecting two generic componengndb,

2N + +
+ TAZE [(r7)2+ (A=A (Ffip+ Tfip)
in (j)p

(4V-2)ri(codg) +codqy) b, 0 O 0 O

fo 00 0 0 O
4 2
0 0 -A> 0 0 ©
J
-1 - 4.,
D{gja(G@n) =N 0 0 0 JA* 0 0 | (8)
4
0 0 0 0 -A? 0
J
4
0 0 0 0 0 A7

The bare boson propagatDyg,;, [the inverse of Eq(8)] generic components andp’, B,y =—d,y Which isO(1).
is O(1/N). As we will seeDg is renormalized td by an The expressions for three-leg and four-leg vertices are as
infinite series of diagrams @(1/N). We associate with the follows.
N-component ghost fiel&,, the propagator, connecting two  (a)
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, i q q Feynman Rules
AP =(-1) E(V“ + )+ u+ 20 cog k, - E’z cosz’l, Propagators
n
’ b Y P
G(°)=pé_p D(O)=i->---' B= ..... Shaurene
1,-2A cos(kx— q—;)— 2A cos(ky— 92¥>

Vertices P 4 ;/
q q ’ d
2A9«@—§ﬂ2Ag%@—gﬂaw 9) AP = et A= .
<

N
represents the interaction between two fermions and one ba A P S
son. P "2 ’//'a
! . . . . ™
(b) AR, which represents the interaction between two . A . W g’

fermions and two bosons, is ax8 matrix where the only r, = ST Tw= SN

elements different from zero are A R ‘\g

oP <P
/ i ’ qr]+ qr"l i i
Ag'gm: —(rt )+t AE co kn -—— FIG. 1. Summary of the Feynman rules. Solid line represents the
2 7 2 propagatoiG, (Eq. (7)) for the correlated fermiofi,. Dashed line
, +q represents the 6 boson propagatoD (Eg. (8)) for the
X[COSqJCOS% + Cos‘M])gpp', (10) 6-component fieldsX®. Note that the componentl,1) of this
2 2 2 propagator is directly associated with tK& charge operator. Dot-

ted line is the propagatds for the boson ghost fielc,,. Agp’ (Eq.
1, (9) andAEE’ represent the interaction between two fermignand

AR = =8, (11) , , ,
one and two bosongx® respectivelyI'S” andI'bP represent the
interaction between two ghost fields, and one and two bosons

, q,+q q, SX2 respectively.
AR L ==A co{kn—L”)cosznépp, (12
The density-density correlation function is defined'd3
’ + ! 4 , -
APR o =A sin(k”— %—Zq’l)cosq—z’zépp . (13 Dj =$

2 (TXPPXPP), (14)

pp’

Using 3, XPP=N/2-X% we find for D in the Fourier
space

©) ng' =(-1)(6,,0,0,0,0,0 represents the interaction
between two ghosts and one boson.
(d) TP is a 6x 6 matrix, where 8 .= Spp @nd, the oth-
ers components are zero. It represents the interaction be- ~ 5\2
tween two bosons and two ghosts. D(q, wp) =~ N(§> D srar(Qs @p).- (15
Each vertex conserves the momentum and energy and
they areO(1). In addition, in each diagram there is a minus ~ The charge correlation, i®(1), needs the calculation of
sign for each fermion loop and a topological factor. Figure 1all O(1/N) contributions toD ;is(q,w,). From the Dyson
summarizes the Feynman rules. After identifying the propaequation (Dap)™*=(D(g)ap) *~II4, the dressed components
gators and vertices and the respective order of them, in thB,, of the boson propagator can be found after the evalua-
next sections, we will calculate different physical quantities.tion of the 6x6 boson self-energy matrikl,, Using the
Before finishing this section, one remark is necessaryFeynman rules we may evaludik,, through the diagramas
From theN-extended completeness condition we can see thaif Fig. 2. Note thaD sz is the elementl,1) of the 6X6
the charge operatot® is O(N), while the operatorXPP are  dressed propagator.
O(1). This fact will have the physical consequence that the
1/N approach weakens the effective spin interactions com- Trreducible Boson Self-Energy
pared to the one related to the charge degrees of freedon
This is discussed in the next section.

n _ n(l) + n® + 1-[(3) + l-[(4)
IIl. CHARGE CORRELATIONS

In this section density-density correlations functions are
calculated. It will be shown that the developed formalism &+ gf-"= 2 -2 + t3dr 4 2 = 4 vl
can be used in explicit calculation of different correlation
functions and we will also compare our results with others in  FIG. 2. The four different contributiorﬁgg (i=1,2,3,4 tothe
the literature. irreducible boson self-enerdy,,.
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We note here an important difference with respect to theenormalized band due to correlatidis? Meanwhile there
SBA. In SBA, only in leading order, the charge-charge cor-are collective effects in the charge sectof(l), that appear
relation can be associated with the holon propagator. Beyonith O(1/N) in the spin sector.
leading order, the convolution of holon propagatoshich The collective peaks are more pronounced when they
means the reconstruction of tieoperatorX®) is necessary. are present well above the particle-hole continuum as for
Meanwhile, in our case, it is not used any decoupling schemg= (s, 7). For momentumqg=(2#/5,7/5) the collective
and then, the different correlation functions are directly aspeak is superimposed to the particle-hole continuum and it
sociated with our field variables. appears broader. The broadening of the collective peak

The density-density spectral function, which in principle g=(, ) is not intrinsic and it is only due to the finite value
can be measured with electron energy loss scattéfiig, of 7 we used in the analytical continuation.

defined asD(q,w)z—Im[B(q,w)]. The imaginary part is At this point we can compare our results with those ob-
taken as usual after performing the analytical continuatiortained using exact diagonalizatihDespite that the charge
iwp=w+in. correlation function in Ref. 16 was for doping=0.25 and

In Fig. 3 we show the density-density correlation functionJ=0.4 and our calculation is fa¥=0.20 and)=0.3, there are
for the physical valueJ=0.3 and for dopings=0.20. some similarities and differences to remark. For example,
We plotted the densities for differenq vectors in the Fig. 2 in Ref. 16 shows also a peakaat (7, ). However,
BZ as a function ofw. The q vectors and the physical (a) this peak appears at larger energies than our collective
parameters are the same as those used in the calculation g#ak, (b) the peak at(s,7) obtained in Ref. 16 contains
the densities in Ref. 15. We useg=0.1 in the analytical more structure than ours, agc) we must note also a differ-
continuation. ence atq=(,0). In our calculation we found a collective-
Comparing Fig. 3 with Fig. 3 of Ref. 15, we find a re- like peak atw~2 and a broad and small continuum at low
markable agreement between both methods in spite of thenergy. Lanczos diagonalization presents also this picture
fact that the two approaches are very different. The densitybut, in addition there is a peak at lower energy. As it was
density correlation function is nearly independentJofFor  already pointed out by Khaliullin and Horsch in Ref. (ske
example, comparing Fig. @or J=0.3) with Fig. 2 in Ref. 11  also Ref. 18), the inclusion of fluctuations beyond the mean
(for J=0) for momentumqg=(m, ), we find a well pro- field level is probably responsible for the differences listed in
nounced collective peakor zero soundat w~3.5. (Note (), (b), and(c). We think that the inclusion of fluctuations is
that in Ref. 11w is in units oft while in Fig. 3 it is in units  more important at lower than at larger doping. In Ref. 12, for
of 2t in order to absorb the factor W/due to the rescaling of doping §=0.5, we found a better agreement between the
the hopping term). peak position forq=(s,7) obtained by our approach and
The fact that the density correlations are nearly indepenthat obtained by Lanczos.
dent of J means thaD(q,iw,) is dominated by charge fluc-
tuations. As we mentioned above, the present formalism IV. INSTABILITIES
privileges charge over spin fluctuations. Another conse-
guence of this result is the absence,Q(1), of collective
excitations(such as magnohsn the spin susceptibility. The The theory developed in previous sections defines a ho-
spin-spin correlation function is the electronic bubble withmogeneous Fermi liquitHFL) phase. IO(1) the mean field

A. Flux and bond-order phases
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FIG. 4. Phase diagram in th&-J plane forV=0.0. The solid
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FIG. 5. Incommensuration vs &, for V=0.0. x is defined as

line defines the stability border for the homogeneous Fermi liquidg.=(1,x). q. is theq vector, where the instability takes place. The

(HFL). For a givenJ the HFL is stable foi> .. The thick dashed
line aroundJ~0.5 separates the flux phageP) from the bond
order phasg¢BOP).

solution (ry,A) was independent of sites. Therefore, Nat
infinite, we have free fermions with renormalized bafgd
due to correlations.

In this section we will study the stability conditions for (D)
the HFL. In leading order, there are collective effects in the,, @
charge sector whereas there are not in the spin sector. Ther,

fore, in principle, we expect instabilities in the charge chan
nel.

The HFL system is unstable when the static charge su
ceptibility R€D(q,iw,=0)] diverges. Theq vector, where
the instability occurs(q.), is the modulation of the new
phase.

Figure 4 shows the phase diagram of the modeMwg0.
For a givenJ, below a critical dopingd, where the static
charge susceptibility diverges at a given veaan the BZ,
the HFL is not the stable phase.

In the limit J— 0, §,— 0 the HFL is stable for the whole

doping range except at half filling where the system is an
insulator because the band effective mass tends to infinite , ;,|°

The instability is placed, for all, on the border of the BZ.
That is, q.=(1,x)7 or q.=(x,1), where the parameter

X measures the degree of the incommensuration of theg

instability.

In Fig. 5 we plot the incommensurationas a function of
O For 5,—0, x— 1. Therefore, in the limit of]— 0, we
found a phase with commensurate order (7, ).

It is easy to overlook the instability just by looking at
the static charge susceptibility. In Fig. 6 we plot the
static charge susceptibility, alorgg=(7,q), for §=0.15 and
6=0.14 and for the physical valug=0.3. From Fig. 4 we
know that the HFL is not stable for doping=0.14 whereas
for 6=0.15 it is stable. Both curves in Fig. 6 look similar
and, for 6=0.14 there is no indication of the instability for
g~ . because it occurs in a very narrow region of momen
tum near.. In practice, this means that the setggpoints in

Fig. 6 is not dense enough to localize the divergence Ofor 5=0.14, the deD

Re[f)(q,iwn:O)]. As we will see below, this is related with

S-

instability is incommensurate for all except forJ—0 where
x—0 [ge— (7, 7)]. At the separating border of the FP from the
BOP there is a jump in the value gf.

the fact that the instability is weakly coupled with the charge
sector.

To calculateﬁ(q,wn) we have to evaluate the inverse of
1. Therefore, for a better determination of the instabil-
, we may look for the zeros of the determinant Df}.
| the inset of Fig. 6 we plot the d@;;) as a function of
g=(,q). For 5=0.14 (close to the onset of the instabiljity
the determinant changes sign in a narrow region around

It

0.~ (7,2.7 making the HFL unstable. Meanwhile, for
6=0.15 the determinant is positive for glland the system is
stable. A similar plot for6§<0.14 shows, of course, a larger
negative region for déD}).

In order to characterize the nature of the new phase,
we have studied the eigenvector corresponding to the

0.14 T T T T T T

=
=)

E 0.1

0.08

1.5 2 ector q =(n.9) 2

FIG. 6. Static charge susceptibility Fﬁs(q,iwﬁo)] VS
g=(w,q) for J=0.3, V=0.0 and for §=0.15 and §=0.14. For
6=0.14(solid line) the curve looks similar to the case fé=0.15
(dashed ling For 6=0.14 the HFL is not stable and there is no
strong sign of the instability in the static charge susceptibility. In the
inset we plot the déD;lé) (see text for discussiopys q=(m,Q).

) clearly changes sign in a small region
aroundg.~ (,2.7).
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zero eigenvalue of(D,)™. For doping §<8,~0.5 the z ' T ' T ' T
eigenvector corresponding to the zero mode-i®,0,0,0, '
-1,1). Then, in the new phase, the fifth and sixth compo-
nents of6X2 (A* andAY) are frozen A* andAY are associated
with the phase of the field”7 and they take opposite values. 15 \
Therefore, as the instability occurs near the momentum~ \\ »
(7, 7), this new phase is the well known flux phadeP)
Refs.19 and 20 which opens a gap, wdthvave symmetry in ;
the normal state. L \\ 7=0.3 4 i
Recently, Chakravarty, Laughlin, Morr, and Nayak A ) 4
considered the FP or DDW as a candidate to explain the J=0.0 \ "
physics of the pseudogap in underdoped cupréteihe | \~.‘ e
first component of the eigenvector corresponding to zero ei- So-e-ee”
genvalue is not zero exactly. It has a small value which 3 ' o3 ' o ' o ' 0.8
means that the FP is weakly coupled to the charge sector. | doping §
means that the DDW is not completely hidden when it is ) o
incommensurate. Although Bragg peaks are predicted, "'C-7- Charge density wau€DW) stability line V¢ vs & for
they will show low intensity which would make their J=0-0(dashed linpandJ=0.3(solid line. For a givens, the sys-
observation very difficult. This is the reason by which anytem IS in a CDW state fol'> V. The value ofV increases with

critical V (V.
V4
S

charge probe is not very sensitive to show the FP instabilityljnzcgegiwg]mffri;:‘gt'sstt:kigl;i;zrgsf::tisgpg;g &:0.15. (For
Wheng. is exactly(, ) the eigenvector does not have any ' ' o

mixing with the charge sector, and the flux phase is fullyperconductivity occur near the charge order and this picture

hidden. can be interpreted by the competition betweérand the
For dopings> 8.~ 0.5 the unstable eigenvector is of the kinetic energy in correlated modets.

form ~(0,0,0,1,0,0. This state is known as bond-order  Looking at Eq.(8) we see thal/ is only present in the
phase(BOP).2%23|n the range of the studied parameters weelementD 5(1, 1). The Coulomb term enters in our approach
did not find indications for phase separation. In Fig. 5, formultiplied by (5/2)? which means that the effect df at low
J~0.5, near the crossover from the FP to BOP, there is @oping, is strongly screened by the correlations.

jump in the incommensuratiox We note that in the SBA/ can enter in different manners
The agreement with other meth@@$®is again remark- depending on the way chosen for the decoupling.
able in spite of the fact that the present approach fs;iori, In Fig. 7 we show the phase diagram in ¥eé plane for

very different from those ones. Taking into account that weJ=0 andJ=0.3. The curves show, as a function &f the
constantly find similar or even the same results by means difitical Coulomb repulsionV, where the CDW instability
different methods turn the results reliable. For example, fofakes place. FOV <V, the HFL is stable. This result is in
the physical valug=0.3, the HFL is unstable against a Fp. @greement with numericéland analytical method®.In Ref.
This result is very robust, and many different methods agregg the authors use coherent potential approximation and their
that the stable phase, for small doping, is a FP for the physi€sults are close to the ours. _
cal region of the parametet§20.22-24 _ A similar rgsu!t was also recently found, :111:0_, in th_e
triangular lattice in the context of the new low dimensional
superconductor N&€00,.%°
B. Charge density wave phase For J=0.3 and dopings=0.20, the HFL is stable a¥
The inclusion of a nearest-neighbors Coulomb repulsior O- WhenV=V,~1.25 the system enters in a CDW state.
V favors a charge density wau€DW) state. In order to This V. is ~ 40% larger than .for]=0 and the same doping.
investigate this instability, we have included a finite value of n€re are two sources for this tendency.
V in the calculation. (@ WhenJ is finite, there is a contributioa to the ef-
The study of nearest-neighbor Coulomb repulsion in corf€ctive hopping inE,. Then, the system wins kinetic energy
related models is important. In cuprates, there arévhenJ is finite, and a largeV is necessary in order to
indication® showing the existence afwith a value close to  localize the charges. 5
J. If J favors superconductivity and the value\ofs large, it (b) As we see in the elemefit, 1) of Dy, the effect ofv
is reasonable to think that superconductivity will be dimin-is diminished whenJ is finite. The term 2 in the element
ished due the presence Wf There are some analytical and (1,1) comes from the charge-like terd)X/’X7" of the pure
numerical works studying the competition betweémandJ  t-J model, which is of the same form of the Coulomb term
on superconductivity. Meanwhile some papers indicate thatsee Eq(3)].
superconductivity in the-J model vanishes fov ~ J;° others In order to identify the main source for the increasing of
indicate that superconductivity survives up to values ofV, we looked for the CDW instability without the charge-like
Vs> ].26 term in Eqg. (3). Under this condition, forJ=0.3 and &
On the other hand, the presence\b§eems to be impor- =0.20,V, is V.~ 1.0. This value is nearly the same \4sfor
tant for understanding the physics of organic matefials. J=0. Therefore(b) is the main source for the increasing of
Some peculiarities in the optical conductivitgnd also su- V. with increasingJ.
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15 - T y T y T particles and theX operators are treated as fundamental
objects.

We have extended the lardeformalism, recently devel-
oped in Ref. 11, to the case of finile To work directly with
the X operators has several advantages upon the slave par-
ticles methods. For example, in the slave boson theory, the
decoupling procedure introduces a gauge degree of freedom
and then, an additional problem as the gauge fixing arises.
This problem does not occur in our formulation. On the other
hand, in the slave approaches, in contrast to our method,
beyond a mean field level, a convolution between slave-
particles propagators is hecessary to reconstruct the original
physical propagator.

Figure 1 summarizes the Feynman rules of the present
- ==F=---- r===-- d==——o- g====- approach where the propagators and vertices are written in
terms of the Hubbard operatoxs®, X%, etc. It is important
) o to note that we cannot read the interaction vertices from the

FIG. 8. Static charge susceptibility f@=0.3 andé=0.25 vs  { andJ terms of the Hamiltonian. They arise from the non-
q=(q,q) for two different values ofv, V=1 andV=0.5.V=11is  holynomial effective theory defined Hyy in Eq. (6). All the
near (from below the value ofV =1.1. In contrast to Fig. 6, the jnteractions caused by the Hubbard algetrammutation
CDW instability has a clear signal in the static charge susceptibility,;jes and constraintsvere transfered tt..
For V=1 there is a clear indication of a divergence(at m). For The formalism developed in the present paper privileges
V=0.5(V<Vy), the static charge susceptibility is flat. charge over spin fluctuations. While there are collective ef-

fects in the charge sector (1), those appear iI©®(1/N) in

In contrast to the FP and BOP, the CDW instability can bethe spin sector.
detected clearly by looking at the static charge susceptibility We have studied charge correlations functions and we
Rd x(q,iw,=0)]. In Fig. 8 we show, fod=0.3 and5=0.25, have investigated the role of collective effects. This study
R x(q,iw,=0)] vs q=(q,q) for V=1 (a litle smaller than shows the presence of collective peéiszero soungiwhich _
the critical value 1.1andV=0.5. In the figure, we see that are more evident when they are separated from the particle-
approaching/,, the static susceptibility tends to diverge nearhole continuum. On the other hand, the collective peaks be-

q=(m, 7). For V=0.5(V<V,), the static charge susceptibil- c0Me broader when they are superimposed to the particle-
ity is flat hole continuum. One important characteristic of the charge

In this case the eigenvector corresponding to the zero eIc_:orrelanon function is the fact that this is not strongly depen-

; X = . dent on the value of the exchange interaction
genvalue is~(1,0,0,0,0,0. Then, the instability is mainly At 506 N, the theory can be described as a homogeneous

in the pure charge sector. _ _ Fermi liquid with renormalized band due to correlations. We
From Fig. 8, in agreement with other methddshe in-  haye studied the stability of this Fermi liquid phase. For a
stability g vector is always af=(m, ). Therefore, in the  given value ofJ, the Fermi liquid phase is stable for doping
CDW phase, the charges order themselves forming a checlg> §.. The critical dopings, decreases with decreasidg
erboard pattern. For doping different to the commensurat&or doping belows, the system enters in a flux or bond order
one 6=0.5 we must interpret the CDW instability as the sys-phase depending < 0.5 orJ> 0.5, respectively. These in-
tem is charge ordered but remains metallic. These resultstabilities are weakly coupled to the charge sector which
were obtained by different methods and the nature of theéneans that any charge-probe is not an efficient test to detect
instability for dopings other than the commensurate one ishem. One important characteristic of these new phases
still unclear. For the commensurate dopifig0.5 in Ref. 12 is that they are incommensurate with a modulation vector
we showed that the system is charge ordere&/at0.6, q=(1,x)7 where the incommensurationtends to 1 wherd
however, we also find an insulator because the quasiparticlgoes to zero. It is important to note that, in agreement with
weight goes to zero exactly at thig value. other theories, for low doping the Fermi liquid is unstable
In order to compare the above results to the predictionggainst a flux od-density wave phase for the physical region
of the BKF method, we calculated the criticet using of the parameters.
the formulation of Refs. 8 and 9 fa3=0.3. For §=0.20 We also have investigated the role of a nearest-neighbor
and 6=0.60 we foundV,~1.25 andV.~ 0.9, respectively. Coulomb repulsiorV on the stability conditions of the Fermi
The agreement with our calculation is again very goodiquid. WhenV is larger than a critical valu¥,, the system
in spite of the fact that the Coulomb term enters BKF in aenters, at a given doping, in charge density wave state. The
different way. value ofV, increases with increasin We have identified in
the chargelike term of the pute] model the main reason for
V. CONCLUSIONS this increase. o
We have continuously compared our results with similar
From the path integral representation for the Hubbardnes in the literature. The agreement of our results with those
X operators we have developed a new perturbative theorgbtained by other methods gives confidence to the results
for the t-J-V model. Our formulation is free of slave and the approach of the present paper.

—

oF

J=0.30

Re(D(q,0))

8=0.25

0
1.5
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At leading order, our formalism is in agreement with the useful to go beyond the mean field level. With the formula-
slave-boson approach. However, at the next to leading orddion for finite J in hand, we expect to continue in this direc-
(which is necessary to calculate dynamical properttae  tion as we did forJ=0 in Ref. 12.
differences between the two formulations are not yet com-
pletely established. We think that the complications that ap-
pear in the slave-boson method beyond mean field level as ACKNOWLEDGMENTS
gauge fixing, Bose condensation, regularizing faétene
not good for the advance of the field. In our case we do not The authors thank C. Genz, L. Manuel, J. Merino, and R.
have these problems and we think that our approach can l#&eyher for valuable discussions.
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