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We have studied quantum data compression for finite quantum systems where the site density matrices are
not independent, i.e., the density matrix cannot be given as direct product of site density matrices and the von
Neumann entropy is not equal to the sum of site entropies. Using the density-matrix renormalization-group
(DMRG) method for the one-dimensional Hubbard model, we have shown that a simple relationship exists
between the entropy of the left or right block and dimension of the Hilbert space of that block as well as of the
superblock for any fixed accuracy. The information loss during the RG procedure has been investigated and a
more rigorous control of the relative error has been proposed based on Kholevo’s theory. Our results are also
supported by the quantum chemistry version of DMRG applied to various molecules with system lengths up to
60 lattice sites. A sum rule that relates site entropies and the total information generated by the renormalization
procedure has also been given, which serves as an alternative test of convergence of the DMRG method.
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[. INTRODUCTION the prescribed accuracy can be achieved with the least num-
ber of block states, if the entropy-optimized ordering is used.
In this paper, we study this problem from the point of view
of quantum data compression and show that a simple rela-
Bonship exists between the von Neumann entropy of sub-
spacé>® or molecules within the context of quantumrgyStem blocks and the size of Hilbert space of the blocks
chemistry26-11 or alternatively the size of Hilbert space that one has to
' diagonalize in DMRG. We argue that the accessible

Recently the concepts of information theory have r€aPinformatior?®24 of mixed-state ensembles can be interpreted

peared in the study of solid state physics and statistical phys- . .
ics problem$:12-150n the one hand, it has been pointedm the context of DMRG as the information loss due to the

1213 - truncation procedure. Relying on this we propose an alterna-
?euntgth I\ﬁhat the von Neumann entropy of a finite system Oftive metho_d to improve thg convergence of DMRG. |
’ The main purpose of this paper is to study the properties
S(pMN) == Tr(p™ In p), (1)  of DMRG from the point of view of quantum information
theory and to use the obtained results to optimize the
where p™ is the density matrix, diverges logarithmically method. The setup of the paper is as follows. In Sec. Il we
with the system size if the system is critical and the spectrungescribe the theoretical background of data compression, ac-
is gapless, while it saturates &sincreases for noncritical, cessible information for mixed-state ensembles, and their re-
gapped models. On the other hand, in an independent Workiation to the DMRG method. In Sec. Il these concepts and
the von Neumann entropy has been used to improve the peguantities are studied by applying the RS-DMRG to the hallf-
formance of the momentum space and quantum chemistrlied one-dimensiona{1D) Hubbard chain using open and
versions of the DMRG method. It has been shown that aperiodic boundary conditions and the nonlocal generalization
optimal ordering of states can be obtained from the distribupf DMRG to various molecules. In Sec. IV the obtained re-
tion of site von Neumann entropies of “lattice sites.” Quite sults are interpreted as quantum information generation in
recently, the study of entanglement has also led to an altethe DMRG method. Our conclusions are presented in Sec. V.
native procedure using the periodic boundary condifion
that increases dramatically the performance of the real space
DMRG (RS-DMRG method and to the development of the Il. QUANTUM DATA COMPRESSION
time-dependent DMRG algorith#d:18
An important problem in quantum information theory is  In his landmark work> Shannon has shown how much a
quantum data, compressiéti?2i.e., how the dimension of message constructed frofindependent letter&,), where
the typical subspace should be chosen to achieve a preach letter occurs with priori probability p,, can be com-
scribed fidelity. The DMRG method is based on a similarpressed. In classical information theory messages are classi-
reduction of the Hilbert space. In the standard DMRG pro-fied into so-called typical and atypical sequences. If for any
cedure, the dimension, the number of states to be kept, is>0 the sum of the probabilities of all typical sequences lies
fixed before the calculation. In the dynamical block-state sebetween 1= and 1, then for anyy>0 and for large enough
lection (DBSS approack the truncation error is kept fixed values ofN the number of typical sequencaée, ) lies be-
and the dimension is allowed to vary. It has been stfaat  tween the bounds™® 9 =n(e, §) = (1-¢€)2VS 9, whereSis

In the past few years nonlocal generalizatighsf the
density-matrix renormalization-grougDMRG) method*
have gained much attention since the method allows us t
study interacting spin and electron systems in momentu
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the Shannon entropys=-% p, log,p,. Therefore, a block

X . X S S
code of lengthNS bits encodes all typical sequences irre- I r
spective of how the atypical sequences are encoded and the ‘ B ‘ ® © ‘ Br ‘
probability of error will still be less thar. In quantum in-
formation theory the letters are density matrices and one has M, a1 Qr M, )
to distinguish two cases, namely when the density matrices L A e
correspond to ensembles @pure statesp,), or when they T *i —
are formed from density matricgs,, with probability p,,. v
A. Pure-state ensemble BL BR

Considering the first case, that is, a pure-state ensemble, M L M R
the density matrix of a message consistingNofletters is

N)— —
pN=p@p® - ®p, where p=2,p|¢.)X¢.l, and the von FIG. 1. Schematic plot of the system and environment block of

Neumann entropy of the message is simply related to theMmRG. B, andB, denote the left and right block of lengtrandr,
entropy of the ensembl&(p™)=NS(p). The optimal code  and of dimensiorM, andM,, respectively, » stands for the interme-
that compresses the Hilbert space of the entire messagéiate siteqs ands,) with g; andg, degrees of freedom. The blocks
ANVN=A®A®---®A to a smaller Hilbert space without B =B*,Bg=+B, have dimensioM, andMg, respectively.
compromising the fidelityhgrthe message b~ has been

obtained by b. SchumacherAnalogously to classical infor-

mation theory/(\()N) is divided into so-called typicaﬂAg\g) I=Qlp) _g PQ(pa). 5)
and atypicall A N subspaces by applying a projecti ) )

and Ly, If foragr‘;)y €>0 almost all weight of the ensﬁe}%n?ble where the subentrop® is defined as

lies within Ag'p) and Trlly,pNIly,,>1~-¢, while for the M

atypical subspace Ty " I1,y,<e€, then for anys>0 Q=-, ( 11 Yo )wam W, (6)
and sufficiently large enougN the eigenvaluesyy, of p™v a=1 \a#p Wa = Wg

belonging to typical eigenstates fall within a narrow range:

If two or more of the eigenvalues are equ@lyemains finite

e NSP*l < ¢y < @ NIS)=3], (2 if one takes the limitw,— wg.
Therefore, the number of dimensions of the typical subspace . .
lies between the bounds C. Relationship to DMRG
(1 - ©eMSP-3 < dim Ag/\g < NSp+a] 3) For lattice models studied in solid state physics problems,

on the other hand, the message coded into the wave function

This means that the von Neumann entropy is the number dff the system has different features. The site density matrices
qubits of quantum information carried per letter of the mes-are in general not independent, th® # p® p® --- @ p and
sage and unlegs=(1/qg)1, a compression is always possible. S(p!\) # NS(p). In this paper, this situation is studied using
We have to mention that Eq&) and (3) have been refor- DMRG.
mulated in order to be consistent with Eg). From the point of view of information theory DMRG is a
numerical tool to select the typical subspace on which the
target state(W;g) of a Hamiltonian of a finite system of
lengthN can be represented. The Hilbert space of the system

The result is less simple if the letters are chosen fron{called superblock Hilbert spacés defined on a bipartite
density matrices of mixed states. In this case only an dpper systemA =AY © AR whereA("; andAER; are the typical
or lower bound® can be derived for the accessible informa- Hilbert spaces of the left and rig%t bIocth andBg, which
tion. Therefore, if the source of information is constructedthemselves are built from subblockB, and B,, with one
from messages represented fystates andh priori prob-  extra site. The indicek andr denote at the same time the
ability p,, then the mutual information between the sender'snumber of sites in the subblocks. The schematic plot of the

B. Mixed-state ensemble

and receiver’'s measurement is bounded by DMRG configuration is shown in Fig. 1.
Although the target state is usually a pure state, the left
I < S(p) = > paSpa). (4 and right blocks are in a mixed state described by the density
a

matricesp, =Trgp, and pg=Tr p, respectively. Analogously
wherep=3,p,p, andSis the von Neumann entropy given by one can define the density matrices of #eand B, sub-
Eq.(1). If all signal stateg, are pure states, the upper bound blocks, p=TrsTrrp and p,=Tr Trs p, as well as that of the
on the accessible information reduced t0S(p). intermediate sites, given @& =TnTrrp, ps =Tr Trep. It fol-

The lower bound on accessible information also dependkws from the singular value decomposition theorem that for
not only on the entire density matrix but also on the particu-a pure target state and any choice of the length of the left
lar way p is realized as an ensemble of mixed states. As isubblock, I, the entropy of the left block of length+1,
has been given by Jozsa al.?® S (I+1) is identical to that of the right bloclgx(r + 1), where
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[+r+2=N. S=9 =S is also related to the mutual informa- 4 ' ' ' ' '
tion of the blocks)]=-2SsinceS (I+1)+S(r+1)+1=S(N), 1oL
whereS(N) is the entropy of the full system, which vanishes
if the system is in a pure staté.quantifies the correlation
between the two subsystems and vanishes if and only if the g
two subsystems are completely uncorrelated, i.e., when
=p ®pg S also measures the entanglenténand the  ©
amount of quantum information exchange between the,
blocks?®
The wave function of the finite lattice of lenghhis built 2g
up using the infinite lattice method followed by a systematic ‘ . . . . . ‘
application of the sweeping procedure of the finite lattice ° 200 M0 tonstep 20 MO0
method. The typical subspacey) and A{}) are obtained
by selecting thatM renormalized states out of the X FIG. 2. Block entropyS, and Ir( dimA), In(dim Agp) as a func-

block states|$™),|#™)), which have the largest eigenval- tion of iteration steps for the half-filed 1D Hubbard model with
a (23

L R ; ; N=80 for U=1 with fixed number of block state®1=512) using
ues,w,” andw ", of the density matriceg, andpg, respec- : _ L .

a a
tively. The HtLyp and Hsp projection operators are formed EaBSCl.)geonr lr:l;leléeratlon step less than 39 the infinite lattice method

from theM chosen eigenstates pf andpg. The accuracy of
the truncation procedure is given by the so-called truncation . . .
error, TREZl—Elewa, wherewazw(") or w(R)’ depending electron mteractlon (_)per_ator. Depend|_ng on the s_tructure of
on the direction of the sweep. Therefore, due to the truncalii @d Vi this Hamiltonian can describe fermionic models
tion of basis states is always greater than zero. in real space with open or perlod|c bpundary conditions, a

Another main difference between conventional informa-Molecule, or a usual fermionic model in momentum space.
tion theory and DMRG is that while in the former case the A Special case of Eq7) is the 1D Hubbard model,
letter states have ampriori assigned probability density;° _ t T tot
in the latter case the probability of a configuration depends H= % HCioCirts * Civ16Cio) * U; CiiCiiGi G- (8)
on the target state. Therefore, the subset of states that define
the code words is determined by the physical properties ofn this case thég,) states ar¢0), 1), |1), |1 1). For homoge-
the target state. When DMRG is applied to find the typicalneous lattice models with periodic boundary conditions each
subspace of a target state, i.e., the typical code words, thigttice site carries the same informatid§). For U=0,
subspace is reduced further. In addition, during the RG pro§=4 In 4=1.38629, while folJ — o the model is equivalent
cedure the original basis states are also transformed into netw the spin-1/2 Heisenberg model and only theand|T)
renormalized states, thus code words change at each iteratistates have finite weight, th&=2 In 2=0.69314. In the nu-
step. In this respect, in DMRG the information of one blockmerical work we have used the real space version of DMRG
is coded into the basis function of the renormalized blockswith open(OBC) and periodioPBC) boundary conditions.
rather than into a quantum channel of qubits.

In the standard DMRG procedure the number of states of A. The standard DMRG procedure
the left and right blocksM, is fixed in advance of the cal-
culation. The superblock Hilbert spackgg on which the
target state is determined is not simpl )®A$2, since only
states with prescribed quantum numbers have to be consi
ered. UsuallyM is increased systematically during the finite
lattice method; thus the accuracy dependdvbim an uncon-
trolled way. In contrast to this in the DBSS approtctne

10-

—— In{dim A)
—— In{dim ASB)

First we have investigated the block entropy in the stan-
dard RS-DMRG method when calculating the ground-state
gnergy of the half-filled 1D Hubbard model witk1 for a
chain withN=80 sites, fol=1,10,100using a fixed num-
ber of block states, nameliy] =256,512,1024. In Fig. 2 we
have plotted the block entropy and the logarithm of the di-

truncation error is kept fixed and the number of retaine edr)sm/{l ofﬁlag_d tke Hilbert st,_patl:e of thfe Slt,!perb:co_(t:k,
states is varied dynamically, which allows us to control the n(dim A) and Ir(dim Asg), respectively, as a function of it-

accuracy more precisely. A threshold value for the minimumgration steps fo=1 andM=512. It is clear from the figure

number of block states,, has also been introduced in that for theinfinite lattice metho_d (for iteratiqn steps less
order to avoid hlgher-lylng local minima. than 39, the blOCk eptrOPYaS, increases with the blOCk
length. According to Vidal and co-workéfs'® a logarithmic
divergence is expected if no truncation had been applied dur-
ll. NUMERICAL RESULTS ing the RG procedure. Deviations occur for two reasons.
- N . First the truncation procedure has been applied from the fifth
The most general fermionic Hamiltonian can be given aSieration step. More importantly, in DMRG the chains are
— T t .t built up systematically, and for chains of lendththe finite
H_%Tijci‘fcj"JrinEw, Vi CioCjo G Cro (D" lattice method has to be used aft¥/2-1 initialization
steps. At this point the entropy of the blocks starts to de-
where T;; denotes the matrix elements of the one-particlecrease. In the successive sweeps the entropy reaches its
Hamiltonian andV;, stands for the matrix elements of the maximum when the sizes of the two blocks become equal. It
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lteration step in the 6th sweep Scaled iteration step

FIG. 3. Same as Fig. 2 but using DBSS approach for JRE FIG. 4. Parametes as a function of rescaled iteration step using
=10* andM,,=16. the DBSS approach for TRE=10% Mpyi,=16, U=1, N
=40,60,80.

is worth mentioning tha$ became almost totally symmetric o )

after the second half sweep already. Sifds related to the Worth mentioning tha3” defined analogously to E¢9) but
mutual information of the blocks, this result is in agreementWith In(dim Agg),
with the long known fact that the best accuracy of RS-

DMRG is always obtained for the symmetric block configu-

rations. For largelU values the entanglement between theiq 450 independent of for large enough.

blocks is reduced as indicated by the decreasing valug of g B and 8’ are, however, functions of TRE, This
and S, while In(dim A) remained almost the same, and thedependence has been tested o1 for TRE, =103
relative error of the calculations improved significantly. This_ 16 \yhen makin(dim Agg)] changed from & 10° to
is the first sign that the entropy, the dimension of the Hilbert; 1 106 | this range of the truncation err@ increases

space, and the accuracy are related to each other in DMR%roportionaIIy to —INTRE,,,, Similar results have been ob-

tained with open boundary conditions but with significantly
B. DBSS approach smaller block entropies and much less block states. For
larger U values and for small values of TRE, the target
state has often been lost and the convergence depended very
much on the minimum number of block states,;.

B =In(dimAgp - S, (10

This standard procedure, however, does not allonaan
priori control of the accuracy, while this control is possible
in the DBSS approacH. Moreover, the latter approach al-
lows us to study the relationship between the von Neumann
entropy of the block and the dimension of the Hilbert space C. An alternative truncation procedure
of the superblock qualitatively. Therefore, we have repeated
the DMRG calculations on the same model using the DBS$,
approach withM,;;,=16 for various values of the truncation
error, namely for TRE,=1072,103,...,108 In Fig. 3 we
have plotted Iftdim A), In(dim Agg), and the block entropy

The simple relationships given by Eq9) and(10) seem

indicate that a better DMRG procedure that avoids the
above-mentioned problems should rely on the control of the
von Neumann entropy of the blocks. In order to control the
i k X weight of retained information during the RG procedure in a
obtained after the sixth sweep for=1, N=80 as a function yqre rigorous way, the reduced density matrix of the left or
of iteration step shifted modulo 80. It is clearly seen in theright subsystem is written as the sum of the density matrices

figure that (_jue to the truncation of t_)asis states, the logariths¢ mutually orthogonal mixed states belonging to the typical
mic corrections are cut, arland In(dim A) are almost con- 54 atypical subspaces

stant for a wide range of block lengths. A simple relationship

seems to exist between the two quantities, which is analo- L= (L) - (L)

. . " P = Pryppiyp + (1 = Pryp) Pagyps (11)
gous to Eq(3). We define the shift between(im A) andS PP PP
as Wherep“‘) is formed from theM largest eigenvalues gf

P . ; .
and p(Lyp from the remaining eigenvalues with )

B=In(dimA)-S. ) =Trpl) =1. A similar decomposition holds for the right
. _ s block, and therefore in what follows the supersctipandR
Figure 4 shows the value @ for U=1, TREq,=10"for  5r¢ dropped. In usual information theory, if the message con-

three. different chain Ie_ngthgj:40, 60, 80.8 is plotted as a tainedpy, OF payp With the appropriate probabilities, the ac-
function of the shifted iteration step rescaled by the length ofessible information for such a binary channel would be less
the chain. We have found that after the sixth sweep exceghan the Kholevo bourid

for very short block lengthg is practically independent dd

for a given accuracy. A similar result is expected for noncriti- I < S(p) = PypSpryp) = (1 = Pryp) SParyp) (12)
cal systems since according to Vidat al1? in this case the

block entropy saturates with increasing block length. It isand larger than the Jozsa-Robb-Wootters lower b&und
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FIG. 5. Schematic plot of the upper and lower bonds on acces- ¢ .
sible information for a binary channel. 0o 10 10° 107 10° YT 10 10® 100 10°
X x
I = Q(p) — PrypQ(Pryp) — (1 ~ Pryp) Qlpatyp) - (13) FIG. 7. The first panel shows the relative error as a function of

the threshold value of Kholevo's bound on accessible information
obtained by Eq(12). The second panel shows the error in the sum
The schematic plot of the two bounds as a functiopgfis  rule given by Eq(19).

shown in Fig. 5. It is worth mentioning that other ensemble-
dependent bounds have been derived by Fuchs and €avesyng 31-34, the energy of the target state is extrapolated as a
In DMRG, however, the atypical subspace is neglecteds,nction of y.
which leads to a loss of information. Fpf,, close to unity
this loss is argued to be equal to the accessible information,
which is negligible if the probability of the atypical subspace
is negligible. This can be used to optimize the DMRG pro- We have tested the truncation procedure presented above
cedure. A modified DBSS procedure is proposed, where inby performing DMRG calculations on various molecules up
stead of fixing the truncation error, the Kholevo bound isto 59 lattice sites. We have used the dynamically extended
required to be less than arfixed in advance, and the num- active space procedré€DEAS) and the DBBS approach by
ber of statesM is chosen accordingly in every step. controlling the change of von Neumann entropy during the
We have run independent calculations for the 1D Hubbardruncation procedure at each renormalization step. In all cal-
model for different threshold values on the upper bound ofculationsM,;,=4 was used and during the first half sweep
accessible information, denoted ly ranging from 10°to  the right block was represented by 256-512 states. The
1077 using three sweeps. In Fig. 6 we have plotted the relamaximum number of block states that our program could
tive error as a function of TRE angon a logarithmic scale treat is in the range of 2000-3500, strongly depending on the
for U=1, 10, 100 withM,,=4, where the relative error is system size. Our results on various molecules are shown in
given as(Epyrs—Eexacd/ Eexact W have found that this se- Fig. 7. We have found again that on a logarithmic scale the
lection rule is very stable even for very small values of therelative error is a linear function of the accessible informa-
retained eigenvalues gfy,. Assuming that the linear rela- tion even for large threshold values.
tionship apparent on the right panel holds for other models as For very small system sizes, like GKi6/13) the number
well, an alternative extrapolation procedure can be obtainedf block states has been overestimated by using the upper
Instead of using the truncation error as proposed in Refs. Bound on the accessible information. Therefore, we have also
tried to control the lower bound on accessible information.

D. Application to quantum chemistry DMRG

10° 10° For large threshold values, the lower bond on accessible in-
© g:]o formation has also provided similar results but with less
107" o X g 1071 & U=100 o block states. For smaller threshold values, however, we have
o found it to be very unstable for increasing with larger
107 o 107 Y
5 x © . values ofpyy,.
2 10° o 5 o o o When molecules are studied in quantum chemistry appli-
B o x o x cations, “lattice sites” carry different quantum information as
a0 107 © described by a nonconstant value of the site entropy func-
. * & U N 5 tion. This means that the entropy profile of the bipartite par-
who. © N u=10 10 x titioning of the finite system depends very much on the or-
10 ~ 107 Q dering of the lattice sites. Since the molecules are noncritical
LA AR LA 10° 107" . 10t 10 models, one can obtain the entropy profile of the exact solu-

tion of the finite system with an exponentially small error

FIG. 6. The relative error as a function of the truncation errorusing a limited number of block states. Since the block en-
and the threshold value of Kholevo's bound on accessible informatropy is related to the size of the superblock Hilbert space, in
tion obtained with the DBSS method and by EtR), respectively.  order to increase the efficiency of the DMRG method one
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has to reduce the block entropy profile of the exact solutiorFirst the blocks contain only a limited subset of the block
by optimizing ordering. For larger systems we have foundstates; thus for a given sit changes for each half sweep as
that the optimization procedure outlined in Ref. 6, based orthe method converges to the attractor. In addition, during the
the site entropy profile alone, does not lead to optimal orderrenormalization procesS§, (I+1) is reduced toS™"q(I+1)
ing and it often blocked the convergence of the DMRGdue to the truncation of basis states, thus) is also a func-
method. This problem, related to the competition betweenion of subsequent sweeps. However, once the DMRG
entanglement localization and interaction localization, willmethod has converged, i.e., subsequent DMRG sweeps do
be investigated in a subsequent paper. not changes (1) andS, the following equality should hold to

a good accuracy:

IV. RELATIONSHIP TO QUANTUM INFORMATION N-1 N N
GENERATION 2 =-25+2[sO-""D]. (189
=1 =1 1=2

In the DMRG procedure, during the renormalization step ) .
the blockB, is formed of the subblocl and the(l+1)th An”analogous relationship holds for the backward sweep as
site. Denoting byS, (1) the entropy of the left subblock of W€ - .
length | and by S, the entropy of the(l+1)th site, the As one sees in Fig. 5 the decrease of the loss of informa-

. tion goes together with the decrease of the contribution of
change (.)f t_he block entropy by forming a larger bIOCk’the atypical states. Although the actual shape of the upper
B.(I+1), is given as

and lower bounds depends &h we have found that when
S(H+S+1()=S(1+1), (14)  only the first few eigenvalues qf are retainedpy, is al-
) ) - ready very close to unity. Therefore, the loss of information
where the so-called mutual informatidp(l) quantifies the coyid pe equally controlled by requiring thag=S(p)

relation holds for the right block, given as leads to
SR(N) +Suz+Ir() =SK(r +1). (15) N-1 N
The unitary operation applied on the basis states oBie |§1 () + gl S<(N-De. (19

composite system is a type of local quantum operations or

classical communicationd-OCC) operation, i.e., it cannot Equation(19) can be used as an alternative procedure to

increase the entanglement betwdgnand Bg blocks which  check the convergence of the DMRG method.

has also been related to entanglement distillation protdéols. Numerically we have found a very similar result to the

Therefore, the entropy of th®, + composite system remains one shown in the preceding section, that the relative error

unchanged or decreased by forming the larger b®ckThe  and 21(1)+X,§ are linear functions ofy on a logarithmic

guantum information generated by the renormalization proscale. The second panel of Fig. 7 shows the error in the sum

cedure of the forward sweep can be measured usingl2y. rule given by Eq.(19) for the calculation presented in Sec.

as I D. This has been found to be one order of magnitude

worse than the discarded weight of the von Neumann en-

L) =S.0+1) = S.() - Sua, (18 tropy. as expocted. ?

wherel runs from 1 toN-1. Analogously the information

generated by the backward sweep can be derived using Eq.

(15).

If an effective system of lengtN+2 is formed by adding We have studied the density-matrix renormalization-group
two noninteracting sites to the right end of the chain, allmethod from the point of view of quantum data compression.
blocks containing 1 tdN lattice sites of the original system The method has been applied to the half-filled 1D Hubbard
can be formed by the forward sweep. The total informationmodel in real space and to various molecules. Our findings
gain of a full half sweep can be calculated?m{‘é,‘lllL(l). The are listed below.
same holds for the backward sweep as well when the two (1) We have shown an explicit relationship between the
noninteracting sites are attached to the left end of the chairlimension of the Hilbert space of DMRG blocks and block
It is easy to show that if aly' and g basis states of the entropy for any fixed accuracy or alternatively between the
blocks are kept at each iteration step, i.e., no truncation isuperblock Hilbert space and block entropy.
applied, a sum rule holds, which relates the total information (2) We have presented a more rigorous truncation proce-
gain within a full half sweep and the sum of site entropiesdure based on Kholevo's theory on accessible information.
given as This method also provides an alternative extrapolation
method. We have found numerically that on a logarithmic
SLh=-S5 17) scale the relative error i_s a Iinee_lr function of the threshold

= L = value on the accessible information.
(3) We have also studied models when lattice site entro-
where we have usef (1)=S; and S (N)=0. This equality, pies are not equivalent and demonstrated the efficiency of
however, does not hold in practical DMRG calculations.our new truncation procedure and criteria of convergence.

V. SUMMARY

N-1 N
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(4) We have presented a sum rule that relates the sum aitates; however, the DMRG implementation of such a prob-
site entropies to the total information generated within a halfem is rather complicated!.
sweep of the DMRG method. It has been shown that this
could be used as an alternative test for convergence. ACKNOWLEDGMENTS
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