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We have studied quantum data compression for finite quantum systems where the site density matrices are
not independent, i.e., the density matrix cannot be given as direct product of site density matrices and the von
Neumann entropy is not equal to the sum of site entropies. Using the density-matrix renormalization-group
(DMRG) method for the one-dimensional Hubbard model, we have shown that a simple relationship exists
between the entropy of the left or right block and dimension of the Hilbert space of that block as well as of the
superblock for any fixed accuracy. The information loss during the RG procedure has been investigated and a
more rigorous control of the relative error has been proposed based on Kholevo’s theory. Our results are also
supported by the quantum chemistry version of DMRG applied to various molecules with system lengths up to
60 lattice sites. A sum rule that relates site entropies and the total information generated by the renormalization
procedure has also been given, which serves as an alternative test of convergence of the DMRG method.
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I. INTRODUCTION

In the past few years nonlocal generalizations1,2 of the
density-matrix renormalization-group(DMRG) method3,4

have gained much attention since the method allows us to
study interacting spin and electron systems in momentum
space1,5,6 or molecules within the context of quantum
chemistry.2,6–11

Recently the concepts of information theory have reap-
peared in the study of solid state physics and statistical phys-
ics problems.6,12–15 On the one hand, it has been pointed
out12,13 that the von Neumann entropy of a finite system of
lengthN,

SsrsNdd = − TrsrsNd ln rsNdd, s1d

where rsNd is the density matrix, diverges logarithmically
with the system size if the system is critical and the spectrum
is gapless, while it saturates asN increases for noncritical,
gapped models. On the other hand, in an independent work,6

the von Neumann entropy has been used to improve the per-
formance of the momentum space and quantum chemistry
versions of the DMRG method. It has been shown that an
optimal ordering of states can be obtained from the distribu-
tion of site von Neumann entropies of “lattice sites.” Quite
recently, the study of entanglement has also led to an alter-
native procedure using the periodic boundary condition16

that increases dramatically the performance of the real space
DMRG (RS-DMRG) method and to the development of the
time-dependent DMRG algorithm.17,18

An important problem in quantum information theory is
quantum data, compression,19–22 i.e., how the dimension of
the typical subspace should be chosen to achieve a pre-
scribed fidelity. The DMRG method is based on a similar
reduction of the Hilbert space. In the standard DMRG pro-
cedure, the dimension, the number of states to be kept, is
fixed before the calculation. In the dynamical block-state se-
lection (DBSS) approach10 the truncation error is kept fixed
and the dimension is allowed to vary. It has been shown6 that

the prescribed accuracy can be achieved with the least num-
ber of block states, if the entropy-optimized ordering is used.
In this paper, we study this problem from the point of view
of quantum data compression and show that a simple rela-
tionship exists between the von Neumann entropy of sub-
system blocks and the size of Hilbert space of the blocks
or alternatively the size of Hilbert space that one has to
diagonalize in DMRG. We argue that the accessible
information23,24 of mixed-state ensembles can be interpreted
in the context of DMRG as the information loss due to the
truncation procedure. Relying on this we propose an alterna-
tive method to improve the convergence of DMRG.

The main purpose of this paper is to study the properties
of DMRG from the point of view of quantum information
theory and to use the obtained results to optimize the
method. The setup of the paper is as follows. In Sec. II we
describe the theoretical background of data compression, ac-
cessible information for mixed-state ensembles, and their re-
lation to the DMRG method. In Sec. III these concepts and
quantities are studied by applying the RS-DMRG to the half-
filled one-dimensional(1D) Hubbard chain using open and
periodic boundary conditions and the nonlocal generalization
of DMRG to various molecules. In Sec. IV the obtained re-
sults are interpreted as quantum information generation in
the DMRG method. Our conclusions are presented in Sec. V.

II. QUANTUM DATA COMPRESSION

In his landmark work,25 Shannon has shown how much a
message constructed fromN independent letterssxad, where
each letter occurs witha priori probability pa, can be com-
pressed. In classical information theory messages are classi-
fied into so-called typical and atypical sequences. If for any
e.0 the sum of the probabilities of all typical sequences lies
between 1−e and 1, then for anyd.0 and for large enough
values ofN the number of typical sequencesnse ,dd lies be-
tween the bounds 2NsS+ddùnse ,ddù s1−ed2NsS−dd, whereS is
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the Shannon entropy,S=−Sapa log2pa. Therefore, a block
code of lengthNS bits encodes all typical sequences irre-
spective of how the atypical sequences are encoded and the
probability of error will still be less thane. In quantum in-
formation theory the letters are density matrices and one has
to distinguish two cases, namely when the density matrices
correspond to ensembles ofq pure states,ufal, or when they
are formed from density matricesra, with probability pa.

A. Pure-state ensemble

Considering the first case, that is, a pure-state ensemble,
the density matrix of a message consisting ofN letters is
rsNd=r ^ r ^ ¯ ^ r, where r=Sapaufalkfau, and the von
Neumann entropy of the message is simply related to the
entropy of the ensemble,SsrsNdd=NSsrd. The optimal code
that compresses the Hilbert space of the entire message,
LsNd=L ^ L ^ ¯ ^ L to a smaller Hilbert space without
compromising the fidelity of the message forN→` has been
obtained by b. Schumacher.19 Analogously to classical infor-
mation theoryLsNd is divided into so-called typicalsLtyp

sNdd
and atypicalsLatyp

sNd d subspaces by applying a projectionPtyp

andPatyp. If for any e.0 almost all weight of the ensemble
lies within Ltyp

sNd and TrPtypr
sNdPtyp.1−e, while for the

atypical subspace TrPatypr
sNdPatyp,e, then for anyd.0

and sufficiently large enoughN the eigenvaluesvtyp of rsNd

belonging to typical eigenstates fall within a narrow range:

e−NfSsrd+dg , vn , e−NfSsrd−dg. s2d

Therefore, the number of dimensions of the typical subspace
lies between the bounds

s1 − edeNfSsrd−dg ø dim Ltyp
sNd ø eNfSsrd+dg. s3d

This means that the von Neumann entropy is the number of
qubits of quantum information carried per letter of the mes-
sage and unlessr=s1/qd1, a compression is always possible.
We have to mention that Eqs.(2) and (3) have been refor-
mulated in order to be consistent with Eq.(1).

B. Mixed-state ensemble

The result is less simple if the letters are chosen from
density matrices of mixed states. In this case only an upper23

or lower bound26 can be derived for the accessible informa-
tion. Therefore, if the source of information is constructed
from messages represented byra states anda priori prob-
ability pa, then the mutual information between the sender’s
and receiver’s measurement is bounded by

I ø Ssrd − o
a

paSsrad, s4d

wherer=Sapara andS is the von Neumann entropy given by
Eq. (1). If all signal statesra are pure states, the upper bound
on the accessible information reduces toI øSsrd.

The lower bound on accessible information also depends
not only on the entire density matrix but also on the particu-
lar way r is realized as an ensemble of mixed states. As it
has been given by Jozsaet al.,26

I ù Qsrd − o
a

paQsrad, s5d

where the subentropyQ is defined as

Q = − o
a=1

M S p
aÞb

va

va − vb
Dva ln va. s6d

If two or more of the eigenvalues are equal,Q remains finite
if one takes the limitva→vb.

C. Relationship to DMRG

For lattice models studied in solid state physics problems,
on the other hand, the message coded into the wave function
of the system has different features. The site density matrices
are in general not independent, thusrsNdÞr ^ r ^ ¯ ^ r and
SsrsNddÞNSsrd. In this paper, this situation is studied using
DMRG.

From the point of view of information theory DMRG is a
numerical tool to select the typical subspace on which the
target statesCTGd of a Hamiltonian of a finite system of
lengthN can be represented. The Hilbert space of the system
(called superblock Hilbert space) is defined on a bipartite
system,Ltyp=Ltyp

sLd
^ Ltyp

sRd, whereLtyp
sLd andLtyp

sRd are the typical
Hilbert spaces of the left and right blocks,BL andBR, which
themselves are built from subblocks,Bl and Br, with one
extra site. The indicesl and r denote at the same time the
number of sites in the subblocks. The schematic plot of the
DMRG configuration is shown in Fig. 1.

Although the target state is usually a pure state, the left
and right blocks are in a mixed state described by the density
matricesrL=TrRr, and rR=TrLr, respectively. Analogously
one can define the density matrices of theBl and Br sub-
blocks,rl =Trsl

TrRr and rr =TrLTrsr
r, as well as that of the

intermediate sites, given asrsl
=TrlTrRr, rsr

=TrLTrrr. It fol-
lows from the singular value decomposition theorem that for
a pure target state and any choice of the length of the left
subblock, l, the entropy of the left block of lengthl +1,
SLsl +1d is identical to that of the right block,SRsr +1d, where

FIG. 1. Schematic plot of the system and environment block of
DMRG. Bl andBr denote the left and right block of lengthl andr,
and of dimensionMl andMr, respectively, • stands for the interme-
diate sites(sl andsr) with ql andqr degrees of freedom. The blocks
BL=Bl • ,BR= •Br have dimensionML andMR, respectively.
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l +r +2=N. S;SL=SR is also related to the mutual informa-
tion of the blocks,I =−2S sinceSLsl +1d+SRsr +1d+ I =SsNd,
whereSsNd is the entropy of the full system, which vanishes
if the system is in a pure state.I quantifies the correlation
between the two subsystems and vanishes if and only if the
two subsystems are completely uncorrelated, i.e., whenr
=rL ^ rR. S also measures the entanglement27 and the
amount of quantum information exchange between the
blocks.28

The wave function of the finite lattice of lengthN is built
up using the infinite lattice method followed by a systematic
application of the sweeping procedure of the finite lattice
method. The typical subspacesLtyp

sLd and Ltyp
sRd are obtained

by selecting thatM renormalized states out of theM 3q
block statessufa

sLdl , ufa
sRdld, which have the largest eigenval-

ues,va
sLd andva

sRd, of the density matricesrL andrR, respec-
tively. The Ptyp

L and Ptyp
R projection operators are formed

from theM chosen eigenstates ofrL andrR. The accuracy of
the truncation procedure is given by the so-called truncation
error, TRE=1−Sa=1

M va, whereva;va
sLd or va

sRd, depending
on the direction of the sweep. Therefore, due to the trunca-
tion of basis statese is always greater than zero.

Another main difference between conventional informa-
tion theory and DMRG is that while in the former case the
letter states have ana priori assigned probability density,29,30

in the latter case the probability of a configuration depends
on the target state. Therefore, the subset of states that define
the code words is determined by the physical properties of
the target state. When DMRG is applied to find the typical
subspace of a target state, i.e., the typical code words, this
subspace is reduced further. In addition, during the RG pro-
cedure the original basis states are also transformed into new
renormalized states, thus code words change at each iteration
step. In this respect, in DMRG the information of one block
is coded into the basis function of the renormalized blocks
rather than into a quantum channel of qubits.

In the standard DMRG procedure the number of states of
the left and right blocks,M, is fixed in advance of the cal-
culation. The superblock Hilbert space,LSB, on which the
target state is determined is not simplyLtyp

sLd
^ Ltyp

sRd, since only
states with prescribed quantum numbers have to be consid-
ered. UsuallyM is increased systematically during the finite
lattice method; thus the accuracy depends onM in an uncon-
trolled way. In contrast to this in the DBSS approach10 the
truncation error is kept fixed and the number of retained
states is varied dynamically, which allows us to control the
accuracy more precisely. A threshold value for the minimum
number of block statesMmin has also been introduced in
order to avoid higher-lying local minima.

III. NUMERICAL RESULTS

The most general fermionic Hamiltonian can be given as

H = o
i j s

Tijcis
† cjs + o

i jklss8

Vijklcis
† cjs8

† cks8cls, s7d

where Tij denotes the matrix elements of the one-particle
Hamiltonian andVijkl stands for the matrix elements of the

electron interaction operator. Depending on the structure of
Tij andVijkl this Hamiltonian can describe fermionic models
in real space with open or periodic boundary conditions, a
molecule, or a usual fermionic model in momentum space.

A special case of Eq.(7) is the 1D Hubbard model,

H = o
is

tscis
† ci+1s + ci+1s

† cisd + Uo
i

ci↑
† ci↑ci↓

† ci↓. s8d

In this case theufal states areu0l, u↓l, u↑l, u↓↑l. For homoge-
neous lattice models with periodic boundary conditions each
lattice site carries the same informationsSid. For U=0,
Si =4 ln 4=1.38629, while forU→` the model is equivalent
to the spin-1/2 Heisenberg model and only theu↓l and u↑l
states have finite weight, thusSi =2 ln 2=0.69314. In the nu-
merical work we have used the real space version of DMRG
with open(OBC) and periodic(PBC) boundary conditions.

A. The standard DMRG procedure

First we have investigated the block entropy in the stan-
dard RS-DMRG method when calculating the ground-state
energy of the half-filled 1D Hubbard model witht=1 for a
chain withN=80 sites, forU=1,10,100using a fixed num-
ber of block states, namely,M =256,512,1024. In Fig. 2 we
have plotted the block entropy and the logarithm of the di-
mension of L and the Hilbert space of the superblock,
lnsdim Ld and lnsdim LSBd, respectively, as a function of it-
eration steps forU=1 andM =512. It is clear from the figure
that for the infinite lattice method (for iteration steps less
than 39), the block entropy,S, increases with the block
length. According to Vidal and co-workers12,13 a logarithmic
divergence is expected if no truncation had been applied dur-
ing the RG procedure. Deviations occur for two reasons.
First the truncation procedure has been applied from the fifth
iteration step. More importantly, in DMRG the chains are
built up systematically, and for chains of lengthN the finite
lattice method has to be used afterN/2−1 initialization
steps. At this point the entropy of the blocks starts to de-
crease. In the successive sweeps the entropy reaches its
maximum when the sizes of the two blocks become equal. It

FIG. 2. Block entropy,S, and lns dimLd, lnsdim LSBd as a func-
tion of iteration steps for the half-filled 1D Hubbard model with
N=80 for U=1 with fixed number of block states(M =512) using
PBC. For an iteration step less than 39 the infinite lattice method
has been used.
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is worth mentioning thatS became almost totally symmetric
after the second half sweep already. SinceS is related to the
mutual information of the blocks, this result is in agreement
with the long known fact that the best accuracy of RS-
DMRG is always obtained for the symmetric block configu-
rations. For largerU values the entanglement between the
blocks is reduced as indicated by the decreasing value ofS
and Si, while lnsdim Ld remained almost the same, and the
relative error of the calculations improved significantly. This
is the first sign that the entropy, the dimension of the Hilbert
space, and the accuracy are related to each other in DMRG.

B. DBSS approach

This standard procedure, however, does not allow ana
priori control of the accuracy, while this control is possible
in the DBSS approach.10 Moreover, the latter approach al-
lows us to study the relationship between the von Neumann
entropy of the block and the dimension of the Hilbert space
of the superblock qualitatively. Therefore, we have repeated
the DMRG calculations on the same model using the DBSS
approach withMmin=16 for various values of the truncation
error, namely for TREmax=10−2,10−3, . . . ,10−8. In Fig. 3 we
have plotted lnsdim Ld, lnsdim LSBd, and the block entropy
obtained after the sixth sweep forU=1, N=80 as a function
of iteration step shifted modulo 80. It is clearly seen in the
figure that due to the truncation of basis states, the logarith-
mic corrections are cut, andS and lnsdim Ld are almost con-
stant for a wide range of block lengths. A simple relationship
seems to exist between the two quantities, which is analo-
gous to Eq.(3). We define the shift between lnsdim Ld andS
as

b ; lnsdim Ld − S. s9d

Figure 4 shows the value ofb for U=1, TREmax=10−4 for
three different chain lengths,N=40, 60, 80.b is plotted as a
function of the shifted iteration step rescaled by the length of
the chain. We have found that after the sixth sweep except
for very short block lengthsb is practically independent ofN
for a given accuracy. A similar result is expected for noncriti-
cal systems since according to Vidalet al.12 in this case the
block entropy saturates with increasing block length. It is

worth mentioning thatb8 defined analogously to Eq.(9) but
with lnsdim LSBd,

b8 ; lnsdim LSBd − S, s10d

is also independent ofN for large enoughN.
Both b and b8 are, however, functions of TREmax. This

dependence has been tested forU=1 for TREmax=10−3

−10−6, when maxflnsdim LSBdg changed from 63103 to
2.13106. In this range of the truncation errorb increases
proportionally to −lnTREmax. Similar results have been ob-
tained with open boundary conditions but with significantly
smaller block entropies and much less block states. For
larger U values and for small values of TREmax the target
state has often been lost and the convergence depended very
much on the minimum number of block statesMmin.

C. An alternative truncation procedure

The simple relationships given by Eqs.(9) and(10) seem
to indicate that a better DMRG procedure that avoids the
above-mentioned problems should rely on the control of the
von Neumann entropy of the blocks. In order to control the
weight of retained information during the RG procedure in a
more rigorous way, the reduced density matrix of the left or
right subsystem is written as the sum of the density matrices
of mutually orthogonal mixed states belonging to the typical
and atypical subspaces,

rsLd = ptyprtyp
sLd + s1 − ptypdratyp

sLd , s11d

wherertyp
sLd is formed from theM largest eigenvalues ofrsLd

and ratyp
sLd from the remaining eigenvalues with Trrtyp

sLd

=Tr ratyp
sLd =1. A similar decomposition holds for the right

block, and therefore in what follows the superscriptL andR
are dropped. In usual information theory, if the message con-
tainedrtyp or ratyp with the appropriate probabilities, the ac-
cessible information for such a binary channel would be less
than the Kholevo bound23

I ø Ssrd − ptypSsrtypd − s1 − ptypdSsratypd, s12d

and larger than the Jozsa-Robb-Wootters lower bound26

FIG. 3. Same as Fig. 2 but using DBSS approach for TREmax

=10−4 andMmin=16.

FIG. 4. Parameterb as a function of rescaled iteration step using
the DBSS approach for TREmax=10−4, Mmin=16, U=1, N
=40,60,80.
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I ù Qsrd − ptypQsrtypd − s1 − ptypdQsratypd. s13d

The schematic plot of the two bounds as a function ofptyp is
shown in Fig. 5. It is worth mentioning that other ensemble-
dependent bounds have been derived by Fuchs and Caves.24

In DMRG, however, the atypical subspace is neglected,
which leads to a loss of information. Forptyp close to unity
this loss is argued to be equal to the accessible information,
which is negligible if the probability of the atypical subspace
is negligible. This can be used to optimize the DMRG pro-
cedure. A modified DBSS procedure is proposed, where in-
stead of fixing the truncation error, the Kholevo bound is
required to be less than ane fixed in advance, and the num-
ber of statesM is chosen accordingly in every step.

We have run independent calculations for the 1D Hubbard
model for different threshold values on the upper bound of
accessible information, denoted byx, ranging from 10−2 to
10−7 using three sweeps. In Fig. 6 we have plotted the rela-
tive error as a function of TRE andx on a logarithmic scale
for U=1, 10, 100 withMmin=4, where the relative error is
given assEDMRG−Eexactd /Eexact. We have found that this se-
lection rule is very stable even for very small values of the
retained eigenvalues ofrtyp. Assuming that the linear rela-
tionship apparent on the right panel holds for other models as
well, an alternative extrapolation procedure can be obtained.
Instead of using the truncation error as proposed in Refs. 3

and 31–34, the energy of the target state is extrapolated as a
function of x.

D. Application to quantum chemistry DMRG

We have tested the truncation procedure presented above
by performing DMRG calculations on various molecules up
to 59 lattice sites. We have used the dynamically extended
active space procedure6 (DEAS) and the DBBS approach by
controlling the change of von Neumann entropy during the
truncation procedure at each renormalization step. In all cal-
culationsMmin=4 was used and during the first half sweep
the right block was represented by 256–512 states. The
maximum number of block states that our program could
treat is in the range of 2000–3500, strongly depending on the
system size. Our results on various molecules are shown in
Fig. 7. We have found again that on a logarithmic scale the
relative error is a linear function of the accessible informa-
tion even for large threshold values.

For very small system sizes, like CH2 s6/13d the number
of block states has been overestimated by using the upper
bound on the accessible information. Therefore, we have also
tried to control the lower bound on accessible information.
For large threshold values, the lower bond on accessible in-
formation has also provided similar results but with less
block states. For smaller threshold values, however, we have
found it to be very unstable for increasingM with larger
values ofptyp.

When molecules are studied in quantum chemistry appli-
cations, “lattice sites” carry different quantum information as
described by a nonconstant value of the site entropy func-
tion. This means that the entropy profile of the bipartite par-
titioning of the finite system depends very much on the or-
dering of the lattice sites. Since the molecules are noncritical
models, one can obtain the entropy profile of the exact solu-
tion of the finite system with an exponentially small error
using a limited number of block states. Since the block en-
tropy is related to the size of the superblock Hilbert space, in
order to increase the efficiency of the DMRG method one

FIG. 5. Schematic plot of the upper and lower bonds on acces-
sible information for a binary channel.

FIG. 6. The relative error as a function of the truncation error
and the threshold value of Kholevo’s bound on accessible informa-
tion obtained with the DBSS method and by Eq.(12), respectively.

FIG. 7. The first panel shows the relative error as a function of
the threshold value of Kholevo’s bound on accessible information
obtained by Eq.(12). The second panel shows the error in the sum
rule given by Eq.(19).
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has to reduce the block entropy profile of the exact solution
by optimizing ordering. For larger systems we have found
that the optimization procedure outlined in Ref. 6, based on
the site entropy profile alone, does not lead to optimal order-
ing and it often blocked the convergence of the DMRG
method. This problem, related to the competition between
entanglement localization and interaction localization, will
be investigated in a subsequent paper.

IV. RELATIONSHIP TO QUANTUM INFORMATION
GENERATION

In the DMRG procedure, during the renormalization step
the blockBL is formed of the subblockBl and thesl +1dth
site. Denoting bySLsld the entropy of the left subblock of
length l and by Sl+1 the entropy of thesl +1dth site, the
change of the block entropy by forming a larger block,
BLsl +1d, is given as

SLsld + Sl+1 + ILsld = SLsl + 1d, s14d

where the so-called mutual informationILsld quantifies the
correlation between the subsystem and the site. A similar
relation holds for the right block, given as

SRsrd + Sl+2 + IRsrd = SRsr + 1d. s15d

The unitary operation applied on the basis states of theBl •
composite system is a type of local quantum operations or
classical communications(LOCC) operation, i.e., it cannot
increase the entanglement betweenBL andBR blocks which
has also been related to entanglement distillation protocols.35

Therefore, the entropy of theBl • composite system remains
unchanged or decreased by forming the larger blockBL. The
quantum information generated by the renormalization pro-
cedure of the forward sweep can be measured using Eq.(14)
as

ILsld = SLsl + 1d − SLsld − Sl+1, s16d

where l runs from 1 toN−1. Analogously the information
generated by the backward sweep can be derived using Eq.
(15).

If an effective system of lengthN+2 is formed by adding
two noninteracting sites to the right end of the chain, all
blocks containing 1 toN lattice sites of the original system
can be formed by the forward sweep. The total information
gain of a full half sweep can be calculated asol=1

N−1ILsld. The
same holds for the backward sweep as well when the two
noninteracting sites are attached to the left end of the chain.
It is easy to show that if allql and qr basis states of the
blocks are kept at each iteration step, i.e., no truncation is
applied, a sum rule holds, which relates the total information
gain within a full half sweep and the sum of site entropies
given as

o
l=1

N−1

ILsld = − o
l=1

N

Sl , s17d

where we have usedSLs1d=S1 and SLsNd=0. This equality,
however, does not hold in practical DMRG calculations.

First the blocks contain only a limited subset of the block
states; thus for a given siteSl changes for each half sweep as
the method converges to the attractor. In addition, during the
renormalization processSLsl +1d is reduced toSL

Truncsl +1d
due to the truncation of basis states, thusILsld is also a func-
tion of subsequent sweeps. However, once the DMRG
method has converged, i.e., subsequent DMRG sweeps do
not changeSLsld andSl, the following equality should hold to
a good accuracy:

o
l=1

N−1

ILsld . − o
l=1

N

Sl + o
l=2

N

fSLsld − SL
Truncsldg. s18d

An analogous relationship holds for the backward sweep as
well.

As one sees in Fig. 5 the decrease of the loss of informa-
tion goes together with the decrease of the contribution of
the atypical states. Although the actual shape of the upper
and lower bounds depends onU, we have found that when
only the first few eigenvalues ofr are retained,ptyp is al-
ready very close to unity. Therefore, the loss of information
could be equally controlled by requiring thatx;Ssrd
−Ssrtypd should become less than« in which case Eq.(18)
leads to

o
l=1

N−1

ILsld + o
l=1

N

Sl , sN − 1de. s19d

Equation (19) can be used as an alternative procedure to
check the convergence of the DMRG method.

Numerically we have found a very similar result to the
one shown in the preceding section, that the relative error
and olIsld+olSl are linear functions ofx on a logarithmic
scale. The second panel of Fig. 7 shows the error in the sum
rule given by Eq.(19) for the calculation presented in Sec.
III D. This has been found to be one order of magnitude
worse than the discarded weight of the von Neumann en-
tropy, as expected.

V. SUMMARY

We have studied the density-matrix renormalization-group
method from the point of view of quantum data compression.
The method has been applied to the half-filled 1D Hubbard
model in real space and to various molecules. Our findings
are listed below.

(1) We have shown an explicit relationship between the
dimension of the Hilbert space of DMRG blocks and block
entropy for any fixed accuracy or alternatively between the
superblock Hilbert space and block entropy.

(2) We have presented a more rigorous truncation proce-
dure based on Kholevo’s theory on accessible information.
This method also provides an alternative extrapolation
method. We have found numerically that on a logarithmic
scale the relative error is a linear function of the threshold
value on the accessible information.

(3) We have also studied models when lattice site entro-
pies are not equivalent and demonstrated the efficiency of
our new truncation procedure and criteria of convergence.
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(4) We have presented a sum rule that relates the sum of
site entropies to the total information generated within a half
sweep of the DMRG method. It has been shown that this
could be used as an alternative test for convergence.

The application of other concepts of quantum information
theory36 to DMRG might also prove to be useful when more
complicated systems are studied. A more rigorous study of
entanglement distillation and purification protocols for sys-
tems when site entropies are not equivalent could lead to
further optimization of the DMRG method. Another natural
extension of the present work would be to use nonorthogonal

states; however, the DMRG implementation of such a prob-
lem is rather complicated.37
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