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We develop a strong coupling approach for a general lattice problem. We argue that this strong coupling
perspective represents the natural framework for a generalization of the dynamical mean fieldDMETY.
The main result of this analysis is twofolt) It provides the tools for a unified treatment of any nonlocal
contribution to the Hamiltonian. Within our scheme, nonlocal terms such as hopping terms, spin-spin interac-
tions, or nonlocal Coulomb interactions are treated on equal fooff)gBy performing a detailed strong-
coupling analysis of a generalized lattice problem, we establish the basis for possible clean and systematic
extensions beyond DMFT. To this end, we study the problem using three different perspectives. First, we
develop a generalized expansion around the atomic limit in terms of the coupling constants for the nonlocal
contributions to the Hamiltonian. By analyzing the diagrammatics associated with this expansion, we establish
the equations for a generalized dynamical mean-field theory. Second, we formulate the theory in terms of a
generalized strong coupling version of the Baym-Kadanoff functional. Third, following Pairault, Sénéchal, and
Tremblay[Phys. Rev. Lett80, 5389(1998], we present our scheme in the language of a perturbation theory
for canonical fermionic and bosonic fields and we establish the interpretation of various strong coupling
quantities within a standard perturbative picture.
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I. INTRODUCTION described in the Appendix. In addition, the formulation in

Understanding strongly correlated electron systems reprd€'ms of Hubbard operators makes it an ideal framework for
sents a major challenge in solid state physics. Dynamicat DMFT based renormalization group approach along the
mean_field theoryfor a revieW see Ref_)jhas emerged as a |IneS Of Ref 14. Th|rd, be|ng based on an eXpanSIOH al’ound
powerful tool to address this challenge. Within this approachthe atomic limit, it provides valuable insight into the dia-
the lattice problem for an interacting electron system isgrammatics underlying cluster DMFT schemes, which will
mapped onto a quantum impurity problem with a “bath” de-be the subject of a subsequent publication.
termined self-consistentIn its simple form, the construc- The central result of this work is the formulation of a
tion becomes exact in the limit of infinite lattice coordination perturbation theory, for a general Hamiltonian of the form
as shown in Ref. 3. In addition, several generalizations of the H=H.+H 1)
approach, such as the extended dynamical mean field theory -
(DMFT)*® and the DMFT treatment of correlated containing a local termily and a nonlocal onkl;. In terms of
hopping?*° requiring different scalings of the parameters in Hubbard operatorX*?, we can write the two contributions
the Hamiltonian, have been presented. as

More generally, DMFT is a tool with strong computa-
tional power, and provides valuable insight into the physics Ho= 2 2 N X, (2
of strongly correlated electrons. In the case of simple model Pa
Hamiltonians with purely local interactions, such as the Hub4ng
bard model, it was able to provide a consistent description L ,,
for several nonperturbative properties such as, for example, Hi=> > EfPe P XX P 3
the Mott-Hubbard metal insulator transitibnCurrently, i#] a0 B
many efforts are made to extend the DMFT approach in Ol these equations ' and B8 represent sinale-site
der to make it suitable in addressing more realistic problems. quationsr, B a . B’ rep 1g1€-<

The purpose of this work is to develop a strong coupIingStateS' For simplicity, we con5|de'r the case of si)rie.rml-
approach for interacting lattice problems. Within this ap_ons, SO that for eaph S|nethere_W|II t_)e f°‘%f Statedﬁ“)' 0
proach, we construct a systematic generalization of thée_mpty sits, |.T> (s_mgle .OCCUp'ed site with spin DLIOH_)
DMFT technique capable of describing any nonlocal term o smgle occupied site, spin do%rgand|2)_(double _o_ccup|ed
a generic lattice Hamiltonian. The present formulation ha?'te)' The Hubbard operator¥™ describe transm.on's be-
several advantages. First, it unifies various DMFT schemedWeen these states. These operators have a ferm_lonlc charac-
For example, the treatment of correlated hoppitdthe ter if the occupat_lon numbers of the _stateand,B differ by
single site DMFT of the Hubbard modé&ee Sec. I, and one, and bosonic c_:harac;ter otherwise. '_I'hg a]gebra of the
the extended DMFTRefs. 4—8 are all limiting cases of this Hubbard operators is defined by the multiplication rule
unified approach. Second, besides unifying different DMFT XaByB' @' = 5 yad (4)
schemes, this formulation is sufficiently general to be a start- b BB
ing point for expansions around DMFT. One possibility is together with the conserving condition
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S xaa=1 (5) nation. However, in the presence of bosoKioperators this
' ' is no longer true and the locality & should be regarded as

i i a defining approximation for our scheme. Formally, a local

and the commutation relation irreducible cumulant can be obtained by imposing a simple
XBYE €T = 5.(8. X + 8 XB'By. 6 stationarity condition for the functiondr. This condition
D D (Opp X0 ©® translates into a self-consistent impurity problem defined by

In Eq. (6) the anticommutator is used if both operators arethe statistical operator

fermionic and the commutator otherwise. The canonic fer- _ B

mion operatorsc;, can be expressed in terms of Hubbard ﬁimp:e—BH'(;“"-]- ex _f X(DA(7— 7)X(7)

operators as 0

(3

Ciy = X7+ X2 (7)

+ himp( 7)X(7) } )

The parametera,, in Eq. (2) represent the single-site ener-
gies and will be determined, in general, by the chemical po-
tential 1, the on-site Hubbard interactids, and the external Wherehi, represents an external field andthe hybridiza-
f!elds. Thg coupling constanS}Ba B may |ncIl_Jde c.on_tnbu— ggg.di'tlggr?:e guantities are subjected to the self-consistency
tions coming, for example, from hoppirg, spin-spin inter-
action J;, or nonlocal Coulomb interactiol;;. Within the 1 o’y . o’y o
present approach, all these contributions are treated on equal NE [Mig(iwn) = E(K)] ™ =[Mdion) = Allwp) ],
footing, and we can regarﬂ‘j’ﬁ“'ﬁ' as generalized “hopping” K
matrix elements. and

Our main object of interest is the Green'’s function of the
Hubbard operators. However, the theory is expressed natu- himp + A(0)(X) = E(X).

rally in terms of a generalized irreducible two-point cumu-  The strategy that we use in presenting our G-DMFT
lant M and a dressed hopping Using the language of a scheme consists in constructing three formally distinct for-
standard field theorysee the Appendpxwe interpretM as a  mylations. On the one hand, this allows us to establish the
generalized self energy arftias the corresponding Green's equivalence of these approaches to the problem of correlated
function associated with a set of auxiliary canonical fermi-ejectrons and to extract a generalized unitary picture. On the
onic and bosonic fields, and show that they have a cleagther hand, these various angles clearly reveal the aspects
diagrammatic interpretation in the locator expansion. In adthat are relevant for the possible extensions of the theory.
dition, our formulation contains the avera@=(X) of the  The natural starting point for our construction is given by a
Hubbard operator, which can be viewed as a generalizegeneralized expansion around the atomic limit. This expan-
“magnetization,” together with a generalized effective “mag-sion, in terms of the coupling constants of the nonlocal con-
netic” field h, represented, in the language of the standardributions to the Hamiltonian, is derived in Sec. II. The tech-
field theory, by the mean value of the auxiliary field. For- nique is characterized by a close formal analogy with the
mally, the relationship between these quantities and the cencanonical” perturbation expansion in terms of intersite hop-

tral object of the theorys is given by the equations ping. Consequently, we will focus on the aspects generated
— _ —(M-1_p)-1 by the description of the problem in terms of Hubbard op-

G = (XX = (0 =M B erators, the main goal being to obtain the relation between

and the Green’s function for the Hubbard operators and the irre-
£=E(1-ME)™ ducible two-point cumulant. Using this relation, we derive in
' Sec. Il the generalized DMFT equations. A simple illustra-
whereE represents the bare coupling constants. tion of the implementation of our scheme is given for the
Next, we introduce the functional Hubbard model. In Sec. IV we formulate the theory in terms
1 of a functional of the renormalized “hopping.” The general-

I€,Q]=-Tr In[1 -ME] - T{ME] - =QEQ+ V[E,Q], ized DMFT equations are shown to be the result of a simple

2 local approximation on a generalized Baym-Kadanoff-type

whereW represents a generalized Baym-Kadanoff-type funcfunctional. An alternative derivation is described in the Ap-

tional that can be obtained as a sum of all vacuum-topendix' By decoupling the nonlocal term via a Hubbard-

vacuum skeleton diagrams. Using this functional IoerSIoec_Stratonowch transformation, we formulate the theory in

tive, we can viewe andM, as well asQ andh, as pairs of terms of a set of canonical fermionic and bosonic fields. In

conjugate quantities and we had¥/5£=M and S¥/5Q this Iangqage, the stang]ard treatment based on Wick’s theo-
=h, where the effective “magnetic” field can be expressed afem applies. A possibility of expanding around the DMFT

h=EQ solution is also presented.
Our single site generalized dynamical mean field theory is Il. EXPANSION AROUND THE ATOMIC LIMIT
based on a local approximation fist= M. If the nonlocal '
Hamiltonian H; contains only fermionicX operators, this Expansions around the atomic limit have been powerful

approximation becomes exact in the limit of infinite coordi- tools for studying both models with localized spfisand
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models of interacting itinerant fermions. Following the pio- XB(7) = elorx*Pe o7, (12)
neering work of Hubbard® Metznet’” developed a renor-

malized series expansion for the single-band Hubbard modelJsing the multiplication propertig#) of the Hubbard opera-
Generalizing the “linked-cluster expansion” idé&shis ap-  tors, it is straightforward to obtain the explicit imaginary
proach involves only connected diagrams and unrestrictetime dependence

lattice sums, and enables one to construct self-consistent ap- op I

proximations. By analyzing this renormalized expansion, it Xi#(7) = e T (13

was showh that, in the limit of infinite spatial dimensions, .
. i . ecauseH, is a sum of local operators, the ensemble average
the dynamical mean-field theory equations for the Hubbar . . .

in Eq. (11) factorizes into independent local averages that

model are recovered. An extension of this approach to the X
. ' ¢an be evaluated using the algebra of ¥heperators. How-

case of correlated hopping was developed by ShviiRhe e . :
; L : o ever, the explicit calculation of) is cumbersome, as the
purpose of this section is to obtain a generalization of the : . L .
X . . . ._summation over the site variabl@sis restricted. To over-
DMFT equations that describe the physics of a generic latticé : . .
. ; . ; - ~tome this problem, following Metznéf,we introduce the

model for interacting fermions, starting from a renormalized

strong-coupling expansion around the atomic lithivithin bare cumulant defined by

this scheme, all the nonlocal contributions to the Hamil- n .
! . X e . Cl(ay, By, -0, Bri Ty - 4Th)
tonian, for example hopping terms, spin-spin interaction
terms, or nonlocal Coulomb interaction contributions, are _ "W (14)
treated on equal footing. g, (1)) O (70) {77:0},

Let us consider a system described by the Hamiltonian
(1). The first step in our derivation is to write an expansion,yhere the generating functional is
for the grand-canonical potential and the Green's functions

for the X operators in terms of “hopping” matrix elements . B p

E¢f'#" and bare cumulants. Starting with the statistical op- W{7}]=1In{ Texp) -2 . d7 7a5(DXP(7) )

erator o8 0
(15

R B
p = e Pog(pB) = e PHoT exp{—f drl—ll(r)}, (8)  The fields ,z are either complex numbers or Grassmann
0 variables, depending on the natyb®sonic or fermionig of

the corresponding operato¥”. In Egs.(14) and (15) the
site indexi for the # field and the Hubbard operators, was
1 omitted for simplicity.
Q =04~ =In{a(B))o, 9) Using the bare cumulants allows one to express the grand-

B canonical potential as an expansion containing unrestricted
sums. Each term will be a product of “hopping” matrix ele-

mentsEi‘?ﬁ“'ﬁ' and local cumulants, and can be represented
diagrammatically. Further, using linked-cluster type
argument® one can show that only the connected diagrams
(Y= Tr{exp(= BHo) - -- WTr{exp(- BHy)}.  (10)  contribute. The basic diagrammatic rules are similar to those
0 0 0 given by MetzneY for the Hubbard model. However, the
Expanding the exponential in E() we obtain thenth order  internal lines corresponding to “hopping” matrix elements

we can write the grand-canonical potential as

whereQy=-%In Tr(e A1) is the grand-canonical potential in

the atomic ﬁmit,ﬁzl/kBT is the inverse temperature, and
the unperturbed ensemble average is given by

contribution to{a(8))q will carry two extra pairs of indicete) and(a’B’) (one for
5 5 each end of the Iimaeprt(e?enting the single-site states. Also,
n n H
"o (1) > the nth order cumulanC;™ represented by a-valent point
0P == J dry fo A7 T{H1(72) -~ Ho(7)1)o vertex, will be attached tm lines, with the corresponding
. labels(aBy). If we split the states associated with a cumu-
— (-1 2 E ExB1a1B] . .. E_anﬁnarqﬁr’] lant in two subsets(ay, ...,a,) and (B4, ...,B,, the multi-
n! e poal A3 11 'nln plication rule(4) requires that each single-particle std@,
tePle ek |o), or |2)) be found the same number of times in each of the
A subsets. Also, in contrast with the simple case of an expan-
X o dry ---dr, sion in the hopping matri;, in general, cumulants of order
n with n odd may be nonzero. This is the cas#lif contains
X(T{Xﬁlﬁl(ﬁ)xﬁlﬂl(ﬁ)'"Xﬁnﬂ”(Tn)Xﬁl”B"(Tn)}>o. terms with bosonicX operators having a nonzero average

value. Such terms may occur, for example, if a nonlocal Cou-
(11 lomb interactionV;;njn; is considered. To summarize these
N observations, we present in Fig. 1 the diagrams yielding the
whereT represents the imaginary-time ordering operator, andeading contributions t&).
Xf‘ﬁ(r) are the Hubbard operators in the interaction represen- Our next task is to write an expansion for the Green's
tation functions of the Hubbard operators. We define
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FIG. 1. Diagrams contributing to the expansion of the grand

canonical potential in terms of generalized “hopping” matrix ele- n=3| €0 ( ) v | |

ments(full lines) and bare cumulantsmall circle$. The contribu- .

tions from diagramsa), (b), (d), (e), (f), and(g) are nonzero only if : K ! m

H contains terms with boson operators having nonzero average

values(Q operators FIG. 2. Diagrams representing the leading contributions to the

expansion of the Green’s function around the atomic limit. The

— “ cumulants characterized by fixed site and state labels have small
Gaﬁ’a’ﬁ”(i!j T ) == Tr{f)T[Xiaﬁ(T)XjaB(T')]}, (16) legs attached to the corresponding circle. Rer3 only diagrams

containing cumulants with an even number of legs are shown.

where the statistical operat@ris given by Eq.(8), and the
Hubbard operators are in the Heisenberg representation transformed Green’s function§, s, 4 (i,j;iwy), will have
XB(7) = M 17 8?2 Matsubara frequency, if boXioperators are fermionic,
ven Matsubara frequency otherwise. On the other hand,
The perturbation expansion for the Green’s functions is simithe cumulants may depend on both even and odd Matsubara
lar to the expansion for the grand-canonical potential. Thdrequencies. Recalling the definition, Eq44) and (15), a
consequence of the presence of two eXraperators in Eq pair of indiceSak,Bk associated with a fermioniclike Hubbard
(16) is that the corresponding diagrams will be rooted, i.e. 0perator will induce a dependence on an odd frequengy
one(for i=}) or two of the vertices will have fixed site indi- While an even frequency will be associated with a pair with
ces and some fixed single-site state indices. The general rulB§sonic character. A line connecting two vertices, and yield-
are analogous to those for the Hubbard mddekith the  ing the factorEi‘}‘ﬁ" B will carry the frequency correspond-
difference that extra indice@ssociated with the single-site ing to the nature of the two pair&B) and (a’B’). This
state$ are carried by the “hopping” matrix elements and thenature is always the same as a result of the fact that the
bare cumulants. A special case occurs when bosdnip-  Hamiltonian conserves the number of particles. In the rest of
erators with nonzero average valu€s®?)=Q?, which we  this work we will not use different notations for odd and
will call Q operators, are presentliy. In this case, as men- even frequencies, but we should keep in mind this aspect of
tioned before, cumulants of orderwith n odd may be non- the problem.
zero, leading to disconnected rooted diagrams in the expan- The expansion that we derived is rather complicated and

sion of G, - By simply regrouping the contributions it may be of little help if used directly. However, we know

from disconnected diagrams we can write that in order to obtain self-consistent approximations and, in
. particular, DMFT-type equations, a renormalized expansion
Gupa (1,157 7) = Gupar g (i, 7,7) = (Xi"BXXi“ By, is necessary. The key in obtaining a renormalized expansion

is to introduce the notion of irreducibility with respect to one
line (representingEf”* 7). We define the irreducible two-

where(X?) represents the average of the operag®f with  point cumulant,M{}ﬁa'ﬁ'(iwn), as the sum of all connected
respect to the full Hamiltonian, an@,z, g has a diagram- diagrams having two external legabeled byap anda’g’,
matic representation containing only connected diagrams. Irespectively, with the property that the two legs cannot be
the rest of this work we will always use the “connected” separated by cutting one line. This definition differs slightly
Green’s functions defined by E(L8) . Obviously, ifH, does  from the standard definitioht” which requires that the dia-

not containQ operatorsG andG coincide, as the averages in gram be not disconnected by cutting a single line. The dif-
Eq. (18) vanish. To summarize, we present in Fig. 2 someference comes from the existence of cumulants with odd
leading contributions t&. number of legs. IH; does not contai operators, the stan-

At this point, a brief discussion about the Fourier trans-dard diagrammatics, along with the usual definition of irre-
formation of the Green’s functions and of the cumulants isducibility are valid. Some typical, low order contributions to
required. Due to the fact that the Hubbard operators havéhe irreducible cumulanMij-’B“ P (iw,) are shown in Fig. 3.
either bosoniclike or fermioniclike characters, the FourierNotice that we can classify the diagrams into classes, each

(18)
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Gyt0) - N I1l. GENERALIZED DMFT EQUATIONS
In the standard dynamical mean-field thebtipe single-
= iad *Q o *@ » = *vn&,* particle self energy for the electron Green’s function is local
in the limit of infinite spatial dimensions. However, for a
+I + I_°+ f))+ - ch +g+g+ general lattice Hamiltonign containing fermiot{@perators,
\ ~ A - J this property is violated, as shown by Schiflar the case of
I o:;I correlated hopping. Nevertheless, one can overcome this
problem by adopting a strong-coupling perspecfiand re-

garding the two-point irreducible cumulant, rather than the
FIG. 3. Diagrammatic representation of the renormalized expanself-energy, as the quantity in which the theory should be
sion of the Green’s function and some leading contributions to théormulated. IfH; contains only fermionicX operators, and
irreducible two-point cumulanls/l{j“(iwn). The simplified notation assuming that the coupling constants iy are properly
(aB)=p, (a'B')=vwas used. The diagrams containing one-particlescaled, to keep the energper sitg finite, one can shoht’

reducible decorations of bare cumulants can be summed and rgnhat the irreducible cumulants become local in the limit of
placed by diagrams with decorations equaltgEf;"(X;). The av- large coordination

erage(Xj”) is represented diagrammatically by a square. ) .
Mij(iwn) = GjMiay). (21)

class containing one “basic” diagram that is one-particle ir-This property is not valid if the nonlocal Hamiltonian con-
reducible with respect to all “hopping” lines plus diagramstains bosonicX operators. However, for a purely fermionic
derived from it by decorating the bare cumulants with reducmodel, the natural quantity in which the theory should be
ible contributions. It is useful to perform partial summationsformulated is the irreducible cumulant, rather than the self-
of the diagrams in each class. The resulting diagrams wilenergy. This becomes immediately transparent using Egs.
have all the reducible decorations replaced by factors equaP0) and(21), and the fact that the electron Green’s function

to Ej,a’,B’Eiﬂjlﬁa,ﬁkxja,ﬁ»- is given by the sum
We can now w_rite a renormalized_ expansion for the G (K, iwy) = G 7K, iw,) + G2Z(K,iw,)
Green’s functions in terms of irreducible cumulants and _ N
“hopping” matrix elements. The diagrammatic representation +0[G% 27(K,iw,) + G™ Ok,iw,)]. (22

of this expansion is shown in Fig. 3. Analytically, the corre-

sponding equation will be: Although M is k independentG will have, in general, a

complicated dependence on the wave number, and the corre-
sponding self-energy will be nonlocal, breaking the standard
Gi"=Mf"+ > MIERG, (19 DMFT schem_e: Formally, a self-energy matrix can be intro-
kl pm duced by defining

— -1 — -1
where, to reduce the number of indices, we introduced a 2@= @l ~E-CT@= 2 Wl -Mo (@), (29
simplified notation for a pair of single-site statés)=u. It ~ Wwith | being the identity matrix. However, in general, this
is also convenient to regard a quant®ty” as an element of quantity does not have the desired analytic propeftiasd
a matrix A. Using this matrix notation, and Fourier trans- may diverge agz| — .
forming the spatial dependence, one can write the relation If we go further and generalize the model to include both

between the irreducible cumulant and theperator Green's fermionic and bosonic degrees of freedom, the picture pre-
function, sented above fails, as one cannot scale the coupling constants

in such a way that one has both finite enetggr site¢ and
local irreducible cumulants in the limit of infinite
dimensions3 In contrast, this work assumes a different per-
spective: Rather than viewing DMFT as an approximation
whereE(k) is the Fourier transform of the coupling constantthat becomes exact in the limit of infinite coordination, we
matrix. What exactly are the Green’s function included in thesee it as the first order approximation in a hierarchyiof
matrix G? Obviously, those that are coupled by the generalcreasing sizecluster approximations. In this picture, the ex-
ized “hopping” Ej". Specifically, if {unfn=1..p and act limit is obtained for an infinite-large cluster. Conse-
{vntn=1,.. p are the sets of single-site pairs that label the couquently, our G-DMFT scheme will be defined by the
pling constants irtH,, each pair appearing only once in the condition that the two-point irreducible cumulant be local.
corresponding set, the matrices will have dimendband  Unlike the case of extended DMFT, we have no small pa-
the matrix elements will be labele@ *n, M*n#n andE#n"n, rameter(other than the inverse of the cluster gipgstifying
respectively. A particular example of this construction will be this approach. Obviously, if the model contains only fermi-
presented in the next section for the Hubbard model. onic degrees of freedom, the two perspectives described
Equations(19) and (20) represent the main result of this above are equivalent.
section. They are valid in arbitrary dimensions and for any Based on the locality o, we can approach the central
Hamiltonian that has the form given by Eq4)<3) when step in a DMFT-type scheme, namely, the self-consistent
written in terms of Hubbard operators. mapping of the lattice problem onto an effective impurity

G(k,iwy) =[M 7k iw,) - E(K)]™, (20)
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problem. Let us consider the single-impurity problem with

af o' B!
the statistical operator AP (o) = 12 M (27
N lw, — €
~ imp ~ p{ B B . . . .
Pimp= €0 T ex —f dr f dr’ wherel=a if the element is in the fermionic sector of the
0 0 matrix andl=b for the bosonic case.
. . Returning to our main problem, we obtain the self-
X 2 XWP(APE (1~ )X F (1) consistency conditions by requiring that the lattice irreduc-
apa’ ' ible cumulant be equal to the effective impurity problem ir-
reducible cumulantM;n,,,(2=M(2). By comparing the
+ 2 hE (XA | ¢, (24) diagrammatic expansion &, in terms of bare cumulants
afeBq (dressed with external field lingand hybridization functions

i _ with the expansion oM, we observe that the equality is
where hino(7) is an external field that couples to top-  gatisfied if we identify a line representing*” with the sum
erators,By is the set of indices corresponding to ®eop-  of gl the paths starting withE2” and ending withE™, as
erators,A(7-7') is the hybridization matrix andig™ con-  well as the sum betweeen an external field liteand the
tains one term, for exampie=0, from the local Hamiltonian one-particle reducible decoratid®,A“*(X") with the lattice

(2). Using the expansion procedures described in the prevbne—particle reducible decoratitﬁ],vE{j‘%xj”). Explicitly, the

ous ;ect|on, with .the hybn@zaﬂon repIaC|r,1g the ‘_‘hoppmg" expansion for the impurity irreducible cumulant is identical
matrix E, we obtain for the impurity Green'’s function a re-

. e with the expansion of the lattice irreducible cumulant pro-
lation similar to Eq.(20), vided P P

Gimplion) = [Mimy(iwn) = Aliw) ™, (25 Al =S, EaGO(i0n)Ep 28
L]

where all the quantities are local, aWi,, is the irreducible

cumulant with respect to the hybridization. For practical cal-yhereG%(iw,) represents the matrix Green’s function for a
culations, as well as to gain some physical insight, it is usefulaice with the site “0” removed, together with a condition
to express the impurity problem in a Hamiltonian form. Tak-,a¢ getermines self-consistently the external fteld

ing into account that in our matrix formulation the indices

(ap) correspondmg to ferm|on|c_ and _bosomc Hlfb,bard op o = D ESLJ-”<XJ»”>—2 ARY(O)(XE). (29)
erators do not mix, all the matrices, includidg®® #', are jiveBg v

block-diagonal with one block corresponding to the fermi-

onic indices and one to the bosonic sector. Consequently, weotice that Eq(28) represents the generalization of the well-
will introduce two types of auxiliary degrees of freedom, oneknown DMFT self-consistency conditidnin addition, if the
associated with a fermionic bath, described by operatoraonlocal HamiltoniarH,; contains Hubbard operators that ac-
(a,.a,), and one associated with a bosonic bath, describeduire a nonzero mean value, our lattice model is mapped into

by (bkg,blg). The impurity Hamiltonian will be an impurity model with an external field determined self-
consistently by Eq(29).
H. = Himp 4 haBxeB+S 2ot o +> &bl p Our final step consists in finding a self-consistent equation
mp o (Q%BQ 'mp kzo ko kz(, Kok that determines the hybridizatiak(z) in terms of the lattice
Green'’s function. Comparing E@19) for G;; (after making
a, T @ ]
+Ek( BE> f[Vaﬁ(k)ak%BX A+ h.c] M= 8;M) with the equivalent expression f@‘si(jo)
> [vgﬁ(k)bl%ﬁxaﬂ +h.cl. (26) G (wy) = 3iM(iw,) + kEOM o(iwn) ExGi (i)
k (aB)eB +

The first term in the right-hand side describes an isolated for 1,j#0, (30
impurity, the second term represents the coupling to the ©Xje obtain fori =j=0

ternal field and the summation is restricted to labels corre-
sponding to bosonic operators having a nonzero mean value,. . | . . 0 .
the Q-operatorsBy), the third and fourth terms describe the Gooliwn) =Moliwy) + MO('“’”)% EoGid (iwn)EjMofiwp)
fermionic and bosonic baths, respectively, and the last two '

terms represent the coupling of the impurity with the two + e =Mo| 1 X EqG (i n) EjgM ofi o) -
baths. In the last two terms, the summations over the k|l
X-operator label$aB) are restricted to the fermionicF) and (31

bosonic sector$B), respectively. The expression of the hy-

bridization in terms of coupling constart$#(k) can be ob-  Using Eq.(28) for A(iw,) and the Fourier transform for the
tained by integrating out the auxiliary degrees of freedomlocal Green’s function, we obtain the self-consistent condi-
We have tion that determines the hybridization,
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= 3 Mg - BT = [Mglio,) - Adian)]™
@2

Formally, Eq.(32) closely resembles the standard form of
the DMFT self-consistency conditidnwe should, however,
keep in mind the fact that this is a matrix equation involving

Green’s functions for the Hubbard operators. To solve a

problem described by the Hamiltonia®)—(3) within this
scheme, implies to solve the impurity problgg#), find an
irreducible cumulant matrixM,, then use the self-
consistency conditiori32) together with Eq(29) to deter-
mine the new hybridizatiol(iw,) and the new fieldhy,.
The process is repeated until convergence is reached.

Hubbard model

In order to get a feeling of how this approach works, as

PHYSICAL REVIEW B 70, 205112(2004

Miwy) = MO (iwp) + M7 Z(iwy) + M 27(iw,)
+ M2 O(iw,)]. (37

It is straightforward to show that the matrix Green'’s function
has the structure

1

H — =1/; _ -1__ - )
G(ka|wn)—[M (lwn) E(k)] _1—6kM(iwn)M(l n)
€K -1 g
+51—6k/\/l(iwn)< o —1)’ 38)

wheres=defM}. Using Eq.(38) and expressiof22) for the
electron Green'’s function, together with the definition/ef,
we have

1

G(k,iwp) = m (39

well as to check its validity, we can do a simple exercise by . _ . o .
applying the procedure to the Hubbard model, for which wewhich shows thatM(iw,) is the single-particle irreducible
should be able to recover the known DMFT results. In thiscumulant M Xiw,) =iw,+u-2(iw,), where 3(iwy,) is the

particular case, the Hamiltonian will be

Hie = 2 [= w4+ X4 + (U = 2u)X7]

+ 20 DX+ XX + XX+ XX,
ij o

(33)

where n represents the chemical potentidl, the on-site
Coulomb interaction, and; the hopping matrix elements,
which are equal to t-if i andj are nearest neighbors and
zero otherwise. We can introduce the hopping matrix

EaOOo(k) Eo0 ;2(k)> (
EZFOU(k) EZFFZ(k)

where ¢ is the Fourier transform of;. Next, we introduce

€ O€y

E(k) = ( ) (34)
O€ €

the Green'’s function matrix and the irreducible cumulant ma-

trix

GOo’ o0 GOo— 20 MOO’ o0 MOO’ 20

G;Z a0 G?Z 20 M;Z a0 M;Z 20

I i)

Our goal is to show that the matrix EB2) reduces in this
particular case to the well known DMFT self-consistency
condition

Goliwn) =iwn+ = Ag(iwy)
-1
:| + E(iwn),

_ l 1 1
(36)

single-particle self-energy. On the other hand, making the
summation ovek in Eg. (38) and introducing the result in
the self-consistency relatiof32) gives

1 o
A=A0< ), (40)
o1l
with
b 1 1 Sa-1
o=, a=1 C =220 gy
3.5 nkl_EkM M

Taking into account the structure Afgiven by Eq.(40) , the
impurity problem described by the statistical operat@4)
reduces to an Anderson single impurity problem with a hy-
bridization A,. Finally, we have

-1

] , (42)

1
which represents the standard DMFT self-consistency equa-

=>
tion.

1

Ag(iwy) =M Hiwy) - { M) - e

N7y

IV. FUNCTIONAL APPROACH

Functionals of Green'’s functions provide an elegant and
powerful tool for formulating dynamical mean-field theories.
Within this framework, the DMFT equations are obtained as
a direct result of a simple approximation on the Baym-
Kadanoff functional The extended dynamical mean-field
equations have also been rigorously derived using a func-
tional techniqué. Moreover, the functional perspective
seems to offer the natural framework for cluster generaliza-
tions of the dynamical mean-field theory that include effects
of short-range correlations. The purpose of this section is to

N fop+ 1= 6= Z(iwp)
whereX (iwp) represents the self-energy of the single-particleintroduce a strong-coupling generalization of the functional
electron Green’s function andy(iw,) the hybridization of DMFT formulation!® The construction of a generalized
the effective single-impurity problem. The electron single-Baym-Kadanoff-type functional will allow us to present an
particle Green'’s functiong, is given by the sum of all the alternative derivation of the generalized DMFT equations,
elements of5, as shown in Eqg(22). Similarly, we define the and, more importantly, will set the basis for a future cluster
guantity extension of the G-DMFT approach.
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The main idea of the functional interpretation of DMFT is ~ The next step is to integrate E@.7). As we are interested
to formulate a local approximation for the Baym-Kadanoff in a strong-coupling equivalent of the Baym-Kadanoff func-
functional ®[G], which is the sum of all vacuum-to-vacuum tional, we will express the Green’s function in terms of the
skeleton(two-particle irreducibliediagrams constructed with two-point irreducible cumulant, rather than the self-enéfgy.
the full propagatoiG and the interaction vertices. This func- Using the notatiorA for a tensor with element&/”, we can
tional has the property that formally write Eq.(19) as

&P P S
Sillow)=—"7T-—, (43) G=[I-ME]™M, (48)
P 8G (iwp)
where,;; (iwy) is the self-energy. As the coordination number

of the lattice goes to infinity, the self-energy becomes loca
and® will depend only on the local Green’s functiors;

wherel is the identity tensot;"=¢;;6,,. By integrating Eq.

F47) with G given by Eq.(48) we obtain

Q[IN]=Qo+ %2 TrIn[l -ME] + %2 THME]+ E[I\],

D=2 ¢[Gyl, (44) “n “n
i (49

where ¢[G;] is a functional of the local Green’s function at with Q, the grand-canonical potential in the atomic limit.

sitei only. This scheme cgnnot be transfered directly Fo apThe quamityg is the renormalized coupling constafar
proach our strong-coupling problem. As we mentionedrenormalized generalized hoppingnd can be represented
above, within our strong-coupling perspective, the naturafjagrammatically as a sum of chains of “hopping” lines and
guantity to describe the system is the two-point irreduciblgrreducible cumulants. Analytically we have
cumulant,M;;(iwy), rather than the self-energy. Our task is to A

identify a conjugate quantitywhich cannot be the Green's — &"=Ef"+ > X EL*MISER + ... =[E(I - ME) ™.
function but rather something with dimensions of engrgy pg @B

and to construct a functional of this quantity that will deter- (50)
mine M by a relation similar to Eq(43). . . . .

Following Refs. 10 and 12, we start by introducing two The last term in Eq(49) is a functional with the property
time dependent external sources, odff(7— '), coupled to SZ[IN] SE
the X operator Green’s functions, and the othet?(7), A =T M —— = BXEXX]). (51)
coupled to the averag®™=(X*?) of the bosonic Hubbard SE;*(iwn) SEj(iwp)

operators that occur in the nonlocal Hamiltonitia. The  Also, because the functional derivative 9fJ,\] with re-
corresponding generating functional will be spect tox gives the average value &, we will have

L ) _ .
Q[IN]=- /_3"1 Tr p[J,\], (45) o2 __1 [ ot } + (X, (52

LRI S
' B oNf!
where the statistical operatpris given by The standard way to proceed is to perform a Legendre

) i B B ) ) transform of the generating functional with respect to the
plJ,\] = e FoT ex —f dr f dr (Hl(TaT) interacting single-particle Green’s function and to eliminate
0 0 the external sourcéin favor of G in the functionals. Instead,
Y k(= T,)X{L(T)X}/(T,)) _by analy2|_ng Eqgs(5)) ggd (52), we |d¢nt|fy t_he renormal-
0] v ized coupling constartf;” as the quantity conjugate with the
irreducible cumulant and use it as an independent variable.
+S NADXA() | ¢ (46) Egnsequently, we introduce the function&$[£,\;E] and
i = [E,N;E], with
The fieldJ;*(7—7') is equivalent with introducing frequency Q[EINLNE+I=0O[IN],
dependent coupling constari&*(iw,) =Ej*+J;*(iw,). The X
Green’s functions can be expressed as functional derivatives ETELANLNE+I]=E[IN]. (53

of the generating functiondl[J,\], with respect to the fre-

quency dependent field The dependence on the last varialileinvolves only the

components of the coupling constant tensor corresponding to
n Q operator indices and we have

, (47 x
J=01=0 % = <)“(i#><x]?>_ (54)
where the average valu@“=(X") is nonzero only ifX" is a S
Q operator. The generating functior@[J,\] reduces to the The functional derivative with respect o of both Q" and
grand-canonical potentidl in the absence of the external Z" will give the average value of the bosonic operator,
sources. while for the Luttinger-Ward-type function&” we have

SO[IN]

Gl = BN == o
ji n
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—ﬁﬁw:w(iwny (55) Q W = <0 @
ji n

c (12) d (6)

e (48)

and determines the irreducible two-point cumulant as a func-
tional of the renormalized “hopping” matrix, the bare diago-

nal coupling elements, and the external fields. The stationar- )
ity condition 5()*/555":0 yields the relation between the

renormalized couplings and the cumulantgff”:[é(f
-M E)‘l]i’jw,which is identical to the definitio(60). Again, at
stationarity and in the absence of the external fields the funq;o
tional Q" reduces to the grand canonical potential.

a b (2)
This equation is the strong-coupling equivalent of E4P) @
f

h (12)

FIG. 4. Generalized skeleton diagrams contributing to the func-
nal 2. The contribution of the external field is represented
only in diagram(i) by dotted lines. The numbers in parentheses
represent the symmetry factofi$ different from 1) of the corre-

. : . esponding diagramsgthe number of ways in which a graph can be
the only_relevant d_ependence In_the fu*nctlo_nals is on th ade isomorphic with itself The renormalized coupling is rep-
renormalized coupling. The functionalQ[£] is formally resented by double lines

analogous to the functiondl,,[ G] introduced by Chitra and '
Kotliar® from a weak-coupling perspective. In our picture the . . . -
strong coupling correspondent of the self-energy is, as note§i'€ Properties with respect &of the functionals are similar
before, the irreducible cumulant, while the renormalized and©_those ofQ)" and =, namely, the stationarity condition
bare coupling constants correspond to the full and noninterdl / 6€j*=0 yields Eq.(50), and we have

acting Green’s function, respectively. Also, the strong-

coupling analog of the Luttinger-Ward functiond®[G] is _ov[EQ] A 58
E'[£]. Similar to its weak-coupling counterpai[£] can ’B(Sé‘ﬁf‘(iwn) =M (i) (58)
be expressed as a sum of all vacuum-to-vacuum skeleton .

diagrams containing bare cumulants and renormalized *hopn addition, stationarity with respect @, ST 5Q=0, yields
ping” lines. All the skeleton diagrams are two-particle irre-

ducible, i.e., they cannot be separated into disconnected parts SV[E,Q]
by cutting two& lines. ——= 2 E'Q. (59)
In general, however, the diagrammatic expressios ofs Q) j.BeBg

more complicated and involves, in addition to the bare cu-
mulants, both renormalized coupling consta‘fﬁls and bare The diagrammatic representation of the Luttinger-Ward-type
coupling constant&!”. Also, lines corresponding to the ex- functional'V contains skeleton diagrams that are two-particle
ternal field A have to be added. The generalized skeletorirreducible with respect to thé€ lines and have cumulants
diagrams have to satisfy two conditior{e; Each diagram is  dressed witfEQ contributions. The structure of the diagrams
two-particle irreducible with respect to the renormalizedis illustrated in Fig. 5. Using the diagrammatic representation
*hopping” and ii) by cutting any bare “hopping” line the of the functionalst and=", as well as that o, and taking
diagram is divided into two disconnected parts. These coninto account the symmetry factors associated with each dia-
ditions determine a treelike structure for the generalized skelgram' it is straightforward to check that

eton diagrams with skeleton blocks coupled by Haimes.
This structure is illustrated in Fig. 4 for a few low-order

contributions to=". Due to the treelike structure of the dia- @
grams, it is rather difficult to find a local approximation for @
the functionalZ". In order to overcome this problem, we a b g (12)

proceed to the last step of our construction and define the

Legendre transform of)” with respect to the average of
bosonic Hubbard operator@,»":<xi‘j‘

MEQI=QENE-Z 3 MQY,  (56) c@ d@ " ©
i meBg
where the bare coupling/{” is treated as a parameter and is M w @
not written explicitly as an argument of the functiorial e (@ f@ i (12)

Using the condition x/*=6I"/ 6Q to eliminate\, we obtain

FIG. 5. Example of diagrams contributing ¥[&,Q]. The av-
erage of & operatorQ;" is represented by a square. The symmetry
factors are written in parentheses.f=0, the remaining basic
2 2 QUEMQY skeleton diagramfa), (e), (9),...] are identical \ivith the remaining

I diagrams in Fig. 4(a), (b), (c), ...], and¥=E". In general, we
have the basic diagrams plus diagrams obtained by decorating the
+W¥[E,Q]. (57) bare cumulants with lines and squares represertjfi@;’

I[E,Q]= Q0+ %2 Tr In[l - M[E,QIE]

n

+ 13 TNE Q1] -
B wp i,j ,LL,VEBQ
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. 1 Qy 1
W[E,QI=E"[EN=0E] + 52 > QUEL'Q!, (60) TimplD,Q] = WO + EE Tr In[l = M [D,QJA]
ij ,u,,veBQ wn
whereQ'=(X{")=6E"/ \{'|\=o. + EE TIM o D, QID]
We are prepared now to introduce the generalized DMFT on
from a functional perspective. By analogy with the standard 1
approacH, we construct an approximate theory by making -= > Q*A*(0)Q” - > hfpQ”
the ansatz that the Luttinger-Ward functioNaddepends only ZWEBQ meBg
on local renormalized “hopping” matrices, i.e., + ¥, D,Q], (66)
W[E,Ql=> Y& Ql, (61)  whereD=A[l -M;,, AT is the renormalized hybridization,
i

Q*=(X*)y and A**(0) is the hybridization at zero frequency.
In addition, we have to keep in mind that the bare impurity
cumulants are dressed by external field ligts, The dia-
oﬂrammatic expressions fdr(£,Q] and V¥, [D,Q] are iden-
ical and we haveV /N=W;,, provided

wherey is a functional that depends only on the local renor-
malized coupling constants at siteln diagrammatic terms,

it means that all the bare cumulants contained in a skelet
diagram contributing toy are defined on the same site. A

direct consequence of this ansatz is that the two-point irre- gr=prr SERQU=hE + S AR(0)QY.  (67)
ducible cumulant of the theory is local ! oA T T me T
. SV Equations(67) represent the self-consistency condition for
Mij(iwp) = m@j, (62  our strong-coupling generalized dynamical mean-field
I n

theory. The first of these equations can be rewritten in the
more familiar form, Eq.(32), by simply using the expres-
sions of the renormalized quantiti€sand D. A direct con-
sequence of the first self-consistency condition is the equal-
L 1 ity of the irreducible cumulants,M;(iwp)=M my(iwp).
Ei=[E(Il-ME)™Y]; = =DEM[I -MEK]?, (63 Finally, let us mention that this correspondence with the im-
N purity problem is also useful in establishing a relation be-
. _ tween the grand-canonical potential of the lattice and the
whereM is given by Eq.(62) and, for the second equality, 4rand-canonical potential of the impurity. At stationarity both

we assumed that the system is homogeneous. Reld@&n I'imp @andl” reduce to the corresponding grand-canonical po-
represents our generalized DMFT equation and it should bgypiig) while®/N=W,, . Therefore we have

viewed as a functional equation for the local renormalized

coupling matrix. To cast it in a more familiar form, let us  Q _ 1
observe that using the expressions for the Green’s function, N = Dimp + 2 2
Eq. (48), and for the renormalized coupling, EG0), we

with &; being the Kroneckes symbol. The stationarity con-
dition for I yields

1
[Q"AW(O)Q”— N Q{‘Eﬁ”Qj”]
)

,u,VEBQ

h 1 1
ave _EE lTr Infl ~MA]= 3 Tr Inf] —ME(k)]].
~ A A A ~ wp k
G=MEM +M. (64) 68
Taking into account the local character of the irreducible
cumulant, we obtain, for a homogeneous system,
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functional dependence df, at least approximately. A direct
approach is rather hard in practice, therefore it is more con-
venient to generate the functionals from a purely local
theory. A simple inspection of the diagrammatic expression
for ¥ (see Fig. 5, shows that, in the case when all the bare The purpose of this Appendix is twofol@l) To present
cumulants are defined on the same $it®, the same dia- an alternative formulation of our strong-coupling theory that
grams will correspond to an impurity problem defined by theis closely related to the more familiar perturbation expan-
statistical operator given by Eq24). In fact, taking into  sions based on Wick’s theorem and translate the basic quan-
account the previous construction of the strong-couplindities involved in this approach in the corresponding lan-
functionals, we have guage and?2) to propose a scheme that allows one to expand

APPENDIX: ALTERNATIVE DERIVATION
OF THE G-DMFT EQUATIONS
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around the DMFT solution. The central idea is to decouple o 1 Sl ]
the nonlocal term using a generalized Hubbard-Stratonovich ~ Gp(i,j;7.7') = 2 J Dé’(sy,—(s#)
transformation and to trade in the operators for a set of G(r)edi(n
canonical fermionic and bosonic fields. In terms of these (A5)

auxiliary fields, the standard techniques of the pert“rbatic’@vhere&)[g] represents the quadratic term in E42). After
theory can be applied. This formulation represents a geneBerforming two integrations by part, we obtain
alization of the strong-coupling expansion used by Pairault, '

exp{~ Sl ]}

iirééeclzhal, and Trembl&y for the study of the Hubbard é:‘)A(Bl‘“)A(Bl)A()A(Bl, (A6)
Sta}ting with the partition function where we used the tensor notation, and we introduced the
full propagatory for the auxiliary fields, defined as
- B R
Z:Tr{eBHOT expl_ fo a2, 2 Xf‘(r)Eﬁ”X,—”(r)H, X' r) == (TN +HENG, (AD)
L) m,v

(A1) where Tis the (imaginary time ordering operator and..)
represents the average over the statistical ensemble. In terms
we perform a Hubbard-Stratonovich transformation and exef the self-energy for thé variables X = Xal— x L, one has
press the nonlocal part as a Gaussian integral over the aux-

A (a-1 )1
iliary field ¢ G= (Egl_XO) ; (A8)
8 which shows thab., corresponds to the irreducible cumulant
7= Zof D¢ exp{f > S §i”(7)()(61)i’fv§f(7) _ Sm[ﬂ}: M ofAthei(-i)pgrator onrAmuIAayon. Also, the full Grgen s func-
0 () mr tion x=(xo'—2) '=E(I-ME)™* is the renormalized cou-

(A2) pling costanté of the original theory. In addition, in the
presence of bosonic Hubbard operators with nonzero mean

with value, we have
- g (& =2 EfMXD), (A9)
Sl 1=~ ln<T eXp{—f dr2 [Z(DXE(7) o
0 (7
showing that the average of the auxiliary field represents the
o effective “magnetic” field of the original formulation. This
+ XD (7] . (A3) equation completes the correspondence between the formu-
0

lation in terms ofX operators and that in terms of auxiliady

The field * contains both fermioni¢Grassmann variablgs fields.

and bosonic(compley components, as determined by the It is now straightforward to rederive our generalized

correspondingX operators. The free propagator appearing inmeanjfield equations using thg star)dard techniques of a per-
the quadratic term of EqA2) is x4/=E~". Notice that the turbation theory for the auxiliary fields. For example, the

auxiliary fields have canonical fermionic or bosonic statistics2@YM-Kadanoff functionab[x] can be defined in the usual
and all the complications related to the unconventional alge/ay s the sum of all vacuum-to-vacuum skeleton diagrams.
bra of the Hubbard operators are buried in the avetagg The corresponding free-energy functional can be written as
with respect to the unperturbed ensemble. Due to the nature 1 [A_l ~ ] 1 [A A]
of the local HamiltoniarH,, the interaction terng,,[] can Alx.Ql= EE Trinlxo -2 x.Ql]+ EfTr = Ix.Qlx
be written as a sum of purely local contributions, each hav- “n "
ing an expression similar to EGA3) but without the sum- 1 .
mation over the site indek Expanding in the/ fields, we - E.E 2 Q(xf"Q + Lx.Ql, (A10)
have explicitly L

where the possibility of a nonzero averaQefor the X op-

‘1 erators has been explicitly considered. Taking into account
Snlfl=2 2 o DI O (7ERNRRN AT R N the correspondence between the auxiliary field formulation
=0 T pg it and the originalX-operator formulation, we can see that
X (1) - £F(ry), (A4) Al x,Q] is the equivalent of the function&l £, Q], while the

Baym-Kadanoff functionaib[ x, Q] corresponds toV[£,Q],
whereC' is the n-point bare cumulant defined by E¢L4). up to an é&-independent term equal to the atomic grand-
We can now develop a standard perturbation theory fogthe canonical potentia{),.
field, havingy,=E as the free propagator, and vertices given We can construct now a strong-coupling expansion to a
by Ci. The relation between the Green’s function of e certain order in(E;/U), as in the work of Pairault, Sénéchal,
operators and that of the auxiliary fields can be easily oband Tremblay® However, any finite order expansion will
tained if we notice that, due to the form of the interactionintrinsically contain the problem of the exponentially large
term (A3), we have degeneracy of the atomic ground state, leading to the break-
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down of the solution in the low temperature lim#tNext, we  be written as a sum of purely local terms. However, the
can recover our strong coupling DMFT scheme as a locaVertices of the theory are no longer the bare cumulants of the
approximation for the Baym-Kadanoff functional. This Hubbard operators. Instead, let us notice that each term
renormalized perturbation approach avoids the problem o§.{§] of the interaction part represents the generating func-
the low temperature barrier. Further, we can exploit the idegional I Tr{p;y,}] for the impurity problem defined by Eq.

of introducing auxiliary degrees of freedom and construct g24). In the present formulation, the external ﬁelufﬁp are
formulation which, in principle, allows one to determine cor- represented by the average valugs?). A direct conse-
rections to the DMFT approximation. The basic idea is toquence of this correspondence is that the second order cumu-
introduce the auxiliary fields in such a way as to obtain theant generated b, is equal to the impurity Green’s func-
DMFT result as the lowest order approximation. Startingtion Gy, associated with the generalized DMFT solution of
again from the partition functiofAl1), instead of performing  our problem. Further, the relation between the propagator for
directly a Hubbard-Stratonovich transformation, we first addhe ¢ field and theX operator Green’s function can be de-

and subtract in the exponent a term equal to rived as before and we have
B B A1 \1
[ o] 0SS xemagre-xe), ey G2~ AL
0 0 (y7R% with 3, the self-energy for thé-field.
whereA!"(7-7) is the hybridization function for the impu- Let us construct now the lowest-order approximations for

rity problem associated with the DMFT approximation. No- the pertubation expan_sions formulat.ed in terms of "?‘“X"‘aW
fields ¢ and &, respectively. In the first case, the simplest

tice that this is a purely local quantity. Next, we introduce thed. ibuti & i | h ic G ;
auxiliary field £ that decouples the quadratic term containing lagram contributing t, Is equal to the atomic Green's
function. The corresponding result represents the Hubbard-I

égl(r;-abql-e)s vsitlsl(;a\je) aAfr(ge :-e)r.mThe effective theory for the approximation'® In the second case, the zero-order approxi-
mation for the self-energy is given by the DMFT impurity

B B , o o Green's functiorﬁ(go):Gimp. Using the correspondence rela-

So[f]:—JO dffo dr' 2 2 (D (x) (7= 7)g(7), tion (Al4) with y,=E-A, as well as the equation

() v Gi‘n}p(iwn)=iwn—A(iwn)—2imp(iwn), we have

(A12) , 1 1 S
Gliwp) = (Gin'::-p(lwn) —-E+A) 1= [iol —E- 2imp(lwn):l L
and an interaction term (A15)
_ - p " This shows that, in the formulation using auxiliagyfields,
=- - HABYYY g gy
Sl €] In Texp{ JO drdr’ XPAIXT+ & the generalized DMFT result is recoverd as the lowest-order
approximation. Obviously, in order to determine the hybrid-
X (A13) ization functionA, one has to first find the solution of the
(]| '

problem within the DMFT scheme. However, the strong cou-
pling expansion constructed here allows us to determine in a
where, for simplicity, we omitted the summations and thesystematic way the corrections to the DMFT result by com-
imaginary time dependence. Again, the interaction part caputing higher order contributions to the self-eneiy

0
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