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We develop a strong coupling approach for a general lattice problem. We argue that this strong coupling
perspective represents the natural framework for a generalization of the dynamical mean field theory(DMFT).
The main result of this analysis is twofold:(1) It provides the tools for a unified treatment of any nonlocal
contribution to the Hamiltonian. Within our scheme, nonlocal terms such as hopping terms, spin-spin interac-
tions, or nonlocal Coulomb interactions are treated on equal footing.(2) By performing a detailed strong-
coupling analysis of a generalized lattice problem, we establish the basis for possible clean and systematic
extensions beyond DMFT. To this end, we study the problem using three different perspectives. First, we
develop a generalized expansion around the atomic limit in terms of the coupling constants for the nonlocal
contributions to the Hamiltonian. By analyzing the diagrammatics associated with this expansion, we establish
the equations for a generalized dynamical mean-field theory. Second, we formulate the theory in terms of a
generalized strong coupling version of the Baym-Kadanoff functional. Third, following Pairault, Sénéchal, and
Tremblay[Phys. Rev. Lett.80, 5389(1998)], we present our scheme in the language of a perturbation theory
for canonical fermionic and bosonic fields and we establish the interpretation of various strong coupling
quantities within a standard perturbative picture.
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I. INTRODUCTION

Understanding strongly correlated electron systems repre-
sents a major challenge in solid state physics. Dynamical
mean-field theory(for a review see Ref. 1) has emerged as a
powerful tool to address this challenge. Within this approach,
the lattice problem for an interacting electron system is
mapped onto a quantum impurity problem with a “bath” de-
termined self-consistently.2 In its simple form, the construc-
tion becomes exact in the limit of infinite lattice coordination
as shown in Ref. 3. In addition, several generalizations of the
approach, such as the extended dynamical mean field theory
(DMFT)4–8 and the DMFT treatment of correlated
hopping,9,10 requiring different scalings of the parameters in
the Hamiltonian, have been presented.

More generally, DMFT is a tool with strong computa-
tional power, and provides valuable insight into the physics
of strongly correlated electrons. In the case of simple model
Hamiltonians with purely local interactions, such as the Hub-
bard model, it was able to provide a consistent description
for several nonperturbative properties such as, for example,
the Mott-Hubbard metal insulator transition.1 Currently,
many efforts are made to extend the DMFT approach in or-
der to make it suitable in addressing more realistic problems.

The purpose of this work is to develop a strong coupling
approach for interacting lattice problems. Within this ap-
proach, we construct a systematic generalization of the
DMFT technique capable of describing any nonlocal term of
a generic lattice Hamiltonian. The present formulation has
several advantages. First, it unifies various DMFT schemes.
For example, the treatment of correlated hopping,9,10 the
single site DMFT of the Hubbard model(see Sec. III), and
the extended DMFT(Refs. 4–8) are all limiting cases of this
unified approach. Second, besides unifying different DMFT
schemes, this formulation is sufficiently general to be a start-
ing point for expansions around DMFT. One possibility is

described in the Appendix. In addition, the formulation in
terms of Hubbard operators makes it an ideal framework for
a DMFT based renormalization group approach along the
lines of Ref. 14. Third, being based on an expansion around
the atomic limit, it provides valuable insight into the dia-
grammatics underlying cluster DMFT schemes, which will
be the subject of a subsequent publication.

The central result of this work is the formulation of a
perturbation theory, for a general Hamiltonian of the form

H = H0 + H1, s1d

containing a local termH0 and a nonlocal oneH1. In terms of
Hubbard operatorsXi

ab, we can write the two contributions
as

H0 = o
i
o

a

laXi
aa, s2d

and

H1 = o
iÞ j

o
a,b,a8,b8

Eij
aba8b8Xi

abXj
a8b8. s3d

In these equationsa , b , a8, and b8 represent single-site
states. For simplicity, we consider the case of spin1

2 fermi-
ons, so that for each sitei there will be four statesual: u0l
(empty site), u↑ l (single occupied site with spin up), u↓ l
(single occupied site, spin down), and u2l (double occupied
site). The Hubbard operatorsXi

ab describe transitions be-
tween these states. These operators have a fermionic charac-
ter if the occupation numbers of the statesa andb differ by
one, and bosonic character otherwise. The algebra of the
Hubbard operators is defined by the multiplication rule

Xi
abXi

b8a8 = dbb8Xi
aa8, s4d

together with the conserving condition
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o
a

Xi
aa = 1, s5d

and the commutation relation

fXi
abXj

b8a8g± = di jsdbb8Xi
aa8 ± daa8Xi

b8bd. s6d

In Eq. (6) the anticommutator is used if both operators are
fermionic and the commutator otherwise. The canonic fer-
mion operatorscis can be expressed in terms of Hubbard
operators as

cis = Xi
0s + sXi

s2. s7d

The parametersla in Eq. (2) represent the single-site ener-
gies and will be determined, in general, by the chemical po-
tentialm, the on-site Hubbard interactionU, and the external

fields. The coupling constantsEij
aba8b8 may include contribu-

tions coming, for example, from hoppingtij , spin-spin inter-
action Jij , or nonlocal Coulomb interactionVij . Within the
present approach, all these contributions are treated on equal

footing, and we can regardEij
aba8b8 as generalized “hopping”

matrix elements.
Our main object of interest is the Green’s function of the

Hubbard operators. However, the theory is expressed natu-
rally in terms of a generalized irreducible two-point cumu-
lant M and a dressed hoppingE. Using the language of a
standard field theory(see the Appendix), we interpretM as a
generalized self energy andE as the corresponding Green’s
function associated with a set of auxiliary canonical fermi-
onic and bosonic fields, and show that they have a clear
diagrammatic interpretation in the locator expansion. In ad-
dition, our formulation contains the averageQ=kXl of the
Hubbard operator, which can be viewed as a generalized
“magnetization,” together with a generalized effective “mag-
netic” field h, represented, in the language of the standard
field theory, by the mean value of the auxiliary field. For-
mally, the relationship between these quantities and the cen-
tral object of the theoryG is given by the equations

G = kkXXll − kXlkXl = sM−1 − Ed−1,

and

E = Es1 − MEd−1,

whereE represents the bare coupling constants.
Next, we introduce the functional

GfE,Qg = − Tr lnf1 − MEg − TrfMEg −
1

2
QEQ+ CfE,Qg,

whereC represents a generalized Baym-Kadanoff-type func-
tional that can be obtained as a sum of all vacuum-to-
vacuum skeleton diagrams. Using this functional perspec-
tive, we can viewE and M, as well asQ andh, as pairs of
conjugate quantities and we havedC /dE=M and dC /dQ
=h, where the effective “magnetic” field can be expressed as
h=EQ.

Our single site generalized dynamical mean field theory is
based on a local approximation forM <M loc. If the nonlocal
Hamiltonian H1 contains only fermionicX operators, this
approximation becomes exact in the limit of infinite coordi-

nation. However, in the presence of bosonicX operators this
is no longer true and the locality ofM should be regarded as
a defining approximation for our scheme. Formally, a local
irreducible cumulant can be obtained by imposing a simple
stationarity condition for the functionalG. This condition
translates into a self-consistent impurity problem defined by
the statistical operator

r̂imp = e−bH0
imp

T̂ expH−E
0

b

XstdDst − t8dXst8d

+ himpstdXstdJ ,

wherehimp represents an external field andD the hybridiza-
tion. These quantities are subjected to the self-consistency
conditions

1

No
k

fM loc
−1sivnd − Eskdg−1 = fM loc

−1sivnd − Dsivndg−1,

and

himp + Ds0dkXl = EkXl.

The strategy that we use in presenting our G-DMFT
scheme consists in constructing three formally distinct for-
mulations. On the one hand, this allows us to establish the
equivalence of these approaches to the problem of correlated
electrons and to extract a generalized unitary picture. On the
other hand, these various angles clearly reveal the aspects
that are relevant for the possible extensions of the theory.
The natural starting point for our construction is given by a
generalized expansion around the atomic limit. This expan-
sion, in terms of the coupling constants of the nonlocal con-
tributions to the Hamiltonian, is derived in Sec. II. The tech-
nique is characterized by a close formal analogy with the
“canonical” perturbation expansion in terms of intersite hop-
ping. Consequently, we will focus on the aspects generated
by the description of the problem in terms of Hubbard op-
erators, the main goal being to obtain the relation between
the Green’s function for the Hubbard operators and the irre-
ducible two-point cumulant. Using this relation, we derive in
Sec. III the generalized DMFT equations. A simple illustra-
tion of the implementation of our scheme is given for the
Hubbard model. In Sec. IV we formulate the theory in terms
of a functional of the renormalized “hopping.” The general-
ized DMFT equations are shown to be the result of a simple
local approximation on a generalized Baym-Kadanoff-type
functional. An alternative derivation is described in the Ap-
pendix. By decoupling the nonlocal term via a Hubbard-
Stratonovich transformation, we formulate the theory in
terms of a set of canonical fermionic and bosonic fields. In
this language, the standard treatment based on Wick’s theo-
rem applies. A possibility of expanding around the DMFT
solution is also presented.

II. EXPANSION AROUND THE ATOMIC LIMIT

Expansions around the atomic limit have been powerful
tools for studying both models with localized spins,15 and
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models of interacting itinerant fermions. Following the pio-
neering work of Hubbard,16 Metzner17 developed a renor-
malized series expansion for the single-band Hubbard model.
Generalizing the “linked-cluster expansion” ideas,18 this ap-
proach involves only connected diagrams and unrestricted
lattice sums, and enables one to construct self-consistent ap-
proximations. By analyzing this renormalized expansion, it
was shown1 that, in the limit of infinite spatial dimensions,
the dynamical mean-field theory equations for the Hubbard
model are recovered. An extension of this approach to the
case of correlated hopping was developed by Shvaika.10 The
purpose of this section is to obtain a generalization of the
DMFT equations that describe the physics of a generic lattice
model for interacting fermions, starting from a renormalized
strong-coupling expansion around the atomic limit.11 Within
this scheme, all the nonlocal contributions to the Hamil-
tonian, for example hopping terms, spin-spin interaction
terms, or nonlocal Coulomb interaction contributions, are
treated on equal footing.

Let us consider a system described by the Hamiltonian
(1). The first step in our derivation is to write an expansion
for the grand-canonical potential and the Green‘s functions
for the X operators in terms of “hopping” matrix elements

Eij
aba8b8 and bare cumulants. Starting with the statistical op-

erator

r̂ ; e−bH0ŝsbd = e−bH0T̂ expH−E
0

b

dtH1stdJ , s8d

we can write the grand-canonical potential as

V = V0 −
1

b
lnkŝsbdl0, s9d

whereV0=− 1
b ln Trse−bH0d is the grand-canonical potential in

the atomic limit,b=1/kBT is the inverse temperature, and
the unperturbed ensemble average is given by

k¯l0 = Trhexps− bH0d ¯ j/Trhexps− bH0dj. s10d

Expanding the exponential in Eq.(8) we obtain thenth order
contribution tokŝsbdl0

kŝsbdl0
snd =

s− 1dn

n!
E

0

b

dt1 ¯ E
0

b

dtnkT̂hH1st1d ¯ Hnstndjl0

=
s− 1dn

n! o
hik,jkj

o
hak,bk,ak8,bk8j

Ei1j1

a1b1a18b18
¯ Einjn

anbnan8bn8

3E
0

b

dt1 ¯ dtn

3kT̂hXi1

a1b1st1dXj1

a18b18st1d ¯ Xin

anbnstndXjn

an8bn8stndjl0,

s11d

whereT̂ represents the imaginary-time ordering operator, and
Xi

abstd are the Hubbard operators in the interaction represen-
tation

Xi
abstd = eH0tXi

abe−H0t. s12d

Using the multiplication properties(4) of the Hubbard opera-
tors, it is straightforward to obtain the explicit imaginary
time dependence

Xi
abstd = e−sla−lbdtXi

ab. s13d

BecauseH0 is a sum of local operators, the ensemble average
in Eq. (11) factorizes into independent local averages that
can be evaluated using the algebra of theX operators. How-
ever, the explicit calculation ofV is cumbersome, as the
summation over the site variablesik is restricted. To over-
come this problem, following Metzner,17 we introduce the
bare cumulant defined by

Ci
nsa1,b1, . . . ,an,bn;t1, . . . ,tnd

= U dnW

dha1b1
st1d ¯ dhanbn

stndU
hh=0j

, s14d

where the generating functional is

Wfhhjg = lnKT̂ expH− o
ab
E

0

b

dt habstdXabstdJL
0

.

s15d

The fieldshab are either complex numbers or Grassmann
variables, depending on the nature(bosonic or fermionic) of
the corresponding operatorsXab. In Eqs. (14) and (15) the
site indexi for the h field and the Hubbard operators, was
omitted for simplicity.

Using the bare cumulants allows one to express the grand-
canonical potential as an expansion containing unrestricted
sums. Each term will be a product of “hopping” matrix ele-

mentsEij
aba8b8 and local cumulants, and can be represented

diagrammatically. Further, using linked-cluster type
arguments18 one can show that only the connected diagrams
contribute. The basic diagrammatic rules are similar to those
given by Metzner17 for the Hubbard model. However, the
internal lines corresponding to “hopping” matrix elements
will carry two extra pairs of indicessabd andsa8b8d (one for
each end of the line) representing the single-site states. Also,
the nth order cumulantCi

snd represented by an-valent point
vertex, will be attached ton lines, with the corresponding
labelssakbkd. If we split the states associated with a cumu-
lant in two subsets,sa1, . . . ,and and sb1, . . . ,bnd, the multi-
plication rule(4) requires that each single-particle state(u0l,
usl, or u2l) be found the same number of times in each of the
subsets. Also, in contrast with the simple case of an expan-
sion in the hopping matrixtij , in general, cumulants of order
n with n odd may be nonzero. This is the case ifH1 contains
terms with bosonicX operators having a nonzero average
value. Such terms may occur, for example, if a nonlocal Cou-
lomb interactionVijninj is considered. To summarize these
observations, we present in Fig. 1 the diagrams yielding the
leading contributions toV.

Our next task is to write an expansion for the Green’s
functions of the Hubbard operators. We define
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Ḡaba8b8si, j ;t,t8d = − Trhr̂T̂fXi
abstdXj

abst8dgj, s16d

where the statistical operatorr̂ is given by Eq.(8), and the
Hubbard operators are in the Heisenberg representation

Xi
abstd = eHtXi

abe−Ht. s17d

The perturbation expansion for the Green’s functions is simi-
lar to the expansion for the grand-canonical potential. The
consequence of the presence of two extraX operators in Eq.
(16) is that the corresponding diagrams will be rooted, i.e.,
one(for i = j) or two of the vertices will have fixed site indi-
ces and some fixed single-site state indices. The general rules
are analogous to those for the Hubbard model,17 with the
difference that extra indices(associated with the single-site
states) are carried by the “hopping” matrix elements and the
bare cumulants. A special case occurs when bosonicX op-
erators with nonzero average values,kXabl=Qab, which we
will call Q operators, are present inH1. In this case, as men-
tioned before, cumulants of ordern with n odd may be non-
zero, leading to disconnected rooted diagrams in the expan-

sion of Ḡaba8b8. By simply regrouping the contributions
from disconnected diagrams we can write

Ḡaba8b8si, j ;t,t8d = Gaba8b8si, j ;t,t8d − kXi
ablkXi

a8b8l,

s18d

wherekXi
abl represents the average of the operatorXi

ab with
respect to the full Hamiltonian, andGaba8b8 has a diagram-
matic representation containing only connected diagrams. In
the rest of this work we will always use the “connected”
Green’s functions defined by Eq.(18) . Obviously, ifH1 does

not containQ operators,G andḠ coincide, as the averages in
Eq. (18) vanish. To summarize, we present in Fig. 2 some
leading contributions toG.

At this point, a brief discussion about the Fourier trans-
formation of the Green’s functions and of the cumulants is
required. Due to the fact that the Hubbard operators have
either bosoniclike or fermioniclike characters, the Fourier

transformed Green’s functions,Gaba8b8si , j ; ivnd, will have
odd Matsubara frequency, if bothX operators are fermionic,
or even Matsubara frequency otherwise. On the other hand,
the cumulants may depend on both even and odd Matsubara
frequencies. Recalling the definition, Eqs.(14) and (15), a
pair of indicesakbk associated with a fermioniclike Hubbard
operator will induce a dependence on an odd frequencyvk,
while an even frequency will be associated with a pair with
bosonic character. A line connecting two vertices, and yield-

ing the factorEij
aba8b8, will carry the frequency correspond-

ing to the nature of the two pairssabd and sa8b8d. This
nature is always the same as a result of the fact that the
Hamiltonian conserves the number of particles. In the rest of
this work we will not use different notations for odd and
even frequencies, but we should keep in mind this aspect of
the problem.

The expansion that we derived is rather complicated and
it may be of little help if used directly. However, we know
that in order to obtain self-consistent approximations and, in
particular, DMFT-type equations, a renormalized expansion
is necessary. The key in obtaining a renormalized expansion
is to introduce the notion of irreducibility with respect to one

line (representingEij
aba8b8). We define the irreducible two-

point cumulant,Mij
aba8b8sivnd, as the sum of all connected

diagrams having two external legs(labeled byab anda8b8,
respectively), with the property that the two legs cannot be
separated by cutting one line. This definition differs slightly
from the standard definition,1,17 which requires that the dia-
gram be not disconnected by cutting a single line. The dif-
ference comes from the existence of cumulants with odd
number of legs. IfH1 does not containQ operators, the stan-
dard diagrammatics, along with the usual definition of irre-
ducibility are valid. Some typical, low order contributions to

the irreducible cumulantMij
aba8b8sivnd are shown in Fig. 3.

Notice that we can classify the diagrams into classes, each

FIG. 1. Diagrams contributing to the expansion of the grand
canonical potential in terms of generalized “hopping” matrix ele-
ments(full lines) and bare cumulants(small circles). The contribu-
tions from diagrams(a), (b), (d), (e), (f), and(g) are nonzero only if
H1 contains terms with bosonicX operators having nonzero average
values(Q operators). FIG. 2. Diagrams representing the leading contributions to the

expansion of the Green’s function around the atomic limit. The
cumulants characterized by fixed site and state labels have small
legs attached to the corresponding circle. Forn=3 only diagrams
containing cumulants with an even number of legs are shown.
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class containing one “basic” diagram that is one-particle ir-
reducible with respect to all “hopping” lines plus diagrams
derived from it by decorating the bare cumulants with reduc-
ible contributions. It is useful to perform partial summations
of the diagrams in each class. The resulting diagrams will
have all the reducible decorations replaced by factors equal

to o j ,a8,b8Eij
aba8b8kXj

a8b8l.
We can now write a renormalized expansion for the

Green’s functions in terms of irreducible cumulants and
“hopping” matrix elements. The diagrammatic representation
of this expansion is shown in Fig. 3. Analytically, the corre-
sponding equation will be:

Gij
mn = Mij

mn + o
k,l

o
r,p

Mik
mrEkl

rpGlj
pn, s19d

where, to reduce the number of indices, we introduced a
simplified notation for a pair of single-site states,sabd=m. It
is also convenient to regard a quantityAmn as an element of
a matrix A. Using this matrix notation, and Fourier trans-
forming the spatial dependence, one can write the relation
between the irreducible cumulant and theX operator Green’s
function,

Gsk,ivnd = fM −1sk,ivnd − Eskdg−1, s20d

whereEskd is the Fourier transform of the coupling constant
matrix. What exactly are the Green’s function included in the
matrix G? Obviously, those that are coupled by the general-
ized “hopping” Eij

mn. Specifically, if hmnjn=1,. . .,P and
hnnjn=1,. . .,P are the sets of single-site pairs that label the cou-
pling constants inH1, each pair appearing only once in the
corresponding set, the matrices will have dimensionP and
the matrix elements will be labeledGnnmn, Mnnmn, andEmnnn,
respectively. A particular example of this construction will be
presented in the next section for the Hubbard model.

Equations(19) and (20) represent the main result of this
section. They are valid in arbitrary dimensions and for any
Hamiltonian that has the form given by Eqs.(1)–(3) when
written in terms of Hubbard operators.

III. GENERALIZED DMFT EQUATIONS

In the standard dynamical mean-field theory,1 the single-
particle self energy for the electron Green’s function is local
in the limit of infinite spatial dimensions. However, for a
general lattice Hamiltonian containing fermionicX operators,
this property is violated, as shown by Schiller9 in the case of
correlated hopping. Nevertheless, one can overcome this
problem by adopting a strong-coupling perspective10 and re-
garding the two-point irreducible cumulant, rather than the
self-energy, as the quantity in which the theory should be
formulated. If H1 contains only fermionicX operators, and
assuming that the coupling constants inH1 are properly
scaled, to keep the energy(per site) finite, one can show1,17

that the irreducible cumulants become local in the limit of
large coordination

M i jsivnd = di jM 0sivnd. s21d

This property is not valid if the nonlocal Hamiltonian con-
tains bosonicX operators. However, for a purely fermionic
model, the natural quantity in which the theory should be
formulated is the irreducible cumulant, rather than the self-
energy. This becomes immediately transparent using Eqs.
(20) and(21), and the fact that the electron Green’s function
is given by the sum

Gssk,ivnd = G0s s0sk,ivnd + Gs̄2 2s̄sk,ivnd

+ sfG0s 2s̄sk,ivnd + Gs̄2 s0sk,ivndg. s22d

Although M 0 is k independent,G will have, in general, a
complicated dependence on the wave number, and the corre-
sponding self-energy will be nonlocal, breaking the standard
DMFT scheme. Formally, a self-energy matrix can be intro-
duced by defining

Sszd = sz+ mdI − E − G−1szd = sz+ mdI − M 0
−1szd, s23d

with I being the identity matrix. However, in general, this
quantity does not have the desired analytic properties10 and
may diverge asuzu →`.

If we go further and generalize the model to include both
fermionic and bosonic degrees of freedom, the picture pre-
sented above fails, as one cannot scale the coupling constants
in such a way that one has both finite energy(per site) and
local irreducible cumulants in the limit of infinite
dimensions.13 In contrast, this work assumes a different per-
spective: Rather than viewing DMFT as an approximation
that becomes exact in the limit of infinite coordination, we
see it as the first order approximation in a hierarchy of(in-
creasing size) cluster approximations. In this picture, the ex-
act limit is obtained for an infinite-large cluster. Conse-
quently, our G-DMFT scheme will be defined by the
condition that the two-point irreducible cumulant be local.
Unlike the case of extended DMFT, we have no small pa-
rameter(other than the inverse of the cluster size) justifying
this approach. Obviously, if the model contains only fermi-
onic degrees of freedom, the two perspectives described
above are equivalent.

Based on the locality ofM , we can approach the central
step in a DMFT-type scheme, namely, the self-consistent
mapping of the lattice problem onto an effective impurity

FIG. 3. Diagrammatic representation of the renormalized expan-
sion of the Green’s function and some leading contributions to the
irreducible two-point cumulantMij

mnsivnd. The simplified notation
sabd=m, sa8b8d=n was used. The diagrams containing one-particle
reducible decorations of bare cumulants can be summed and re-
placed by diagrams with decorations equal too j ,nEij

mnkXj
nl. The av-

eragekXj
nl is represented diagrammatically by a square.
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problem. Let us consider the single-impurity problem with
the statistical operator

r̂imp = e−bH0
imp

T̂ expH−E
0

b

dtFE
0

b

dt8

3 o
aba8b8

XabstdDaba8b8st − t8dXa8b8st8d

+ o
a,bPBQ

himp
ab stdXabstdGJ , s24d

wherehimpstd is an external field that couples to theQ op-
erators,BQ is the set of indices corresponding to theQ op-
erators,Dst−t8d is the hybridization matrix andH0

imp con-
tains one term, for examplei =0, from the local Hamiltonian
(2). Using the expansion procedures described in the previ-
ous section, with the hybridization replacing the “hopping”
matrix E, we obtain for the impurity Green’s function a re-
lation similar to Eq.(20),

Gimpsivnd = fM imp
−1 sivnd − Dsivndg−1, s25d

where all the quantities are local, andM imp is the irreducible
cumulant with respect to the hybridization. For practical cal-
culations, as well as to gain some physical insight, it is useful
to express the impurity problem in a Hamiltonian form. Tak-
ing into account that in our matrix formulation the indices
sabd corresponding to fermionic and bosonic Hubbard op-

erators do not mix, all the matrices, includingDaba8b8, are
block-diagonal with one block corresponding to the fermi-
onic indices and one to the bosonic sector. Consequently, we
will introduce two types of auxiliary degrees of freedom, one
associated with a fermionic bath, described by operators
saks ,aks

† d, and one associated with a bosonic bath, described
by sbks ,bks

† d. The impurity Hamiltonian will be

Himp = H0
imp + o

sabdPBQ

himp
ab Xab + o

k,s
ek

aaks
† aks + o

k,s
ek

bbks
† bks

+ o
k

o
sabdPF

fVa
abskdaksab

† Xab + h.c.g

+ o
k

o
sabdPB

fVb
abskdbksab

† Xab + h.c.g. s26d

The first term in the right-hand side describes an isolated
impurity, the second term represents the coupling to the ex-
ternal field and the summation is restricted to labels corre-
sponding to bosonic operators having a nonzero mean value,
theQ-operatorssBQd, the third and fourth terms describe the
fermionic and bosonic baths, respectively, and the last two
terms represent the coupling of the impurity with the two
baths. In the last two terms, the summations over the
X-operator labelssabd are restricted to the fermionicsFd and
bosonic sectorssBd, respectively. The expression of the hy-
bridization in terms of coupling constantsVabskd can be ob-
tained by integrating out the auxiliary degrees of freedom.
We have

Daba8b8sivnd =
1

No
k

Vl
abskdVl

a8b8skd
ivn − ek

l , s27d

wherel =a if the element is in the fermionic sector of theD
matrix andl =b for the bosonic case.

Returning to our main problem, we obtain the self-
consistency conditions by requiring that the lattice irreduc-
ible cumulant be equal to the effective impurity problem ir-
reducible cumulantM impszd=M 0szd. By comparing the
diagrammatic expansion ofM imp in terms of bare cumulants
(dressed with external field lines) and hybridization functions
with the expansion ofM 0, we observe that the equality is
satisfied if we identify a line representingDmn with the sum
of all the paths starting withE0i

mr and ending withEj0
pn, as

well as the sum betweeen an external field linehm and the
one-particle reducible decorationonDmnkXnl with the lattice
one-particle reducible decorationo j ,nEij

mnkXj
nl. Explicitly, the

expansion for the impurity irreducible cumulant is identical
with the expansion of the lattice irreducible cumulant pro-
vided

Dsivnd = o
i,j

E0iGi j
s0dsivndE j0, s28d

whereGi j
s0dsivnd represents the matrix Green’s function for a

lattice with the site “0” removed, together with a condition
that determines self-consistently the external fieldh

himp
m = o

j ,nPBQ

E0j
mnkXj

nl − o
n

Dmns0dkX0
nl. s29d

Notice that Eq.(28) represents the generalization of the well-
known DMFT self-consistency condition.1 In addition, if the
nonlocal HamiltonianH1 contains Hubbard operators that ac-
quire a nonzero mean value, our lattice model is mapped into
an impurity model with an external field determined self-
consistently by Eq.(29).

Our final step consists in finding a self-consistent equation
that determines the hybridizationDszd in terms of the lattice
Green’s function. Comparing Eq.(19) for Gi j (after making
M i j =di jM 0) with the equivalent expression forGi j

s0d

Gi j
s0dsivnd = di jM 0sivnd + o

kÞ0
M 0sivndEikGkj

s0dsivnd

for i, j Þ 0, s30d

we obtain fori = j =0

G00sivnd = M 0sivnd + M 0sivndo
k,l

E0kGkl
s0dsivndEl0M 0sivnd

+ ¯ = M 0F1 − o
k,l

E0kGkl
s0dsivndEl0M 0sivndG−1

.

s31d

Using Eq.(28) for Dsivnd and the Fourier transform for the
local Green’s function, we obtain the self-consistent condi-
tion that determines the hybridization,
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1

N o fM 0
−1sivnd − Eskdg−1 = fM 0

−1sivnd − Dsivndg−1.

s32d

Formally, Eq.(32) closely resembles the standard form of
the DMFT self-consistency condition.1 We should, however,
keep in mind the fact that this is a matrix equation involving
Green’s functions for the Hubbard operators. To solve a
problem described by the Hamiltonians(1)–(3) within this
scheme, implies to solve the impurity problem(24), find an
irreducible cumulant matrix M 0, then use the self-
consistency condition(32) together with Eq.(29) to deter-
mine the new hybridizationDsivnd and the new fieldhimp.
The process is repeated until convergence is reached.

Hubbard model

In order to get a feeling of how this approach works, as
well as to check its validity, we can do a simple exercise by
applying the procedure to the Hubbard model, for which we
should be able to recover the known DMFT results. In this
particular case, the Hamiltonian will be

HHUB = o
i

f− msXi
↑↑ + Xi

↓↓d + sU − 2mdXi
22g

+ o
i,j

o
s

tijfXi
s0Xj

0s + Xi
2s̄Xj

s̄2 + sXi
s0Xj

s̄2 + sXi
2s̄Xj

0sg,

s33d

where m represents the chemical potential,U the on-site
Coulomb interaction, andtij the hopping matrix elements,
which are equal to −t if i and j are nearest neighbors and
zero otherwise. We can introduce the hopping matrix

Eskd = SEs0 0sskd Es0 s̄2skd
E2s̄ 0sskd E2s̄ s̄2skd

D = S ek sek

sek ek
D , s34d

whereek is the Fourier transform oftij . Next, we introduce
the Green’s function matrix and the irreducible cumulant ma-
trix

G = SG0s s0 G0s 2s̄

Gs̄2 s0 Gs̄2 2s̄ D ; M = SM0s s0 M0s 2s̄

Ms̄2 s0 Ms̄2 2s̄ D .

s35d

Our goal is to show that the matrix Eq.(32) reduces in this
particular case to the well known DMFT self-consistency
condition

G0
−1sivnd = ivn + m − D0sivnd

= F 1

No
k

1

ivn + m − ek − SsivndG−1

+ Ssivnd,

s36d

whereSsivnd represents the self-energy of the single-particle
electron Green’s function andD0sivnd the hybridization of
the effective single-impurity problem. The electron single-
particle Green’s function,G, is given by the sum of all the
elements ofG, as shown in Eq.(22). Similarly, we define the
quantity

Msivnd = M0s s0sivnd + Ms̄2 2s̄sivnd + sfM0s 2s̄siwnd

+ Ms̄2 s0siwndg. s37d

It is straightforward to show that the matrix Green’s function
has the structure

Gsk,ivnd = fM −1sivnd − Eskdg−1 =
1

1 − ekMsivnd
M sivnd

+ d
ek

1 − ekMsivnd
S− 1 s

s − 1
D , s38d

whered=dethM j. Using Eq.(38) and expression(22) for the
electron Green’s function, together with the definition ofM,
we have

Gsk,ivnd =
1

M−1sivnd − ek
, s39d

which shows thatMsivnd is the single-particle irreducible
cumulant M−1sivnd= ivn+m−Ssivnd, where Ssivnd is the
single-particle self-energy. On the other hand, making the
summation overk in Eq. (38) and introducing the result in
the self-consistency relation(32) gives

D = D0S1 s

s 1
D , s40d

with

D0 =
b

ad
, a =

1

no
k

1

1 − ekM
, b =

dsa − 1d
M . s41d

Taking into account the structure ofD given by Eq.(40) , the
impurity problem described by the statistical operator(24)
reduces to an Anderson single impurity problem with a hy-
bridizationD0. Finally, we have

D0sivnd = M−1sivnd − F 1

No
k

1

M−1sivnd − ek
G−1

, s42d

which represents the standard DMFT self-consistency equa-
tion.

IV. FUNCTIONAL APPROACH

Functionals of Green’s functions provide an elegant and
powerful tool for formulating dynamical mean-field theories.
Within this framework, the DMFT equations are obtained as
a direct result of a simple approximation on the Baym-
Kadanoff functional.1 The extended dynamical mean-field
equations have also been rigorously derived using a func-
tional technique.8 Moreover, the functional perspective
seems to offer the natural framework for cluster generaliza-
tions of the dynamical mean-field theory that include effects
of short-range correlations. The purpose of this section is to
introduce a strong-coupling generalization of the functional
DMFT formulation.10 The construction of a generalized
Baym-Kadanoff-type functional will allow us to present an
alternative derivation of the generalized DMFT equations,
and, more importantly, will set the basis for a future cluster
extension of the G-DMFT approach.
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The main idea of the functional interpretation of DMFT is
to formulate a local approximation for the Baym-Kadanoff
functionalFfGg, which is the sum of all vacuum-to-vacuum
skeleton(two-particle irreducible) diagrams constructed with
the full propagatorG and the interaction vertices. This func-
tional has the property that

Si jsivnd =
dF

dGjisivnd
, s43d

whereSi jsivnd is the self-energy. As the coordination number
of the lattice goes to infinity, the self-energy becomes local
andF will depend only on the local Green’s functions,Gii

F = o
i

ffGiig, s44d

whereffGiig is a functional of the local Green’s function at
site i only. This scheme cannot be transfered directly to ap-
proach our strong-coupling problem. As we mentioned
above, within our strong-coupling perspective, the natural
quantity to describe the system is the two-point irreducible
cumulant,Mijsivnd, rather than the self-energy. Our task is to
identify a conjugate quantity(which cannot be the Green’s
function but rather something with dimensions of energy),
and to construct a functional of this quantity that will deter-
mine M by a relation similar to Eq.(43).

Following Refs. 10 and 12, we start by introducing two
time dependent external sources, one,Jij

mnst−t8d, coupled to
the X operator Green’s functions, and the otherli

abstd,
coupled to the averageQi

ab=kXi
abl of the bosonic Hubbard

operators that occur in the nonlocal HamiltonianH1. The
corresponding generating functional will be

VfJ,lg = −
1

b
ln Tr r̂fJ,lg, s45d

where the statistical operatorr is given by

r̂fJ,lg = e−bH0T̂ expH−E
0

b

dtFE
0

b

dt8SH1st,t8d

+ o
i,j

o
m,n

Jji
nmst − t8dXi

mstdXj
nst8dD

+ o
i,m

li
mstdXi

mstdGJ . s46d

The fieldJij
mnst−t8d is equivalent with introducing frequency

dependent coupling constantsEji
nmsivnd=Eji

nm+Jji
nmsivnd. The

Green’s functions can be expressed as functional derivatives
of the generating functionalVfJ,lg, with respect to the fre-
quency dependent field

Gij
mnsivnd − bkXi

mlkXj
nl = − bU dVfJ,lg

dEji
nmsivnd

U
J=0,l=0

, s47d

where the average valueQi
m=kXi

ml is nonzero only ifXi
m is a

Q operator. The generating functionalVfJ,lg reduces to the
grand-canonical potentialV in the absence of the external
sources.

The next step is to integrate Eq.(47). As we are interested
in a strong-coupling equivalent of the Baym-Kadanoff func-
tional, we will express the Green’s function in terms of the
two-point irreducible cumulant, rather than the self-energy.10

Using the notationÂ for a tensor with elementsAij
mn, we can

formally write Eq.(19) as

Ĝ = fÎ − M̂ Êg−1M̂ , s48d

where Î is the identity tensorI ij
mn=di jdmn. By integrating Eq.

(47) with Ĝ given by Eq.(48) we obtain

VfJ,lg = V0 +
1

b
o
vn

Tr lnfÎ − M̂ Êg +
1

b
o
vn

TrfM̂ Êg + JfJ,lg,

s49d

with V0 the grand-canonical potential in the atomic limit.

The quantity Ê is the renormalized coupling constant(or
renormalized generalized hopping) and can be represented
diagrammatically as a sum of chains of “hopping” lines and
irreducible cumulants. Analytically we have

Ei j
mn = Eij

mn + o
p,q

o
a,b

Eiq
maMqp

abEpj
bn + . . . =fÊsÎ − M̂ Êd−1gi j

mn.

s50d

The last term in Eq.(49) is a functional with the property

− b
dJfJ,lg

dEji
nmsivnd

= TrFM̂
dÊ

dEji
nmsivnd

G − bkXi
mlkXj

nl. s51d

Also, because the functional derivative ofVfJ,lg with re-
spect tol gives the average value ofXi

m, we will have

dJ

dli
m = −

1

b
TrFM̂

dÊ
dli

mG + kXi
ml. s52d

The standard way to proceed is to perform a Legendre
transform of the generating functional with respect to the
interacting single-particle Green’s function and to eliminate
the external sourceJ in favor of G in the functionals. Instead,
by analyzing Eqs.(51) and (52), we identify the renormal-
ized coupling constantEi j

mn as the quantity conjugate with the
irreducible cumulant and use it as an independent variable.
Consequently, we introduce the functionalsV*fE ,l ;Eg and
J*fE ,l ;Eg, with

V*fEfJ,lg,l;E + Jg = VfJ,lg,

J*fEfJ,lg,l;E + Jg = JfJ,lg. s53d

The dependence on the last variableE involves only the
components of the coupling constant tensor corresponding to
Q operator indices and we have

dJ*

dEij
mn = kX̂i

mlkXj
nl. s54d

The functional derivative with respect tol of both V* and
J* will give the average value of the bosonicX operator,
while for the Luttinger-Ward-type functionalJ* we have
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− b
dJ*

dE ji
nmsivnd

= Mij
mnsivnd. s55d

This equation is the strong-coupling equivalent of Eq.(43)
and determines the irreducible two-point cumulant as a func-
tional of the renormalized “hopping” matrix, the bare diago-
nal coupling elements, and the external fields. The stationar-
ity condition dV* /dE ji

nm=0 yields the relation between the
renormalized couplings and the cumulants,Ei j

mn=fÊsÎ
−M̂ Êd−1gi j

mn,which is identical to the definition(50). Again, at
stationarity and in the absence of the external fields the func-
tional V* reduces to the grand canonical potential.

For the case with noQ operators in the nonlocal Hamil-
tonian our construction is complete. In this particular case
the only relevant dependence in the functionals is on the
renormalized couplingE. The functionalV*fEg is formally
analogous to the functionalGnewfGg introduced by Chitra and
Kotliar8 from a weak-coupling perspective. In our picture the
strong coupling correspondent of the self-energy is, as noted
before, the irreducible cumulant, while the renormalized and
bare coupling constants correspond to the full and noninter-
acting Green’s function, respectively. Also, the strong-
coupling analog of the Luttinger-Ward functionalFfGg is
J*fEg. Similar to its weak-coupling counterpart,J*fEg can
be expressed as a sum of all vacuum-to-vacuum skeleton
diagrams containing bare cumulants and renormalized “hop-
ping” lines. All the skeleton diagrams are two-particle irre-
ducible, i.e., they cannot be separated into disconnected parts
by cutting twoE lines.

In general, however, the diagrammatic expression ofJ* is
more complicated and involves, in addition to the bare cu-
mulants, both renormalized coupling constantsE ji

nm and bare
coupling constantsEij

mn. Also, lines corresponding to the ex-
ternal field l have to be added. The generalized skeleton
diagrams have to satisfy two conditions:(i) Each diagram is
two-particle irreducible with respect to the renormalized
“hopping” and (ii ) by cutting any bare “hopping” line the
diagram is divided into two disconnected parts. These con-
ditions determine a treelike structure for the generalized skel-
eton diagrams with skeleton blocks coupled by bareE lines.
This structure is illustrated in Fig. 4 for a few low-order
contributions toJ* . Due to the treelike structure of the dia-
grams, it is rather difficult to find a local approximation for
the functionalJ* . In order to overcome this problem, we
proceed to the last step of our construction and define the
Legendre transform ofV* with respect to the average of
bosonic Hubbard operators,Qi

m=kXij
ml

GfE,Qg = V*fE,l;Eg − o
i

o
mPBQ

li
mQi

m, s56d

where the bare couplingEij
mn is treated as a parameter and is

not written explicitly as an argument of the functionalG.
Using the condition −li

m=dG /dQi
m to eliminatel, we obtain

GfE,Qg = V0 +
1

b
o
vn

Tr lnfÎ − M̂ fE,QgÊg

+
1

b
o
vn

TrfM̂ fE,QgÊg −
1

2o
i,j

o
m,nPBQ

Qi
mEij

mnQj
n

+ CfE,Qg. s57d

The properties with respect toE of the functionals are similar
to those ofV* and J* , namely, the stationarity condition
dG /dE ji

nm=0 yields Eq.(50), and we have

− b
dCfE,Qg

dE ji
nmsivnd

= Mij
mnsivnd. s58d

In addition, stationarity with respect toQ, dG /dQi
m=0, yields

dCfE,Qg

dQi
m = o

j ,bPBQ

Eij
mnQj

n. s59d

The diagrammatic representation of the Luttinger-Ward-type
functionalC contains skeleton diagrams that are two-particle
irreducible with respect to theE lines and have cumulants
dressed withEQ contributions. The structure of the diagrams
is illustrated in Fig. 5. Using the diagrammatic representation
of the functionalsC andJ* , as well as that ofQ, and taking
into account the symmetry factors associated with each dia-
gram, it is straightforward to check that

FIG. 4. Generalized skeleton diagrams contributing to the func-
tional J* . The contribution of the external fieldl is represented
only in diagram(i) by dotted lines. The numbers in parentheses
represent the symmetry factors(if different from 1) of the corre-
sponding diagrams(the number of ways in which a graph can be
made isomorphic with itself). The renormalized couplingE is rep-
resented by double lines.

FIG. 5. Example of diagrams contributing toCfE ,Qg. The av-
erage of aQ operatorQi

a is represented by a square. The symmetry
factors are written in parentheses. IfQi

m=0, the remaining basic
skeleton diagrams[(a), (e), (g),…] are identical with the remaining
diagrams in Fig. 4[(a), (b), (c), …], and C=J* . In general, we
have the basic diagrams plus diagrams obtained by decorating the
bare cumulants with lines and squares representingEij

mnQj
n.
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CfE,Qg = J*fE,l = 0;Eg +
1

2o
i,j

o
m,nPBQ

Qi
mEij

mnQj
n, s60d

whereQi
m=kXi

ml=dJ* /dli
mul=0.

We are prepared now to introduce the generalized DMFT
from a functional perspective. By analogy with the standard
approach,1 we construct an approximate theory by making
the ansatz that the Luttinger-Ward functionalC depends only
on local renormalized “hopping” matrices, i.e.,

CfE,Qg = o
i

cfEii ,Qg, s61d

wherec is a functional that depends only on the local renor-
malized coupling constants at sitei. In diagrammatic terms,
it means that all the bare cumulants contained in a skeleton
diagram contributing toc are defined on the same site. A
direct consequence of this ansatz is that the two-point irre-
ducible cumulant of the theory is local

M i jsivnd =
dC

dEiisivnd
di j , s62d

with di j being the Kroneckerd symbol. The stationarity con-
dition for G yields

Eii = fÊsÎ − M̂ Êd−1gii =
1

No
k

EskdfI − ME skdg−1, s63d

whereM is given by Eq.(62) and, for the second equality,
we assumed that the system is homogeneous. Relation(63)
represents our generalized DMFT equation and it should be
viewed as a functional equation for the local renormalized
coupling matrix. To cast it in a more familiar form, let us
observe that using the expressions for the Green’s function,
Eq. (48), and for the renormalized coupling, Eq.(50), we
have

Ĝ = M̂ ÊM̂ + M̂ . s64d

Taking into account the local character of the irreducible
cumulant, we obtain, for a homogeneous system,

Giisivnd =
1

No
k
FS dC

dEii
D−1

− EskdG−1

, s65d

whereGiisivnd has to be understood as a functional ofE.
To be able to solve Eqs.(63) or (65) we need to know the

functional dependence ofC, at least approximately. A direct
approach is rather hard in practice, therefore it is more con-
venient to generate the functionals from a purely local
theory. A simple inspection of the diagrammatic expression
for C (see Fig. 5), shows that, in the case when all the bare
cumulants are defined on the same sitei =0, the same dia-
grams will correspond to an impurity problem defined by the
statistical operator given by Eq.(24). In fact, taking into
account the previous construction of the strong-coupling
functionals, we have

GimpfD,Qg =
V0

N
+

1

b
o
vn

Tr lnfI − M impfD,QgDg

+
1

b
o
vn

TrfM impfD,QgDg

−
1

2 o
m,nPBQ

QmDmns0dQn − o
mPBQ

himp
m Qm

+ CimpfD,Qg, s66d

whereD=DfI −M impDg−1 is the renormalized hybridization,
Qm=kXml andDmns0d is the hybridization at zero frequency.
In addition, we have to keep in mind that the bare impurity
cumulants are dressed by external field lineshimp

m . The dia-
grammatic expressions forCfE ,Qg andCimpfD ,Qg are iden-
tical and we haveC /N=Cimp provided

Eii
mn = Dmn; o

j ,n
E0j

mnQj
n = himp

m + o
n

Dmns0dQn. s67d

Equations(67) represent the self-consistency condition for
our strong-coupling generalized dynamical mean-field
theory. The first of these equations can be rewritten in the
more familiar form, Eq.(32), by simply using the expres-
sions of the renormalized quantitiesE andD. A direct con-
sequence of the first self-consistency condition is the equal-
ity of the irreducible cumulants,M iisivnd=M impsivnd.
Finally, let us mention that this correspondence with the im-
purity problem is also useful in establishing a relation be-
tween the grand-canonical potential of the lattice and the
grand-canonical potential of the impurity. At stationarity both
Gimp andG reduce to the corresponding grand-canonical po-
tential, whileC /N=Cimp. Therefore we have

V

N
= Vimp +

1

2 o
m,nPBQ

FQmDmns0dQn −
1

No
i,j

Qi
mEij

mnQj
nG

−
1

b
o
vn

FTr lnfI − MDg −
1

No
k

Tr lnfI − ME skdgG .

s68d
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APPENDIX: ALTERNATIVE DERIVATION
OF THE G-DMFT EQUATIONS

The purpose of this Appendix is twofold:(1) To present
an alternative formulation of our strong-coupling theory that
is closely related to the more familiar perturbation expan-
sions based on Wick’s theorem and translate the basic quan-
tities involved in this approach in the corresponding lan-
guage and(2) to propose a scheme that allows one to expand
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around the DMFT solution. The central idea is to decouple
the nonlocal term using a generalized Hubbard-Stratonovich
transformation and to trade in theX operators for a set of
canonical fermionic and bosonic fields. In terms of these
auxiliary fields, the standard techniques of the perturbation
theory can be applied. This formulation represents a gener-
alization of the strong-coupling expansion used by Pairault,
Sénéchal, and Tremblay19 for the study of the Hubbard
model.

Starting with the partition function

Z = TrHebH0T̂ expF−E
0

b

dto
ki,jl

o
m,n

Xi
mstdEij

mnXj
nstdGJ ,

sA1d

we perform a Hubbard-Stratonovich transformation and ex-
press the nonlocal part as a Gaussian integral over the aux-
iliary field zi

m

Z = Z0E Dz expHE
0

b

dto
ki,jl

o
m,n

zi
mstdsx0

−1di j
mnz j

nstd − SintfzgJ ,

sA2d

with

Sintfzg = − lnKT̂ expH−E
0

b

dto
i,m

fzi
mstdXi

mstd

+ Xi
mstdzi

mstdgJL
0

. sA3d

The field zi
m contains both fermionic(Grassmann variables)

and bosonic(complex) components, as determined by the
correspondingX operators. The free propagator appearing in
the quadratic term of Eq.(A2) is x0i j

mn=Eij
mn. Notice that the

auxiliary fields have canonical fermionic or bosonic statistics
and all the complications related to the unconventional alge-
bra of the Hubbard operators are buried in the averagek. . .l0

with respect to the unperturbed ensemble. Due to the nature
of the local HamiltonianH0, the interaction termSintfzg can
be written as a sum of purely local contributions, each hav-
ing an expression similar to Eq.(A3) but without the sum-
mation over the site indexi. Expanding in thez fields, we
have explicitly

Sintfzg = o
i

o
n=0

`
1

n! o
m1,. . .,mn

Ci
nsm1, . . . ,mn;t1, . . . ,tnd

3zi
mnstnd ¯ zi

m1st1d, sA4d

whereCi
n is the n-point bare cumulant defined by Eq.(14).

We can now develop a standard perturbation theory for thez
field, havingx0=E as the free propagator, and vertices given
by Ci

n. The relation between the Green’s function of theX
operators and that of the auxiliary fields can be easily ob-
tained if we notice that, due to the form of the interaction
term (A3), we have

Gmnsi, j ;t,t8d =
1

Z
E Dz

d2Sintfzg
dz j

nst8ddzi
mstd

exph− S0fzgj,

sA5d

whereS0fzg represents the quadratic term in Eq.(A2). After
performing two integrations by part, we obtain

Ĝ = − x̂0
−1 + x̂0

−1x̂x̂0
−1, sA6d

where we used the tensor notation, and we introduced the
full propagatorx for the auxiliary fields, defined as

xi j
mnst,t8d = − kT̂hzi

mstdz j
nst8djl + kzi

mlkz j
nl, sA7d

where T̂ is the (imaginary) time ordering operator andk. . .l
represents the average over the statistical ensemble. In terms
of the self-energy for thez variables,Sz=x0

−1−x−1, one has

Ĝ = sŜz
−1 − x̂0d−1

, sA8d

which shows thatSz corresponds to the irreducible cumulant
M of theX-operator formulation. Also, the full Green’s func-

tion x̂=sx̂0
−1−Ŝzd−1=ÊsÎ −M̂ Êd−1 is the renormalized cou-

pling costantÊ of the original theory. In addition, in the
presence of bosonic Hubbard operators with nonzero mean
value, we have

kzi
ml = o

j ,n
Eij

mnkXj
nl, sA9d

showing that the average of the auxiliary field represents the
effective “magnetic” field of the original formulation. This
equation completes the correspondence between the formu-
lation in terms ofX operators and that in terms of auxiliaryz
fields.

It is now straightforward to rederive our generalized
mean-field equations using the standard techniques of a per-
turbation theory for the auxiliary fields. For example, the
Baym-Kadanoff functionalFfxg can be defined in the usual
way as the sum of all vacuum-to-vacuum skeleton diagrams.
The corresponding free-energy functional can be written as

Lfx,Qg =
1

b
o
vn

Tr lnfx̂0
−1 − Ŝzfx,Qgg +

1

b
o
vn

TrfŜzfx,Qgx̂g

−
1

2o
i,j

o
m,n

Qi
msx0di j

mnQj
n + Ffx,Qg, sA10d

where the possibility of a nonzero averageQ for the X op-
erators has been explicitly considered. Taking into account
the correspondence between the auxiliary field formulation
and the originalX-operator formulation, we can see that
Lfx ,Qg is the equivalent of the functionalGfE ,Qg, while the
Baym-Kadanoff functionalFfx ,Qg corresponds toCfE ,Qg,
up to an E-independent term equal to the atomic grand-
canonical potentialV0.

We can construct now a strong-coupling expansion to a
certain order insEij /Ud, as in the work of Pairault, Sénéchal,
and Tremblay.19 However, any finite order expansion will
intrinsically contain the problem of the exponentially large
degeneracy of the atomic ground state, leading to the break-
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down of the solution in the low temperature limit.19 Next, we
can recover our strong coupling DMFT scheme as a local
approximation for the Baym-Kadanoff functional. This
renormalized perturbation approach avoids the problem of
the low temperature barrier. Further, we can exploit the idea
of introducing auxiliary degrees of freedom and construct a
formulation which, in principle, allows one to determine cor-
rections to the DMFT approximation. The basic idea is to
introduce the auxiliary fields in such a way as to obtain the
DMFT result as the lowest order approximation. Starting
again from the partition function(A1), instead of performing
directly a Hubbard-Stratonovich transformation, we first add
and subtract in the exponent a term equal to

E
0

b

dtE
0

b

dt8o
i
o
m,n

Xi
mstdDii

mnst − t8dXi
nst8d, sA11d

whereDii
mnst−t8d is the hybridization function for the impu-

rity problem associated with the DMFT approximation. No-
tice that this is a purely local quantity. Next, we introduce the
auxiliary fieldj that decouples the quadratic term containing
x0st−t8d=Edst−t8d−Dst−t8d. The effective theory for the
variables will have a free term

S0fjg = −E
0

b

dtE
0

b

dt8o
ki,jl

o
m,n

ji
mstdsx0

−1di j
mnst − t8dj j

nst8d,

sA12d

and an interaction term

Sintfjg = − lnKT̂ expH−E
0

b

dtdt8 Xi
mDii

mnXi
n + ji

mXi
m

+ Xi
mji

mJL
0

, sA13d

where, for simplicity, we omitted the summations and the
imaginary time dependence. Again, the interaction part can

be written as a sum of purely local terms. However, the
vertices of the theory are no longer the bare cumulants of the
Hubbard operators. Instead, let us notice that each term
Sintfjig of the interaction part represents the generating func-
tional −lnfTrhr̂impjg for the impurity problem defined by Eq.
(24). In the present formulation, the external fieldshimp

ab are
represented by the average valueskjabl. A direct conse-
quence of this correspondence is that the second order cumu-
lant generated bySint is equal to the impurity Green’s func-
tion Gimp associated with the generalized DMFT solution of
our problem. Further, the relation between the propagator for
the j field and theX operator Green’s function can be de-
rived as before and we have

Ĝ = sŜj
−1 − x̂0d−1, sA14d

with Sj the self-energy for thej-field.
Let us construct now the lowest-order approximations for

the pertubation expansions formulated in terms of auxiliary
fields z and j, respectively. In the first case, the simplest
diagram contributing toSz is equal to the atomic Green’s
function. The corresponding result represents the Hubbard-I
approximation.19 In the second case, the zero-order approxi-
mation for the self-energy is given by the DMFT impurity
Green’s functionSj

s0d=Gimp. Using the correspondence rela-
tion (A14) with x0=E−D, as well as the equation
Gimp

−1 sivnd= ivn−Dsivnd−Simpsivnd, we have

Gsivnd = „Gimp
−1 sivnd − E + D…

−1 = fivnI − E − Simpsivndg−1.

sA15d

This shows that, in the formulation using auxiliaryj fields,
the generalized DMFT result is recoverd as the lowest-order
approximation. Obviously, in order to determine the hybrid-
ization functionD, one has to first find the solution of the
problem within the DMFT scheme. However, the strong cou-
pling expansion constructed here allows us to determine in a
systematic way the corrections to the DMFT result by com-
puting higher order contributions to the self-energySj.
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