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Universal description of granular metals at low temperatures: Granular Fermi liquid
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We present a unified description of the low-temperature phase of granular metals that reveals a striking
generality of the low-temperature behaviors. Our model explains the universality of the low-temperature
conductivity that coincides exactly with that of the homogeneously disordered systems and enables a straight-
forward derivation of low-temperature characteristics of disordered conductors.
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Granular metals exhibit a wealth of behaviors generic tasponding to the relevant degrees of freedom. Thus in order to
strongly interacting disordered electronic systems and offer ancover the universality of inhomogeneous metals one has to
unique experimental tool for studying the interplay betweerseek for a universal description in terms of the appropriate
the effects of disorder and interactions. Depending on thg¢arge scale degrees of freedom that characterize disordered
strength of coupling between the grains these systems cajonductors.
assume either insulating or metallic phases. Remarkably, me- We construct such a universal description of low-
tallic samples exhibit qualitatively different transport proper-temperature physical properties of granular metals building
ties in different temperature regimes; in particular, the low-on the o model introduced first for the noninteracting dirty
temperature phase appears to be similar to disordered Fermietals in Refs. 5 and 6 and generalized in Ref. 7 to include
liquids. the interaction effects. Our approach applies at temperatures

The electronic transport in granular metals is governed byr < g8, whereé is the mean energy level spacing in a single
the nontrivial interplay between the diffusive intragrain elec-grain. The energy scalgré appears naturally as the upper
tron motion and grain-to-grain tunneling, which is accompa-energy cutoff of the effective model, singég;s is the mean
nied by sequential charging of the grains involved in thetime for the electron to escape from the grarfule.
particular electron transfer process. This brings the notion of The main results of our work are as follows: Making use
the Coulomb blockade, and one expects that it is the compef the effective description of the granular metals in terms of
tition of intergrain coupling and electron-electron Coulombthe o model, Eq.(9a), we show the following:(i) All the
interactions that eventually controls transport properties ophenomena that are described in terms of éghenodel in-
granular metals. The basic parameter that characterizes tranguding interaction and localization effects, and all the ther-
port properties is the dimensionless tunneling conductancenodynamic quantities are universal for granular metil.
gr. Depending on the bare tunneling conductagf;?é the  There are several physical quantities, which, although not
conductivity can demonstrate either exponeniiadulating,  directly related to the charges in tlemodel can, neverthe-
at g(T°)<g‘T:, or logarithmic(metallic), at g(T°)>g(T3, tempera- less, be found from the renormalization group equations de-
ture dependenciés? experiencing a metal-insulator transi- scribing the flow of charges of the model. The important
tion at g(TO):g$, example of such a quantity is the tunneling density of states.

The metallic phase was recently studied in Ref. 1 where iWe summarized our result in Fig. 1 where three distinct
was shown that the low-temperature dependence of the coighases that one can identify on the basis of our approach are
ductivity of granular metals coincides exactly with the cor- presentedii) The universal low-temperature phase, which
responding result for the conductivity of the homogeneouslyve refer to as to the granular Fermi liquid, generalizes natu-
disordered samples. A question immediately arises: is it &lly the Fermi-liquid phase of homogeneously disordered
coincidence that two different physical systems exhibit idenmetals. The granular Fermi-liquid phase neighbg@i the
tical low-temperature transport behaviors, or there is an unhigh temperatureT>g;d, metallic phase governed by the
derlying deep connection between the two? Furthermore, dgcal single-grain physics, andii) the insulating phase,
all the other physical quantitigspecific heat, tunneling den- Whereg(T°)<g‘T3, characterized by the activation behavior of
sity of states, etg.possess the same universality? The mairthe conductivity.
result of our paper is the answer to these fundamental ques- Now we turn to the description of our model and the
tions. derivation the phase diagram in Fig. 1. We consider a

Generally speaking, all the universalities that one ob-d-dimensional array of metallic grains with the Coulomb in-
serves in nature can usually be attributed to one or anothderaction between electrons. The motion of electrons inside
kind of the fundamental symmetry inherent to the physicathe grains is diffusive, and they can tunnel from grain to
system in question. For example, all critical phenomena argrain. We assume that in the absence of the Coulomb inter-
described in terms of universal modegi&inzburg-Landau action, the sample would be a good metal. The system of
Hamiltoniar that essentially include only the information weakly coupled metallic grains is described by the Hamil-
about the large scale symmetry of the order parameter corréenian
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conductivity }, o appears from the expansion of term$VEQ;] in Eq. (2) to the first
behavior % ¢ Granular Fermi liquid order in the fieldB. Diagrams(c) represent the Dyson equation that
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dashed lines denote the bare Coulomb interaction.
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FIG. 1. Schematic phase diagram for granular metals showing ! 8 i J
crossovers between three distinct phases. At small bare tunneling
conductance@(TO)<g$, a granular metal is in an insulating phase at E YA —J-V ?)

zero temperature. The metal-insulator transition in three dimensions log? ™)

at T=0 occurs ath (1/6m)In(Ec/ 6), where Ec and & are the

charging energy and the mean energy level spacmg in a single graidere the sums are performed over the grain indices, the sym-
respectively. At large tunneling conductangé’ >g%, the two dif-  bol (---) means summation over the nearest neighbors, the
ferent types of conductivity behavior are possib(®: the high-  trace is taken over spin, replica, and Matsubara indices, and
temperature phas& > gré, is characterized by the logarithmic tem- z=jg_ The fieldV in Eq.(2) is a vector in the frequency and
perature dependence of the conductivity in all dimensioinsthe replica spaces and the corresponding contraction is assumed:
low-temperature phasd,<g:d, is the universal granular Fermi- V=3, V Va) .« Wherea is the replica index aney,

liquid phase described in terms of low-energy interacting d|f'fu5|on_ —2+Tn are the bosonlc Matsubara frequencies. Thaatrix

T

modes. in Eq. (2) is the matrix in the Matsubara, spin, and replica
o A R spacesQHQw o subject to the constrain?=1. In
H=Hg+Hin + 2 Pty (18 addition, each ‘Slement of th@ matrix is a quaternion, i.e., it
ij

can be presented §=q' 7, whereq; is the real vector and

are the quaternion matricszor energies <E;, whereE;

is the Thouless energy, tlig matrices in Eq(2) are coordi-
nate independent within each grain. In what follows we use
the Hikami parametrization for th® matrix,'°

where t; is the tunneling matrix elements;;=t;) corre-
sponding to the points of contact andr; of ith and jth

grains. The Hamiltoniarl%?-l0 in Eqg. (19 is

V1-BB' B
- t 1-B'B 3)
B -Vy1-B'B
S 3. tra2 _ N1
HO_Ei' fd riga[P2m = w+u(ri) 144, (1b) where the matran o has nonzero elements only for fre-

quenC|eSwnl>O wn2<0 Expansion of theQ matrix in
powers of the fieldB in Eq. (2) provides a systematic way to
with u being the chemical potential; it describes noninteracttake into account Ig; corrections.
ing electrons scattered by the random impurity potential First we consider the actiof®) in the quadratic approxi-
u(r;). The second term in the right-hand side of Efa) mation in the fieldB, which defines the bare propagafr

describes the electron-electron interaction =(BB'") shown in Fig. 2a),
D(wp,q) = (25/77)(9T8q5+ |wn|)_li (4)
|:|im = e_zz ﬁ_C;lﬁj (10 where g is the quasimomentum ane,=2,(1-cosq-a)
ij '

with {a} being the lattice vectors.
The Coulomb interaction, represented by the propagator
o of the V fields, is significantly modified by the electron
whereC;; is the capacitance matrix anﬁ;i=fd3ri¢fr¢i is the  screening. To include this effect in tlemodel approach one
electron number operator in tligh grain. needs to consider the interaction vertex shown in Fib) 2
Using Egs.(1a—«1c) the o model for granular systems that appears from the expansion of the terfVi@ ] in Eq.
can be derived in the usual wéy’ we decouple the Cou- (2) to first order in fieldB. The propagato=(VV*) that
lomb interaction term in Eqilc) using the axillary fields/, describes the screened Coulomb interaction is given by the
average over disorder introducii@matrix field®” and ex-  diagrams shown in Fig.(2). For a strong Coulomb interac-
pand around the diffusive saddle point. The final expressiotion, EC>(|a)n|+gqu§)/gTaq the resulting propagator is
for the effective low-energy action reads given by the following expression:
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r=-=1 r=-=1 o FIG. 4. Diagram(a) represents the renormalized polarization
©) % % % % r ] operator that includeg) the renormalized expression for the diffu-
® ) sion propagatoD(wy,q) in Eq. (6a) (black rectanglgand (ii) the

renormalized vertexblack triangle shown in diagram(b). The
FIG. 3. Diagrams(a) appear from the expansion of terms thick dashed line denotes the screened Coulomb interaction.
Tr[eQ;] and TEQ;Q;] in Eq. (2) to the fourth order in the fields.
Diagram (b) appears from the expansion of interaction term
Tr[V;Q;] in Eq. (2) to the second order in the fieBl Diagrams(c)
represent the renormalization of the diffusig@ooperon self-
energy due to Coulomb repulsion leading to E6a). The thick
dashed lines denote the screened Coulomb interaction. The tunnel- D(wn,q) = Greqd+ | wn))/ Zareg. (7)
ing vertices are represented by circles.

renormalizationé, as happens in the case of homogeneous
disordered metal§3-15such that the final expression for the
renormalized Coulomb potential has the following form:

Here the renormalized tunneling conductaitgeis defined
_ by Eq.(6b). Thus the renormalization of the Coulomb inter-

Plnd) = (Greqd+ [wnl)/2Greq. ®) action is reduced to the renormalization of the intergranular

Now we turn to the description of the renormalization tunneling conductance. This fact is very important for the
group (RG) procedure that we apply to the actig@) to  formulation of the RG scheme.
derive the low-energyr model that provides the universal Integration of Eq.(6b) in the energy intervalgd,Ec),
description of the low-temperature phase; gr6. We divide ~ whereEc is the charging energy for a single grain, results in
the fieldB into the slow and fast parB=B+B; and define the following tunneling conductance:
the fast part of the f|eIdBw o, in such a way that it exists O _ (1/270)In(Eo/5) ®
either for A<w, <A+dA or ~A-dA<w, <-A. The gr=0or TN ESO)-
renormalization of the diffusion propagatB(e,,q) in Eq.  For energies lower thagré the physics is dominated by the

(4) due to the Coulomb repulsion after integration over thedistances that are much larger than the size of a single grain.
frequency shelldA is g|ven by the sum of the d|agrams This allows us to consider the continuum limit of the

shown in Fig. 8c), resulting in model, and arrive at the corresponding final expression for
the action,

D(w,,q) = (25/77)5/@T8q5+ |wn|)- (6a)
Here the wave function correctiof and the renormalized S=- 25 Tr{(a *VIQ- _(VQ) }
intergranular tunneling conductange are given by the fol-
lowing expressions: 1 J drdr’ { «Cor/ }

2 T Visz 2V (9a)
1 dA . T a 2
=1 _Ez e T=0r~ 2md A (6b) wherea is the grain size. The renormalized diffusion coeffi-
Ta £ A cientD in Eq. (93 is given by

whered is the dimensionality of the granular array. The wave
function correction¢ in Eq. (63 is directly related to the
correction to the single-particle density of states derived inwith gy being the renormalized tunneling conductance de-
Refs. 2 and 11. One can see from E&p) that this correction fined by Eq.(8). Since the effective modéda) operates with
diverges in two dimensions. To avoid this problem the RGthe Q matrices that have only long-range degrees of freedom,
procedure in two dimensions should be modified in the wayit applies, with the appropriate charges and upon the high-
it was done in Ref. 11 where the tunneling density of state®nergy renormalization, to any disordered metal, including a
was derived on the basis of the effective phase functionahomogeneously disordered one. Thus, all the information
However, for the purpose of the derivation of the low-energyabout the granularity of the sample is hidden in the
o model, this complication can be avoided since the wavdemperature-independent renormalization of coefficients of
function renormalization appears only in an intermediate steghe effective mode(9a). The conductivity of the sample is
of the derivation and does not contribute to the final resultelated to the effective diffusion coefficiellt through the

for the low-temperature action, as happens in two-usual Einstein relation

dimensional homogenously disordered metals. -

To find the propagator of the renormalized effective Cou- 0 =2e°D(a'9) . (109
lomb interaction®(w,,q) in Eqg. (5) one needs to consider The effective mode{9a) together with Eq(8) for the renor-
corrections to the polarization operator shown in Fig. 4.malized conductance naturally explains the result for the
Apart from taking into account the proper renormalized ex-low-temperature,;T <g8, conductivity obtained in Ref. 1.
pression for the diffusion propagat@¥(w,,q) in Eq. (6a),  The interaction correction to conductivity has two contribu-
one needs to take into account the vertex correction shown itions. The first contribution is temperature independent and
Fig. 4(b). This vertex correction cancels the wave functionis given by

D = gas, (9b)
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1 Ec perturbative result for the density of states of granular metals
501:—%%'” S| (10b)  optained in Ref. 1.

Having described the effects of the electron-electron in-
where oy=2e%gra’> ™ is the classical Drude conductivity of teraction on the transport properties of granular metals, we
granular metals. Equatio(lL0b) follows immediately from now turn to quantungor weak localizationcorrections to the
the renormalization of the tunneling conductamgein Eq.  conductivity'® To leading order in the inverse tunneling con-
(8) and is specific to granular metals. The second contribuductance, 1dy, interaction and weak localization corrections
tion to conductivity is temperature dependent and comesan be considered independently. As usual, the weak local-
from the low-energy renormalization of the diffusion coeffi- ization correctiondoy,, is defined by the following expres-
cient D in the effective model9a). It coincides with the sion:
corresponding correction to conductivity obtained for homo-

d
geneously disordered metals in Ref. 12, SowyL =~ géng C(o,q)d—qd, (13)
f T (2m)
@ A /l, d=3 whereC(0,q) is the Cooperon propagator, which in the ab-
12a°gr N gré sence of electron-electron interactions is given @iy, q)
S = - 1 | grd d=2 10 =(Dg?-iw)~* with D being the effective diffusion coefficient
2= 00 X 4P, " 9% 100, Eq. (9b). For two- and one-dimensional samples it is im-
5 portant to take into account dephasing effects since( E3).
_B —, d=1 diverges. The dephasing timg, may be obtained from the
4w NV Tor effective model(9a) straightforwardly using the correspond-

ing results for homogeneously disordered métaigth the
proper effective diffusion coefficienp) =ga?s. The final re-
sult for the weak localization corrections reads

wherea=1.83 andB=3.13 are the numerical constants.
Although the tunneling density of states is not directly
related to the charges in tlkemodel, it can, nevertheless, be

found from the renormalization-group equations describing So 1 928
i W= In{ == (143
the flow of charges of thee model. Since at low tempera- oo - 4r2g n T
tures the flow of coupling constants of themodel of granu- . T
lar metals is determined by the same renormalization-groufor granular films, and
equations as in the case of homogeneously disordered met- 2 o\ 1/3
. . . . 50'W|_ 1 gT5
als, one arrives at the important conclusion that the tunneling — == (14b)
density of states has a multiplicative structure: %0 2mgr\ T

(11) for granular wires. We notice that the quantum interference
correctionsdoy,. may be easily suppressed by applying a
where, is the density of states of noninteracting electronsrelatively weak magnetic field such that the main tempera-
v, is the contribution to the density of sates that comes fromure dependence of the conductivity comes from electron-
high energiesg > g4, while y is the contribution from low electron interaction effects, Eg&.Ob) and(100).
energiesg < grd, which up to the proper renormalization of  In conclusion, we have derived a low-enekgynodel that
all constants coincides with the corresponding result for therovides a universal description of the low-temperature
density of states of disordered homogeneous metals. As grhase of granular metals and, more generally, of any disor-
application of Eq(11) let us consider the density of states of dered conducting medium. This model explains a striking
granular films. The low-energy contribution,in Eq.(11), is  similarity of the low-temperature transport behaviors of dif-
} ferent disordered conductors as being governed by the same

vivg= vy,

V|=9X4:— 1 InglslngTEé (12 long-wavelength electronic diffusion modes. The proposed
16grm> T T8 model enables one to derive the low-energy properties of
. ) . granular metals from the corresponding characteristics of
whereas the “high-energy” part of the tunneling density ofgisordered homogeneous metals. We demonstrated the power
states,u, in Eq. (11), is temperature independent®&gré  of the developed approach by finding the density of states,

and for granular films is given by the interaction, and localization corrections to the conductiv-
ity of granular metals.
_ EC 1/ In(EC/5) 4g§|.0) y g
LU Y - 4mg0 (12b) We thank K. Efetov, L. Glazman, D. Khmel'nitskii, and

A. Koshelev for illuminating discussions. This work was
At large tunneling conductance;>1, the result for the supported by the U. S. Department of Energy, Office of Sci-
low-energy contributiony,, in Eq. (128 coincides with the ence through Contract No. W-31-109-ENG-38.
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