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Random-phase approximation of core-electron scattering in solids
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The interference between bound-bound transition and bound-free transition in an electron-impact excitation
of a core-electron in systems with narrow bands is discussed within the context of diagrammatic perturbation
theory. The earlier treatment of the phenomenon in terms of autoionization and characteristic widths of the
core-hole via perturbation ladder diagrams is extended to include ring diagrams as well, in random-phase
approximation(RPA). The associated characteristic line shape for the intensity of the inelastically scattered
electrons is formulated in terms of Fano line shape parameters, and theory is compared with electron-energy
loss measurements for metallic La and Ce.
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I. INTRODUCTION The RPA has also found successful application in the

The response of electrons to some external perturbation igudy of the electronic structure of some highly polarizable
a metal in the Fermi-sea picture is usually adequately ansatomic and solid-state systems. Beginning with the work of
lyzed via linear response formalism or the Kéformula ~ Amusia, Cherepkov, and Chernyshéva the discussion of
approach, which in turn requires the evaluation of a suscephe photoionization of noble-gas atoms using the diagram-
tibility tensor in general. If for example one is interested inmatic random-phase approximation with exchagBeAE),
the transport properties of the solid, then the susceptibility isnendir? used RPA ring diagrams to discuss the photoioniza-
defined in terms of the current-current correlation function.ion cross sections of xenon. He later extended the same RPA
Embedded in the susceptibility are various interactions thaEiagrammatic approach to calculate photoionization cross

|ntrodU(_:e electron corr_e!a}tlo_nS of the system. One way o ections of metallic lanthanum, thorium, and uranium using
evaluating the susceptibility is the use of diagrammatic PeM cal density functional-based approximai@dA) orbitals
turbation theory. An exact evaluation of the susceptibility is y PP \ )

impossible within this approach. Rather an approximation of®" the wave function$:1? Calculations based on the RPA
some sort is resorted to depending on the physical propertgPProach usually yield results that mimic those based on
of interest. For an extended system, it is usually sufficient tdime-dependent density-functional approximat{@mLDA ).
describe many of the physical properties with the knowledgd he TDLDA calculations for barium and cerium by Zangwill
of the band structure of the solid. To evaluate the approxiand Sovel on one hand, and for the barium ionized series
mate susceptibility in this Coulomb long-range interactionon the other by Nuroh, Stott, and Zarentbeompared with
limit is equivalent to summing a particular set of bubble orthe RPA calculations of Ref. 8 exemplify the above assertion.
ring diagrams describing the repeated electrtznn—hole Interagndeed, the uncanny similarity in the numerical photoabsorp-
tions in the random-phase approximati@®PA).” However, i cross-section results for xenon, barium, and cerium us-
|f electro_n corr_elatlons_ are to be properly accounted for,_p_aring RPA and TDLDA separately, led Nurbhto formally
ticularly if the interactions involve core electrons, then it is . . .
Semonstrate the mathematical equivalence between the ring

necessary to include the atomic structure of the solid in someg,; .
fashion. éuch an approach was taken, for example, in th iagram-based RPA and the TDLDA as far as calculations of

Hubbard model in order to unveil the dominant short-range dynamic polarizability of atoms are concerned.
part of the Coulomb interactions responsible for the instabili- The ladder-based RPA has been used to discuss the
ties in d-electrons in transition metals. To evaluate the sus4d-subshell electron energy-loss spedtEELS) in lantha-
ceptibility in the Hubbard interaction model is equivalent to num and cerium metafé.There, the successive electron-hole
considering a generalized Hartree-Fock approximation depair interactions have been formulated in terms of an effec-
scribing the repeated electron-hole interactions resulting in &ve interaction through the introduction of a self-energy in a
set of ladder diagrams that is summed in the RPA. Dyson-type equation so as to make comparative spectral
The foregoing preamble establishes the fact that whenevamalysis betweend3and 4 EELS apparent.
the RPA is invoked, the ladder and ring diagrams must in In this paper, we extend the above earlier discussion to
principle be considered on the same footing. Depending oinclude ring-based RPA as well. The formulation will be
the observable quantity of interest however, one subset afymmetric in the introduction of self-energies for both the
diagrams may be more relevant than the other. For exampleing and ladder diagrams. Moreover, unlike the earlier dis-
the RPA result for the electron correlation energy in the jel-cussion, the self-energies will be quadratic in the electron-
lium model of a solid employs a series of ring diagran®n  hole pair bare interactions, albeit the interactions appear dif-
the other hand, in the calculation of the ground state energferently in the respective self-energies. The obvious
of an imperfect Fermi gas modeled as a dilute gas interactingdvantage to such decomposition is that it allows for trans-
with strong short-range repulsive potentials, contributiongparent comparison in the interactions involved in the ring
from two-particle scattering processes necessitate the surand ladder diagrams, as well as the relative intensities ema-
mation of ladder diagrants. nating from the two respective excitation channels.
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tributions from ring and ladder graphs to the basic excitation
amplitude of Fig. 1a). They may be viewed as an initial state
|E) coupling to a two-particle and one-hole final stéit€ e)
consistent with Fig. @). We note in passing that Figs(t
and X1d)-1(h) that constitute the ring graphs are corrections
to the ladder graphs of Figs(a, 1(c), and 1i)-1(k) used in
the earlier treatmerit

In Fig. 1(b), Vpe is a Coulomb interaction matrix element
of state|E) and a discrete state involving the core-htile
i.e., the statdike). The shaded ring graph plus the interaction
vertex lines in Fig. tb) is reconstituted in Fig. (d). Figure
1(d) represents all possible ring graph insertions that begin
with the Coulomb interaction matrix element or the interac-
tion vertex lineVpe and end up with the interaction vertex
line vp. In other words, we are looking at infinite order
perturbation in interaction between the discrete siite)
and the continuum statgne), and such a basic interaction
between the two states is represented by Hib). XA thick
hole-line indicates the renormalized orbital that gives rise to
characteristic decay width of the stdt®) The decomposi-
tion of Fig. 1(d) is made up of all the graphs of Figs.
1(e)-1(h). Further, a regrouping of the ring graphs is made to
consist of those that begin and end with a thick hole-line or
renormalized staté.e., those containingdd number of ring
graphs—Fig. le), Fig. Xf), and higher ordejs and those
that begin with a renormalized discrete state and end with a

k,@/ continuum statei.e., those containingvennumber of ring
i

graphs—Fig. 1g), Fig. 1(h), and higher orders. In the above
decompositionSy(E) indicates a self-energy of the discrete

() (hy === state
The shaded rectangular graph in Figc)lis reconstituted
m in Fig. 1(i) that is made up of graphs of Figsgjland XKk)
N and higher orders. Figure(jl is the basic or lowest order
- == ladder graph to Fig. @). In Fig. 1), v,e is @ Coulomb
m+ /\/v "D ”/\ﬂi interaction matrix element between the stidgand the dis-
-/ N crete statdikn). Notice that the interaction matrix elements
nA & . mA E'D E) vpe andupe differ not only because the orbitale) and|n)
[ for the respective discrete staféss) and|ijn) in which they
E E "Y- , 7 . appear differ, but also in that they would have different an-
™ Vo = ! gular factors. Her&,(E) in Fig. 1(K) is the self-energy of the
i ) E [~ discrete state for the ladder diagrams. We note in passing that
® U % N Figs. Xa), 1(j), and 1k) were the graphs used essentially in

the discussion of the EEL spectra of lanthanum and cerium
. . 4 ;
FIG. 1. Amplitude diagrams made up @: the basic excitation in the previous work? The present work is therefore an

amplitude;(b), (d)~(h) the resonant contributions from the ring dia- €Xtension of that work with the inclusion of contribution

grams;(c), (i)~(k) the resonant contributions from ladder diagrams.ffom ring graphs. We may therefore say that the analysis
described thus far is a simpler derivation of the more com-

plicated multichannel Fano-type calculations that have been
used variously to discuss photoionization cross sections of
We employ Raleigh-Schrédinger perturbation theory forsome material$>1’
the description of the electron impact excitation processes. In First, we consider the contribution to the excitation am-
the one-electron picture, and incident electron of endfgy plitude that emanates from the ring graphs and the nonreso-
scatters to a state) above the Fermi level of the metal while nant graph(Fig. 1(a)) and denote this bg(E). The nonreso-
a core electron of state labé) is excited to a statg’) above  nant graph, Fig. (g), was part of the ladder graphs in Ref.
the Fermi level.(An underlined state label means that the14. Since it is the basic interaction, we make it part of the
state propagates as a hpl€he Coulomb interaction respon- ring graphs in the present formulation. Subsequently, if the
sible for this scattering process is represented by the amplring graphs are to be neglected, we simply sgt=0, or
tude graph of Fig. &) in which the dashed line indicates the equivalently,y=0 in Eq.(19) to be consistent with the earlier
Coulomb interaction matrix element label&fe. Figures results that makes Fig.(d) part of the ladder graphs. Thus
1(b) and Xc) describe the general structure of resonant confrom Figs. Xa) and 1b) and Figs. 1d)-1(h), we get

Il. FORMULATION
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FIG. 2. Self-energy diagrams made up @ the self-energy
insertion for ring diagramgp) the self-energy insertion for ladder

diagrams,(c) Coulomb interaction for the characteristic decay of

the discrete statéd) exchange contribution te).
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1

with the following definitions forEy and Sy(E):

Ep=e+E—3i(E), 2
S(E) = E Yo => = 4 im?2 (3)
E.-E-is < E,-E ED:

The interacting self-energ$,(E) is represented by the an-
gular momentum diagram in Fig(&® for the ring graph$,
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vn
%i(®= E -E.-E.-E-i¢d
= 2 “E,.- Ek + iﬂ'vé_ZEk. (4)

Hereafter, we will use the shortened notatignfor v e in
Eq. (4) above.

The Coulomb interaction matrix elemenf is obtained
from the self-energy graphs of Figs(c2 and 2d). Figure
2(c) is a Feynman diagram of the core-hole self-energy
=i(E),*® while Fig. 2d) is its corresponding exchange dia-
gram, constructed using angular momentum graphical
techniques? If we introduce an effective interaction matrix
elementV (E) by the equation

v
Vo(E) = D+EE S
VenUnD | .

Svpt 2 +|7TU5EUED1 (5

then by summing to infinity the terms in the two curly brack-
ets in Eq.(1) which form geometric series, we get the fol-
lowing compact expression for the excitation amplitude:

Veo(E)vpe
Ep-S(E)-E

Further, if we introduce the Faffbline width parameters
q(E) and n(E) by

a(E) =ve (6)

_ ReVED(E) _ » UenUnD
qE) = ImMVoE) (UED + ; E - E)/meEUEDv
(7a)
__ReE-S(E)-E)
O mE-sE -8 (7

and define the autoionizing, characteristic, and total line
width parameters, respectively, by, I';, andI';,** through
the equations

TJ/2m=vdp TJd2m=vE T=T,+T,, (8)

then with some algebra, the excitation amplitude reduces to

the simpler form
+
E)—UEE|:1+—{M}:|- 9
I

while Fig. 2b) is the corresponding diagram for the self- The matrix elemenvé that appears in Eq8) is defined in

energyS,(E) for the ladder graphé to be considered later.

Eq. (4) and the statement after the equation.

In Eg. (3) and hereafter, a prime on a summation sign means The contribution to the excitation amplitude arising from
that a principal part summation/integration is implied. In Eq.the ladder graphs is denoted byE). Thus from Fig. {c)

(2), X is the self-energy of the core state defined by

and Figs. 1i)-1(k), we get
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Upe UmpVem g+i q +i }
b(E) = : A(E) =v, [l+ —(*+*YY (| (19
® EB—E%E,’n—E—lé ( : y{n-l} y{n—l

Each g-value ultimately gives rise to a partial excitation
cross section as a function of the energy lost by the incident

electron to the system. From E@b) and(15b) we find that

UI,DE S,D(E)E Ur,TIDUEm
E,-EE,-E% E -E-io

- Voe_ 5 _Umplen |, SE) _ o 2ReEp~ SH(E) - E)
EL-E En-E-idl  EL-E ’ An=nE)-7'(E)= I,
(10 2 ReE, ~ SH(E) - E)
- . (20
where Iy
EL=E,+E—3i(E). (1) 1 will return to this general expression later in the article. It is

useful to first examine some limiting cases. First settirig

By introducing the self-energ®,(E) and an effective inter- = in Eq. (19) givesA(E) as

actionVp (E) through the equations
(n+yq+y'd) +(y+y - D)
n—i
The scattering intensiti(E) is proportional to the square
of the absolute value of the excitation amplitude. Thus

(n+yq+y'q)2+(y+y - 1)?
772+1 '

12
VED

() = _ ] (21)
SD(E)‘% En—E-id

A(E) = UEE|:

12
v .
2 s, (12)
m m

v,DUEI'n Ur’nDUem .
Vb= — =D +imgpe, (13)
Pe"“E -E-is < En-E ED™e

I(E) ~ |AE)*= vEE[
and summing the infinite geometric series in the square
brackets of Eq(10) gives a simpler form fob(E) as (22)

vl Ve (E) We consider different physical scenarios that would arise
%. (14)  from Eg. (22). First we sety’=0 to exclude contributions
Ep-S(E)-E from ladder graphs, ang=1, appropriate for La wheib,
=0. In such a situation the scattering intensity becomes
(where the subscrigR denotes riny

ReV/,, (E !
@ (@)= S S ey (159 IWE) =%l (n+ Q)7 + 1] (23
De m m

b(E) =

Once more, we introduce new Fano line width parameters

This is essentially a Fano line profile excluding the non-
Re(E, - S,(E) - E) resonant interaction matris. If we still exclude the con-
D ) (15  tributions from the ladder graphs by demanding that1,
Im(Ej - SH(E) - E) then the scattering intensity becom@ppropriate for Ce

Again if we introduce the autoionizing, characteristic, and 5 | (p+ @)%+ (y-1)2
total line widths, respectively, by., T',, andT; for the new Ir(E) =vee Pl : (24)
channel by the equations

7'(E)=-

Excluding contributions from ring graphs, we have to get

Ti2m=viy, Tg2m=vg=Td2m, T{=T,+T{, =0. Then withy’=1 (I'.=0), the scattering intensity be-
(16) comes(where the subscridt denotes laddgrand appropri-
ate for La,

thenb(E) takes on the form,
, . IL(E) =vZl(n+9) (7" + D] (25)
Fa{ q +i }

b(E) = VeE (17)  This is the result obtained in form in the earlier work, albeit

t g’ is defined in terms of different matrix elements. Finally,
Again, the matrix element? that appears in Eq16) is by still excluding the ring graphs but now demanding that
defined in Eq(4). Notice that the characteristic line width is ¥' # 1, the scattering intensity takes on the fo@ppropriate
the same for both the ring and ladder channels as indicated fier Ce),
Eq. (16). Finally, by introducing the dimensionless param-

7' =i

(n+y'q)+(y -1)?

etersy and v’ as ratios of the autoionizing to the total line I.(E)= Uie 5 (26)
widths in the respective channels by 7 +1
y=T T, v =TI}, (18) In a situation in whichA#» is not approximately equal to

zero, then we have to sef’ =7»—-A#. In such a case, the
Equations(9) and (17) can be combined to give the total excitation amplitude of Eq19) has to be modified to take its
excitation amplitud&\(E) that is the sum o&(E) andb(E) as  complete formAc(E) given by
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+i i 24
Ac(E) = U5E|:l +y SR S G } . (27 v = 4RY(4fnf;4dmg? + —R3(4fnf;4dmg?
n—i n—An—i 77
By taking the square of the absolute value of the above, we + 3000 R°(4fnf;4dmg?. (30)
get the complete scattering intensit(E) as 17303
L 5 Finally, from the self-energ¥.,q for the angular momentum
Io(E) ~ v? {7’(’7+ 9 LYaty (- A”)} graph represented by Figs.cand 2d), we get the interac-
¢ €L #+1 (p-An?+1 tion matrix element?, in terms of Slater integrals as

24 -yl Y q(n-An) -y |2 44 12
+{’7 ma-y+1, ya(y-27) y] b2 = —RH4F4f; 4dmg? + —-RE(414f;4dmg?
7+l (p—Anp)-+1 55 77
(28) 8100
+ 5 : 2
D11, (414T;4dmg

Note that if A% is set equal to zero, E@28) reduces to Eq.
(22). The rest of the discussion will be devoted to using the

8 1 . .
above equations in model calculations. - 3_5R (4741;4dmgR*(414f;4dmg

8 1 . .
IIl. MODEL CALCULATIONS - 7—7R (414f;4dmQR(4f4f;4dmg

For the theoretical model and the formalism presented 48R3 ] RS )
here, the target system on which the electron scatters could T 847 (4f4f;4dmgRe(4f4f;4dmg) . (32

be an atom, a molecule or a solid. Here we perform a model . . _
calculation for metallic lanthanum and cerium that belong toThe expressions in Eq&29)«32) above have been obtained
the lanthanide group. We envisage an electron scattering préising the rules for evaluating angular momentum gréphs.
cess in which a d-subshell electron is excited. An atom With the above explicit expressions for the matrix elements
from this group in a metallic environment is usually modeledwe proceed to get numerical values for the relevant param-
as triply ionized, so the ground state configurations for theeters that are needed to calculate the various spectral lines in
lanthanum and cerium ions would be'#4f° and 4'%f!,  Sec. Il . _
respectively. This means that in Figgajt-1(c), the follow- The continuum E_ states he_lve _be_en calculated_ in the
ing assignments are made for the states with lapeglsand ~ Hartree-Fock potential of the triply ionized ion of cerium. In

€' as,e— ef, i —4d, ande’ — 4f. The statdE) representing the following discussion, the Slater integrals for cerium will
the incident electron is a plane wave that may be decompPe used for lanthanum as welWhile there is no #-state in
posed into its partial waves. Only tlge and f-partial waves the ground configuration of lanthanum atom/ion, there is an
can couple to the difef-state. However, the higher partial available localized #state below the Fermi level whenever
wave provides larger numerical values to the matrix elementhere is a vacancy in ad3 or 4d-subshell) Any of the

v Thus an assignment & —Eg is made for that state E-dependent matrix elements that appear in the principal part
label. As a consequence, assignmentk-ef4f, n—nf, and Summation/integration is slowly varying. We therefore repre-
m—mg should be made for these state labels in Figssent any such function &¢E) with its appropriate quadratic
1(e)-1(h), 1(j), and k). From Fig. 1a), we get the matrix fit:

elementv ¢ in terms of Slater integrals as f(E)=a+bE+CE2, Eg<E<Ey+A. (33)
V= 2\,'§R1(6f4f;Eg4d) + 2(\,’%/13R3(6f4f;Eg4d) Then its principal part summation/integration represented by
— F(E) takes the analytic form:
+10(1390/143R>(ef4f ; Egad). (29)
f(En) f(e)
, FE) =X —=—P | —=dx
From the angular momentum graph representing the self- n E,-E e-E
energySy(E) in Fig. 1(f), we get the interaction matrix ele-
mentv?, from Fig. 2a) in terms of Slater integral as =[a+bE+cE]In ﬁ‘
EO - E
22
v2, = 6RY(4f4d; 4dnf)? + ~-R3(4f4d; 4dnf) +Alb+c(Al2+E)]. (34)
63 I _—
The contributions from the logarithmic component would be
5000 . ) 2 small. In the above\ reflects the d44fN-multiplet width for
- ;|_1979R (4f4d; 4dnf)~. (30 La (N=1) and Ce(N=2). The energyg, is the 4 — 4f ex-

citation energy. The parametdeg andA may be taken from
Similarly, from the angular momentum graph representingexperiment or multiplet calculatiort$,as displayed in Table
the self-energySy(E) in Fig. 1(k), we get the interaction |. With these values, an&-ﬂependent guantity will be evalu-
matrix elemenu 2 from Fig. 2b) in terms of Slater integrals ated at some mean enerfEy+A/2, say. In such a situa-
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TABLE |. Computedg-values and ratios of autoionizing line widths to total line widths in the ring and

ladder channels as described in the text.

Elements E? A2
(configuration (eVv) (eV) q y q’ v
La (4d4f) 97.2 19.8 -0.548 -0.0565
Ce (4d4f?) 101.8 23.8 -0.521 0.950 -0.0628 0.783

3Data extracted from Ref. 22.

tion, the logarithmic contribution in Eq:34) vanishes and
we get forF(E) the simple expression

F(E) = A[b + c(E + A/2)]. (35)

Thus frgm Eqgs(7a) and(159), the computed values mf(E)
andq’(E) are presented in Table I, together with the value

of v and y' that have been calculated using E¢E3) and
(39.
IV. RESULTS AND DISCUSSION

In Fig. 3, the curve labele¢h) represents the theoretical

line shape for Ce calculated using the complete expressioﬂ

defined by Eq.(28), with the appropriate parameters from

Table I. The slowly varying nonresonant excitation matrix
elementv?: has been excluded. The corresponding theoreti

cal curve for La using Eq(28) with y=v'=1 is similar in

shape to the Ce curve with subtle differences in the reso ST S . . . .
\jgrmer dissimilarity in the theoretical ratio arises mainly be-

nance peaks and widths. Rather than comparing their relati

line shapes, we have instead calculated the ratio of the linE
shape of Ce to La to reveal any elusive differences. Thé
result of this ratio in which the La line shape was first nor-

malized to the Ce peak is the curve labelbgin Fig. 3. The

1.4 ——1——1————T—"—T——T——T——T——

1.2+

1.0+

0.8

0.6 4

0.4

REL. INTENSITY (ARB. UNITS)

0.2 4

0.0 A—r——r————— T
25
ENERGY LOSS (eV)

curve is troughlike with suppressed ridges. The flattened
ridges approach the expected theoretical constant value of
unity far away from the zero energy-loss regions. The width
of the trough is~3 eV. The curve labelef) is the experi-
mental ratio of electron energy-loss spectra of Ce ané’La.
In computing this ratio the experimental data abscissas were

dranslated so that their decreasing portions, i.e., their peak to

trough portions are coincident as was done in Ref. 14. The
well-shaped distribution of the computed data points was
then fitted to a biphasic function so that the experimental
trough minimum was aligned with the theoretical one in en-
ergy. We observe that the curve for the experimental ratio is
also troughlike, but unlike the theoretical one, the ridges are
ronounced. The width of the trough is8 eV.

While the general trend in the theoretical curve is found in
the experimental one, there are two major discrepancies. The
first is the pronounced ridges in the experimental curve as
mentioned above. The second is the width of the experimen-
tal curve which is~5 eV larger than the theoretical one. The

ause spin-orbit interactions are not included in the theoret-
cal formulation, while electron-energy and absorption spec-
tra are known to be strongly dependent on spin-orbit
effects???* The cause for the latter dissimilarity is inherent
in calculated atomic-based theoretical resonance scattering
spectra whose widths are typically narrower than those from
experiment® Notwithstanding the above remarks, the over-
all agreement of theory with experiment is fair to good.
Figure 4 is presented to elucidate the importance of the
interaction parametek . In the figure we make comparison
of only theoretical line shapes of Ce with La along the lines
as was done in Fig. 3. Figurga and 4b) are the same as
Fig. 3@ and 3b), respectively. Figure(4) is the ratio of the
line shape of Ce to La using E¢8), but in the case of La,
v is set equal to zero to indicate that only contributions from
ladder diagrams are retained from the expression. The result-
ing expression for La that is dependent on the parameter
is numerically approximate to unity for alj-values. As a
result this ratio is indistinguishable from the Ce line shape of
Fig. 3@—hence the reason the curve bears the two labels “a,
c.” Figure 4d) is the calculated line shape of Ce to La, again
using Eq.(28), but this time it isy’ that is set equal to zero
for La to indicate retention of only contributions from ring
diagrams. The resulting expression for La is independent of

FIG. 3. Comparison of theoretical line shapes for metallic Lathe parameteA», and the curve for the ratio is highly reso-

and Ce with experimenta) The calculated full line shape for Ce;
(b) ratio of the calculated full line shape for Ce to that of Ie)

nant.(The maximum of this curve is 4.9 units occurring at
the energy loss of =2 e\VThis curve is contrasted with Fig.

electron energy-loss intensity ratio of Ce to La, computed from4(e), which is the ratio of the Ce line shape defined by Eq.

experimental datéRef. 23.

(28) to the La line shape defined by the Fano expression of
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1.4 excitation amplitude from ladder diagrams comes via Figs.
1(a) and Xc) that are first order in Coulomb interaction while
1.2 4 . the leading contribution from the ring diagrams via Fi¢h)1
is second order in Coulomb interaction. Consequently, con-
1.0 - tributions from ring diagrams to core-electron impact excita-

] 1 tion spectrum would be smaller than those from ladder dia-

0.8 d 4 grams. In instances where the diagrammatic RPA has been
used with success, the exchange or ladder diagrams are
treated as corrections to ring diagrams, and sometimes ne-

REL. INTENSITY (ARB. UNITS)

o glected altogetheT1°Also, as has been remarked in the RPA

04 i treatment for the charge fluctuation in metals using the Hub-
) bard model, ladder graphs contribute more to the energy of
s ac 1 the electrons, but little to their dynamic properties such as

correlation?® Thus the minimal dynamic effects exhibited
rather by ring diagrams in comparison to ladder diagrams is
°~°_25 T e e X a novel observation manifested only in doing RPA with re-
spect to core-electron impact excitation in metals.
ENERGY LOSS (eV) The final theoretical expressions of Sec. || may be used to
approximately fit experimental electron energy-loss data with
trial and error choices of the parametetsy’, g, andq’ such

FIG. 4. Comparison of theoretical line shapes of Ce with(ap:

same as in Fig. @); (b) same as in Fig. ®); (c) ratio of the ; . . . S
calculated full line shape of Ce to L@ncluding only ladder contri- that O<y, y'<1. But as the foregoing discussion has indi-

butiony; (d) ratio of the calculated full line shape of Ce to La cated, for any meaningful fit\ 7 would have to be consid-

(including only ring contributions (e) ratio of the calculated full €red as well. The Fano parametgrandq’ can also take on
line width of Ce to La[Eq. (23)]. positive values, as would be the case if the core transition

had been @— 3d instead, as analyzed in Ref. 14. The for-
Eq. (29, i.e., due to contributions emanating from only ring mulation presented here may be extended to the transition
diagrams assuming nonexisting ladder diagrams. We notgetals. However, two philosophical difficulties present
that Eq.(23) is independent oA 7 and Fig. 4e) also shows  themselves. One is some proper decomposition of the pertur-
a resonance but not as pronounced as the one in kdy. 4 pation diagrams for thedBopen shell system or wide bands,
The point being made through Fig. 4 is that while the retenynq the other is the appropriate wave functions to be used for
tion of only ring diagrams gives spurious picture for the e 3 states in numerical computations. Work in this direc-
ratio, its inclusion in the formalism is necessary to provide;, is in progress. To summarize, we have extended the

the n_egded interference between the auto_ionizing and ChaI’i'ybrid model that was based on ladder diagrams of diagram-
acteristic channels to produce the troughlike semblance f%atic perturbation theory to include ring diagrams as well

the ratio to better compare with exper'lment. We note aIS‘%hereby providing a coherent random-phase approximation
that although retaining only ladder diagrams produces Qporoach to electron scattering in solids
somewhat troughlike picture for the ratio in Fig(c¥ or PP g '

equivalently in Fig. 8), it does not compare better with the ACKNOWLEDGMENT
experimental features than what Figbyor Fig. 3b) does.
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