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From Maxwell’s equations and the Poynting theorem, the time-domain electric and magnetic energy densi-
ties are generally defined in the frequency-dispersive media based on the conservation of energy. As a conse-
quence, a general definition of electric and magnetic energy is proposed. Comparing with existing formulations
of electric and magnetic energy in frequency-dispersive media, the new definition is more reasonable and is
valid in any case. Using the new definition and staring from the equation of motion, we have shown rigorously
that the total energy density and the individual electric and magnetic energy densities are always positive in a
realistic artificial left-handed medium(LHM ) [R. A. Shelby, D. R. Smith, and S. Schultz, Science292, 77
(2001)], which obeys actually the Lorentz medium model, although such a LHM has negative permittivity and
negative permeability simultaneously in a certain frequency range. We have also shown that the conservation
of energy is not violated in LHM. The earlier conclusions can be easily extended to the Drude medium model
and the cold plasma medium model. Through an exact analysis of a one-dimensional transient current source
radiating in LHM, numerical results are given to demonstrate that the work done by source, the power flowing
outwards a surface, and the electric and magnetic energy stored in a volume are all positive in the time domain.
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I. INTRODUCTION

Since Vesalago introduced a concept of left-handed me-
dium (LHM ) (Ref.1) in 1968, the study of LHM has not
received much attention until recently when the artificial
LHM was realized using periodic structures.2–6 Due to its
negative permittivity and negative permeability, the direc-
tions of the electric field, the magnetic field, and the propa-
gation vector in such a medium form a left-handed system.
Comparing with the conventional right-handed medium,
there are many unusual physical properties occurred in
LHM. For example, the wave-propagation direction in LHM
is opposite to the energy-flow direction, the electromagnetic
(EM) wave propagates towards the source in LHM due to its
negative index of refraction, a LHM slab bends the refractive
wave to the same side of the incident wave, and a flat loss-
less LHM slab can be made as a perfect lens, etc. Recently,
intensive study of LHM has been made in the theory, experi-
ments, and potential applications.2–19

In this paper, we will investigate the time-domain electric
and magnetic energy stored in a frequency-dispersive LHM.
Because the permittivity and permeability are simultaneously
negative in a certain frequency band, it is a big concern
whether the electric and magnetic energy densities are posi-
tive or negative in such a LHM. In the artificial LHM which
was realized by Shelbyet al.6 using a two-dimensional array
of repeated unit cells of conducting rods and split ring reso-
nators, the permittivity and permeability have the following
forms:

esvd = e0S1 −
vep

2

v2 − veo
2 + ivge

D , s1d

msvd = m0S1 −
Fvmp

2

v2 − vmo
2 + ivgm

D , s2d

which are actually coincident with the Lorentz medium
model.20–22Whenveo=vmo=0, the earlier model will reduce
to the Drude medium model8,21

esvd = e0F1 −
vep

2

vsv + iged
G , s3d

msvd = m0F1 −
Fvmp

2

vsv + igmdG . s4d

Furthermore, whenge=gm=0, the Drude medium model will
reduce to the cold plasma medium model

esvd = e0S1 −
vep

2

v2 D, msvd = m0S1 −
Fvmp

2

v2 D . s5d

The earlier three models are usually used in LHM, which are
obviously frequency dispersive. It is well known that the
time-domain electric and magnetic energy densities in a fre-
quency nondispersive medium are defined as22,23,29

we = 1
2D ·E, wm = 1

2B ·H . s6d

Apparently, the electric and magnetic energy would be nega-
tive if the permittivity and permeability were negative, as
they could be in dispersive media.20 In frequency dispersive
media, however, Eq.(6) becomes invalid and modified ver-
sions of electric and magnetic energy densities have been
proposed for lossless dispersive media.22–28 Generally, the
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time-averaged energy densities in time harmonic forms are
written as

kwel =
1

4

]fvesvdg
]v

uẼu2, kwml =
1

4

]fvmsvdg
]v

uH̃ u2. s7d

The earlier definition provides a correct way to describe the
electric and magnetic energy densities in lossless dispersive
media. It has been shown that bothkwel and kwml are posi-
tive for the cold plasma medium,20 which is lossless. We can
also obtain the same conclusion for lossless Drude and Lor-
entz medium models by substituting Eqs.(1)–(4) into Eq.(7)
with ge=gm=0.

When the frequency dispersive medium is lossy, however,
Eq. (7) becomes improper because the corresponding time-
averaged energy densities are complex. For the Lorentz me-
dium model, we have

kwel =
e0

4
F1 +

vep
2 sv2 + veo

2 d
sv2 − veo

2 + ivged2GuẼu2, s8d

kwml =
m0

4
F1 +

Fvmp
2 sv2 + vmo

2 d
sv2 − vmo

2 + ivgmd2GuH̃ u2. s9d

In order to obtain real energy densities, a direct extension to
Eq. (7) is taking the real part to yield[Ref. 20, Eq.(30)]:

kwel =
1

4
ReF ]fvesvdg

]v
GuẼu2, s10d

kwml =
1

4
ReF ]fvmsvdg

]v
GuH̃ u2. s11d

By doing so, the time-averaged energy densities are found to
be positive in most cases and to be negative near the resonant
frequency.20 The same conclusion was achieved by using a
more complicated definition to the electric energy density
[Ref. 29, Eq.(22)].

In a recent work done by Ziolkowski, the time-domain
energy densities were redefined[Ref. 20, Eqs.(39)–(40)],
which were split into field energy densities and dipole energy
densities as

we
field = 1

2e0uEu2, wm
field = 1

2m0uH u2, s12d

we
dipole= 1

2P ·E, wm
dipole= 1

2m0M ·H , s13d

whereP is the polarization vector andM is the magnetiza-
tion vector. Using such definitions, it was found that the
averaged field energy is always positive but the averaged
dipole energy could become negative above the resonant
frequency.20 Actually, the definitions(12) and (13) are com-
pletely equivalent to the traditional definition(6) after con-
sidering the simple relations amongD, E, P andB, H, M .

In view of the nonphysical negative energy from the ear-
lier considerations, new definitions of time-domain electric
and magnetic energy densities are proposed in the frequency-
dispersive media based on the Maxwell’s equations and con-
servation theorem of energy. Such definitions are more gen-
eral and reasonable, which are valid to both lossless and

lossy media. Using the new definitions, we will give a rigor-
ous proof that the energy and energy densities are always
positive for the Lorentz medium model, Drude medium
model, and the cold plasma media. Numerical examples are
given to illustrate the earlier conclusions.

II. ENERGY DENSITY AND ENERGY IN A FREQUENCY
DISPERSIVE MEDIUM

From the Maxwell’s equations which are valid in both
frequency dispersive and nondispersive media, one easily
obtains the Poynting’s theorem in the time domain as30

¹ · sE 3 Hd = − H ·
]B

]t
− E ·

]D

]t
− E ·Js, s14d

whereJs is the excitation electric current density. Integrating
the earlier equation over a volumeV containing the source
Js, we obtain

−E
V

E ·JsdV=E
S

sE 3 Hd · n̂dS+E
V

]D

]t
·EdV

+E
V

]B

]t
·HdV, s15d

in which S is the closed surface of the volumeV, andn̂ is an
outward unit vector normal toS. Equations(14) and(15) are
the well-known Poynting theorem in which the quantityS
=E3H sW/m2d is known as the Poynting vector. The ear-
lier equation implies a conservation of energy

Ps = P +
]

]t
sWe + Wmd, s16d

i.e., the total work done by the source current insideV equals
the power flowing outwards the surfaceS plus the change of
electromagnetic energy stored inV per unit time. In the ear-
lier equation

P =E
S

sE 3 Hd · n̂dS s17d

is the total power flowing outwards the surfaceS,

Ps = −E
V

E ·JsdV s18d

is the total work done by the source currentJs insideV, and

We,m =E
V

we,mdV s19d

is the electromagnetic energy stored insideV. Here,we and
wm are the electric and magnetic energy densities, which are
generally defined by

]we

]t
=

]D

]t
·E,

]wm

]t
=

]B

]t
·H . s20d

When the medium is frequency nondispersive, the constitu-
tive relations giveD=eE andB=mH. Then Eq.(20) reduces
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to the traditional definitions shown in Eq.(6). Obviously,
both the electric and magnetic energy densities are negative
for the frequency nondispersive LHM, which does not occur
in nature or is nonphysical.

In the frequency dispersive medium, Eq.(20) gives gen-
eral definitions of electric and magnetic energy densities as

we =E
−`

t

dt8
]D

]t8
·E, s21d

wm =E
−`

t

dt8
]B

]t8
·H . s22d

Hence, the total electric and magnetic energy stored in the
volumeV is further written as

We =E
−`

t

dt8E
V

dV
]D

]t8
·E, s23d

Wm =E
−`

t

dt8E
V

dV
]B

]t8
·H . s24d

The earlier definitions are valid to all media, frequency dis-
persive or nondispersive, lossy or lossless.

Now we consider the behavior of energy densities defined
earlier in the Lorentz medium model, Drude medium model,
and the cold plasma medium.

In classical electrodynamic theory, a dispersive and ab-
sorbing medium can be represented by a collection of
damped and noninteracting electrons of displacementr , mass
m, and effective chargeq.31,32Under the action of an electric
field, the equation of motion is expressed as

qE = mS ]2r

]t2
+ ge

]r

]t
+ veo

2 rD , s25d

where ge is the damping constant, which is usually much
smaller than the binding or resonant frequencyveo. Suppose
that there areN electrons. Then the polarization vector is
given by

P = Nqr . s26d

Hence, we easily obtain a relation betweenP and E from
Eqs.(25) and (26) as

]2P

]t2
+ ge

]P

]t
+ veo

2 P = e0vep
2 E, s27d

in which

vep
2 =

Nq2

me0
. s28d

In the frequency dispersive medium, the electric displace-
mentD has a simple relationship with the electric fieldE and
the polarization vectorP:

D = e0E + P. s29d

Under the time-harmonic excitation withe−ivt, we have
] /]t=−iv. Hence, Eqs.(27) and (29) easily give

D = e0S1 −
vep

2

v2 − veo
2 + ivge

DE s30d

in the frequency domain. As a consequence, the equivalent
permittivity in the frequency domain is written as Eq.(1),
which obeys the Lorentz medium model.6,20,21

Similarly, the magnetization vectorM in the artificial
LHM which is composed of two-dimensional array of re-
peated unit cells of conducting rods and split ring resonators
is written as3,32

]2M

]t2
+ gm

]M

]t
+ vmo

2 M = Fvmp
2 H , s31d

where vmo is the resonance frequency of the magnetic di-
pole, gm is the damping frequency, andF characterizes the
strength of the interaction between the dipole and the mag-
netic field. Then the magnetic fluxB is expressed as in terms
of M andH:

B = m0H + m0M . s32d

Under the time-harmonic excitation withe−ivt, Eqs.(31) and
(32) easily give the equivalent permeability in the frequency
domain, as shown in Eq.(2), which also obeys the Lorentz
medium model6,20,21.

Now we consider the electric and magnetic energy densi-
ties defined in Eqs.(21) and (22) in time domain. For the
electric energy density, we have

]we

]t
= e0

]E

]t
·E +

]P

]t
·E =

]

]t
S1

2
e0uEu2D +

]P

]t
·E. s33d

Substituting Eq.(27) into Eq. (33) and replacing the second
E in the right-hand side, we easily obtain

]we

]t
=

]

]t
F1

2
e0uEu2 +

1

2e0vep
2 SU ]P

]t
U2

+ veo
2 uPu2DG

+
ge

e0vep
2 U ]P

]t
U2

. s34d

Hence, we easily obtain the electric energy density as

we =
1

2
e0uEu2 +

1

2e0vep
2 SU ]P

]t
U2

+ veo
2 uPu2D

+
ge

e0vep
2 E

−`

t

dt8U ]P

]t8
U2

. s35d

Similarly, the magnetic energy density can be expressed as

wm =
1

2
m0uH u2 +

m0

2Fvmp
2 SU ]M

]t
U2

+ vmo
2 uM u2D

+
m0gm

Fvmp
2 E

−`

t

dt8U ]M

]t8
U2

. s36d

From Eqs.(35) and(36), we clearly see that both the electric
and magnetic energy densities are positive in the Lorentz
medium model although the permittivity and permeability
may be simultaneously negative in a certain frequency band.
No matter how large is the frequency band and no matter the
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medium is lossless or lossy, the energy densities are always
positive. Hence, the electric and magnetic energy stored in
any volume is always positive. Because the Drude medium
model is a special case of Lorentz medium model when
veo=vmo=0, and the cold plasma medium model is a special
case of Drude medium model whenge=gm=0, the earlier
conclusions are valid to both Drude and cold plasma medium
models either.

Actually, the last terms in Eqs.(35) and (36), which cor-
respond to the imaginary parts of the permittivity and perme-
ability in the frequency domain, represent the heat energy
due to the loss. Hence, the conservation of energy described
in Eq. (16) can be rewritten in an alternative form as

Ps = P + sPse + Psmd +
]

]t
sWe

n + Wm
n d, s37d

wherePs and P are defined in Eqs.(18) and (17), Pse and
Psm denote the heat energy per unit time due to the electric
and magnetic losses in the permittivity and permeability,
which are given by

Pse =E
V

ge

e0vep
2 U ]P

]t
U2

dV, s38d

Psm =E
V

m0gm

Fvmp
2 U ]M

]t
U2

dV, s39d

and We
n and Wm

n are new-defined electric and magnetic en-
ergy stored insideV with energy densities

we
n =

1

2
e0uEu2 +

1

2e0vep
2 SU ]P

]t
U2

+ veo
2 uPu2D , s40d

wm
n =

1

2
m0uH u2 +

m0

2Fvmp
2 SU ]M

]t
U2

+ vmo
2 uM u2D . s41d

Equation (37) clearly states a conservation of energy: the
total work done by the source current insideV is the sum of
the power flowing outwards the surfaceS, the heat energy
per unit time insideV produced by the electromagnetic
losses, and the change of electromagnetic energy stored inV
per unit time. From the earlier equations, it is obvious that
Pseù0, Psmù0, We

nù0, andWm
n ù0 in any cases for the

Lorentz medium model, including the artificial LHM.6

III. NUMERICAL RESULTS

In order to reveal the physical property of work, power,
and energy in LHM, we consider a one-dimensional problem
where the source is a current sheet on an infinite plane, as
shown in Fig. 1. Here, the current density is a Gaussian pulse
defined by

Jssz,td = ŷJ0dszdt0fst − t0d, s42d

in which

fstd = − 2a2te−a2t2.

The Gaussian pulse has also a Gaussian-distributed fre-
quency spectrum

Asvd = − i
Îp

a
J0vt0e

−v2/4a2
eivt0. s43d

In the frequency domain, the electric and magnetic fields
have closed-form solutions as

Ẽsz,vd = − ŷ
mr

2n
h0Asvdeinkuzu, s44d

FIG. 1. A uniform current sheet extending to infinity in thex
and y directions in a LHM. A cylinder with unit area in the cross
section lies alongzP f−z0,z0g.

FIG. 2. The excitation Gaussian pulse and its frequency spec-
trum. (a) The Gaussian pulse.(b) The frequency spectrum.
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H̃sz,vd = x̂
1

2
signszdAsvdeinkuzu, s45d

wheren=Îmrer is the index of refraction,mr ander are the
relative permeability and permittivity,k is the wave number
in free space,h0=120p sohmsd is the wave impedance in
free space, and signszd is a sign function which is 1 forz.0
and −1 forz,0. Furthermore, the frequency-domain electric

and magnetic fluxes are given byD̃=e0erẼ and B̃=m0mrH̃.
Then, the time-domain electromagnetic fields are generally
obtained through the Fourier transform

Fsz,td =
1

2p
E

−`

`

F̃sz,vde−ivtdv, s46d

in which F=E ,D ,H, and B. When the LHM is frequency
nondispersive, the earlier fields have closed-form solutions.

Now we consider a cylinder with volumeV and surfaceS
which is perpendicular to the current sheet, as shown in Fig.
1. The cylinder has a length of 2z0 and a unit area in the
cross section, which lies alongzP f−z0,z0g. Hence, the total
work Ps done by the source inside the cylinder, the powerP
flowing outward the cylinder, and the electromagnetic energy
stored inside the cylinder can be easily computed. In a ho-
mogeneous and frequency nondispersive LHM whereer ,0,
mr ,0, andn,0, the work, power, and energy are expressed
as

Ps =
mr

2n
h0J0

2t0
2f2st − t0d, s47d

P =
mr

2n
h0J0

2t0
2f2st − t0 − nz0/cd, s48d

We = Wm =
mr

4
m0J0

2t0
2E

0

z0

f2st − t0 − nz/cddz, s49d

wherec is the light speed in free space, and the integral in
Eq. (49) has a closed form as series expansion. From Eqs.
(47)–(49), we clearly see that the source work and the power
flow are both positive, and the EM energy isnegative in
such a frequency nondispersive LHM. Although the energy
is negative, the conservation of energy is satisfied.

Next we study the electromagnetic energy stored in LHM
through numerical experiments. In the following numerical
experiments, the Gaussian pulse and its frequency spectrum
are illustrated in Fig. 2, whereJ0=1 mA, a=10pÎ2 GHz,
andt0=76.3079 ps. For such parameters, the maximum spec-
trum is located at 10 GHz, and the spectrum at 68 GHz goes
down to 10−8.

For easy comparison, we first consider the radiation of the
Gaussian pulse in free space. Figure 3 illustrates the power
flowing outwardsS and the energy stored insideV whenz0
=50 mm. From Fig. 3, we observe that both the power and

FIG. 3. The total power flowing outwardsSand the electromag-
netic energy stored insideV in free space.(a) Power flow.(b) Elec-
tromagnetic energy.

FIG. 4. The total power flowing outwardsSand the electromag-
netic energy stored insideV in the frequency nondispersive LHM
whener =mr =−1. (a) Power flow.(b) Electromagnetic energy.

TIME-DOMAIN ELECTROMAGNETIC ENERGY IN… PHYSICAL REVIEW B 70, 205106(2004)

205106-5



energy are positive and causal in free space. In the frequency
nondispersive LHM, the power flow and stored energy are
illustrated in Fig. 4 whenz0=50 mm, where«r =mr =−1.

From Fig. 4, we clearly see that the stored energy in such
a frequency nondispersive LHM is negative, which is non-
physical. Although the power is positive, both the power
flow and energy occur before the excitation of current
source. This is obviously a violation of causality. Hence,

such a frequency nondispersive LHM breaks the basic physi-
cal laws.

However, a frequency nondispersive LHM does not occur
in nature. In an artificial LHM which obeys the Lorentz me-
dium model,6 where the permittivity and permeability are
shown in Eqs.(1) and(2), the energy density and the stored
energy atz0=50 mm are illustrated in Fig. 5 whenfeo= fmo
=10 GHz, fep= fmp=12 GHz, and g=100 MHz. Here,
double precisions are used to make the numerical integration
as accurate as possible, and the integration error is set to 10−8

in computing the electromagnetic fields. Because the electric
energy and magnetic energy are completely the same, only
the electric energy is given, which has been computed using
the new definition and the old definition given by Eq.(6) or
Eqs.(12) and (13) for easy comparison.

From Fig. 5, we clearly observe that both the energy den-
sity and energy are causal. In this numerical experiment, the
LHM has a bandwidth of 2 GHz where the permittivity and
permeability are simultaneously negative. Using the old defi-
nition, the energy density is slightly negative in some small
time periods, as shown in Fig. 5(a). From the new definition
based on the conservation of energy, however, the energy
density is always positive. As a consequence, the energy
stored insideV is always positive, as shown in Fig. 5(b).

In order to verify the conservation of energy, we have
computed the work done by the source current in the volume
V, the power flowing outwards the surfaceS, and the change

FIG. 5. The energy density and the stored energy in a realistic
LHM with a bandwidth of 2 GHz(feo= fmo=10 GHz, fep= fmp

=12 GHz, andg=100 MHz). (a) Energy density.(b) Stored energy.

FIG. 6. Comparison of the work done by the sourcePs (solid
line) and the power plus the change of energy per unit timeP
+]sWe+Wmd /]t (dashed line) in a realistic LHM with the band-
width of 2 GHz.

FIG. 7. The energy density(upper) and the stored energy
(lower) in the realistic LHM with a wider bandwidth of 5 GHz
(feo= fmo=8 GHz, fep= fmp=13 GHz, andg=100 MHz). (a) Energy
density.(b) Stored energy.
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of energy stored insideV per unit time using the new defi-
nition. Figure 6 illustrates the comparison of the workPs
(see the solid line) and the power plus the change of energy
per unit timeP+]sWe+Wmd /]t (see the dashed line). Clearly,
they are nearly the same and the tiny difference is due to the
integration error. The earlier numerical experiment verifies
the conservation of energy. Hence, the basic physical laws
are not violated at all in the realistic artificial LHM.

To verify the earlier conclusions further, we consider the
artificial LHM with a wider bandwidths of 5 GHz(feo= fmo
=8 GHz, fep= fmp=13 GHz, andg=100 GHz). For such a
case, the electric energy density atz0=50 mm and the elec-
tric energy stored inside the volume are illustrated in Fig. 7.
When the LHM has a wider bandwidth, the energy density
from the traditional definition has stronger negative parts
which produces a negative energy stored insideV in a time
period, as shown in Fig. 7. Using the new definition, how-
ever, both the energy density and the total energy stored
insideV are always positive even in the wideband LHM with
5 GHz.

From Figs. 5 and 7, we also observe that the total energy
stored insideV computed by the new definition is quite simi-
lar for different bandwidths. This obeys the principle of en-
ergy stability. Using the old definition, however, the total
energy is quite different. Similar to Fig. 6, the conservation
of energy is also verified for the wider bandwidth. Hence, the
basic physical laws are not violated at all in the realistic
artificial LHM.

IV. CONCLUSIONS

The traditional definition of electromagnetic energy is
only valid to frequency nondispersive media, and the formu-
lations proposed by Landau and Lifshitz and others20–28 for
dispersive media are only valid to lossless media. For gen-
eral frequency dispersive media, new definitions of electric
and magnetic energy densities are proposed based on the
Maxwell’s equations and the conservation theorem of energy.
Using the new definitions and the equation of motion, we
have shown rigorously that the electric and magnetic energy
and energy densities are always positive in the Lorentz me-
dium model, Drude medium model, and cold plasma me-
dium although the permittivity and permeability could be
simultaneously negative in a certain frequency band, just like
a LHM. We have also shown that the conservation of energy
is not violated in such a LHM. Numerical results are given to
illustrate the earlier conclusions.
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