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The interference between bound-bound transition and bound-free transition in an electron-impact excitation
of a core-electron in systems with narrow bands is discussed within the context of diagrammatic perturbation
theory. The earlier treatment of the phenomenon in terms of autoionization and characteristic widths of the
core-hole via perturbation ladder diagrams is extended to include ring diagrams as well, in random-phase
approximation(RPA). The associated characteristic line shape for the intensity of the inelastically scattered
electrons is formulated in terms of Fano line shape parameters, and theory is compared with electron-energy
loss measurements for metallic La and Ce.
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I. INTRODUCTION

The response of electrons to some external perturbation in
a metal in the Fermi-sea picture is usually adequately ana-
lyzed via linear response formalism or the Kubo1 formula
approach, which in turn requires the evaluation of a suscep-
tibility tensor in general. If for example one is interested in
the transport properties of the solid, then the susceptibility is
defined in terms of the current-current correlation function.
Embedded in the susceptibility are various interactions that
introduce electron correlations of the system. One way of
evaluating the susceptibility is the use of diagrammatic per-
turbation theory. An exact evaluation of the susceptibility is
impossible within this approach. Rather an approximation of
some sort is resorted to depending on the physical property
of interest. For an extended system, it is usually sufficient to
describe many of the physical properties with the knowledge
of the band structure of the solid. To evaluate the approxi-
mate susceptibility in this Coulomb long-range interaction
limit is equivalent to summing a particular set of bubble or
ring diagrams describing the repeated electron-hole interac-
tions in the random-phase approximation(RPA).2 However,
if electron correlations are to be properly accounted for, par-
ticularly if the interactions involve core electrons, then it is
necessary to include the atomic structure of the solid in some
fashion. Such an approach was taken, for example, in the
Hubbard3 model in order to unveil the dominant short-range
part of the Coulomb interactions responsible for the instabili-
ties in d-electrons in transition metals. To evaluate the sus-
ceptibility in the Hubbard interaction model is equivalent to
considering a generalized Hartree-Fock approximation de-
scribing the repeated electron-hole interactions resulting in a
set of ladder diagrams that is summed in the RPA.4

The foregoing preamble establishes the fact that whenever
the RPA is invoked, the ladder and ring diagrams must in
principle be considered on the same footing. Depending on
the observable quantity of interest however, one subset of
diagrams may be more relevant than the other. For example,
the RPA result for the electron correlation energy in the jel-
lium model of a solid employs a series of ring diagrams.5 On
the other hand, in the calculation of the ground state energy
of an imperfect Fermi gas modeled as a dilute gas interacting
with strong short-range repulsive potentials, contributions
from two-particle scattering processes necessitate the sum-
mation of ladder diagrams.6

The RPA has also found successful application in the
study of the electronic structure of some highly polarizable
atomic and solid-state systems. Beginning with the work of
Amusia, Cherepkov, and Chernysheva7 in the discussion of
the photoionization of noble-gas atoms using the diagram-
matic random-phase approximation with exchange(RPAE),
Wendin8 used RPA ring diagrams to discuss the photoioniza-
tion cross sections of xenon. He later extended the same RPA
diagrammatic approach to calculate photoionization cross
sections of metallic lanthanum, thorium, and uranium using
local density functional-based approximated(LDA ) orbitals
for the wave functions.9,10 Calculations based on the RPA
approach usually yield results that mimic those based on
time-dependent density-functional approximation(TDLDA ).
The TDLDA calculations for barium and cerium by Zangwill
and Soven11 on one hand, and for the barium ionized series
on the other by Nuroh, Stott, and Zaremba12 compared with
the RPA calculations of Ref. 8 exemplify the above assertion.
Indeed, the uncanny similarity in the numerical photoabsorp-
tion cross-section results for xenon, barium, and cerium us-
ing RPA and TDLDA separately, led Nuroh13 to formally
demonstrate the mathematical equivalence between the ring
diagram-based RPA and the TDLDA as far as calculations of
dynamic polarizability of atoms are concerned.

The ladder-based RPA has been used to discuss the
4d-subshell electron energy-loss spectra(EELS) in lantha-
num and cerium metals.14 There, the successive electron-hole
pair interactions have been formulated in terms of an effec-
tive interaction through the introduction of a self-energy in a
Dyson-type equation so as to make comparative spectral
analysis between 3d and 4d EELS apparent.

In this paper, we extend the above earlier discussion to
include ring-based RPA as well. The formulation will be
symmetric in the introduction of self-energies for both the
ring and ladder diagrams. Moreover, unlike the earlier dis-
cussion, the self-energies will be quadratic in the electron-
hole pair bare interactions, albeit the interactions appear dif-
ferently in the respective self-energies. The obvious
advantage to such decomposition is that it allows for trans-
parent comparison in the interactions involved in the ring
and ladder diagrams, as well as the relative intensities ema-
nating from the two respective excitation channels.
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II. FORMULATION

We employ Raleigh-Schrödinger perturbation theory for
the description of the electron impact excitation processes. In
the one-electron picture, and incident electron of energyE
scatters to a stateuel above the Fermi level of the metal while
a core electron of state labeluiIl is excited to a stateue8l above
the Fermi level.(An underlined state label means that the
state propagates as a hole.) The Coulomb interaction respon-
sible for this scattering process is represented by the ampli-
tude graph of Fig. 1(a) in which the dashed line indicates the
Coulomb interaction matrix element labeledVeE. Figures
1(b) and 1(c) describe the general structure of resonant con-

tributions from ring and ladder graphs to the basic excitation
amplitude of Fig. 1(a). They may be viewed as an initial state
uEl coupling to a two-particle and one-hole final stateuiIe8el
consistent with Fig. 1(a). We note in passing that Figs. 1(b)
and 1(d)–1(h) that constitute the ring graphs are corrections
to the ladder graphs of Figs. 1(a), 1(c), and 1(i)–1(k) used in
the earlier treatment.14

In Fig. 1(b), VDE is a Coulomb interaction matrix element
of state uEl and a discrete state involving the core-holeuiIl
i.e., the stateuiIkel. The shaded ring graph plus the interaction
vertex lines in Fig. 1(b) is reconstituted in Fig. 1(d). Figure
1(d) represents all possible ring graph insertions that begin
with the Coulomb interaction matrix element or the interac-
tion vertex lineVDE and end up with the interaction vertex
line veD. In other words, we are looking at infinite order
perturbation in interaction between the discrete stateuiIkel
and the continuum stateuiInel, and such a basic interaction
between the two states is represented by Fig. 1(b). (A thick
hole-line indicates the renormalized orbital that gives rise to
characteristic decay width of the stateuiIl.) The decomposi-
tion of Fig. 1(d) is made up of all the graphs of Figs.
1(e)–1(h). Further, a regrouping of the ring graphs is made to
consist of those that begin and end with a thick hole-line or
renormalized state(i.e., those containingoddnumber of ring
graphs—Fig. 1(e), Fig. 1(f), and higher orders), and those
that begin with a renormalized discrete state and end with a
continuum state(i.e., those containingevennumber of ring
graphs—Fig. 1(g), Fig. 1(h), and higher orders. In the above
decompositionSDsEd indicates a self-energy of the discrete
state.

The shaded rectangular graph in Fig. 1(c) is reconstituted
in Fig. 1(i) that is made up of graphs of Figs. 1(j) and 1(k)
and higher orders. Figure 1(j) is the basic or lowest order
ladder graph to Fig. 1(i). In Fig. 1(j), vDE8 is a Coulomb
interaction matrix element between the stateuEl and the dis-
crete stateuiIknl. Notice that the interaction matrix elements
vDE andvDE8 differ not only because the orbitalsuel and unl
for the respective discrete statesuiIkel anduiIjnl in which they
appear differ, but also in that they would have different an-
gular factors. HereSD8 sEd in Fig. 1(k) is the self-energy of the
discrete state for the ladder diagrams. We note in passing that
Figs. 1(a), 1(j), and 1(k) were the graphs used essentially in
the discussion of the EEL spectra of lanthanum and cerium
in the previous work.14 The present work is therefore an
extension of that work with the inclusion of contribution
from ring graphs. We may therefore say that the analysis
described thus far is a simpler derivation of the more com-
plicated multichannel Fano-type calculations that have been
used variously to discuss photoionization cross sections of
some materials.15–17

First, we consider the contribution to the excitation am-
plitude that emanates from the ring graphs and the nonreso-
nant graph(Fig. 1(a)) and denote this byasEd. The nonreso-
nant graph, Fig. 1(a), was part of the ladder graphs in Ref.
14. Since it is the basic interaction, we make it part of the
ring graphs in the present formulation. Subsequently, if the
ring graphs are to be neglected, we simply setvDE=0, or
equivalently,g=0 in Eq.(19) to be consistent with the earlier
results that makes Fig. 1(a) part of the ladder graphs. Thus
from Figs. 1(a) and 1(b) and Figs. 1(d)–1(h), we get

FIG. 1. Amplitude diagrams made up of(a): the basic excitation
amplitude;(b), (d)–(h) the resonant contributions from the ring dia-
grams;(c), (i)–(k) the resonant contributions from ladder diagrams.
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with the following definitions forED andSDsEd:

ED = e + Ek − SisEd, s2d

SDsEd = o
n

vnD
2

En − E − id
= o

n
8

vnD
2

En − E
+ ipvED

2 . s3d

The interacting self-energySDsEd is represented by the an-
gular momentum diagram in Fig. 2(a) for the ring graphs,8

while Fig. 2(b) is the corresponding diagram for the self-
energySD8 sEd for the ladder graphs14 to be considered later.
In Eq. (3) and hereafter, a prime on a summation sign means
that a principal part summation/integration is implied. In Eq.
(2), Si is the self-energy of the core state defined by

SisEd = o
n

vn
2

En − Ek − Ek − E − id

= o
n

8
vn

2

En − Ek − Ek − E
+ ipvE−2Ek

2 . s4d

Hereafter, we will use the shortened notationvE
2 for vE−2Ek

2 in
Eq. (4) above.

The Coulomb interaction matrix elementvn
2 is obtained

from the self-energy graphs of Figs. 2(c) and 2(d). Figure
2(c) is a Feynman diagram of the core-hole self-energy
oisEd,18 while Fig. 2(d) is its corresponding exchange dia-
gram, constructed using angular momentum graphical
techniques.19 If we introduce an effective interaction matrix
elementVeDsEd by the equation

VeDsEd = veD + o
n

venvnD

En − E − id

= veD + o
n

8
venvnD

En − E
+ ipveEvED, s5d

then by summing to infinity the terms in the two curly brack-
ets in Eq.(1) which form geometric series, we get the fol-
lowing compact expression for the excitation amplitude:

asEd = veE +
VeDsEdvDE

ED − SDsEd − E
. s6d

Further, if we introduce the Fano20 line width parameters
qsEd andhsEd by

qsEd =
ReVeDsEd
Im VeDsEd

= SveD + o
n

8
venvnD

En − ED/pveEvED,

s7ad

hsEd = −
ResE − SDsEd − Ed
ImsE − SDsEd − Ed

, s7bd

and define the autoionizing, characteristic, and total line
width parameters, respectively, byGa, Gc, andGt,

14 through
the equations

Ga/2p = vED
2 , Gc/2p = vE

2, Gt = Ga + Gc, s8d

then with some algebra, the excitation amplitude reduces to
the simpler form

asEd = veEF1 +
Ga

Gt
H q + i

h − i
JG . s9d

The matrix elementvE
2 that appears in Eq.(8) is defined in

Eq. (4) and the statement after the equation.
The contribution to the excitation amplitude arising from

the ladder graphs is denoted bybsEd. Thus from Fig. 1(c)
and Figs. 1(i)–1(k), we get

FIG. 2. Self-energy diagrams made up of(a) the self-energy
insertion for ring diagrams,(b) the self-energy insertion for ladder
diagrams,(c) Coulomb interaction for the characteristic decay of
the discrete state,(d) exchange contribution to(c).
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where

ED8 = En + Ek − SisEd. s11d

By introducing the self-energySD8 sEd and an effective inter-
actionVDe8 sEd through the equations

SD8 sEd = o
m

vED82

Em − E − id
= o

m
8

vED82

Em − E
+ ipvED82 , s12d

VD«8 = o
m

vmD8 vem

Em − E − id
= o

m
8

vmD8 vem

Em − E
+ ipvED8 veE, s13d

and summing the infinite geometric series in the square
brackets of Eq.(10) gives a simpler form forbsEd as

bsEd =
vDE8 VD«8 sEd

ED8 − SD8 sEd − E
. s14d

Once more, we introduce new Fano line width parameters

q8sEd =
ReVDe8 sEd

Im VD«8
= o

m
8

vmD8 vem

Em − E
/pvED8 veE s15ad

h8sEd = −
ResED8 − SD8 sEd − Ed
ImsED8 − SD8 sEd − Ed

. s15bd

Again if we introduce the autoionizing, characteristic, and
total line widths, respectively, byGa8, Gc8, andGt8 for the new
channel by the equations

Ga8/2p = vED82 , Gc8/2p = vE
2 = Gc/2p, Gt8 = Ga8 + Gc8,

s16d

thenbsEd takes on the form,

bsEd = veE

Ga8

Gt8
H q8 + i

h8 − i
J . s17d

Again, the matrix elementvE
2 that appears in Eq.(16) is

defined in Eq.(4). Notice that the characteristic line width is
the same for both the ring and ladder channels as indicated in
Eq. (16). Finally, by introducing the dimensionless param-
etersg and g8 as ratios of the autoionizing to the total line
widths in the respective channels by

g = Ga/Gt, g8 = Ga8/Gt8. s18d

Equations(9) and (17) can be combined to give the total
excitation amplitudeAsEd that is the sum ofasEd andbsEd as

AsEd = veEF1 + gH q + i

h − i
J + g8H q8 + i

h8 − i
JG . s19d

Each q-value ultimately gives rise to a partial excitation
cross section as a function of the energy lost by the incident
electron to the system. From Eqs.(7b) and(15b) we find that

Dh = hsEd − h8sEd =
2 ResED − SDsEd − Ed

Gt

−
2 ResED8 − SD8 sEd − Ed

Gt8
. s20d

I will return to this general expression later in the article. It is
useful to first examine some limiting cases. First settingh8
=h in Eq. (19) givesAsEd as

AsEd = veEF sh + gq + g8q8d + sg + g8 − 1di
h − i

G . s21d

The scattering intensityIsEd is proportional to the square
of the absolute value of the excitation amplitude. Thus

IsEd , uAsEdu2 = veE
2 F sh + gq + g8q8d2 + sg + g8 − 1d2

h2 + 1
G .

s22d

We consider different physical scenarios that would arise
from Eq. (22). First we setg8=0 to exclude contributions
from ladder graphs, andg=1, appropriate for La whenGc
=0. In such a situation the scattering intensity becomes
(where the subscriptR denotes ring)

IRsEd = veE
2 fsh + qd2/sh2 + 1dg. s23d

This is essentially a Fano line profile excluding the non-
resonant interaction matrixveE

2 . If we still exclude the con-
tributions from the ladder graphs by demanding thatgÞ1,
then the scattering intensity becomes(appropriate for Ce)

IRsEd = veE
2 F sh + gqd2 + sg − 1d2

h2 + 1
G . s24d

Excluding contributions from ring graphs, we have to setg
=0. Then with g8=1 sGc8=0d, the scattering intensity be-
comes(where the subscriptL denotes ladder), and appropri-
ate for La,

ILsEd = veE
2 fsh + q8d2/sh2 + 1dg. s25d

This is the result obtained in form in the earlier work, albeit
q8 is defined in terms of different matrix elements. Finally,
by still excluding the ring graphs but now demanding that
g8Þ1, the scattering intensity takes on the form(appropriate
for Ce),

ILsEd = vzeE
2 F sh + g8q8d2 + sg8 − 1d2

h2 + 1
G . s26d

In a situation in whichDh is not approximately equal to
zero, then we have to seth8=h−Dh. In such a case, the
excitation amplitude of Eq.(19) has to be modified to take its
complete formACsEd given by
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ACsEd = veEF1 + gH q + i

h − i
J + H q8 + i

h − Dh − i
JG . s27d

By taking the square of the absolute value of the above, we
get the complete scattering intensityICsEd as

ICsEd , veE
2 HFgsh + qd

h2 + 1
+

g8q8 + g8sh − Dhd
sh − Dhd2 + 1

G2

+ Fh2 + hgq − g + 1

h2 + 1
+

g8q8sh − Dhd − g8

sh − Dhd2 + 1
G2J .

s28d

Note that ifDh is set equal to zero, Eq.(28) reduces to Eq.
(22). The rest of the discussion will be devoted to using the
above equations in model calculations.

III. MODEL CALCULATIONS

For the theoretical model and the formalism presented
here, the target system on which the electron scatters could
be an atom, a molecule or a solid. Here we perform a model
calculation for metallic lanthanum and cerium that belong to
the lanthanide group. We envisage an electron scattering pro-
cess in which a 4d-subshell electron is excited. An atom
from this group in a metallic environment is usually modeled
as triply ionized, so the ground state configurations for the
lanthanum and cerium ions would be 4d104f0 and 4d104f1,
respectively. This means that in Figs. 1(a)–1(c), the follow-
ing assignments are made for the states with labelse, i, and
e8 as,e→ef, i →4d, ande8→4f. The stateuEl representing
the incident electron is a plane wave that may be decom-
posed into its partial waves. Only theg- and f-partial waves
can couple to the 4dI4fef-state. However, the higher partial
wave provides larger numerical values to the matrix element
veE. Thus an assignment ofE→Eg is made for that state
label. As a consequence, assignments ofk→4f, n→nf, and
m→mg should be made for these state labels in Figs.
1(e)–1(h), 1(j), and 1(k). From Fig. 1(a), we get the matrix
elementveE in terms of Slater integrals as

veE = 2Î3R1sef4f ;Eg4dd + 2sÎ66/11dR3sef4f ;Eg4dd

+ 10sÎ390/143dR5sef4f ;Eg4dd. s29d

From the angular momentum graph representing the self-
energySDsEd in Fig. 1(f), we get the interaction matrix ele-
mentvnD

2 from Fig. 2(a) in terms of Slater integral as

vnD
2 = 6R1s4f4d;4dnfd2 +

22

63
R3s4f4d;4dnfd

+
5000

11979
R5s4f4d;4dnfd2. s30d

Similarly, from the angular momentum graph representing
the self-energySDsEd in Fig. 1(k), we get the interaction
matrix elementvED82 from Fig. 2(b) in terms of Slater integrals

vED82 = 4R1s4fnf ;4dmgd2 +
24

77
R3s4fnf ;4dmgd2

+
3000

17303
R5s4fnf ;4dmgd2. s31d

Finally, from the self-energyS4d for the angular momentum
graph represented by Figs. 2(c) and 2(d), we get the interac-
tion matrix elementvm

2 in terms of Slater integrals as

vm
2 =

44

55
R1s4f4f ;4dmgd2 +

12

77
R3s4f4f ;4dmgd2

+
8100

121121
R5s4f4f ;4dmgd2

−
8

35
R1s4f4f ;4dmgdR3s4f4f ;4dmgd

−
8

77
R1s4f4f ;4dmgdR5s4f4f ;4dmgd

−
48

847
R3s4f4f ;4dmgdR5s4f4f ;4dmgd. s32d

The expressions in Eqs.(29)–(32) above have been obtained
using the rules for evaluating angular momentum graphs.21

With the above explicit expressions for the matrix elements
we proceed to get numerical values for the relevant param-
eters that are needed to calculate the various spectral lines in
Sec. II.

The continuumE states have been calculated in the
Hartree-Fock potential of the triply ionized ion of cerium. In
the following discussion, the Slater integrals for cerium will
be used for lanthanum as well.(While there is no 4f-state in
the ground configuration of lanthanum atom/ion, there is an
available localized 4f-state below the Fermi level whenever
there is a vacancy in a 3d- or 4d-subshell.) Any of the
E-dependent matrix elements that appear in the principal part
summation/integration is slowly varying. We therefore repre-
sent any such function asfsEd with its appropriate quadratic
fit:

fsEd = a + bE+ cE2, E0 ø E ø E0 + D. s33d

Then its principal part summation/integration represented by
FsEd takes the analytic form:

FsEd = o
n

8
fsEnd

En − E
→ PE fsed

e − E
dx

= fa + bE+ cE2glnUD + E0 − E

E0 − E
U

+ Dfb + csD/2 + Edg. s34d

The contributions from the logarithmic component would be
small. In the aboveD reflects the 4dI4fN-multiplet width for
La sN=1d and CesN=2d. The energyE0 is the 4d→4f ex-
citation energy. The parametersE0 andD may be taken from
experiment or multiplet calculations,22 as displayed in Table
I. With these values, anyE-dependent quantity will be evalu-

ated at some mean energyĒ=E0+D /2, say. In such a situa-
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tion, the logarithmic contribution in Eq.(34) vanishes and

we get forFsĒd the simple expression

FsĒd = Dfb + csĒ + D/2dg. s35d

Thus from Eqs.(7a) and(15a), the computed values ofqsĒd
andq8sĒd are presented in Table I, together with the values
of g and g8 that have been calculated using Eqs.(18) and
(35).

IV. RESULTS AND DISCUSSION

In Fig. 3, the curve labeled(a) represents the theoretical
line shape for Ce calculated using the complete expression
defined by Eq.(28), with the appropriate parameters from
Table I. The slowly varying nonresonant excitation matrix
elementveE

2 has been excluded. The corresponding theoreti-
cal curve for La using Eq.(28) with g=g8=1 is similar in
shape to the Ce curve with subtle differences in the reso-
nance peaks and widths. Rather than comparing their relative
line shapes, we have instead calculated the ratio of the line
shape of Ce to La to reveal any elusive differences. The
result of this ratio in which the La line shape was first nor-
malized to the Ce peak is the curve labeled(b) in Fig. 3. The

curve is troughlike with suppressed ridges. The flattened
ridges approach the expected theoretical constant value of
unity far away from the zero energy-loss regions. The width
of the trough is,3 eV. The curve labeled(c) is the experi-
mental ratio of electron energy-loss spectra of Ce and La.23

In computing this ratio the experimental data abscissas were
translated so that their decreasing portions, i.e., their peak to
trough portions are coincident as was done in Ref. 14. The
well-shaped distribution of the computed data points was
then fitted to a biphasic function so that the experimental
trough minimum was aligned with the theoretical one in en-
ergy. We observe that the curve for the experimental ratio is
also troughlike, but unlike the theoretical one, the ridges are
pronounced. The width of the trough is,8 eV.

While the general trend in the theoretical curve is found in
the experimental one, there are two major discrepancies. The
first is the pronounced ridges in the experimental curve as
mentioned above. The second is the width of the experimen-
tal curve which is,5 eV larger than the theoretical one. The
former dissimilarity in the theoretical ratio arises mainly be-
cause spin-orbit interactions are not included in the theoret-
ical formulation, while electron-energy and absorption spec-
tra are known to be strongly dependent on spin-orbit
effects.22,24 The cause for the latter dissimilarity is inherent
in calculated atomic-based theoretical resonance scattering
spectra whose widths are typically narrower than those from
experiment.25 Notwithstanding the above remarks, the over-
all agreement of theory with experiment is fair to good.

Figure 4 is presented to elucidate the importance of the
interaction parameterDh. In the figure we make comparison
of only theoretical line shapes of Ce with La along the lines
as was done in Fig. 3. Figure 4(a) and 4(b) are the same as
Fig. 3(a) and 3(b), respectively. Figure 4(c) is the ratio of the
line shape of Ce to La using Eq.(28), but in the case of La,
g is set equal to zero to indicate that only contributions from
ladder diagrams are retained from the expression. The result-
ing expression for La that is dependent on the parameterDh
is numerically approximate to unity for allh-values. As a
result this ratio is indistinguishable from the Ce line shape of
Fig. 3(a)—hence the reason the curve bears the two labels “a,
c.” Figure 4(d) is the calculated line shape of Ce to La, again
using Eq.(28), but this time it isg8 that is set equal to zero
for La to indicate retention of only contributions from ring
diagrams. The resulting expression for La is independent of
the parameterDh, and the curve for the ratio is highly reso-
nant. (The maximum of this curve is 4.9 units occurring at
the energy loss of −2 eV) This curve is contrasted with Fig.
4(e), which is the ratio of the Ce line shape defined by Eq.
(28) to the La line shape defined by the Fano expression of

TABLE I. Computedq-values and ratios of autoionizing line widths to total line widths in the ring and
ladder channels as described in the text.

Elements
(configuration)

E0
a

(eV)
Da

(eV) q g q8 g8

La s4dI4fd 97.2 19.8 −0.548 −0.0565

Ce s4dI4f2d 101.8 23.8 −0.521 0.950 −0.0628 0.783

aData extracted from Ref. 22.

FIG. 3. Comparison of theoretical line shapes for metallic La
and Ce with experiment:(a) The calculated full line shape for Ce;
(b) ratio of the calculated full line shape for Ce to that of La;(c)
electron energy-loss intensity ratio of Ce to La, computed from
experimental data(Ref. 23).
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Eq. (23), i.e., due to contributions emanating from only ring
diagrams assuming nonexisting ladder diagrams. We note
that Eq.(23) is independent ofDh and Fig. 4(e) also shows
a resonance but not as pronounced as the one in Fig. 4(d).
The point being made through Fig. 4 is that while the reten-
tion of only ring diagrams gives spurious picture for the
ratio, its inclusion in the formalism is necessary to provide
the needed interference between the autoionizing and char-
acteristic channels to produce the troughlike semblance for
the ratio to better compare with experiment. We note also
that although retaining only ladder diagrams produces a
somewhat troughlike picture for the ratio in Fig. 4(c) or
equivalently in Fig. 3(a), it does not compare better with the
experimental features than what Fig. 4(b) or Fig. 3(b) does.

Finally, the relative insignificance of ring to ladder dia-
grams can be seen as follows. The leading contribution to the

excitation amplitude from ladder diagrams comes via Figs.
1(a) and 1(c) that are first order in Coulomb interaction while
the leading contribution from the ring diagrams via Fig. 1(b)
is second order in Coulomb interaction. Consequently, con-
tributions from ring diagrams to core-electron impact excita-
tion spectrum would be smaller than those from ladder dia-
grams. In instances where the diagrammatic RPA has been
used with success, the exchange or ladder diagrams are
treated as corrections to ring diagrams, and sometimes ne-
glected altogether.7–10Also, as has been remarked in the RPA
treatment for the charge fluctuation in metals using the Hub-
bard model, ladder graphs contribute more to the energy of
the electrons, but little to their dynamic properties such as
correlation.26 Thus the minimal dynamic effects exhibited
rather by ring diagrams in comparison to ladder diagrams is
a novel observation manifested only in doing RPA with re-
spect to core-electron impact excitation in metals.

The final theoretical expressions of Sec. II may be used to
approximately fit experimental electron energy-loss data with
trial and error choices of the parametersg, g8, q, andq8 such
that 0øg, g8ø1. But as the foregoing discussion has indi-
cated, for any meaningful fit,Dh would have to be consid-
ered as well. The Fano parametersq andq8 can also take on
positive values, as would be the case if the core transition
had been 2p→3d instead, as analyzed in Ref. 14. The for-
mulation presented here may be extended to the transition
metals. However, two philosophical difficulties present
themselves. One is some proper decomposition of the pertur-
bation diagrams for the 3d-open shell system or wide bands,
and the other is the appropriate wave functions to be used for
the 3d-states in numerical computations. Work in this direc-
tion is in progress. To summarize, we have extended the
hybrid model that was based on ladder diagrams of diagram-
matic perturbation theory to include ring diagrams as well,
thereby providing a coherent random-phase approximation
approach to electron scattering in solids.
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