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One hole in a CuO, plane: Resonating-valence-bond-like behavior
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Although convincing arguments have been made which suggest that the three-band model of the high-
perovskite superconductors can be reduced to the singlethhntbdel, there is a wealth of experimental data
which indicates that this simplification may not be as valid as was first hoped. We perform variational and
numerical calculations which demonstrate that in the absence of the Heisenberg interaction, the three-band
model can provide #ow-spinground state, not the Nagaoka ferromagnetism predicted by thedel. We
focus attention on the copper spin-spin correlatiénand the oxygen hole occupation numlﬂe(rin order to
provide evidence for or against long-range magnetic order and a Fermi discontinuity, respectively. The ob-
served behavior appears similar to a Fermi liquid with a large Fermi surface, but there is no discontiﬁuity in
and the system is clearly dominated by quantum spin fluctuations. A tendency to form spin dimers is seen,
providing evidence for aesonating valence bonground state.
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I. INTRODUCTION H = _A,E diTadirr+ UE diTTddeiTidii
lo 1

The emergence of superconductivity upon doping some
antiferromagnetic Mott insulators remains one of the least-
well-understood problems in condensed matter physics, de-
spite the vast amount of activity in the field. A variety of
possible mechanisms have been proposed: a single ho
moving in a Mott antiferromagnétspin bags, the interac- orbitals illustrated in Fig. 1.

tion between pairs of holes moving In an inerant ye have chosen to make all neighboring copper and oxy-
antiferromagnet,phase separatiqtripes,* and bipolarons  gen ‘states bonding which is equivalent to translating recip-
are among the many proposals. These ideas are often ex;ca| space by, ). All energies and matrix elements are
tremely sophisticated and can sometimes require uncOnsypected to be positive. In the ground state of the parent
trolled assumptions to be made. In this paper, we extengdompounds there is a single hole in the,3,> orbital on
previous worR on a simple model which does not require every copper sitégiving Ct?*, 3d%), and the oxygen states
such assumptions, and we demonstrate that this model digre filled (02, 2p°). Upon hole doping, the extra holes enter
plays some of the basic physical phenomena present in th@e planes in the oxygenp? 2p, orbitals, and hence any
high-T, superconductors at the level of a single hole dopedreatment of this model is constrained by single occupancy of
into a CuQ plane. Even the apparently straightforward one-the copper sites. The approximate values of the energy scales
hole limit requires considerable sophistication to investigaténvolved can be obtained from experiment, where one can
adequately, and we do not attempt to study the interactionaturally useJ, the superexchange couplifig?® Jg, the cy-
between charge carriers which may lead to superconductiwlic exchange energy# W, the single-hole bandwidtt, and
ity. We also choose to ignore the superexchange interactiorop: the optical gaf to constrain the values of these param-
preferring instead to focus on the correlations induced by th€ters. This does not unambiguously provide the energy
motion of the hole. The two fundamental questions we ad-
dress are, is the system a Fermi liquid, and how does the %0(22? )

Pal T

+ VE (diT(rpja'+ pjT(rdia') - tp 2 pJT(rpj’(r’ (l)
e (Qihe

here diTU creates a hole of spia on copper sitd in the
L2_,2 Orbital, andeg does likewise for the oxygenp2, 2p,

motion of the hole lift the spin degeneracy?

The reduction of the natural three-band model arising
from the solid-state chemistry of the cuprates to the single-
bandt-J model has led to an intense but largely unsuccess-
ful effort to explain the physical properties of the high-
superconductors within the one-band framework. In this
work, we demonstrate that theJ model leads to a very . .
different ground state to the natural three-band model, and g

; 0(2p,)
CHD D G
\ Cu(3d,2 —y2 )

this provides a possible explanation for the asymmetry of the
phase diagram with regard to electron versus hole doping.

We commence by introducing the model under consider- FIG. 1. A single copper-oxygen “plaquette” showing the orbitals
ation. The three-band model for holes in the Guyitanes i$  involved in hybridization.

1098-0121/2004/1Q0)/20511926)/$22.50 70205119-1 ©2004 The American Physical Society



M. W. LONG AND I. B. STYLES PHYSICAL REVIEW B70, 205119(2004

scales, but most of the experiments are explained by the AA=B. AB =A
following choice. The first two terms of E@l) operate on e b
energy scales oA =2 eV andU =10 eV, respectively, and R
this provides the Mott restriction of single occupancy, while B/A =A, BB, =8B,
the third term operates on a scdle=0.75 eV, and this lifts

the copper spin degeneracy at second order. Since the maf&?d consequently that
rial is a known Mott insulator, we may treat the hybridization 1. 1.
V as a perturbation to the atomic physics, and employing a §==(B;-A), ti==(B+A) (5)
canonical transformatidn lifts the spin degeneracy and pro- 2 2

vides the effective Hamiltonian are projection operators onto the antisymmetric and symmet-

Heﬁ:XE D diTg—p]T(r’pj’O'diU’ -t IOjTgpjrg ric subspaces, respectively. The singlet
(o Gj"ye! (o Gjy 1
f Tt
= => od p- 6
—tpE pjTapj’zr (2 3 V’2§ o) ©
(i"e .
under the constraint of single copper occupancy. Note thr"émd triplet

absence of the indexin the summand of the second term, T =gl p!

although it is summed over. This corresponds to a hole being o

allowed to hop from one oxygen site amy other oxygen site

on the same plaquette. The sum is then over the neighbors of TOt = iz dt p-T— 7)

the copper ion, not the neighbors of the oxygen ion, and so s e

second-neighbor oxygen hopping is also included here. The

energy scales ar¥=UV?/A(U-A) andt=V?/(U-A), and —

the associated terms display distinct behavior. The first term Ti]jT = diTlpL

moves the oxygen hole on a plaquette, exchanging its spin

with the associated copper hole. The second term hops 1P

g;iyngse.n hole on the plaquette, but does not exchange the H:Z(X—t)z £ —Z(X+t)2§, ®)
The presence of direct oxygen-oxygen hopping tja ' '

complicates matters somewhat. This amounts to an anisQuhere

tropic reparametrization of the second term of &), which

erators allow the model to be represented as

includes both first- and second-neighbor hopping of oxygen .1 a "

states, since the hole hops to all sites with which it shares a b= EE 2 T TiJ’ 2 T ©)
copper site. In addition, this term prevents the reduction of « W @

Eg. (1) to a Kondo lattice model, by preventing the exact

decoupling of bonding and nonbonding states. In practical A _}2 'S5 (10)
terms, the inclusion of, adds unnecessary complexity to the S = VAT Sj<ij y S’

model, and we set,=0, choosing to study the competition

between the energy scafeand X only. Physically, a careful ~ These two terms can be isolated by the choice of parameters
analysis of the signs of the interactions reveals that setting= +x_ providing two exactly solvable limits.

t,> 0 (the physical assumptigcorresponds to an increase in - The first exact solution is found by setting-X, corre-

t, which is equivalent to a reduction Ih—A. This favors the  gponding to the unphysical limty=-A. The model here is

fluctuation Cé*+— CLP* (for which there is no experimental sum of triplet projectors and so has a positive-definite spec-
evidencé®'9 instead of the Ctf— Cu" fluctuations favored  trum. The ground-state manifold is large and consists of

in the largey limit. o _ states when all the projection operators have vanishing ei-
For a single hole, we can identify two exact solutions ofgenvalues, yielding zero total energy. This can occur in one
the model. Employing the operators of two ways: the oxygen hole is insingletwith its neighbor,
-1 or the hole wave function has zero average we{ght, is in
A=7 > > d;radio’pjr'gfpjov (3 a nonbonding orbital From these ideas we can construct a
(Do (ij "o’ large number of ground states with a variety of properties.

This task is simplified greatly by noting that solutions for the

linear one-dimensional chain are also valid solutions of the
~_1 SS + two-dimensional systena nonbonding orbital in one dimen-
B = 7 PiroPio (4) sion remains a nonbonding orbital in two dimensions, since
the phase cancellation stops motion onto the perpendicular
(whereZ is the coordination number of the latticét is easy atoms as well The linear chain can trace any path in the
to show that in the subspace restricted to a single oxygeplane provided that any loops may only be traversed in one
hole, direction.

(ijo jj
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Consider first the possibility of local spin singlets. Repre-whatever the choice of sping. The statd,) is a triplet in

senting a singlet using the common notation a nonbonding orbital, an,), |¢) are local singlets. These
two ideas can be combined to form two ndéwecal ground
|55) = @’ 1Y) states:
1) .
and noting that a hole cannot be in a singlet with both neigh- _ 09010y - O3 ¢ T4t
bors simultaneously, we observe that ) = h 17)

ISij>= @@ —."'-0'0'0'20'10'3'0"-1-"

(12) has the hole hopping in a pure nonbonding orbital, while

. . - t 09010y 0 O3 0 Oyt

is a ground state of the full lattice, where indicates a lyn) = h (18)
copper siteh is the oxygen hole, and - is a filled-shell oxy- - ...
gen site. The hole is in a singlet when neighboring either of

the outer copper spins and cannot interact with them. Prohas the hole hopping via the translation opair of spins
jecting the hole and the central spin onto a triplet yields thesuch that the spin order is preserved. These local solutions
same state for both configurations, and the choice of phas¥e readily generalized, providing

0y - 010203 * 04"

means this is @monbondingconfiguration. The more general h

state which allows the hole to delocalize freély the above + 090, 0, - O3 - 0400

state, the hole is localized to the central copper) sigs be h

constructed by analogy quite easily, and we obtain l=— ... : o (19
Yy ay q Y, (o)) 0y 01 O3 Oy

h
|¢ =+ @@ @ + - 0pg 0Op 030104 "
- & ®E R e
h
— @ . @@ + g0 Oy - O3 - Oy

h
+ & - D& DA D Y P (20
h
+ (13 + 0901 Oy 030,

The solutions provided at—X have full spin degeneracy
hich is lifted as we perturb away from this point. We can
pply second-order degenerate perturbation theory to show
that the first type of solution, the nonbonding state, is most
elevant at <-X, well away from the real physical limit, but
e second type is an excellent picture of what we believe to

states or Zhang-Rice singlets. Such states are particular
useful as they allow the hole to delocalize without incurring
a penalty from the formation of triplet states.

We may also identify a second class of ground state. Th
states

where the phases are chosen to provide locally bondin@

" \ occur in the system and provides us with some physical in-
h tuition for the behavior of the system whér —X. The non-
t 000107 0 030 0 bonding state does not lift the degeneracy, but in the states
h where the motion preserves the spin order, the singlet inter-
™ _ 4 + 09007 h- O3 * 04" 3 (14) action_stabilizes the Heisenberg ground state. In Sec. IV we
numerically solve the-X model very close ta=-X (the
T 7t 0o 010203 047 limit itself cannot be solved uniquely due to the degenexacy
h and we find that the resulting ground state is essentially that
(~ Y0 020103 047" of the nearest-neighbor Heisenberg mageke Fig. 12, with
. N the hole motion described by E@O0). This is consistent with
e our observations in this se_:ct_|on. _
) = 0 hl 2773 T4 7 (15) In the second natural limit=X corresponding ta\=U,
e GO O e O e e the model is expressed in terms of the singlet projectors only.
07251 = %3 - T4 Since the sign of the coefficient is negative, the ground state

N is reached when the projection operators have their maxi-
. mum eigenvalues. This maximugunity) is reached when

Og * 010203 * Oy . . . .
) = N (16) the hole spin and copper spin are in a local singlet, and the
hole is simultaneously in a pureonding configuration, a
Zhang-Rice singlet. Clearly this cannot be achieved on
(whereh labels the oxygen hole and - indicates an unoccuneighboring copper sites as the oxygen hole cannot be in a
pied oxygen siteare all eigenstates of the triplet operator, singlet with both copper spins simultaneously.

— *t0g 020,03 * Oy
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The action of the Hamiltonian preserves Zhang-Rice sin-
glets, and hence one can represent the system on the copp
sublattice only in terms of the states

[Icjoo= 2 s,IId, 0, (21)

i jeli’y i’

where the operatdﬁﬂ creates a local coppefi-) oxygen(j)
singlet, and the sum ovgre {i’} implies summing over the
oxygen neighborsj of copper sitei’. This provides the ef-
fective Hamiltonian

FIG. 2. An example spiral geometry, with “pitchg’=5.

H==2Zt,2, CioCh —th 2 CiO'CiT’g—+ ux CiTTCnC?lCu, ) o ) ) ) )
io (i i in the one-hole limit. In this article, we provide evidence that
(22) such behavior may be observed in th¥ model[Eqg. (2)].

where U is the Coulomb repulsion antj, is the effective
hopping energy of the Zhang-Rice singlet between adjacent Il. METHODOLOGY
copper sites. The limiU—« restricts the system to single

occupancy, yielding the one-band model. Once again, th%t
background spin configuration remains exactly degenerateﬁ,C
but this is lifted as we perturb away frob=X. The limit

We have chosen to study a single hole on the Csuare
tice using the scaling properties of finite systems. The dif-
ulties involved in scaling pure two-dimensional systems

=X ” ¢ tic back 4 white X are such that we have elected to study one-dimensional scal-
provides a ferromagnetic background w pro- ing, followed by the scaling of a sequence of one-

vides the Heisenberg ground state. The dominant contribudimensional systems which limit to the desired two-
tion of the Zhang-Rice singlet near to this limit is verified by dimensional system. Such an approach has inherent

the ndqmegpal cal_culat_ll%r}s _presented tm Fig. 12 ?nd the_ Sll”difficulties: one-dimensional systems are pathological and
rounding discussion. This 1S an e€xact mapping for a SiNgle, .o 4imost always spin-charge-separated Luttinger liquids;
hole, and the model is exactly solvable in this limit on thehence great care is required. However, such an approach
square lattice aU=:: the Nagaoka probler?, providing a .offers useful simplifications: the associated variables are one

ferromagnetic ground state. There is no experimental ®Vldimensional and so are much easier to handle exhaustively.

dence for such a phas_e in the cuprate superconductors; N" The geometries that we study in this work are perhaps
deed, at the level of a single hole the ground state is strongIMest represented apirals as shown in Fig. 2

antiferromagnetic. In order to destabilize the ferromagnetism This is exactly equivalent to the linear chain with addi-
the weaker antiferromagnetic Heisenberg interaction arisin%Onal pth-neighbor bonds, and in the limKiesss, prsos

from_ superexchange must be included, leading to the WidelehereN is the number of sites in the chairthis geometry
studiedt-J model, tends toward the square lattices long asd\/p remains fi-

J nite). The Brillouin zone for these systems maps onto a line
H=—1th 2 C,Ch +>2 S-S +UX cleidlc, which crosses the square-lattice Brillouin zopeimes in
(i")o 2<n'> i one direction as the zone is traversed in the orthogonal di-

(23) rection, as shown in Fig. 3.

Our representation then implies that the two-dimensional
with single occupancy again enforced hy=«. There is reciprocal lattice vectok =(k,,k,) is subject to the restriction
hence a competition between the Nagaoka tendency towald/k,=const, and so we can use a scalar representétion
ferromagnetism and the Heisenberg interaction which desiredotice that the simple free-electron picture predicts that
long-range magnetic order. In the undoped case this model these systems will have a complicated multipart “Fermi vol-
a pure Heisenberg antiferromagnet, and one would expectme.” For large values gp, the one-dimensional behavior
the addition of holes to destroy the antiferromagnetism. Thdecomes very complex and extracting the two-dimensional
phase diagram of the single-layer cuprates indicates that thicharacter from the scaling data requires great care.
phase is destroyed by surprisingly small concentrations of One complication that results from this choice of geom-
holes and is replaced by the superconducting phase. Thedry is the nature of the boundary conditions. One can envis-
leads one to conclude that the energy of the hole motiomge the spiral connected ast@us if we choose to have
destroys the long-range correlations favored by the antiferroelosed boundary condition& natural choicg and this cre-
magneticJ, suggesting that themodel describes this situa- ates two sets of boundary conditions. The most obvious is
tion correctly. This is certainly true @&=U, where the three- the choice of periodic versus antiperiodic boundary condi-
band model reduces exactly to the one-band model, butons around the whole system, equivalent to the inclusion of
provides a ferromagnetic state which is not seen experimera flux through the center of the torus. There is also a choice
tally (whereA=0.2U). One must either include a dominant of phase inherent in moving once around a segment of the
antiferromagnetic interaction or study a model in which thespiral, and one can also have periodic-antiperiodic boundary
charge motion stabilizes the observed low-spin ground stateonditions around this loop, equivalent to the inclusion of a
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lytic form of S< for the classical spin-half Neél state on the
square lattice:

~ 11 (1 N)
3<-2 25k0+ >t Qs (26)
where it is easily shown that the contributionSgfrom the
Bragg spotk=Q is 80/3:;11. The remainder of the spin den-
sity is contributed by a short-range background state. In the
forthcoming numerical calculatiori§ec. IV), the Bragg spot
(long-range ordershows up as a peak which diverges with
system size, whereas the short-range background is well con-
verged.

The corresponding operators for investigating Fermi-
liquid behavior are

1
N

Ian = 2 piT,gpi+n,(r (27)

jo

FIG. 3. The reciprocal-space representation of the5  for a translationally invariant system, with the resulting
spiral. transform

flux through the center of the spiral. When dealing with finite Ng = 12 e kRN, (28)
systems, one must consider all four possible combinations of Ny

boundary conditions. Only in the thermodynamic limit do the
boundary conditions become equivalent, and we will use thi

fact to judge whether a given system is representative of thig,, cuprates are Mott insulators at zero doping, suggesting

limit. We will discuss this issue in more detail in Sec. IV. that they are half-filled, this is only true with regard to the

The two issues which we will investigate in this work are CU?* band. In the parent compounds, the oxygen bands are
rather fundamental to the understanding of the basic naturgr.npty Wh.en we add a single oxygen,hole to the system, the
of high-temperature superconductivitiTS): the magnetic ' - '

ordering induced by motion of a hole and Fermi liquid be—OCCUp""t?On numl;emlk s eﬁuaﬂ t?‘SNk WQLChdiS thechanrg]]e:?f.” d
havior. The first issue is important since the most popula Cczp%t'on numoer asbt ed |0:e 'Sg ed not tﬁ.a a '-dl €
model of HTS is the-J model, which predicts that a single °and, butto an empty band. For a Fermi gas, this provides a

hole will induce ferromagnetism in the absence of superexﬁ'funcnon peak at t_he Fermi Ieve] when a single hale is
change, while the second issue may be important in helpinﬁdded: the occupation is discontinuous betweeAn full and
to understand recent experimédtsvhich have observed €empty atT=0. In finite systems one would expef_=1,
possible non-Fermi-liquid behavior in the cuprates. We in-since one is adding a single hole. In the case of an interacting
vestigate these issues using two analogous procedures. Fermi liquid, there is still a discontinuity at the Fermi level,
The natural quantity to consider with regard to the mag-but with a reduced heigl#,. A finite fraction of the hole is
netism is placed at the Fermi point, and the remainder is spread

smoothly over the rest of the Brillouin zone. For a single

o 12 A A particle,Ekazl, and so the height of the peak at the Fermi
Shi= N“ S+ Sitns (24) point is reducedas N increases as the weight of the single
' particle is spread oveN k points. It is therefore useful to

for a translationally invariant system, with the associated’ormalizeN,, and in practice we actually calculaliéN,. We
reciprocal-space operator will see that this allows us to isolate the discontinuity at the

Fermi level as a peak which diverges with system size indi-

. kR cating long-range order, set against a background of short-
&—Ee She (25) range correlations which converge. The rate at which the
. peak diverges provides a signature for Fermi-liquid behavior:

These operators are of direct relevance to elastic magnetigr both interacting and noninteracting Fermi quUiMkF
neutron scattering, and the Bragg spots which correspond to

) < ~ N, while for Luttinger quuids,NNkF~N“, where O< a<1.
long-range order are described by a peakSnat k=k*, The behavior of the peak at the Fermi level thus provides

which diverges linearly with system size. The presence of &g ith a characteristic signature for Fermi liquid behavior.
Bragg spot tells us that all spins are involved and are COMMeghort-range correlations will converge with system size,
lated in a spiral with E)itcrk*. These operators are subject t0 \yhereas the long-range correlations which characterize
the constraint1/N)=, S.=s(s+1)=3, and at most of thisis ~ Fermi and Luttinger liquids will be seen as a peak at the
contributed by the Bragg spot. This is illustrated by the anafermi level. If the peak diverges linearly with system size,

The interpretation of these quantities is subtle and re-
uires some explanation. First of all we note that although
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FIG. 5. Low-spin Lanczos calculation on the=3 spiral with
FIG. 4. High-spin Lanczos calculation on tipe3 spiral with  antiperiodic local boundary conditions and global boundary condi-
periodic local boundary conditions and global boundary conditionsions indicated in the key(GA=globally antiperiodic, GP
indicated iAn the keyGAA:gIobally antiperiodic, GP=globally peri- =globally periodig. (a) éK and(b) Nk. The dashed lines represent
odic). (@) S and (b) Ny. The dashed lines represent the structurethe structure factor for comparison.
factor for comparison.
o L ) cating that the system lacks magnetic long-range order and is
then this is indicative of a Fermi liquid, whereas Hf di- not a Fermi liquid.
vergence suggests Luttinger-liquid behavior. If the diver- Renormalization group arguments suggest that the num-
gence is absent, then the correlations are short range onlye; of fundamental styles of behavior that a system may
and the system becomes very difficult to classify. exhibit are highly restricted. We have already discussed
_ These comments are best illustrated with an example. |erm; liquids versus non-Fermi liquids, but each of these has
Fig. 4 we show the results of finite-size Lanczos calculationgmportant subcategories, and it is crucial to be able to iden-
on the p=3 spiral, with the restriction of high total spin, ity and distinguish between these distinct states. We have
meaning that all spins are parallel, with the exception of Already discussed how to identify a Fermi liquid, but it may
single flipped spir(the ferromagnetic state is trivial occur in two basic forms: single component and two compo-
Clear linear divergences can be seen in bgttandN,,  nent. The two component Fermi liquids are distorted nonin-
indicating both long-range ferromagnetismd Fermi-liquid  teracting systems with the same symmetry and with spin
behavior. Finite-range correlations are revealed via converdegeneracy in the quasi particles. The single-component
gence as the system size becomes greater than the correlatigrmi liquids tend to be magnetic, and the broken spin sym-
length. These results should be contrasted with the low-spimetry gives singly degenerate branches of quasiparticles.
ground statg(Fig. 5 where S,=0 (for an even number of These distinct situations can be distinguished using the posi-
sping or SZ:% (for an odd number of spinsThe two quan- tion of the divergence in the scaled occupation number. If it
tities can be seen to cleanly converge to a finite limit, indi-should occur at an extremum of the underlying structure fac-

205119-6



ONE HOLE IN A CuG, PLANE: RESONATING-.. PHYSICAL REVIEW B 70, 205119(2004

tor, then there are pools of quasiparticles, and this is typical . ANALYTICAL RESULTS

of a single-component fluid. If the divergence occurs at the

noninteracting Fermi level, which tends to be at a point of In this section we present a novel variational technique
inflection in the structure factor, then the system is a two-with which we are able to calculate the type of classical spin

component fluid. To determine which type of fluid we may spiral preferred by the motion of a single hole on our spiral

be dealing with, we must determine whether we have a larggeometries. The technique is a generalization of standard
or small Fermi surface. In our calculations, we add a singlespin-wave theory to the motion of a single hole: we assume
oxygen hole and so the small Fermi surface corresponds @t the hole motion will prefer a spin spiral and then add

the single-component case and a small pool of electrons bey,antum fluctuations to determine thgiral pitchwhich op-
ing generated at an extremum of the structure factor. Thgni-es the hole motion.

experimentally relevant large Fermi surface case involves the
background copper spins contributing towards the Fermi sur;
face and the two-component fluid picture. We find the secon is direction spirals from site to site. Noting that the hole

case in our calculations and offer a picture of how the singleesides on a separate sublattice. we must also assian a quan-
hole can dominate all the copper spins and push them tgs P ’ gnaq

wards this large Fermi surface picture. tization direction to the oxygen sites, and we choose this to

Non-Fermi liquids are much more subtle as they arebe_ Contir_luous with the copper lattice. The pitch of thi_s spin
rather less well understood than Fermi liquids, but we carsPiralk” is treated as a variational parameter over which we
identify two broad subcategories. The best known are th&ill optimize. In addition, the hole is allowed to delocalize
Luttinger liquids, which we have already discussed briefly.With wave vectorg* which must also be optimized. For all
Like the Fermi liquids, the Luttinger liquids also display a the systems we have analyzed in this paper, we found that
divergence in the scaled occupation number, but the diverd* =0 is the optimum, and there is no need to discuss this
gence is not linear, varying a¥®, where O<«<1. Both  parameter any further.
types of Fermi liquid can provide an analogous Luttinger It is useful to consider how this approach relates to stan-
liquid, but the magnetic order associated with the two-dard spin-wave calculations. In the magnetic problem de-
component fluid is generally expected to be prohibited. Thdined by the Heisenberg model, the pitch of the spin spiral is
second type of non-Fermi liquid is the least well understoodset by the classical limit. Semiclassical spin fluctuations then
and hence the most interesting: pure quantum states with ngllow quantum effects to attempt to break down the classical
divergence of the occupation number. Such states have onBate. In the current problem, we have no direct magnetic
short-range correlations, and typical examples are valencG@teraction and so the spiral pitch is not governed by the
bond solids and so-called resonating valence b@dB)  cjassical limit, but is determined at the semiclassical level,
states. The correlation length can be significant, and thesgnere the hole binds into a Zhang-Rice singlet, which then

states are indistinguishable from the other types until thgye|gcalizes. This is why we must treat the spiral pitch as a
system size is larger than the correlation length, when th@ariational parameter over which to optimize

correlations are seen to converge to a finite limit. Such sys- It may seem strange to perform semiclassical variational

tems are distinguished by their correlation length, and it is ; . i}
important to be able to identify this. calculations on a system which one would expect to be gov

In the following sections of this article, we will show that erned absolutely by quantum effects. The reason we consider

the model we propose for the high-superconductors can these calculations to be useful is that they allow us to com-

indeed exhibit such a quantum ground state. Such states hag@'® the numerical calculations discussed in Sec. IV with

been observed in other models, and there are exact solutioR§Miclassical predictions. In fact we will see that some of the
present in the literature. The most relevant is tieodel on numerical results show some semiclassical characteristics,
cage geometrie In this model, a collection of atoms form and these calculations provide a useful consistency check.

a cage if each atom has chemical bonds of equal strength b€y are especially useful since they are not constrained by
every other atom in the cage. If there aratoms in a cage finite system size, gnd so finite-size effects in the numerical
and each atom is ip cages, then the Nagaoka problem mayWerk may be identified. o . ,

be solved exactly provided= 2p. The solution is a resonat- The first step toward the varlatlonaI. calc':ulayons we wish
ing valence bond state, where the hole is delocalized over th@ Perform is to rerepresent the Hamiltonian in our chosen
space of valence bond states containing one valence bond jgsis- We allow the spins to spiral in thg plane and using
each cage. The hole delocalizes by hopping onto these vihe z axis for quantization, the vacuum state may be written
lence bonds, generating an exponentially large superpositio®®

of such states. Some examples of such geometries are the

pyrochlore lattice and the checkerboard square lattice with

additional diagonal bonds on the black squares. The simplest ) = ir[e—i¢/2|T> + é¢/2|l>]. (29)
example is a chain of edge-sharing tetrahe@vih double V2

bonds on the connected edyeshich offers some of the

interesting phenomena exhibited by such systems, but not

all. The solution of this simple case is a valence bond solidvhich is a classical spiral with each spin canted at an asgle
containing a mobile hole with an additional bound spinonrelative to thex axis. Semiclassical fluctuations from this
and is quite easy to understand, providing a useful referencground state are, as in classical spin-wave theory, described
point for this work. by Holstein-Primakoff boso’g which are written as

To begin, we make a classical ansatz for the spin state:
ach copper site is given a fixed quantization direction, and
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- ¢')/2] with a spin fluctuation. This provides

b'l) = —=[- &) + d47)))], (30
V2 | e-¢ ¢ ¢ t
|y =| cos 5 +sin bt |4, (31)
where the quantization direction on each site has been cho-
sen to be parallel to the classical spin orientation. This leads b-' - ¢>
to a complication when describing the motion of the boson. bl ) = COSTb’T+ sinf—— ||¢'). (32)

The direct hopping of the hole from site to sit@a t) re-
quires these states to be rerepresented using a different ori- The X term is significantly more complicated as this also
entation. When the hole hops from a site with quantizatiorinvolves the copper spins. We denote the copper spin quan-
direction ¢ to a site with quantization directiog’, it hops tization directions usingy, and the anglep must now be
with an amplitude cd$¢— ¢’)/2] without a spin fluctuation represented in terms @& which must in turn be represented
and simultaneously hops with an amplitude £6ifh in terms of¢’. We have

|, 6) = cosd)2 cos |¢> Py + cosd)2 gsm b’T|¢ ¢’ >+S|n(ZS gcose aT|9 @)
+ sm%sm ¢ b'Ta’|g,¢'), (333

-0 _6-¢ -0 0-¢ -0 0-¢
b'|¢,6) = cosTcosT¢aT| 6,0 + cosqﬁTsin 2¢ a'b'",¢') - sinTcosT¢aT|0, ¢')
d)_ 't
- sin > sm b 16,0, (33b)
6 60- - 0 06—
a'lp,0) = COS¢2 cos—— ¢ b'T|6, ") + cos(z)2 sin—— 2¢ |6,¢") + sm%cos d b'Ta’|6,¢")
¢-0 t
- sstm a |6,0"), (330
0 0 -0 60-¢
a'b'|¢,6) = cosTcosT¢aTb’T|0 )+ cosTsm 4 a'lg, ¢y - sinqucosT(bb’W 6,¢")
+ sm%sm ¢ (330

wherea' creates a fluctuation on the intermediate copper site. The motion now involves up to two fluctuations per hop and is
clearly quite complex.

These results now allow us to construct a second-quantized description of the hole moving in our classical spin spiral under
the action of the-X Hamiltonian. We use an operato} to create a hole at oxygen siteand asinglebosonb' to denote any
fluctuation of thehole's spin. An array of bosona;r describes copper spin fluctuations, and our vacuum gatorresponds
to the state with all spins oriented parallel to their classical quantization directions. We can hence represent the direct hole
hopping as

=t > hJr [cos¢j ~ o + sir‘.d)j _ ¢j'(bT— b) |, (34
(j) Gj'"y 2 2

and the more important “shuffling” interaction can similarly be written as
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- t G=6 G-dr o )
Hx=X2 2 hih; cos—JZ—cosT[aiay bb' +a'ab’b +a'b +ab']
) Gj"y
=6 . 0 -0 60—
+ sini>12—'sin'qul[afb’r +ab-alabb’ - aa'b’b] + cosﬂz—'sin'qul[aia;rb’r +alb’b+abb’ +alab]

b -
2

or, in a more physically instructive form,

66—
+5sin L cos— 2¢' [a'bb +alab-aa'b- ab%]) (35)

Hy= §2 p) hj*,hj(cos@[l ~(af ~a)(bT-b)] + cos( o-2 +2¢"’ )[(euen-* - aa)(bb' — b'b) + (a] +a)(b" + b)]
) Gij"y
+sin® -24)1'[33 ~a+b'-b] +sin( 6~ @)[(m—*—da)(bﬁ b) - (af +a)(bb' - b*b)]). (36)

These representations aeactand can be used to reproduce local singlet. In turn, this maximizes its motion around the
the exact solutions discussed earlier. For the simple case ofraany closed loops in our chosen geometries. It has been
pure ferromagnet, all the angles are equal, ant=3¢, the  suggested that the hole carries a local “spin deformatian”
model reduces to polaron with it, but in fact the hole can only interact with
copper spins on sites which it travels across, and so as the

H=t> X hih[ab+ab’-aab’b-alabb’] (37)  hole moves, it generates new spin correlations between the

(i iy sites it traverses, leaving a “trail” of correlations. These di-

minish at greater distances from the hole, fading into a pre-

and hence ferred “background state.” In these calculations, we assume
TR S NP Tt Lt that the background state is a pure spin spiral and we need to

Hhi(b" - 2)[0) = - Zt% h;,(b" - a)|0) incorporate the local fluctuations that optimize the hole mo-

J tion. Since the preferred backgroundist likely to be a pure
-t h;,(b*—a:,)|0>, (38)  spiral, the hole will also attempt to generate longer-range
Q' fluctuations of the preferred order.

. i ) . In these calculations, we begin with the classical spiral
whereili " are a set of three neighboring atoms—viz., Cu-O-state. We then generate all states connected to this state via
Cu—and the oxygen sitgsandj’ are the neighbors of cop- jterative applications of the Hamiltonian. This amounts to
per sitesi andi’ (note thatj=I andj’=I are both allowel  successively “hopping” the hole and so the induced spin
This is in complete agreement with the exact solution at thigjuctuations must be close to the hole, being within the num-
point in parameter space. This representation allows a conber of hops applied so far. The size of the state space in-
pletely free choice of classical spin background, constrainedreases exponentially and we have to diagonalize large
only by the restriction to planar spins. However, for our Hamiltonian matrices, but this can be done for a size up to
choice of geometry there are additional constraints. For thabout 200 00& 200 000. The resultant energies are a func-
simplest geometry, the linear chain, we have tion of spiral pitch, and the spiral pitch which optimizes the

motion can easily be found. In this sense, the calculations are
6 = i+ (39) truly variational. In Fig. 6 we show the results of such a
: 2 calculation on the linear chain &tX=0.

o _ This problem has been previously studiednd is known
and this situation is much simpler. There are also caseg have a locally distorted Heisenberg ground state, in which
where the hole does not move and simply exchanges its spihe hole acts like a spinon. The ground-state energy is below
with the neighboring copper site. In this casg=¢;,, an-  -2.895, and our calculations obtain about 99% of this en-
other simplification. ergy. The optimal pitclk* appears to be converging on the

Unlike semiclassical spin-wave theory, where we describantiferromagnetic point. It should be noted that this is a par-
coherent fluctuations perpendicular to the classical spin oriticularly difficult example to interpret as the hole carries a
entations, in this problem we are trying to describe a spirspinon and hence there is a domain wall in the system which
polaron The hole induces local spin correlations which op-is very difficult to approximate within our spiral ansatz. The
timize its motion. One possibility which we may expect from result is a compromise in which the optimal pitch is kept
the exact solutions is that the hole will bind in a Zhang-Riceaway from the antiferromagnetic point to allow the spins
singlet, and as the hole moves around, longer-range spin coneighboring the hole to be partially parallel, as is required by
relations must also be generated to ensure that it remains intae true solution.
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FIG. 7. Classical spin spiral energies on thell spiral at
FIG. 6. Classical spin spiral energies on the linear chain at/X=0, as a function of spiral pitch. These graphs show the effect of
t/X=0, as a function of spiral pitch. These graphs show the effect odding progressively more hogg) 1-5 hops included angb) 5-8
adding progressively more hop&) 1-7 hops included anchb) hops included.

7-15 hops included. . ) ) o
dominate over the fluctuations which are solely within the

The nature of domain walls in two dimensions, where therange of the longest hop. The resulting magnetism is domi-
domain wall is a one-dimensional object and cannot benated by classical behavior. However, this technique is a use-
treated as a pointlike excitation, means that two-dimensiondul probe of the occupation number that we might expect this
systems are more subtle. In Fig. 7 we show the classicahodel to provide, since the background spins do not contrib-
spiral energies fop=11. This system contains a fairly long- ute directly, and the correlations are dominated by the fluc-
range hop, and we might expect it to demonstrate some twduations in the vicinity of the hole. As we discussed previ-
dimensional character. Much less variation is seen in the opausly there are two types of behavior which are
timum spiral pitch than was seen in the linear chain. Alsosuperimposed: smooth short-range correlations and divergent
note that the zero-pitch spiral corresponding to ferromagpeaks. The short-range correlations are indicative of local
netism isunstable and the ground state to thé model on  quantum fluctuations which serve to optimize the hole’s mo-
this geometry is very nontrivial. tion locally, while the divergent peaks indicate Fermi- and

Once the optimal pitch has been found, one can find théuttinger-liquid-like behavior. Since these calculations are
associated sequence of ground states and determine a gerformed on infinite systems, tridefunction peaks can and
quence of approximations to the desired correlation funcdo occur. However, the underlying classical spin background
tions. Including more extensive hops in the calculations isadds a complication. The induced fluctuations are necessarily
analogous to finite-size scaling, but note well that this type ohear to the hole, and the underlying classical spiral controls
calculation does not describe the magnetism very well. Theréhe behavior outside of this region. The finite probability that
are always a macroscopic number of spins which have ndhe state is exactly the pure classical spiral provides the
yet been affected by the longest hops, and these will alwayé-function contribution to begin withiwhen there are no

205119-10



ONE HOLE IN A CuG, PLANE: RESONATING-..

25

25

PHYSICAL REVIEW B 70, 205119(2004

O 2hops O 1hops
x4 hops + 3hops
+ 6hops o 5hops
* 8hops v 7hops
o 10 hops — — y(k)
ol & 12hops
v 14 hops
- - ¥k
15}
=2
<Z
1|
051
0
(@
07
o5k ®
06
®
osh | 04 ® 1
®
4t ®
0 0.3
K 2
= 4 ®
03} ® ®
0.2+ ®
02F ®
®
® 01
01F g
) 1 L 1 L 1 1 L L L L L L L L 1 I L L
0 0.1 0.2 0.3 04 05 06 07 08 09 1 l)0 0.1 0.2 0.3 04 0.5 0.8 07 08 09 1
(b) 1 / h (b) 1 / h

FIG. 8. Ny calculated on the linear chaite) Overlay of short- FIG. 9. N calculated on th@=11 spiral with antiperiodic local

range contributions for number of hops=®<11. (b) Magnitude  poundary conditions(a) Overlay of short-range contributions for
of the long-range component plotied againsh,1whereh is the  number of hops, & n= 11. (b) Magnitude of the long-range plotted
number of hops included in the calculation. The dashed line repreagainst 1h, whereh is the number of hops included in the calcu-

sents the underlying structure factor. For labeling purposes, symbolgtion. The dashed line represents the underlying structure factor.
are provided at only a few data points, and the lines pass through all

data points. It is clear from Fig. 8b) that the long-range component is

fluctuations. As hops are added to the calculation, the prob-decaying to zero as the calculations become more sophisti-
ability of the state being the pure spiral decreases and heng@ted, and this system is, as expected, not a Fermi liquid. The
so does the weight of thé function. If the system is a pure form of N, shown in Fig. 8a) is highly instructive and
Fermi liquid, then the weight from thé function is trans-  should be analyzed carefully. The system mirrors the half-
ferred into a divergent peak in the short-range contributiongjjied noninteracting Fermi liquid state, with thecalized
which provides the long-range charaatether than the clas- - gpins acting as the half-filled Fermi sea. For a noninteracting

sical spira). solution we expect
Due to the difficulties involved in performing calculations P
[9)="11 [cosad,+sin p,10),

involving long-range hops, we are restricted to study rela-

tively small numbers of fluctuations. We expect a robust kek,o

S-function contribution to be a good indication of a diver- ] ] o

gence, but eventually it must vanish, due to the precedingj\’here’C is the set of all filled states. In the limit that the
argument. In order to circumvent this difficulty, we choose toCOPPer states are much preferréfl<1, and we expect a
calculate and extract the long-range behavior and the pur@mall admixture of oxygen holes in the occupied region. This
short-range correlations separately. The results for the lineatescribes the short-range contributiorNpvery well. When
chain are given in Fig. 8. we add a fermion to our noninteracting state, tbhleangein

(40)
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dering of the sites on the backbone of the spiral. i ¢ -
A L o ¥
Ny is localized at the Fermi surface, and the next available 2 4 3
state is occupied, extending the Fermi surface slightly. This<2ﬁ
provides an excellent description for the divergencéljin )
In fact, this system isiot a Fermi liquid, andN, at the § 2
Fermi surface diverges with a power law. Note, however, that B T T
our limiting procedure is not smooth since the preferred spi- TN
ral pitch slowly migrates toward the antiferromagnetic point 05f /,% 5‘\\
(but not closer than 10% in our calculation§he position of
the Qiscontinuity does not agree With. the pitch of the.spiral, T PR YR T3y et e Pt
but is exactly one-half of the pitch, in agreement with the k/m

result that magnetism in Fermi liquids arises from nesting
between the two Fermi points, givirgy 2k. FIG. 11. Finite-size-scaled correlation functions for a single

The spiral systems we wish to study are much more comhole on the CuO linear chain &X=0, with boundary conditions
plex than the linear chain. The finite spiral corresponds irnindicated in the key(GA=globally antiperiodic, GP=globally
reciprocal space to a sequence of parallel lines which crosseriodiy. (a) S, and(b) Ny.
the Brillouin zonep times. A two-dimensional peak is seen
as a series of one-dimensional peaks which rise and fall
the parallel lines cross the peak in different pladeig. 3).
The correlations for the system witi=11 are shown in Fig.
9.

A sequence op peaks can be seen in Fig@® at thep
places where the the reciprocal-space lattice crosses the twga
dimensional Brillouin zone. The peaks are clearly found in
the minima of the underlying structure factor as expected
but there is no longer a clear distinction between structure

&ansferred to a corresponding peak in the short-range com-
ponent, but is distributed fairly uniformly across all the
maxima, suggesting an eventual result which is smooth and
may correspond to a quantum solution.

The obvious difficulties in interpreting the results of these

Iculations mean that we are restricted to analyzing simple

systems(small values ofp) where convergence is most

likely. This technique can be used to analyze these systems,
regions and thévanishing gaps between them, ut we can also use finite-size scaljng of exact diagonaliza-
The long-range component does not occur at these peak'on (.:alcullatlons, which do not require a classical ansatz and
Can identify pure quantum behavior. These calculations are

but is at the position of maximum slope, in keeping with the

introduced in the next section.
Fermi-liquid picture. The convergence of the long-range con-
tribution is not clear, and one cannot confidently predict
Fermi-liquid behavior or otherwise from these results, al-
though it should be noted that the long-range contribution is
converging[Fig. 9Ab)] much more slowly than was the case In this section we use the Lanczos algorithm to exactly
for the linear chair[Fig. §b)]. It is also very instructive to solve some finite spiral systems. Computational limitations
note that as thes function decays, its weight is not simply dictate that we are restricted to a number of sites, 24, and

IV. NUMERICAL CALCULATIONS

205119-12



ONE HOLE IN A CuG, PLANE: RESONATING-.. PHYSICAL REVIEW B 70, 205119(2004

25

j © N=18,GP o N=11,GP
« « + N=21,GP x N=12,GP
< < 0 N=22,GP < <« + N=15,GP
v v v N=25,GP a A * N=16, GP
g 2 4 N=26,GP sl o N=19, GP
oL o o | | » N=20,G6P v v o N=20, GP
) ] < v N=23, GP
o 0 A N=24,GP
4 N=27,GP
* * _ Kk)
4r + +
1.5F x x
Q (o]
w2 ~23
<Z <Z
1 -~
e ~ N ﬁ i
e
y . 2 ¥ %
Vs N
; AN
0.5- / AN ]
N ’
’ N 1 P 7
. ~ - ~ .
e N - ~ .
. N P ~
z S ~ - - - ~
o’y ey ] ~ P I S o ~ -
0 02 04 06 08 1 12 14 16 18 2 0 02 04 06 08 1 12 14 16 18 2
() k/m ©) k/m
25— . . . . . . . T . . TR 5 o N=la 6P
+ N=17,GP + N=17,GP
o N=18,GP 45 < < o N=18,GP
4 4 v N=21,GP . v v v N=21,GP
5 p 4 N=22,GP o o < N=22,GP
a] o - - ¥k 4 - -1k
2 g 7 A2 + +
o o o o
d;\
o <« 38
151 3
225
Z < q
v v
2 o u]
+ +
[e] (o)
150 4 j
£ %
T ot LT T %Q‘vmv I
. ~
. ~
- N
o5l - ~
- N
P N
el NS 0 = Rt 7B i B e
; . ! ) . . . . 0 02 04 06 08 1 12 14 16 18 2
(b) %) k/m

FIG. 12. A comparison of the occupation number correlatiNtA\I@ of the Heisenberg model with the predictions of th& model.(a)
Heisenberg model plus Zhang-Rice sing(®).t-X model,t=0.99X. (c) Pure Heisenberg mode&H) t-X model,t=-0.99X. The dashed lines
represent the underlying structure factor.

in turn, this limits our ability to study large values pfthe  confirmed by the weak logarithmic divergence with respect
spiral pitch. The spiral systems correspond to the pure squate system size seen in Fig. (B}, which is the closest to
lattice of interest whemN=p?+1 (as shown in Fig. 19 and  long-range order that the Heisenberg interaction can generate
so we can only study £ p<4 completely. However, we can in one-dimensionallD) systems. The spinon formed by the
reach sufficiently largeN to allow us to gain much insight hole has the effect of pushing weight away fré&m to the
into p=5 as well, although we cannot study the square sysneighboringk points, reducing the divergence somewhat.
tem itself. The occupation number is completely consistent with that

We begin our analysis with a study of the CuO linearobtained by the semiclassical spiral calculations of Sec. IlI:
chain. This system is quite well understoddind it is useful  the short-range contribution is very well converged, and the
to study this system as a reference point for forthcomindong-range contribution diverges with a power law with ex-
calculations. Since this system does not belong to our clagzonenta=0.375, consistent with the Luttinger liquid that
of spiral systems, there are only global boundary conditionspne would expect in 1D. For comparison, it has been
and this makes interpretation of the results considerably simshowrf* that for the pure Heisenberg modei=0.5. Note
pler. The spin and number correlations for this system athat due to the finite number of points knspace, it is very
t/X=0 are shown in Fig. 11. hard to calculate this exponent exactly.

It has been show# that in this system, the hole acts as a In Sec. |, we developed two exact solutions of th¥
spinon which stabilizes the ground state of the Heisenberghodel which we can analyze in more detail on the linear
model as the ground state of this model as well. This ixhain geometry. Recall there are two solutionstatt X,
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where the hole is decoupled from the copper spins, and theilgackground spins. An analysis of the motion of the hole in
is huge spin degeneracy at these points, rendering a numegsuch a state reveals that one would expect the occupancy to
cal solution impossible. We can, however, solve the modebe

very close to the limits, and we will consider the poirts (1+ cosk) %

- ~ cos -

=20.9K. _ o NN, = ————| 2+ 2 cosk+ 2>, R, cogn+ 1k |,
Consider first the point=X. In this limit we have already 3 -y

determined that the model reduces to the hopping of a (41)

Zhang-Rice singlet on the copper lattice. For the two-

dimensional = square lattice, this motion stabilizesyhere theR, are the cyclic permutation correlations of the
ferromagnetism® but in one dimension it does not permute Heisenberg model, given by

the spins, leaving all spin configurations degenerate. If we N
move away fromt=X to t=0.99X, then this introduces a ~
triplet-projector interactioffEq. (8)] which lifts the degen- Ri={ II
eracy. The nicest intuitive picture one can provide for this is

of a local eigenstate involving three spins, where two coppewhich have previously been investigatdThis result is in
spins in a singlet become a Zhang-Rice singlet as explainealgreement with the exact solutiontatX discussed in Sec. I.
in Sec. |. These interactions act as an effective Heisenberg In the other limitt=-X, the degeneracy is larger and is
interaction and stabilize the Heisenberg ground state for thifted by the inclusion of a small amount of singlet projector

1 ~ -
|:§+28m'sm+1:| ) (42)

m=1
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FIG. 14. Correlations on the=2 spiral with antiperiodic local boundary conditions, frgay, (b) semiclassical spiral calculatlo(t;) (d)

finite-size scaled Lanczos calculatioiig) Short-range contribution tblk (b) Long-range contribution td)lk (c) Finite-size scalede (d)
Finite-size scaledﬁ(.

interaction. The preferred state is then that of ¢), where  ground appears to be correct. We also note that our previous
the order of the spingincluding the oxygen holeis pre-  solution att/X=0 is clearly in the same class &s—X, with
served, and the singlet interaction stabilizes the Heisenbem@nly a small contribution from the Zhang-Rice singlet, re-
ground state. The correlations in this case are predicted to ®ulting in an increase in weight of the correlations at the zone
. center and a somewhat reduced peak at the zone boundary.
NNk= 1425 ﬁ?n cosnk. (43) ' :As We have alref':tdy disgus§ed, the divergen.ce of Fhe. peak
=1 in N, with system size abl* indicates that a Luttinger-liquid
) phase is stabilized in the regidr< X. This phase has all the
The results of these calculations are shown in Fig. 12. properties expected of thieJ model in one dimension, but
The Heisenberg model was solved numerically, and thgne physical origin of the spin correlations is very different,
cyclic permutation correlatlonse were calculated and in- being due solely to the hole motion andt to the second-
serted into Eqs(41) and(43) to give graphs 1@) and 12c), order Heisenberg interaction which is required to lift the spin
respectively. The agreement with the numerical solutions oflegeneracy in theJ model and which we have not included
thet-X model[Figs. 12b) and 12d)] near the exact solutions here. The physical interaction which stabilizes this low-spin
is very good. Our assumption that the interaction of the holestate is therefore clearly missing from th& model. The
with the spin background induces an effective Heisenbergature of this interaction will become clear in the study of
spin interaction between neighboring spins in the backithe spiral systems in the next section.
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-0.2f
V. MAIN RESULTS

In the preceding sections we have introduced the basic -3}
technigues which we will use to study our sequences of spi-
ral systems. It is very important that we retain complete con-
trol over these calculations, and hence we restrict ourselve: 04
to the understandable tight spiral systeffis< p<5), which
we will study in order.

A. p=2 spiral ' ' ' ' 7

a

The p=2 spiral is the simplest system we will study in @
this section and contains bon@ga an oxygen sitgto both 0 ' X g X 0 X 0 X o o X
nearest- and second-nearest-neighbor copper sites. The u © o
derlying copper lattice is hence essentially triangular, and  _g,| o %
one would expect this system to be frustrated in the conven:
tional Hubbard model picture. Unlike our example calcula- o
tion on the linear chain in the previous sections, we must ]
consider both local and global boundary conditions in this ©
calculation. We will be especially interested in the effect of -0.31
the local boundary conditions, which one might presume to *
have a strong effect on the nature of the ground state stabi _ _,,|
lized. Periodic local boundary conditions correspond to an<tn ©
unfrustrated phase around one loop of the spiral which one o
would expect to stabilize high-spin correlations, while anti- 1
periodic boundary conditions correspond to the frustrated x
phase which prefers low-spin correlations. This picture is -06f *x
somewhat oversimplified though, as the model itself is intrin- o
sically frustrated and changes this picture somewhat as w
shall see.

The results of both variational and numerical calculations
are shown in Fig. 13. 08 01 0z 03 04 05 06 07 08 08 1

The ground state has low spin and does not display any o(p) 1
the characteristics of the associated Hubbard model. The nu-

merical calculation ofi suggests that the system is suscep- . _FIG. 16. Near_est-neighbor spin _cor_relations as a functi_on Qf po-
tible to forming spin spirals with pitclk* ~2x/5, in very sition on the chain fora) locally periodic andb) locally antiperi-

good agreement with the semiclassical fluctuation calcula®@iC Poundary conditions on tie=2 spiral. The two ground states

tions. The magnetic correlations are much stronger than ibﬁ?e;?\?d'%) are represented by the symbols and O,
the linear chain, but do not converge in our numerical calcu- P y
lations as they extend beyond the size of our largest system. ] ] ) ) ]
The occupation number calculated numerica[lig. small region of filled Fermi sea, and the outer pair demarking
13(c)] is also clearly unconverged, but is nonetheless usefuf Second region of more weakly hybridizing Fermi sea. The

The structure factor suggestur Fermi points at half-filing, Peaks are much stronger than in the linear chain, but careful

located at analysis suggests that they aret divergent. The small oc-
cupied region is clearly smaller than the Fermi-gas solution
K = w—arcco<i_> + T _ 7(1+0.369, (1 + 0.869 might suggest, but the larger region is enhanced. This ap-
- 2V2) 4 ’ ’ pears(to within the approximations enforced by the discrete

(44) nature of the systejrio mainta@n the volume of the occupied
region as expected from Luttinger’s theorém.
with the pair closest to the zone center giving rise to the For locally antiperiodic boundary conditions, the results
strong peaks which bound a strongly hybridized, but quiteare shown in Fig. 14. Both the spin correlations and number
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correlations are clearly finite, and the system appears to b@dominantly nearest neighbor. There is no suggestion of any
far from the Fermi-liquid state. The most natural explanationFermi-liquid behavior.
for this result is that the expected small gap in the density of However, we have neglected to consider the effect of the
states(DOS) has been filled in, and the state appears to bglobal boundary conditions in this analysis. Although the nu-
confined to the linear chaimote the similarity to Fig. 1  merical results appear to suggest very good convergence
The magnetic correlations are well represented by a simpleith respect to the global boundary conditions, the results of
cosine function, suggesting that the correlations are nearestie calculations on the locally antiperiodic system suggest
neighbor only. that the interpretation of these results may be more subtle
So far, we have been able to draw apparently reasonabtéan we have so far accounted for. The spin correlations
conclusions from the results of these calculations. Naivel\shown in Fig. 14d) suggest that local correlations dominate,
we conclude that for the locally periodic system, the groundndicative of a highly quantum-spin-dimer ground state. The
state can be described with a pseudo-Fermi-liquid picturepxygen hole is also known to preferentially form a local
which would probably degrade into a bosonized Luttingersinglet, and the resulting motion under our Hamiltonian sug-
liquid with power-law divergences if we were to extend thegests that the hole can become bound to one or other of the
calculation to longer ranges. The locally antiperiodic systensublattices, as shown in Fig. 15.
appears to prefer the hole motion to be localized along the For systems with an even number of copper sites, the hole
backbone of the system, and the spin correlations are pravill remain bound to the same sublattice, but an odd number

205119-17



M. W. LONG AND I. B. STYLES PHYSICAL REVIEW B70, 205119(2004

25

1 hops
ps 3.5 7.GP

MR N = o= o m
mPLLO®eoN
[o¥nXnRaoXn¥nEnkn]
VFV>OV>V>

25F

ZZZ2Z2ZZ2ZZZZ22Z

HRVADIOD ¥+ X0
~N
B
o)
>

0
N
N
[n]
o

N
E’v%
ot
I
|
= =
=R
[n]
>

/ \\ 4
05F ~ 7 - .
~ % $\ ’
N , N ’
\\ 4 \\ 7
0 3 .
02 04 06 08 1 12 14 16 18
© k/m
0.6 . : : . . . ; ; . 2 . . . — A
+ + x N=17,GA
A + N=18, GP/GA
® ’ o N=19,GP
05l ] v& Bv o N=19,GA
’ 16k v N=20, GP/GA
K J4 N=21,GP
® & % > N=21,GA
Tl kg //:5\ & * N=22, GP/GA
04l ® 1 % ’é*?)\ e - - 3Kk
!
1.2 ng, © o ‘\%
!
W AN
~03 YRR o >
<Z ® N o ! AN
\ MH \OHR
/ 4y voad oy
0.8 / \<> / %]
WV X \ x \
® ,’ o\ 7/ L ae] v
0.2f g / \
0| I/ OW\/ ‘\1?3’40 \
® ; ® Do L
® 04} | ﬁ ﬁ% \
01f ® g ! \
& %
e &
!
I L& )} |
0 01 02 03 04 05 06 07 08 09 1 0 02 04 06 08 1 12 14 16 18 2
(b) 1/h (d) k/m

FIG. 18. Correlations on the=3 spiral with antiperiodic local boundary conditions, frgay, (b) semiclassical spiral calculatio(g), (d)
finite-size scaled Lanczos calculatioii@) Short-range contribution tdl,. (b) Long-range contribution t,. (c) Finite-size scaledN,. (d)
Finite-size scaled,.

of copper sites leads to Mdbius boundary conditions, and theecond-neighbor bondgote that the correlations for this
hole moves onto the other sublattice. There are hence twsystem are very different to those on the linear chalvhen
possible ground states, one associated with each lattice, atite hole circuits the spiral, the motion is optimized by a
the relative phase of these states is determined by the choitecally high-spin statethe oxygen hole unfrustrates each
of periodic or antiperiodic global boundary conditions. Fortriangle), and the symmetry is broken to allow both of the
periodic boundary conditions, the ground state can be writtetriangles on which the hole is moving to have high spin.
asl&//p>:|f/>A>+|¢B>, and for antiperiodic boundary conditions These neighboring pairs of parallel spins then behave like a
we have|i,)=|pa)—|dg), where|p,), |¢g) are the ground spin-1 in a Haldane chain-type system. Note that the system
states associated with the two sublattices. Adding and subis not a pure Haldane chain, and the correlations in Figr)16
tracting the ground states for the two sets of boundary conare really quite weak. The resulting ground state is hetate
ditions then allows us to separdig,) and|¢g). In Fig. 16  the pseudo-Fermi liquid we had envisaged, but rather a
we show the nearest-neighbor spin correlations as a functiohnighly quantum Haldane-like phase, which is somewhat re-

of distance from the hole for the two solutions. lated to a distorted two-component noninteracting Fermi
It is clear from Fig. 16 that there ist&oken symmetrin liquid.
both systems. In the locally periodic syst¢Rig. 16a)], the The locally antiperiodic system is much more easily in-

motion of the hole induces spin correlations which optimizeterpreted. The correlations shown in Fig.(W6suggest an
its motion. The hole gains most energy from second-almost pure dimer state, with alternating strong antiferro-
neighbor hops and it prefers to be on the oxygen sites on theagnetic and uncorrelated bonds along the chain. The pure
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singlet correlations offer optimal motion around half the tri- have a ferromagnetic ground state for the Hubbard model.
angles, while the other half are essentially irrelevant as thélowever, even in the Hubbard framework we find that the
hole is dominantly moving on the backbone of the spiral, notwo systems are quite similar. The periodic boundary condi-
along the second-neighbor bonds. This is basically identicdions applied to thgp=2 spiral in the preceding section pro-

to the predictions made by thig-t, modef® on this geom-  Vided anunfrustratedchoice of phase for the local hopping

etry, which also chooses a dominant sublattice for the charg&hich promoted local high-spin correlations. We expect the
carrier. Once again, the resulting ground state is strongl)?ame to be true for periodic boundary conditions applied to

quantum and in this case is a simple valence bond solid. his system, but for antiperiodic boundary conditions to frus-
trate the system, leading to a low-spin ground state, as we

saw for the case gp=2. The results for periodic boundary
conditions are shown in Fig. 17.

In the Hubbard model framework we would expect the The ground state is indeed low spin and the motion
p=3 system to differ substantially from the=2 case. The around the bipartite loops is dominated by the process which
p=3 spiral isbipartite and would therefore be expected to allows copper-copper singlets to become active Zhang-Rice

B. p=3 spiral
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singlets. In the Fermi-liquid picture we expect six Fermiclear broken symmetry, illustrated by the spin correlations
points, with a small Fermi sea centered on the origin filled toshown in Fig. 19. The antiperiodic system exhibits a clear
k=+m/4 and two symmetrically related filled regions be- dimerization, while the periodic system also displays a
tween #7/2 and +37/4. A Bragg spot would be expected at weakly broken symmetry which is clearest when examining
k*=m/4, which is close to the observed behavior but doeshe third-neighbor correlations shown in Fig.(hp(the sys-

not accurately describe the system. There is a small patch @m has a direct bond between third nearest neighbBoth

filled Fermi sea close to the origin which is bound by strongsystems have a quantum ground state which appears to be a
divergences which are either power-law divergent or convalence bond solid. In addition, the hole appears to act as a
verge on a length scale of tens of unit cells. The magnetisrdomain wall, as was the case fpe2. This is expected to

is consistent with the nesting vector across this region.  become less important as we move towards two dimensions.
The results for locally antiperiodic boundary conditions

are shown in Fig. 18. They are very similar to those of the
p=2 spiral, with the number correlations very like those of
the linear chain, and the spin correlations are short-range. We now move on to analyze the case4. The loops of
There are minor differences, such as the small occupied réhe spiral are novwpentagonaland are longer than the loops
gion near the origiFig. 18c)]. Most importantly, the long- of the underlying square lattice and should consequently be
range contribution clearly vanishes, and we do not have &ess influential. Each section of the spiral has an odd number
Fermi-liquid state. As we saw for the=2 spiral, there is a of sites and so a hole moving around the small loop can have

C. p=4 spiral
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an unfrustrated phase with local periodicity and a frustrated The p=4 system with locally antiperiodic boundary con-
phase with local antiperiodicity. The noninteracting solutionditions (Fig. 21) is surprisingly similar to the periodic sys-
has eight Fermi points located at tem. The occupied regions mirror the noninteracting solu-
tion, with the exception of a small region close k&

k~ 0.204, 0.32887, 0.6024r, 0.977%r, (45 which is unexpectedly filled. The spin correlations once
again are well described by the scaled structure factor and
offer the same RVB state as the periodic system, with no
gvidence for a broken symmetry or a domain wall formed by
he hole. Note that this equivalence of boundary conditions is
dicative of the thermodynamic limit being approached.

and their reflections abolt=7. The results for the locally
periodic boundary conditions are given in Fig. 20. The occu
pied regions are consistent with the Fermi picture, and th
long-range contribution disappears quickly. The underlyind
background is smooth, and there is no evidence for any kind"
of divergence in the occupation number. The spin correla-
tions almost exactly mirror the structure factor scaled to area
S(s+1)=3/4 and correspond to essentially pure nearest- The final system we will examine is the=5 spiral. Al-
neighbor spin correlations. This state doest display the though this is the most relevant system with regard to con-
broken symmetry we have seen in previous systems and hasrgence toward two dimensions, as we have already dis-
the characteristics of a resonating valence bond $tagée, cussed, we are unable to solve systems large enough to
truly quantum phase. converge. This is an unfrustrated system with ten Fermi

D. p=5 spiral
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finite-size scaled Lanczos calculatioii@) Short-range contribution td,. (b) Long-range contribution t,. (c) Finite-size scaledN,. (d)
Finite-size scaled,.

points atk=m/6,m/4,7w/2,3m/4,5m/6 and their reflections function of p and identify a pattern. The earlier systems in
throughk=1r. The behavior is now complicated, and the datathe sequence were seen to be strongly dependent on local
appear quite ragged and hence are difficult to interpret. Thboundary conditions and exhibited quantum states character-
results for the locally periodic system are shown in Fig. 22.ized by a broken symmetry and a spinon bound to the hole.

The results for the periodic system are very similar toThe broken symmetry vanishes g4 and leaves a quan-
those obtained fop=4, with only nearest-neighbor spin cor- tum state that is essentially comprised of resonating valence
relations observed and no divergenceNp although the bonds. In a related papérit has been shown using these
occupied regions are broadly consistent with the noninteracf€chniques that the model on the triangular lattice is pre-
ing solution. The antiperiodic syste(fig. 23 displays es- dlc'ged to have an ordered. threg-suplattme 120° antn‘err_omag—
sentially the same behavior. There is no broken symmetrj€tic ground state, which is simultaneously a single-
evident for either system and little dependence on the glob&iomponent Fermi liquid. This implies that the techniques we
boundary conditions. The equivalence of the two types ofi@ve used are capable of identifying classical and quantum
local boundary condition suggests that the spiral loops magtates and that any bias towards one or the other is small.
be longer than the correlation length and the calculations
have converged.

The final task in the finite-size scaling analysis of this In the previous sections we have performed both semi-
section is to consider the sequence of converged systems aslassical spiral calculations on infinite systems and quantum

E. Square lattice
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FIG. 23. Correlations on the=5 spiral with antiperiodic local boundary conditions, frgay, (b) semiclassical spiral calculatlo(t;) (d)
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numerical calculations on a series of systems which limit to
the CuQ lattice. An examination of the occupation numbers ﬁ/ \Q\ /®/
predicted by these calculations suggests that the semiclassi-
cal approach can be consistent with the numerical calcula-
tions. Ultimately, we would like to be able to study the
square lattice in detail. Numerically, this is not possible as
we are restricted to low values df and, hence, low values \S\ /@1
of p, but having established the consistency of our two ap-
proaches, we can use the semiclassical technique to study the
square lattice directly.
We first calculate the preferred pitch of the classical spi-
ral, which, asp becomes large, can be seen to converge
towards the commensurate positiog=(27/3)(1,1), the \@\ /@/’ \@\
classical 120° phase usually associated with the triangular
lattice, and a type of three-sublattice antiferromagnet. This is
depicted in Fig. 24. FIG. 24. The preferred two-dimensional classical spiral.
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FIG. 25. Occupation number correlations on the square lat@gé.ong-range contributiontb) Short-range contributions including six
hops.(c) Short-range contributions including seven ha@y.Short-range contributions including eight hops.

Using this knowledge, we can calculate full two- Fermi surface and has no remnant in the short-range
dimensional wave functions, yielding the results shown incontribution.
Fig. 25. The long-range contribution to the occupation num-
ber decays quite rapidly, and its weight is distributed
smoothly into the short-range contribution. The calculations

which include the most hops indicate a “flat top” with a  |n this paper we have studied a restricted limit of a fairly

We”-deﬁned rim a.nd a S“ght indentation, but thel’e iS nOSimp|e model which is of relevance to the Cuprate supercon-
eVidence for a diVergence. The noninteracting Fermi Surfacguctorsl We make two main assumptions When deve'oping
is the square connecting the midpoints of the sides of thgyr model. First, we assume that behavior of the cuprates is
Brillouin zone, and although the smooth peak respects thigontrolled by the chemical bonding, and we do not include
line, the expected divergence M, is not located on this other types of coupling—e.g., phonons, plasmons, excitons,

VI. CONCLUSIONS
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etc. This leads us to study the three-band model, which is thetries with pitchp=<5. We are able to compare the two ap-
standard starting point for the cuprates. Our second maiproaches, and we find that the semiclassical approach can be
assumption is that the charge degree of freedom on the cogensistent with exact diagonalization, in that the occupation
per ions is frozen, consistent with the known Mott insulatingnumbers predicted by both techniques are consistent, al-
behavior. This permits the reduction of the three-band modehough some care is required. We also note that systems with
to the t-X model, to which can be added direct oxygen-small values op are tractable, but are not necessarily repre-
oxygen hopping,, and/or a Heisenberg interactidnThese  sentative of the large-limit, corresponding to the square
terms are intrinsicallysmallerthant and X, and we choose |aitice of interest.

not to include them. A popular method of approaching this A} of our calculations suggest a strongly quantum solu-

model IS to re'duce itto the‘] model using the concept of'a tion, characterized by dominant nearest-neighbor spin sin-
Zhang-Rice singlétto project out the oxygen states, leaving lets between copper local moments. The nearest classical

gggcg]eogoggf rirs,qfhifeiﬁg:(rféigi C;gteesﬂg?d;utgtjgg Odn(;mgtate is not magnetic, but is the noninteracting half-filled so-

which is not seen experimentally. We choose to study théu.tion of the Hubbard model:.the filled regior@onsistent
opposing limit of Cd dominance, which is physically rel- with 'the expected Iqrge Fermi surfa)oebser\{ed n our cal-
evant and provides thi-J model. culations usually mirror those of the noninteracting solu-
The t-J model and theX-J model are both beyond the tONS, although the antmma@t_ed Fermi d|scqntlnumes are re-
scope of current techniques to allow us to gain a clear unPlaced by a smooth transition between filled and unfilled
derstanding of either model, but there are some limits if€gions. The tightest spirals we studied yielded a broken
which progress may be made. In this article we have studiegymmetry, where the preferred valence bonds become local-
the motion of a single hole in the limit of vanishidgleav-  ized, forming a valence bond solid which ties the Zhang-
ing only the X model. Although we have not presented the Rice singlet onto one of the two sublattices, promoting mo-
evidence here, the inclusion bipermits the one-hole prob- tion around only half of the available loops. As the spiral is
lem to exhibit a first-order transition from a ferromagnetic extended, this broken symmetry is lost, and the valence
ground state att/X=1 (corresponding to Nagaoka’'s bonds “melt”to form a type of resonating valence bond state.
ferromagnetisif) to a sophisticated low-spin ground state at  \We also briefly studied the square lattice problem directly
t/X=0, which is the subject of this work. The real physical using the semiclassical technique. These calculations suggest
system hag/X~0.2, which isbelow the transition to the the absence of a divergenceNR, indicating that the system
high-spin ground state. We also wish to point out that thedoes not exhibit Fermi-liquid behavior.
low-spin ground state which our calculations suggest will be  In summary, we believe that a single hole in thenodel
stabilized further by the inclusion of the ubiquitous superex-yields an interesting low-spin quantum ground state. This
change interaction present in the real system. This is in corstate isnota Fermi liquid and is best described as a resonat-
trast to thet-J model where the hole motion and superex-ing valence bond state. Further investigation is required in
change are in direct competition. order to determine the effect of introducing additional holes,
We have utilized two separate techniques to study a sawhich we have not attempted in this work.
quence of geometries which limit to the Cu@ttice. Our
chosgn methogs are exact djagopalization via the Lanczos ACKNOWLEDGMENTS
algorithm andii) classical spin spirals plus quantum fluctua-
tions. The computational limitations imposed by the Lanczos We wish to acknowledge useful discussions with C.
algorithms provide a severe restriction on the size of systemidooley. |.B.S. wishes to thank the EPSRC for financial
we can study and we are limited to studying spiral geom-support.
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