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Although convincing arguments have been made which suggest that the three-band model of the high-Tc

perovskite superconductors can be reduced to the single-bandt-J model, there is a wealth of experimental data
which indicates that this simplification may not be as valid as was first hoped. We perform variational and
numerical calculations which demonstrate that in the absence of the Heisenberg interaction, the three-band
model can provide alow-spin ground state, not the Nagaoka ferromagnetism predicted by thet model. We

focus attention on the copper spin-spin correlationsŜk and the oxygen hole occupation numberN̂k in order to
provide evidence for or against long-range magnetic order and a Fermi discontinuity, respectively. The ob-

served behavior appears similar to a Fermi liquid with a large Fermi surface, but there is no discontinuity inN̂k,
and the system is clearly dominated by quantum spin fluctuations. A tendency to form spin dimers is seen,
providing evidence for aresonating valence bondground state.
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I. INTRODUCTION

The emergence of superconductivity upon doping some
antiferromagnetic Mott insulators remains one of the least-
well-understood problems in condensed matter physics, de-
spite the vast amount of activity in the field. A variety of
possible mechanisms have been proposed: a single hole
moving in a Mott antiferromagnet,1 spin bags,2 the interac-
tion between pairs of holes moving in an itinerant
antiferromagnet,3 phase separation(stripes),4 and bipolarons5

are among the many proposals. These ideas are often ex-
tremely sophisticated and can sometimes require uncon-
trolled assumptions to be made. In this paper, we extend
previous work6 on a simple model which does not require
such assumptions, and we demonstrate that this model dis-
plays some of the basic physical phenomena present in the
high-Tc superconductors at the level of a single hole doped
into a CuO2 plane. Even the apparently straightforward one-
hole limit requires considerable sophistication to investigate
adequately, and we do not attempt to study the interaction
between charge carriers which may lead to superconductiv-
ity. We also choose to ignore the superexchange interaction,
preferring instead to focus on the correlations induced by the
motion of the hole. The two fundamental questions we ad-
dress are, is the system a Fermi liquid, and how does the
motion of the hole lift the spin degeneracy?

The reduction of the natural three-band model arising
from the solid-state chemistry of the cuprates to the single-
bandt-J model1 has led to an intense but largely unsuccess-
ful effort to explain the physical properties of the high-Tc

superconductors within the one-band framework. In this
work, we demonstrate that thet-J model leads to a very
different ground state to the natural three-band model, and
this provides a possible explanation for the asymmetry of the
phase diagram with regard to electron versus hole doping.

We commence by introducing the model under consider-
ation. The three-band model for holes in the CuO2 planes is7

H = − Do
is

dis
† dis + Uo

i

di↑
† di↑di↓

† di↓

+ Vo
ki j ls

sdis
† pjs + pjs

† disd − tp o
k j j 8ls

pjs
† pj8s, s1d

where dis
† creates a hole of spins on copper sitei in the

3dx2−y2 orbital, andpjs
† does likewise for the oxygen 2px, 2py

orbitals illustrated in Fig. 1.
We have chosen to make all neighboring copper and oxy-

gen states bonding which is equivalent to translating recip-
rocal space bysp ,pd. All energies and matrix elements are
expected to be positive. In the ground state of the parent
compounds there is a single hole in the 3dx2−y2 orbital on
every copper site(giving Cu2+, 3d9), and the oxygen states
are filled(O2−, 2p6). Upon hole doping, the extra holes enter
the planes in the oxygen 2px, 2py orbitals, and hence any
treatment of this model is constrained by single occupancy of
the copper sites. The approximate values of the energy scales
involved can be obtained from experiment, where one can
naturally useJ, the superexchange coupling;8–13 JC, the cy-
clic exchange energy;14 W, the single-hole bandwidth;15 and
Dopt, the optical gap16 to constrain the values of these param-
eters. This does not unambiguously provide the energy

FIG. 1. A single copper-oxygen “plaquette” showing the orbitals
involved in hybridization.
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scales, but most of the experiments are explained by the
following choice. The first two terms of Eq.(1) operate on
energy scales ofD<2 eV andU<10 eV, respectively, and
this provides the Mott restriction of single occupancy, while
the third term operates on a scaleV<0.75 eV, and this lifts
the copper spin degeneracy at second order. Since the mate-
rial is a known Mott insulator, we may treat the hybridization
V as a perturbation to the atomic physics, and employing a
canonical transformation17 lifts the spin degeneracy and pro-
vides the effective Hamiltonian

Heff = Xo
ki j ls

o
ki j 8ls8

dis
† pjs8

† pj8sdis8 − t o
ki j ls

o
ki j 8l

pjs
† pj8s

− tp o
k j j 8ls

pjs
† pj8s s2d

under the constraint of single copper occupancy. Note the
absence of the indexi in the summand of the second term,
although it is summed over. This corresponds to a hole being
allowed to hop from one oxygen site toanyother oxygen site
on the same plaquette. The sum is then over the neighbors of
the copper ion, not the neighbors of the oxygen ion, and so
second-neighbor oxygen hopping is also included here. The
energy scales areX=UV2/DsU−Dd and t=V2/ sU−Dd, and
the associated terms display distinct behavior. The first term
moves the oxygen hole on a plaquette, exchanging its spin
with the associated copper hole. The second term hops the
oxygen hole on the plaquette, but does not exchange the
spins.

The presence of direct oxygen-oxygen hopping viatp
complicates matters somewhat. This amounts to an aniso-
tropic reparametrization of the second term of Eq.(2), which
includes both first- and second-neighbor hopping of oxygen
states, since the hole hops to all sites with which it shares a
copper site. In addition, this term prevents the reduction of
Eq. (1) to a Kondo lattice model, by preventing the exact
decoupling of bonding and nonbonding states. In practical
terms, the inclusion oftp adds unnecessary complexity to the
model, and we settp=0, choosing to study the competition
between the energy scalest andX only. Physically, a careful
analysis of the signs of the interactions reveals that setting
tp.0 (the physical assumption) corresponds to an increase in
t, which is equivalent to a reduction inU−D. This favors the
fluctuation Cu2+°Cu3+ (for which there is no experimental
evidence18,19) instead of the Cu2+°Cu+ fluctuations favored
in the large-U limit.

For a single hole, we can identify two exact solutions of
the model. Employing the operators

Âi =
1

Z
o
ki j ls

o
ki j 8ls8

dis
† dis8pj8s8

† pjs, s3d

,

B̂i =
1

Z
o
ki j ls

o
i j 8

pj8s
† pjs s4d

(whereZ is the coordination number of the lattice), it is easy
to show that in the subspace restricted to a single oxygen
hole,

ÂiÂi = B̂i, ÂiB̂i = Âi ,

B̂iÂi = Âi, B̂iB̂i = B̂i ,

and consequently that

ŝi =
1

2
sB̂i − Âid, t̂i =

1

2
sB̂i + Âid s5d

are projection operators onto the antisymmetric and symmet-
ric subspaces, respectively. The singlet

Sij
† =

1
Î2

o
s

sdis
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† s6d

and triplet
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operators allow the model to be represented as

H = ZsX − tdo
i

t̂i − ZsX + tdo
i

ŝi , s8d

where
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1

Z
o
a

o
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Ta†
i j o
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ŝi =
1

Z
o
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ki j 8l

Sij 8. s10d

These two terms can be isolated by the choice of parameters
t= ±X, providing two exactly solvable limits.

The first exact solution is found by settingt=−X, corre-
sponding to the unphysical limitU=−D. The model here is
sum of triplet projectors and so has a positive-definite spec-
trum. The ground-state manifold is large and consists of
states when all the projection operators have vanishing ei-
genvalues, yielding zero total energy. This can occur in one
of two ways: the oxygen hole is in asingletwith its neighbor,
or the hole wave function has zero average weight(i.e., is in
a nonbonding orbital). From these ideas we can construct a
large number of ground states with a variety of properties.
This task is simplified greatly by noting that solutions for the
linear one-dimensional chain are also valid solutions of the
two-dimensional system:a nonbonding orbital in one dimen-
sion remains a nonbonding orbital in two dimensions, since
the phase cancellation stops motion onto the perpendicular
atoms as well. The linear chain can trace any path in the
plane provided that any loops may only be traversed in one
direction.

M. W. LONG AND I. B. STYLES PHYSICAL REVIEW B70, 205119(2004)

205119-2



Consider first the possibility of local spin singlets. Repre-
senting a singlet using the common notation

s11d

and noting that a hole cannot be in a singlet with both neigh-
bors simultaneously, we observe that

s12d

is a ground state of the full lattice, where3 indicates a
copper site,h is the oxygen hole, and · is a filled-shell oxy-
gen site. The hole is in a singlet when neighboring either of
the outer copper spins and cannot interact with them. Pro-
jecting the hole and the central spin onto a triplet yields the
same state for both configurations, and the choice of phase
means this is anonbondingconfiguration. The more general
state which allows the hole to delocalize freely(in the above
state, the hole is localized to the central copper site) can be
constructed by analogy quite easily, and we obtain

s13d

where the phases are chosen to provide locally bonding
states or Zhang-Rice singlets. Such states are particularly
useful as they allow the hole to delocalize without incurring
a penalty from the formation of triplet states.

We may also identify a second class of ground state. The
states

uc1l =5
+ ¯ s0 s1

h

s2 · s3 · s4 ¯

+ ¯ s0 s2

h

s1 · s3 · s4 ¯

− ¯ s0 · s1 s2

h

s3 · s4 ¯

− ¯ s0 · s2 s1

h

s3 · s4 ¯

6 , s14d

uc2l = 5+ ¯ s0 s1

h

s2 · s3 · s4 ¯

− ¯ s0 s2

h

s1 · s3 · s4 ¯

6 , s15d

uc3l = 5+ ¯ s0 · s1 s2

h

s3 · s4 ¯

− ¯ s0 · s2 s1

h

s3 · s4 ¯

6 s16d

(whereh labels the oxygen hole and · indicates an unoccu-
pied oxygen site) are all eigenstates of the triplet operator,

whatever the choice of spinssi. The stateuc1l is a triplet in
a nonbonding orbital, anduc2l, uc3l are local singlets. These
two ideas can be combined to form two newlocal ground
states:

ucnl =
+ ¯ s0 s1

h

s2 · s3 · s4 ¯

− ¯ s0 · s2 s1

h

s3 · s4 ¯

s17d

has the hole hopping in a pure nonbonding orbital, while

uctl =
+ ¯ s0 s1

h

s2 · s3 · s4 ¯

− ¯ s0 · s1 s2

h

s3 · s4 ¯

s18d

has the hole hopping via the translation of apair of spins
such that the spin order is preserved. These local solutions
are readily generalized, providing

ucNl =

+ ¯ s0 s1

h

s2 · s3 · s4 ¯

− ¯ s0 · s2 s1

h

s3 · s4 ¯

+ ¯ s0 · s2 · s3 s1

h

s4 ¯

s19d

and

ucBl =

+ ¯ s0 s1

h

s2 · s3 · s4 ¯

− ¯ s0 · s1 s2

h

s3 · s4 ¯

+ ¯ s0 · s1 · s2 s3

h

s4 ¯ .

s20d

The solutions provided att=−X have full spin degeneracy
which is lifted as we perturb away from this point. We can
apply second-order degenerate perturbation theory to show
that the first type of solution, the nonbonding state, is most
relevant att,−X, well away from the real physical limit, but
the second type is an excellent picture of what we believe to
occur in the system and provides us with some physical in-
tuition for the behavior of the system whent.−X. The non-
bonding state does not lift the degeneracy, but in the states
where the motion preserves the spin order, the singlet inter-
action stabilizes the Heisenberg ground state. In Sec. IV we
numerically solve thet-X model very close tot=−X (the
limit itself cannot be solved uniquely due to the degeneracy),
and we find that the resulting ground state is essentially that
of the nearest-neighbor Heisenberg model(see Fig. 12), with
the hole motion described by Eq.(20). This is consistent with
our observations in this section.

In the second natural limit,t=X corresponding toD=U,
the model is expressed in terms of the singlet projectors only.
Since the sign of the coefficient is negative, the ground state
is reached when the projection operators have their maxi-
mum eigenvalues. This maximum(unity) is reached when
the hole spin and copper spin are in a local singlet, and the
hole is simultaneously in a purebonding configuration, a
Zhang-Rice singlet.1 Clearly this cannot be achieved on
neighboring copper sites as the oxygen hole cannot be in a
singlet with both copper spins simultaneously.
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The action of the Hamiltonian preserves Zhang-Rice sin-
glets, and hence one can represent the system on the copper
sublattice only in terms of the states

p
iÞi8

cisi

† u0l ; o
jPhi8j

Si8 j
† p

iÞi8

disi

† u0l, s21d

where the operatorSij
† creates a local copper-si-d oxygens jd

singlet, and the sum overj P hi8j implies summing over the
oxygen neighbors,j of copper sitei8. This provides the ef-
fective Hamiltonian

H = − 2Ztho
is

ciscis
† − th o

kii8ls

cisci8s
† + Uo

i

ci↑
† ci↑ci↓

† ci↓,

s22d

where U is the Coulomb repulsion andth is the effective
hopping energy of the Zhang-Rice singlet between adjacent
copper sites. The limitU°` restricts the system to single
occupancy, yielding the one-band model. Once again, the
background spin configuration remains exactly degenerate,
but this is lifted as we perturb away fromt=X. The limit
t.X provides a ferromagnetic background whilet,X pro-
vides the Heisenberg ground state. The dominant contribu-
tion of the Zhang-Rice singlet near to this limit is verified by
the numerical calculations presented in Fig. 12 and the sur-
rounding discussion. This is an exact mapping for a single
hole, and the model is exactly solvable in this limit on the
square lattice atU=`: the Nagaoka problem,20 providing a
ferromagnetic ground state. There is no experimental evi-
dence for such a phase in the cuprate superconductors; in-
deed, at the level of a single hole the ground state is strongly
antiferromagnetic. In order to destabilize the ferromagnetism
the weaker antiferromagnetic Heisenberg interaction arising
from superexchange must be included, leading to the widely
studiedt-J model,

H = − th o
kii8ls

cisci8s
† +

J

2o
kii8l

Si ·Si8 + Uo
i

ci↑
† ci↑ci↓

† ci↓,

s23d

with single occupancy again enforced byU=`. There is
hence a competition between the Nagaoka tendency toward
ferromagnetism and the Heisenberg interaction which desires
long-range magnetic order. In the undoped case this model is
a pure Heisenberg antiferromagnet, and one would expect
the addition of holes to destroy the antiferromagnetism. The
phase diagram of the single-layer cuprates indicates that this
phase is destroyed by surprisingly small concentrations of
holes and is replaced by the superconducting phase. This
leads one to conclude that the energy of the hole motion
destroys the long-range correlations favored by the antiferro-
magneticJ, suggesting that thet model describes this situa-
tion correctly. This is certainly true atD=U, where the three-
band model reduces exactly to the one-band model, but
provides a ferromagnetic state which is not seen experimen-
tally (whereD*0.2U). One must either include a dominant
antiferromagnetic interaction or study a model in which the
charge motion stabilizes the observed low-spin ground state

in the one-hole limit. In this article, we provide evidence that
such behavior may be observed in thet-X model [Eq. (2)].

II. METHODOLOGY

We have chosen to study a single hole on the CuO2 square
lattice using the scaling properties of finite systems. The dif-
ficulties involved in scaling pure two-dimensional systems
are such that we have elected to study one-dimensional scal-
ing, followed by the scaling of a sequence of one-
dimensional systems which limit to the desired two-
dimensional system. Such an approach has inherent
difficulties: one-dimensional systems are pathological and
are almost always spin-charge-separated Luttinger liquids;
hence, great care is required. However, such an approach
offers useful simplifications: the associated variables are one
dimensional and so are much easier to handle exhaustively.

The geometries that we study in this work are perhaps
best represented asspirals, as shown in Fig. 2.

This is exactly equivalent to the linear chain with addi-
tional pth-neighbor bonds, and in the limitN°`, p°`
(whereN is the number of sites in the chain), this geometry
tends toward the square lattice(as long asN/p remains fi-
nite). The Brillouin zone for these systems maps onto a line
which crosses the square-lattice Brillouin zonep times in
one direction as the zone is traversed in the orthogonal di-
rection, as shown in Fig. 3.

Our representation then implies that the two-dimensional
reciprocal lattice vectork =skx,kyd is subject to the restriction
kx/ky=const, and so we can use a scalar representationk.
Notice that the simple free-electron picture predicts that
these systems will have a complicated multipart “Fermi vol-
ume.” For large values ofp, the one-dimensional behavior
becomes very complex and extracting the two-dimensional
character from the scaling data requires great care.

One complication that results from this choice of geom-
etry is the nature of the boundary conditions. One can envis-
age the spiral connected as atorus if we choose to have
closed boundary conditions(a natural choice), and this cre-
ates two sets of boundary conditions. The most obvious is
the choice of periodic versus antiperiodic boundary condi-
tions around the whole system, equivalent to the inclusion of
a flux through the center of the torus. There is also a choice
of phase inherent in moving once around a segment of the
spiral, and one can also have periodic-antiperiodic boundary
conditions around this loop, equivalent to the inclusion of a

FIG. 2. An example spiral geometry, with “pitch”p=5.
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flux through the center of the spiral. When dealing with finite
systems, one must consider all four possible combinations of
boundary conditions. Only in the thermodynamic limit do the
boundary conditions become equivalent, and we will use this
fact to judge whether a given system is representative of this
limit. We will discuss this issue in more detail in Sec. IV.

The two issues which we will investigate in this work are
rather fundamental to the understanding of the basic nature
of high-temperature superconductivity(HTS): the magnetic
ordering induced by motion of a hole and Fermi liquid be-
havior. The first issue is important since the most popular
model of HTS is thet-J model, which predicts that a single
hole will induce ferromagnetism in the absence of superex-
change, while the second issue may be important in helping
to understand recent experiments21 which have observed
possible non-Fermi-liquid behavior in the cuprates. We in-
vestigate these issues using two analogous procedures.

The natural quantity to consider with regard to the mag-
netism is

Ŝn =
1

N
o

i

Ŝi · Ŝi+n, s24d

for a translationally invariant system, with the associated
reciprocal-space operator

Ŝk = o
n

e−ikRnŜn. s25d

These operators are of direct relevance to elastic magnetic
neutron scattering, and the Bragg spots which correspond to

long-range order are described by a peak inŜk at k=k*,
which diverges linearly with system size. The presence of a
Bragg spot tells us that all spins are involved and are corre-
lated in a spiral with pitchk*. These operators are subject to

the constraints1/NdokŜk =sss+1d= 3
4, and at most13 of this is

contributed by the Bragg spot. This is illustrated by the ana-

lytic form of Ŝk for the classical spin-half Neél state on the
square lattice:

Ŝk =
1

2
−

1

2
dk0 + S1

2
+

N

4
DdkQ , s26d

where it is easily shown that the contribution toS0 from the
Bragg spotk =Q is S0/3= 1

4. The remainder of the spin den-
sity is contributed by a short-range background state. In the
forthcoming numerical calculations(Sec. IV), the Bragg spot
(long-range order) shows up as a peak which diverges with
system size, whereas the short-range background is well con-
verged.

The corresponding operators for investigating Fermi-
liquid behavior are

N̂n =
1

N
o
js

pi,s
† pi+n,s s27d

for a translationally invariant system, with the resulting
transform

N̂k =
1

N
o
n

e−ik·RnN̂n. s28d

The interpretation of these quantities is subtle and re-
quires some explanation. First of all we note that although
the cuprates are Mott insulators at zero doping, suggesting
that they are half-filled, this is only true with regard to the
Cu2+ band. In the parent compounds, the oxygen bands are
empty. When we add a single oxygen hole to the system, the

occupation numberN̂k is equal todN̂k which is thechangein
occupation number as the hole is added not to a half-filled
band, but to an empty band. For a Fermi gas, this provides a
d-function peak at the Fermi level when a single hole is
added: the occupation is discontinuous between full and

empty atT=0. In finite systems one would expectN̂kF
=1,

since one is adding a single hole. In the case of an interacting
Fermi liquid, there is still a discontinuity at the Fermi level,
but with a reduced heightZk. A finite fraction of the hole is
placed at the Fermi point, and the remainder is spread
smoothly over the rest of the Brillouin zone. For a single

particle,okN̂k=1, and so the height of the peak at the Fermi
point is reducedas N increases as the weight of the single
particle is spread overN k points. It is therefore useful to

normalizeN̂k, and in practice we actually calculateNN̂k. We
will see that this allows us to isolate the discontinuity at the
Fermi level as a peak which diverges with system size indi-
cating long-range order, set against a background of short-
range correlations which converge. The rate at which the
peak diverges provides a signature for Fermi-liquid behavior:

for both interacting and noninteracting Fermi liquids,NN̂kF

,N, while for Luttinger liquids,NN̂kF
,Na, where 0,a,1.

The behavior of the peak at the Fermi level thus provides
us with a characteristic signature for Fermi liquid behavior.
Short-range correlations will converge with system size,
whereas the long-range correlations which characterize
Fermi and Luttinger liquids will be seen as a peak at the
Fermi level. If the peak diverges linearly with system size,

FIG. 3. The reciprocal-space representation of thep=5
spiral.
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then this is indicative of a Fermi liquid, whereas anNa di-
vergence suggests Luttinger-liquid behavior. If the diver-
gence is absent, then the correlations are short range only,
and the system becomes very difficult to classify.

These comments are best illustrated with an example. In
Fig. 4 we show the results of finite-size Lanczos calculations
on the p=3 spiral, with the restriction of high total spin,
meaning that all spins are parallel, with the exception of a
single flipped spin(the ferromagnetic state is trivial).

Clear linear divergences can be seen in bothŜk and N̂k,
indicating both long-range ferromagnetismand Fermi-liquid
behavior. Finite-range correlations are revealed via conver-
gence as the system size becomes greater than the correlation
length. These results should be contrasted with the low-spin
ground state(Fig. 5) where Sz=0 (for an even number of
spins) or Sz=

1
2 (for an odd number of spins). The two quan-

tities can be seen to cleanly converge to a finite limit, indi-

cating that the system lacks magnetic long-range order and is
not a Fermi liquid.

Renormalization group arguments suggest that the num-
ber of fundamental styles of behavior that a system may
exhibit are highly restricted. We have already discussed
Fermi liquids versus non-Fermi liquids, but each of these has
important subcategories, and it is crucial to be able to iden-
tify and distinguish between these distinct states. We have
already discussed how to identify a Fermi liquid, but it may
occur in two basic forms: single component and two compo-
nent. The two component Fermi liquids are distorted nonin-
teracting systems with the same symmetry and with spin
degeneracy in the quasi particles. The single-component
Fermi liquids tend to be magnetic, and the broken spin sym-
metry gives singly degenerate branches of quasiparticles.
These distinct situations can be distinguished using the posi-
tion of the divergence in the scaled occupation number. If it
should occur at an extremum of the underlying structure fac-

FIG. 4. High-spin Lanczos calculation on thep=3 spiral with
periodic local boundary conditions and global boundary conditions
indicated in the key(GA=globally antiperiodic, GP=globally peri-

odic). (a) Ŝk and (b) N̂k. The dashed lines represent the structure
factor for comparison.

FIG. 5. Low-spin Lanczos calculation on thep=3 spiral with
antiperiodic local boundary conditions and global boundary condi-
tions indicated in the key(GA=globally antiperiodic, GP

=globally periodic). (a) Ŝk and(b) N̂k. The dashed lines represent
the structure factor for comparison.
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tor, then there are pools of quasiparticles, and this is typical
of a single-component fluid. If the divergence occurs at the
noninteracting Fermi level, which tends to be at a point of
inflection in the structure factor, then the system is a two-
component fluid. To determine which type of fluid we may
be dealing with, we must determine whether we have a large
or small Fermi surface. In our calculations, we add a single
oxygen hole and so the small Fermi surface corresponds to
the single-component case and a small pool of electrons be-
ing generated at an extremum of the structure factor. The
experimentally relevant large Fermi surface case involves the
background copper spins contributing towards the Fermi sur-
face and the two-component fluid picture. We find the second
case in our calculations and offer a picture of how the single
hole can dominate all the copper spins and push them to-
wards this large Fermi surface picture.

Non-Fermi liquids are much more subtle as they are
rather less well understood than Fermi liquids, but we can
identify two broad subcategories. The best known are the
Luttinger liquids, which we have already discussed briefly.
Like the Fermi liquids, the Luttinger liquids also display a
divergence in the scaled occupation number, but the diver-
gence is not linear, varying asNa, where 0,a,1. Both
types of Fermi liquid can provide an analogous Luttinger
liquid, but the magnetic order associated with the two-
component fluid is generally expected to be prohibited. The
second type of non-Fermi liquid is the least well understood
and hence the most interesting: pure quantum states with no
divergence of the occupation number. Such states have only
short-range correlations, and typical examples are valence
bond solids and so-called resonating valence bond(RVB)
states. The correlation length can be significant, and these
states are indistinguishable from the other types until the
system size is larger than the correlation length, when the
correlations are seen to converge to a finite limit. Such sys-
tems are distinguished by their correlation length, and it is
important to be able to identify this.

In the following sections of this article, we will show that
the model we propose for the high-Tc superconductors can
indeed exhibit such a quantum ground state. Such states have
been observed in other models, and there are exact solutions
present in the literature. The most relevant is thet model on
cage geometries.22 In this model, a collection of atoms form
a cage if each atom has chemical bonds of equal strength to
every other atom in the cage. If there aren atoms in a cage
and each atom is inp cages, then the Nagaoka problem may
be solved exactly providednù2p. The solution is a resonat-
ing valence bond state, where the hole is delocalized over the
space of valence bond states containing one valence bond in
each cage. The hole delocalizes by hopping onto these va-
lence bonds, generating an exponentially large superposition
of such states. Some examples of such geometries are the
pyrochlore lattice and the checkerboard square lattice with
additional diagonal bonds on the black squares. The simplest
example is a chain of edge-sharing tetrahedra(with double
bonds on the connected edges) which offers some of the
interesting phenomena exhibited by such systems, but not
all. The solution of this simple case is a valence bond solid
containing a mobile hole with an additional bound spinon
and is quite easy to understand, providing a useful reference
point for this work.

III. ANALYTICAL RESULTS

In this section we present a novel variational technique
with which we are able to calculate the type of classical spin
spiral preferred by the motion of a single hole on our spiral
geometries. The technique is a generalization of standard
spin-wave theory to the motion of a single hole: we assume
that the hole motion will prefer a spin spiral and then add
quantum fluctuations to determine thespiral pitchwhich op-
timizes the hole motion.

To begin, we make a classical ansatz for the spin state:
each copper site is given a fixed quantization direction, and
this direction spirals from site to site. Noting that the hole
resides on a separate sublattice, we must also assign a quan-
tization direction to the oxygen sites, and we choose this to
be continuous with the copper lattice. The pitch of this spin
spiral k* is treated as a variational parameter over which we
will optimize. In addition, the hole is allowed to delocalize
with wave vectorq* which must also be optimized. For all
the systems we have analyzed in this paper, we found that
q* =0 is the optimum, and there is no need to discuss this
parameter any further.

It is useful to consider how this approach relates to stan-
dard spin-wave calculations. In the magnetic problem de-
fined by the Heisenberg model, the pitch of the spin spiral is
set by the classical limit. Semiclassical spin fluctuations then
allow quantum effects to attempt to break down the classical
state. In the current problem, we have no direct magnetic
interaction and so the spiral pitch is not governed by the
classical limit, but is determined at the semiclassical level,
where the hole binds into a Zhang-Rice singlet, which then
delocalizes. This is why we must treat the spiral pitch as a
variational parameter over which to optimize.

It may seem strange to perform semiclassical variational
calculations on a system which one would expect to be gov-
erned absolutely by quantum effects. The reason we consider
these calculations to be useful is that they allow us to com-
pare the numerical calculations discussed in Sec. IV with
semiclassical predictions. In fact we will see that some of the
numerical results show some semiclassical characteristics,
and these calculations provide a useful consistency check.
They are especially useful since they are not constrained by
finite system size, and so finite-size effects in the numerical
work may be identified.

The first step toward the variational calculations we wish
to perform is to rerepresent the Hamiltonian in our chosen
basis. We allow the spins to spiral in thexy plane and using
the z axis for quantization, the vacuum state may be written
as

ufl =
1
Î2

fe−if/2u↑l + eif/2u↓lg , s29d

which is a classical spiral with each spin canted at an anglef
relative to thex axis. Semiclassical fluctuations from this
ground state are, as in classical spin-wave theory, described
by Holstein-Primakoff bosons23 which are written as
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b†ufl =
i

Î2
f− e−if/2u↑l + eif/2u↓lg , s30d

where the quantization direction on each site has been cho-
sen to be parallel to the classical spin orientation. This leads
to a complication when describing the motion of the boson.
The direct hopping of the hole from site to site(via t) re-
quires these states to be rerepresented using a different ori-
entation. When the hole hops from a site with quantization
direction f to a site with quantization directionf8, it hops
with an amplitude cosfsf−f8d /2g without a spin fluctuation
and simultaneously hops with an amplitude ±sinfsf

−f8d /2g with a spin fluctuation. This provides

ufl = Fcos
f − f8

2
+ sin

f − f8

2
b8†Guf8l, s31d

b†ufl = Fcos
f − f8

2
b8† + sin

f − f8

2
Guf8l. s32d

The X term is significantly more complicated as this also
involves the copper spins. We denote the copper spin quan-
tization directions usingu, and the anglef must now be
represented in terms ofu, which must in turn be represented
in terms off8. We have

uf,ul = cos
f − u

2
cos

u − f8

2
uf,f8l + cos

f − u

2
sin

u − f8

2
b8†uf,f8l + sin

f − u

2
cos

u − f8

2
a†uu,f8l

+ sin
f − u

2
sin

u − f8

2
b8†a†uu,f8l, s33ad

b†uf,ul = cos
f − u

2
cos

u − f8

2
a†uu,f8l + cos

f − u

2
sin

u − f8

2
a†b8†uu,f8l − sin

f − u

2
cos

u − f8

2
a†uu,f8l

− sin
f − u

2
sin

u − f8

2
b8†uu,f8l, s33bd

a†uf,ul = cos
f − u

2
cos

u − f8

2
b8†uu,f8l + cos

f − u

2
sin

u − f8

2
uu,f8l + sin

f − u

2
cos

u − f8

2
b8†a†uu,f8l

− sin
f − u

2
sin

u − f8

2
a†uu,f8l, s33cd

a†b†uf,ul = cos
f − u

2
cos

u − f8

2
a†b8†uu,f8l + cos

f − u

2
sin

u − f8

2
a†uu,f8l − sin

f − u

2
cos

u − f8

2
b8†uu,f8l

+ sin
f − u

2
sin

u − f8

2
uu,f8l, s33dd

wherea† creates a fluctuation on the intermediate copper site. The motion now involves up to two fluctuations per hop and is
clearly quite complex.

These results now allow us to construct a second-quantized description of the hole moving in our classical spin spiral under
the action of thet-X Hamiltonian. We use an operatorhj

† to create a hole at oxygen sitej , and asinglebosonb† to denote any
fluctuation of thehole’s spin. An array of bosonsai

† describes copper spin fluctuations, and our vacuum stateu0l corresponds
to the state with all spins oriented parallel to their classical quantization directions. We can hence represent the direct hole
hopping as

Ht = − to
ki j l

o
ki j 8l

hj8
† hjFcos

f j − f j8

2
+ sin

f j − f j8

2
sb† − bdG , s34d

and the more important “shuffling” interaction can similarly be written as
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HX = Xo
ki j l

o
ki j 8l

hj8
† hjScos

f j − ui

2
cos

ui − f j8

2
faiai

†bb† + ai
†aib

†b + ai
†b + aib

†g

+ sin
f j − ui

2
sin

ui − f j8

2
fai

†b† + aib − ai
†aibb† − aiai

†b†bg + cos
f j − ui

2
sin

ui − f j8

2
faiai

†b† + ai
†b†b + aibb† + ai

†aibg

+ sin
f j − ui

2
cos

ui − f j8

2
fai

†bb† + ai
†aib − aiai

†b − aib
†bgD s35d

or, in a more physically instructive form,

HX =
X

2o
ki j l

o
ki j 8l

hj8
† hjScos

fi − f j8

2
f1 − sai

† − aidsb† − bdg + cosSui −
fi + f j8

2
Dfsaiai

† − ai
†aidsbb† − b†bd + sai

† + aidsb† + bdg

+ sin
fi − f j8

2
fai

† − ai + b† − bg + sinSui −
fi + f j8

2
Dfsaiai

† − ai
†aidsb† + bd − sai

† + aidsbb† − b†bdgD . s36d

These representations areexactand can be used to reproduce
the exact solutions discussed earlier. For the simple case of a
pure ferromagnet, all the angles are equal, and att=X, the
model reduces to

H = to
ki j l

o
ki j 8l

hj8
† hjfai

†b + aib
† − aiai

†b†b − ai
†aibb†g s37d

and hence

Hhl
†sb† − ai

†du0l = − 2to
ki j l

hj8
† sb† − ai

†du0l

− t o
ki8 j8l

hj8
† sb† − ai8

† du0l, s38d

whereili 8 are a set of three neighboring atoms—viz., Cu-O-
Cu—and the oxygen sitesj and j8 are the neighbors of cop-
per sitesi and i8 (note thatj = l and j8= l are both allowed).
This is in complete agreement with the exact solution at this
point in parameter space. This representation allows a com-
pletely free choice of classical spin background, constrained
only by the restriction to planar spins. However, for our
choice of geometry there are additional constraints. For the
simplest geometry, the linear chain, we have

ui =
f j + f j8

2
, s39d

and this situation is much simpler. There are also cases
where the hole does not move and simply exchanges its spin
with the neighboring copper site. In this case,f j =f j8, an-
other simplification.

Unlike semiclassical spin-wave theory, where we describe
coherent fluctuations perpendicular to the classical spin ori-
entations, in this problem we are trying to describe a spin
polaron. The hole induces local spin correlations which op-
timize its motion. One possibility which we may expect from
the exact solutions is that the hole will bind in a Zhang-Rice
singlet, and as the hole moves around, longer-range spin cor-
relations must also be generated to ensure that it remains in a

local singlet. In turn, this maximizes its motion around the
many closed loops in our chosen geometries. It has been
suggested that the hole carries a local “spin deformation”(a
polaron) with it, but in fact the hole can only interact with
copper spins on sites which it travels across, and so as the
hole moves, it generates new spin correlations between the
sites it traverses, leaving a “trail” of correlations. These di-
minish at greater distances from the hole, fading into a pre-
ferred “background state.” In these calculations, we assume
that the background state is a pure spin spiral and we need to
incorporate the local fluctuations that optimize the hole mo-
tion. Since the preferred background isnot likely to be a pure
spiral, the hole will also attempt to generate longer-range
fluctuations of the preferred order.

In these calculations, we begin with the classical spiral
state. We then generate all states connected to this state via
iterative applications of the Hamiltonian. This amounts to
successively “hopping” the hole and so the induced spin
fluctuations must be close to the hole, being within the num-
ber of hops applied so far. The size of the state space in-
creases exponentially and we have to diagonalize large
Hamiltonian matrices, but this can be done for a size up to
about 200 0003200 000. The resultant energies are a func-
tion of spiral pitch, and the spiral pitch which optimizes the
motion can easily be found. In this sense, the calculations are
truly variational. In Fig. 6 we show the results of such a
calculation on the linear chain att /X=0.

This problem has been previously studied24 and is known
to have a locally distorted Heisenberg ground state, in which
the hole acts like a spinon. The ground-state energy is below
−2.895X, and our calculations obtain about 99% of this en-
ergy. The optimal pitchk* appears to be converging on the
antiferromagnetic point. It should be noted that this is a par-
ticularly difficult example to interpret as the hole carries a
spinon and hence there is a domain wall in the system which
is very difficult to approximate within our spiral ansatz. The
result is a compromise in which the optimal pitch is kept
away from the antiferromagnetic point to allow the spins
neighboring the hole to be partially parallel, as is required by
the true solution.
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The nature of domain walls in two dimensions, where the
domain wall is a one-dimensional object and cannot be
treated as a pointlike excitation, means that two-dimensional
systems are more subtle. In Fig. 7 we show the classical
spiral energies forp=11. This system contains a fairly long-
range hop, and we might expect it to demonstrate some two-
dimensional character. Much less variation is seen in the op-
timum spiral pitch than was seen in the linear chain. Also
note that the zero-pitch spiral corresponding to ferromag-
netism isunstable, and the ground state to theX model on
this geometry is very nontrivial.

Once the optimal pitch has been found, one can find the
associated sequence of ground states and determine a se-
quence of approximations to the desired correlation func-
tions. Including more extensive hops in the calculations is
analogous to finite-size scaling, but note well that this type of
calculation does not describe the magnetism very well. There
are always a macroscopic number of spins which have not
yet been affected by the longest hops, and these will always

dominate over the fluctuations which are solely within the
range of the longest hop. The resulting magnetism is domi-
nated by classical behavior. However, this technique is a use-
ful probe of the occupation number that we might expect this
model to provide, since the background spins do not contrib-
ute directly, and the correlations are dominated by the fluc-
tuations in the vicinity of the hole. As we discussed previ-
ously there are two types of behavior which are
superimposed: smooth short-range correlations and divergent
peaks. The short-range correlations are indicative of local
quantum fluctuations which serve to optimize the hole’s mo-
tion locally, while the divergent peaks indicate Fermi- and
Luttinger-liquid-like behavior. Since these calculations are
performed on infinite systems, trued-function peaks can and
do occur. However, the underlying classical spin background
adds a complication. The induced fluctuations are necessarily
near to the hole, and the underlying classical spiral controls
the behavior outside of this region. The finite probability that
the state is exactly the pure classical spiral provides the
d-function contribution to begin with(when there are no

FIG. 6. Classical spin spiral energies on the linear chain at
t /X=0, as a function of spiral pitch. These graphs show the effect of
adding progressively more hops.(a) 1–7 hops included and(b)
7–15 hops included.

FIG. 7. Classical spin spiral energies on thep=11 spiral at
t /X=0, as a function of spiral pitch. These graphs show the effect of
adding progressively more hops.(a) 1–5 hops included and(b) 5–8
hops included.
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fluctuations). As hops are added to the calculation, the prob-
ability of the state being the pure spiral decreases and hence
so does the weight of thed function. If the system is a pure
Fermi liquid, then the weight from thed function is trans-
ferred into a divergent peak in the short-range contribution,
which provides the long-range character(rather than the clas-
sical spiral).

Due to the difficulties involved in performing calculations
involving long-range hops, we are restricted to study rela-
tively small numbers of fluctuations. We expect a robust
d-function contribution to be a good indication of a diver-
gence, but eventually it must vanish, due to the preceding
argument. In order to circumvent this difficulty, we choose to
calculate and extract the long-range behavior and the pure
short-range correlations separately. The results for the linear
chain are given in Fig. 8.

It is clear from Fig. 8(b) that the long-range component is
decaying to zero as the calculations become more sophisti-
cated, and this system is, as expected, not a Fermi liquid. The

form of N̂k shown in Fig. 8(a) is highly instructive and
should be analyzed carefully. The system mirrors the half-
filled noninteracting Fermi liquid state, with thelocalized
spins acting as the half-filled Fermi sea. For a noninteracting
solution we expect

ucl = p
kPK,s

fcosukdks
† + sinukpks

† gu0l, s40d

whereK is the set of all filled states. In the limit that the
copper states are much preferred,uk!1, and we expect a
small admixture of oxygen holes in the occupied region. This

describes the short-range contribution toN̂k very well. When
we add a fermion to our noninteracting state, thechangein

FIG. 8. N̂k calculated on the linear chain.(a) Overlay of short-
range contributions for number of hops, 0ønø11. (b) Magnitude
of the long-range component plotted against 1/h, whereh is the
number of hops included in the calculation. The dashed line repre-
sents the underlying structure factor. For labeling purposes, symbols
are provided at only a few data points, and the lines pass through all
data points.

FIG. 9. N̂k calculated on thep=11 spiral with antiperiodic local
boundary conditions.(a) Overlay of short-range contributions for
number of hops, 0ønø11. (b) Magnitude of the long-range plotted
against 1/h, whereh is the number of hops included in the calcu-
lation. The dashed line represents the underlying structure factor.
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N̂k is localized at the Fermi surface, and the next available
state is occupied, extending the Fermi surface slightly. This
provides an excellent description for the divergence inN̂k.

In fact, this system isnot a Fermi liquid, andN̂k at the
Fermi surface diverges with a power law. Note, however, that
our limiting procedure is not smooth since the preferred spi-
ral pitch slowly migrates toward the antiferromagnetic point
(but not closer than 10% in our calculations). The position of
the discontinuity does not agree with the pitch of the spiral,
but is exactly one-half of the pitch, in agreement with the
result that magnetism in Fermi liquids arises from nesting
between the two Fermi points, givingq=2kF.

The spiral systems we wish to study are much more com-
plex than the linear chain. The finite spiral corresponds in
reciprocal space to a sequence of parallel lines which cross
the Brillouin zonep times. A two-dimensional peak is seen
as a series of one-dimensional peaks which rise and fall as
the parallel lines cross the peak in different places(Fig. 3).
The correlations for the system withp=11 are shown in Fig.
9.

A sequence ofp peaks can be seen in Fig. 9(a) at thep
places where the the reciprocal-space lattice crosses the two-
dimensional Brillouin zone. The peaks are clearly found in
the minima of the underlying structure factor as expected,
but there is no longer a clear distinction between structured
regions and the(vanishing) gaps between them.

The long-range component does not occur at these peaks,
but is at the position of maximum slope, in keeping with the
Fermi-liquid picture. The convergence of the long-range con-
tribution is not clear, and one cannot confidently predict
Fermi-liquid behavior or otherwise from these results, al-
though it should be noted that the long-range contribution is
converging[Fig. 9(b)] much more slowly than was the case
for the linear chain[Fig. 8(b)]. It is also very instructive to
note that as thed function decays, its weight is not simply

transferred to a corresponding peak in the short-range com-
ponent, but is distributed fairly uniformly across all the
maxima, suggesting an eventual result which is smooth and
may correspond to a quantum solution.

The obvious difficulties in interpreting the results of these
calculations mean that we are restricted to analyzing simple
systems(small values ofp) where convergence is most
likely. This technique can be used to analyze these systems,
but we can also use finite-size scaling of exact diagonaliza-
tion calculations, which do not require a classical ansatz and
can identify pure quantum behavior. These calculations are
introduced in the next section.

IV. NUMERICAL CALCULATIONS

In this section we use the Lanczos algorithm to exactly
solve some finite spiral systems. Computational limitations
dictate that we are restricted to a number of sites,Nø24, and

FIG. 10. An example(p=3, N=10) of how the spiral systems
correspond to the square lattice. The numbering represents the or-
dering of the sites on the backbone of the spiral.

FIG. 11. Finite-size-scaled correlation functions for a single
hole on the CuO linear chain att /X=0, with boundary conditions
indicated in the key(GA=globally antiperiodic, GP=globally

periodic). (a) Ŝk and (b) N̂k.
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in turn, this limits our ability to study large values ofp, the
spiral pitch. The spiral systems correspond to the pure square
lattice of interest whenN=p2+1 (as shown in Fig. 10), and
so we can only study 1øpø4 completely. However, we can
reach sufficiently largeN to allow us to gain much insight
into p=5 as well, although we cannot study the square sys-
tem itself.

We begin our analysis with a study of the CuO linear
chain. This system is quite well understood,24 and it is useful
to study this system as a reference point for forthcoming
calculations. Since this system does not belong to our class
of spiral systems, there are only global boundary conditions,
and this makes interpretation of the results considerably sim-
pler. The spin and number correlations for this system at
t /X=0 are shown in Fig. 11.

It has been shown24 that in this system, the hole acts as a
spinon which stabilizes the ground state of the Heisenberg
model as the ground state of this model as well. This is

confirmed by the weak logarithmic divergence with respect
to system size seen in Fig. 11(a), which is the closest to
long-range order that the Heisenberg interaction can generate
in one-dimensional(1D) systems. The spinon formed by the
hole has the effect of pushing weight away fromk=p to the
neighboring k points, reducing the divergence somewhat.
The occupation number is completely consistent with that
obtained by the semiclassical spiral calculations of Sec. III:
the short-range contribution is very well converged, and the
long-range contribution diverges with a power law with ex-
ponenta<0.375, consistent with the Luttinger liquid that
one would expect in 1D. For comparison, it has been
shown24 that for the pure Heisenberg model,a=0.5. Note
that due to the finite number of points ink space, it is very
hard to calculate this exponent exactly.

In Sec. I, we developed two exact solutions of thet-X
model which we can analyze in more detail on the linear
chain geometry. Recall there are two solutions, att= ±X,

FIG. 12. A comparison of the occupation number correlationsNN̂k of the Heisenberg model with the predictions of thet-X model.(a)
Heisenberg model plus Zhang-Rice singlet.(b) t-X model,t=0.99X. (c) Pure Heisenberg model.(d) t-X model,t=−0.99X. The dashed lines
represent the underlying structure factor.
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where the hole is decoupled from the copper spins, and there
is huge spin degeneracy at these points, rendering a numeri-
cal solution impossible. We can, however, solve the model
very close to the limits, and we will consider the pointst
= ±0.99X.

Consider first the pointt=X. In this limit we have already
determined that the model reduces to the hopping of a
Zhang-Rice singlet on the copper lattice. For the two-
dimensional square lattice, this motion stabilizes
ferromagnetism,20 but in one dimension it does not permute
the spins, leaving all spin configurations degenerate. If we
move away fromt=X to t=0.99X, then this introduces a
triplet-projector interaction[Eq. (8)] which lifts the degen-
eracy. The nicest intuitive picture one can provide for this is
of a local eigenstate involving three spins, where two copper
spins in a singlet become a Zhang-Rice singlet as explained
in Sec. I. These interactions act as an effective Heisenberg
interaction and stabilize the Heisenberg ground state for the

background spins. An analysis of the motion of the hole in
such a state reveals that one would expect the occupancy to
be

NN̂k =
s1 + coskd

3 F2 + 2 cosk + 2o
n=1

`

R̂n cossn + 1dkG ,

s41d

where theR̂n are the cyclic permutation correlations of the
Heisenberg model, given by

R̂n =Kp
m=1

n F1

2
+ 2Ŝm · Ŝm+1GL , s42d

which have previously been investigated.25 This result is in
agreement with the exact solution att=X discussed in Sec. I.

In the other limit t=−X, the degeneracy is larger and is
lifted by the inclusion of a small amount of singlet projector

FIG. 13. Correlations on thep=2 spiral with periodic local boundary conditions, from(a), (b) semiclassical spiral calculation;(c), (d)

finite-size scaled Lanczos calculations.(a) Short-range contribution toN̂k. (b) Long-range contribution toN̂k. (c) Finite-size scaledN̂k. (d)

Finite-size scaledŜk.
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interaction. The preferred state is then that of Eq.(20), where
the order of the spins(including the oxygen hole) is pre-
served, and the singlet interaction stabilizes the Heisenberg
ground state. The correlations in this case are predicted to be

NN̂k = 1 + 2o
n=1

`

R̂n cosnk. s43d

The results of these calculations are shown in Fig. 12.
The Heisenberg model was solved numerically, and the

cyclic permutation correlationsR̂n were calculated and in-
serted into Eqs.(41) and(43) to give graphs 12(a) and 12(c),
respectively. The agreement with the numerical solutions of
the t-X model[Figs. 12(b) and 12(d)] near the exact solutions
is very good. Our assumption that the interaction of the hole
with the spin background induces an effective Heisenberg
spin interaction between neighboring spins in the back-

ground appears to be correct. We also note that our previous
solution att /X=0 is clearly in the same class ast=−X, with
only a small contribution from the Zhang-Rice singlet, re-
sulting in an increase in weight of the correlations at the zone
center and a somewhat reduced peak at the zone boundary.

As we have already discussed, the divergence of the peak

in N̂k with system size asNa indicates that a Luttinger-liquid
phase is stabilized in the regiont,X. This phase has all the
properties expected of thet-J model in one dimension, but
the physical origin of the spin correlations is very different,
being due solely to the hole motion andnot to the second-
order Heisenberg interaction which is required to lift the spin
degeneracy in thet-J model and which we have not included
here. The physical interaction which stabilizes this low-spin
state is therefore clearly missing from thet-J model. The
nature of this interaction will become clear in the study of
the spiral systems in the next section.

FIG. 14. Correlations on thep=2 spiral with antiperiodic local boundary conditions, from(a), (b) semiclassical spiral calculation;(c), (d)

finite-size scaled Lanczos calculations.(a) Short-range contribution toN̂k. (b) Long-range contribution toN̂k. (c) Finite-size scaledN̂k. (d)

Finite-size scaledŜk.
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V. MAIN RESULTS

In the preceding sections we have introduced the basic
techniques which we will use to study our sequences of spi-
ral systems. It is very important that we retain complete con-
trol over these calculations, and hence we restrict ourselves
to the understandable tight spiral systemss2øpø5d, which
we will study in order.

A. p=2 spiral

The p=2 spiral is the simplest system we will study in
this section and contains bonds(via an oxygen site) to both
nearest- and second-nearest-neighbor copper sites. The un-
derlying copper lattice is hence essentially triangular, and
one would expect this system to be frustrated in the conven-
tional Hubbard model picture. Unlike our example calcula-
tion on the linear chain in the previous sections, we must
consider both local and global boundary conditions in this
calculation. We will be especially interested in the effect of
the local boundary conditions, which one might presume to
have a strong effect on the nature of the ground state stabi-
lized. Periodic local boundary conditions correspond to an
unfrustrated phase around one loop of the spiral which one
would expect to stabilize high-spin correlations, while anti-
periodic boundary conditions correspond to the frustrated
phase which prefers low-spin correlations. This picture is
somewhat oversimplified though, as the model itself is intrin-
sically frustrated and changes this picture somewhat as we
shall see.

The results of both variational and numerical calculations
are shown in Fig. 13.

The ground state has low spin and does not display any of
the characteristics of the associated Hubbard model. The nu-

merical calculation ofŜk suggests that the system is suscep-
tible to forming spin spirals with pitchk* <2p /5, in very
good agreement with the semiclassical fluctuation calcula-
tions. The magnetic correlations are much stronger than in
the linear chain, but do not converge in our numerical calcu-
lations as they extend beyond the size of our largest system.

The occupation number calculated numerically[Fig.
13(c)] is also clearly unconverged, but is nonetheless useful.
The structure factor suggestsfour Fermi points at half-filling,
located at

k± = p − arccosS 1

2Î2
D ±

p

4
= ps1 ± 0.365d,ps1 ± 0.865d,

s44d

with the pair closest to the zone center giving rise to the
strong peaks which bound a strongly hybridized, but quite

small region of filled Fermi sea, and the outer pair demarking
a second region of more weakly hybridizing Fermi sea. The
peaks are much stronger than in the linear chain, but careful
analysis suggests that they arenot divergent. The small oc-
cupied region is clearly smaller than the Fermi-gas solution
might suggest, but the larger region is enhanced. This ap-
pears(to within the approximations enforced by the discrete
nature of the system) to maintain the volume of the occupied
region as expected from Luttinger’s theorem.26

For locally antiperiodic boundary conditions, the results
are shown in Fig. 14. Both the spin correlations and number

FIG. 15. The action of the Hamiltonian on a dimerized ground
state leads to the hole becoming preferentially bound to one
sublattice.

FIG. 16. Nearest-neighbor spin correlations as a function of po-
sition on the chain for(a) locally periodic and(b) locally antiperi-
odic boundary conditions on thep=2 spiral. The two ground states
ufAl and ufBl are represented by the symbols3 and s,
respectively.
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correlations are clearly finite, and the system appears to be
far from the Fermi-liquid state. The most natural explanation
for this result is that the expected small gap in the density of
states(DOS) has been filled in, and the state appears to be
confined to the linear chain(note the similarity to Fig. 11).
The magnetic correlations are well represented by a simple
cosine function, suggesting that the correlations are nearest
neighbor only.

So far, we have been able to draw apparently reasonable
conclusions from the results of these calculations. Naively
we conclude that for the locally periodic system, the ground
state can be described with a pseudo-Fermi-liquid picture,
which would probably degrade into a bosonized Luttinger
liquid with power-law divergences if we were to extend the
calculation to longer ranges. The locally antiperiodic system
appears to prefer the hole motion to be localized along the
backbone of the system, and the spin correlations are pre-

dominantly nearest neighbor. There is no suggestion of any
Fermi-liquid behavior.

However, we have neglected to consider the effect of the
global boundary conditions in this analysis. Although the nu-
merical results appear to suggest very good convergence
with respect to the global boundary conditions, the results of
the calculations on the locally antiperiodic system suggest
that the interpretation of these results may be more subtle
than we have so far accounted for. The spin correlations
shown in Fig. 14(d) suggest that local correlations dominate,
indicative of a highly quantum-spin-dimer ground state. The
oxygen hole is also known to preferentially form a local
singlet, and the resulting motion under our Hamiltonian sug-
gests that the hole can become bound to one or other of the
sublattices, as shown in Fig. 15.

For systems with an even number of copper sites, the hole
will remain bound to the same sublattice, but an odd number

FIG. 17. Correlations on thep=3 spiral with periodic local boundary conditions, from(a), (b) semiclassical spiral calculation;(c), (d)

finite-size scaled Lanczos calculations.(a) Short-range contribution toN̂k. (b) Long-range contribution toN̂k. (c) Finite-size scaledN̂k. (d)

Finite-size scaledŜk.
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of copper sites leads to Möbius boundary conditions, and the
hole moves onto the other sublattice. There are hence two
possible ground states, one associated with each lattice, and
the relative phase of these states is determined by the choice
of periodic or antiperiodic global boundary conditions. For
periodic boundary conditions, the ground state can be written
asucpl= ufAl+ ufBl, and for antiperiodic boundary conditions
we haveucal= ufAl− ufBl, where ufAl, ufBl are the ground
states associated with the two sublattices. Adding and sub-
tracting the ground states for the two sets of boundary con-
ditions then allows us to separateufAl and ufBl. In Fig. 16
we show the nearest-neighbor spin correlations as a function
of distance from the hole for the two solutions.

It is clear from Fig. 16 that there is abroken symmetryin
both systems. In the locally periodic system[Fig. 16(a)], the
motion of the hole induces spin correlations which optimize
its motion. The hole gains most energy from second-
neighbor hops and it prefers to be on the oxygen sites on the

second-neighbor bonds(note that the correlations for this
system are very different to those on the linear chain). When
the hole circuits the spiral, the motion is optimized by a
locally high-spin state(the oxygen hole unfrustrates each
triangle), and the symmetry is broken to allow both of the
triangles on which the hole is moving to have high spin.
These neighboring pairs of parallel spins then behave like a
spin-1 in a Haldane chain-type system. Note that the system
is not a pure Haldane chain, and the correlations in Fig. 16(a)
are really quite weak. The resulting ground state is hencenot
the pseudo-Fermi liquid we had envisaged, but rather a
highly quantum Haldane-like phase, which is somewhat re-
lated to a distorted two-component noninteracting Fermi
liquid.

The locally antiperiodic system is much more easily in-
terpreted. The correlations shown in Fig. 16(b) suggest an
almost pure dimer state, with alternating strong antiferro-
magnetic and uncorrelated bonds along the chain. The pure

FIG. 18. Correlations on thep=3 spiral with antiperiodic local boundary conditions, from(a), (b) semiclassical spiral calculation;(c), (d)

finite-size scaled Lanczos calculations.(a) Short-range contribution toN̂k. (b) Long-range contribution toN̂k. (c) Finite-size scaledN̂k. (d)

Finite-size scaledŜk.
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singlet correlations offer optimal motion around half the tri-
angles, while the other half are essentially irrelevant as the
hole is dominantly moving on the backbone of the spiral, not
along the second-neighbor bonds. This is basically identical
to the predictions made by thet1− t2 model25 on this geom-
etry, which also chooses a dominant sublattice for the charge
carrier. Once again, the resulting ground state is strongly
quantum and in this case is a simple valence bond solid.

B. p=3 spiral

In the Hubbard model framework we would expect the
p=3 system to differ substantially from thep=2 case. The
p=3 spiral isbipartite and would therefore be expected to

have a ferromagnetic ground state for the Hubbard model.
However, even in the Hubbard framework we find that the
two systems are quite similar. The periodic boundary condi-
tions applied to thep=2 spiral in the preceding section pro-
vided anunfrustratedchoice of phase for the local hopping
which promoted local high-spin correlations. We expect the
same to be true for periodic boundary conditions applied to
this system, but for antiperiodic boundary conditions to frus-
trate the system, leading to a low-spin ground state, as we
saw for the case ofp=2. The results for periodic boundary
conditions are shown in Fig. 17.

The ground state is indeed low spin and the motion
around the bipartite loops is dominated by the process which
allows copper-copper singlets to become active Zhang-Rice

FIG. 19. Spin correlations on thep=3 spiral as a function of position on the chain for(a) nearest-neighbor correlations in the locally
periodic system,(b) third-nearest-neighbor correlations in the locally periodic system, and(c) nearest-neighbor correlations in the locally
antiperiodic system. The two ground statesufAl and ufBl are represented by the symbols3 ands, respectively.
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singlets. In the Fermi-liquid picture we expect six Fermi
points, with a small Fermi sea centered on the origin filled to
k= ±p /4 and two symmetrically related filled regions be-
tween ±p /2 and ±3p /4. A Bragg spot would be expected at
k* = p /4, which is close to the observed behavior but does
not accurately describe the system. There is a small patch of
filled Fermi sea close to the origin which is bound by strong
divergences which are either power-law divergent or con-
verge on a length scale of tens of unit cells. The magnetism
is consistent with the nesting vector across this region.

The results for locally antiperiodic boundary conditions
are shown in Fig. 18. They are very similar to those of the
p=2 spiral, with the number correlations very like those of
the linear chain, and the spin correlations are short-range.
There are minor differences, such as the small occupied re-
gion near the origin[Fig. 18(c)]. Most importantly, the long-
range contribution clearly vanishes, and we do not have a
Fermi-liquid state. As we saw for thep=2 spiral, there is a

clear broken symmetry, illustrated by the spin correlations
shown in Fig. 19. The antiperiodic system exhibits a clear
dimerization, while the periodic system also displays a
weakly broken symmetry which is clearest when examining
the third-neighbor correlations shown in Fig. 19(b) (the sys-
tem has a direct bond between third nearest neighbors). Both
systems have a quantum ground state which appears to be a
valence bond solid. In addition, the hole appears to act as a
domain wall, as was the case forp=2. This is expected to
become less important as we move towards two dimensions.

C. p=4 spiral

We now move on to analyze the casep=4. The loops of
the spiral are nowpentagonaland are longer than the loops
of the underlying square lattice and should consequently be
less influential. Each section of the spiral has an odd number
of sites and so a hole moving around the small loop can have

FIG. 20. Correlations on thep=4 spiral with periodic local boundary conditions, from(a), (b) semiclassical spiral calculation;(c), (d)

finite-size scaled Lanczos calculations.(a) Short-range contribution toN̂k. (b) Long-range contribution toN̂k. (c) Finite-size scaledN̂k. (d)

Finite-size scaledŜk.
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an unfrustrated phase with local periodicity and a frustrated
phase with local antiperiodicity. The noninteracting solution
has eight Fermi points located at

k < 0.204p, 0.3288p, 0.6024p, 0.9777p, s45d

and their reflections aboutk=p. The results for the locally
periodic boundary conditions are given in Fig. 20. The occu-
pied regions are consistent with the Fermi picture, and the
long-range contribution disappears quickly. The underlying
background is smooth, and there is no evidence for any kind
of divergence in the occupation number. The spin correla-
tions almost exactly mirror the structure factor scaled to area
sss+1d=3/4 and correspond to essentially pure nearest-
neighbor spin correlations. This state doesnot display the
broken symmetry we have seen in previous systems and has
the characteristics of a resonating valence bond state,28 a
truly quantum phase.

The p=4 system with locally antiperiodic boundary con-
ditions (Fig. 21) is surprisingly similar to the periodic sys-
tem. The occupied regions mirror the noninteracting solu-
tion, with the exception of a small region close tok=p
which is unexpectedly filled. The spin correlations once
again are well described by the scaled structure factor and
offer the same RVB state as the periodic system, with no
evidence for a broken symmetry or a domain wall formed by
the hole. Note that this equivalence of boundary conditions is
indicative of the thermodynamic limit being approached.

D. p=5 spiral

The final system we will examine is thep=5 spiral. Al-
though this is the most relevant system with regard to con-
vergence toward two dimensions, as we have already dis-
cussed, we are unable to solve systems large enough to
converge. This is an unfrustrated system with ten Fermi

FIG. 21. Correlations on thep=4 spiral with antiperiodic local boundary conditions, from(a), (b) semiclassical spiral calculation;(c), (d)

finite-size scaled Lanczos calculations.(a) Short-range contribution toN̂k. (b) Long-range contribution toN̂k. (c) Finite-size scaledN̂k. (d)

Finite-size scaledŜk.
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points atk=p /6 ,p /4 ,p /2 ,3p /4 ,5p /6 and their reflections
throughk=p. The behavior is now complicated, and the data
appear quite ragged and hence are difficult to interpret. The
results for the locally periodic system are shown in Fig. 22.

The results for the periodic system are very similar to
those obtained forp=4, with only nearest-neighbor spin cor-

relations observed and no divergence inN̂k, although the
occupied regions are broadly consistent with the noninteract-
ing solution. The antiperiodic system(Fig. 23) displays es-
sentially the same behavior. There is no broken symmetry
evident for either system and little dependence on the global
boundary conditions. The equivalence of the two types of
local boundary condition suggests that the spiral loops may
be longer than the correlation length and the calculations
have converged.

The final task in the finite-size scaling analysis of this
section is to consider the sequence of converged systems as a

function of p and identify a pattern. The earlier systems in
the sequence were seen to be strongly dependent on local
boundary conditions and exhibited quantum states character-
ized by a broken symmetry and a spinon bound to the hole.
The broken symmetry vanishes atpù4 and leaves a quan-
tum state that is essentially comprised of resonating valence
bonds. In a related paper27 it has been shown using these
techniques that thet model on the triangular lattice is pre-
dicted to have an ordered three-sublattice 120° antiferromag-
netic ground state, which is simultaneously a single-
component Fermi liquid. This implies that the techniques we
have used are capable of identifying classical and quantum
states and that any bias towards one or the other is small.

E. Square lattice

In the previous sections we have performed both semi-
classical spiral calculations on infinite systems and quantum

FIG. 22. Correlations on thep=5 spiral with periodic local boundary conditions, from(a), (b) semiclassical spiral calculation;(c), (d)

finite-size scaled Lanczos calculations.(a) Short-range contribution toN̂k. (b) Long-range contribution toN̂k. (c) Finite-size scaledN̂k. (d)

Finite-size scaledŜk.
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numerical calculations on a series of systems which limit to
the CuO2 lattice. An examination of the occupation numbers
predicted by these calculations suggests that the semiclassi-
cal approach can be consistent with the numerical calcula-
tions. Ultimately, we would like to be able to study the
square lattice in detail. Numerically, this is not possible as
we are restricted to low values ofN and, hence, low values
of p, but having established the consistency of our two ap-
proaches, we can use the semiclassical technique to study the
square lattice directly.

We first calculate the preferred pitch of the classical spi-
ral, which, asp becomes large, can be seen to converge
towards the commensurate position,q=s2p /3ds1,1d, the
classical 120° phase usually associated with the triangular
lattice, and a type of three-sublattice antiferromagnet. This is
depicted in Fig. 24. FIG. 24. The preferred two-dimensional classical spiral.

FIG. 23. Correlations on thep=5 spiral with antiperiodic local boundary conditions, from(a), (b) semiclassical spiral calculation;(c), (d)

finite-size scaled Lanczos calculations.(a) Short-range contribution toN̂k. (b) Long-range contribution toN̂k. (c) Finite-size scaledN̂k. (d)

Finite-size scaledŜk.
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Using this knowledge, we can calculate full two-
dimensional wave functions, yielding the results shown in
Fig. 25. The long-range contribution to the occupation num-
ber decays quite rapidly, and its weight is distributed
smoothly into the short-range contribution. The calculations
which include the most hops indicate a “flat top” with a
well-defined rim and a slight indentation, but there is no
evidence for a divergence. The noninteracting Fermi surface
is the square connecting the midpoints of the sides of the
Brillouin zone, and although the smooth peak respects this

line, the expected divergence inN̂k is not located on this

Fermi surface and has no remnant in the short-range
contribution.

VI. CONCLUSIONS

In this paper we have studied a restricted limit of a fairly
simple model which is of relevance to the cuprate supercon-
ductors. We make two main assumptions when developing
our model. First, we assume that behavior of the cuprates is
controlled by the chemical bonding, and we do not include
other types of coupling—e.g., phonons, plasmons, excitons,

FIG. 25. Occupation number correlations on the square lattice.(a) Long-range contribution.(b) Short-range contributions including six
hops.(c) Short-range contributions including seven hops.(d) Short-range contributions including eight hops.
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etc. This leads us to study the three-band model, which is the
standard starting point for the cuprates. Our second main
assumption is that the charge degree of freedom on the cop-
per ions is frozen, consistent with the known Mott insulating
behavior. This permits the reduction of the three-band model
to the t-X model, to which can be added direct oxygen-
oxygen hoppingtp and/or a Heisenberg interactionJ. These
terms are intrinsicallysmaller than t and X, and we choose
not to include them. A popular method of approaching this
model is to reduce it to thet-J model using the concept of a
Zhang-Rice singlet1 to project out the oxygen states, leaving
only the copper square lattice. This corresponds to the domi-
nance of Cu3+ in the intermediate state for fluctuations,
which is not seen experimentally. We choose to study the
opposing limit of Cu+ dominance, which is physically rel-
evant and provides theX-J model.

The t-J model and theX-J model are both beyond the
scope of current techniques to allow us to gain a clear un-
derstanding of either model, but there are some limits in
which progress may be made. In this article we have studied
the motion of a single hole in the limit of vanishingJ, leav-
ing only theX model. Although we have not presented the
evidence here, the inclusion oft permits the one-hole prob-
lem to exhibit a first-order transition from a ferromagnetic
ground state at t /X=1 (corresponding to Nagaoka’s
ferromagnetism20) to a sophisticated low-spin ground state at
t /X=0, which is the subject of this work. The real physical
system hast /X<0.2, which isbelow the transition to the
high-spin ground state. We also wish to point out that the
low-spin ground state which our calculations suggest will be
stabilized further by the inclusion of the ubiquitous superex-
change interaction present in the real system. This is in con-
trast to thet-J model where the hole motion and superex-
change are in direct competition.

We have utilized two separate techniques to study a se-
quence of geometries which limit to the CuO2 lattice. Our
chosen methods are(i) exact diagonalization via the Lanczos
algorithm and(ii ) classical spin spirals plus quantum fluctua-
tions. The computational limitations imposed by the Lanczos
algorithms provide a severe restriction on the size of systems
we can study and we are limited to studying spiral geom-

etries with pitchpø5. We are able to compare the two ap-
proaches, and we find that the semiclassical approach can be
consistent with exact diagonalization, in that the occupation
numbers predicted by both techniques are consistent, al-
though some care is required. We also note that systems with
small values ofp are tractable, but are not necessarily repre-
sentative of the large-p limit, corresponding to the square
lattice of interest.

All of our calculations suggest a strongly quantum solu-
tion, characterized by dominant nearest-neighbor spin sin-
glets between copper local moments. The nearest classical
state is not magnetic, but is the noninteracting half-filled so-
lution of the Hubbard model: the filled regions(consistent
with the expected large Fermi surface) observed in our cal-
culations usually mirror those of the noninteracting solu-
tions, although the anticipated Fermi discontinuities are re-
placed by a smooth transition between filled and unfilled
regions. The tightest spirals we studied yielded a broken
symmetry, where the preferred valence bonds become local-
ized, forming a valence bond solid which ties the Zhang-
Rice singlet onto one of the two sublattices, promoting mo-
tion around only half of the available loops. As the spiral is
extended, this broken symmetry is lost, and the valence
bonds “melt” to form a type of resonating valence bond state.

We also briefly studied the square lattice problem directly
using the semiclassical technique. These calculations suggest

the absence of a divergence inN̂k, indicating that the system
does not exhibit Fermi-liquid behavior.

In summary, we believe that a single hole in theX model
yields an interesting low-spin quantum ground state. This
state isnot a Fermi liquid and is best described as a resonat-
ing valence bond state. Further investigation is required in
order to determine the effect of introducing additional holes,
which we have not attempted in this work.
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