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The ultrafast dynamics of electrons and ions in thin metal films has been investigated using a semiclassical
model based on self-consistent Vlasov simulations. The Vlasov equation is solved using a very accurate
Eulerian scheme that preserves the fermionic character of the electron distribution for all times. With this
technique, the electronic transport and thermalization are studied on a time scale of over 150 plasmon cycles.
Our results demonstrate that heat transport occurs at a velocity close to the Fermi velocity, in agreement with
experimental measurements in thin gold films. We also show that(i) internal electron thermalization can be
achieved without including any binary electron-electron collisions and(ii ) nonequilibrium electrons begin to
interact with the lattice well before the internal electron thermalization is completed. These effects are con-
siderably enhanced by the interaction of nonequilibrium electrons with the film surfaces.
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Understanding the relaxation processes of an electron gas
confined in a nanosized structure is a matter of great impor-
tance in materials science, both for fundamental studies and
technological applications. Although the physical properties
of the bulk matter are rather well understood, the ion and
electron dynamics in finite-size nanoscale systems are be-
lieved to display unexpected features due to the presence of
interfaces. The aim of this Rapid Communication is to pro-
vide a deeper insight into the properties of electron thermal-
ization and transport in typical finite-size systems, such as
thin metal films.

It is nowadays possible, by means of ultrafast spectros-
copy techniques, to assess the femtosecond dynamics of an
electron gas confined in metallic thin films1–6 or
nanoparticles,6–8 so that theoretical predictions can be di-
rectly compared to experimental measurements. In a typical
femtosecond pump-probe experiment, the following sche-
matic scenario is generally assumed: first, the electrons ab-
sorb quasi-instantaneously the laser energy via interband
and/or intraband transitions. During this process, the ionic
background remains frozen and the electron distribution is
nonthermal. On a femtosecond time scale, the injected en-
ergy is redistributed among the electrons via electron-
electron collisions, leading to the so-called internal electron
thermalization. Electron-lattice(“external”) thermalization
was generally supposed to occur on longer time scales. How-
ever, the results of Refs. 5 and 9 on thin gold films have
shown that nonequilibrium electrons start interacting with
the lattice earlier than expected, so that a clear separation
between internal and external relaxation is not entirely perti-
nent. Other experiments have measured the properties of heat
transport in thin gold films,1,2 showing that it is not a diffu-
sive process(Brownian motion), but rather a ballistic one
(motion at constant velocity). These works demonstrated that
heat transport occurs on a femtosecond time scale and in-
volves nonequilibrium electrons traveling at a velocity close
to the Fermi velocity of the metal. In the present paper, we
shall provide numerical evidence in support of the above
experimental findings.

In order to model and interpret experimental results ob-
tained with thin metallic films,ab initio methods can hardly
be employed, as they involve prohibitive computational
times. Several authors3,5,9have resorted to phenomenological
Boltzmann-type equations that provide the time evolution of
the electron occupation number in the bulk metal, but this
approach neglects the effect of spatial inhomogeneities and
surfaces. A possible alternative relies on the use of micro-
scopic kinetic methods, originally developed in nuclear and
plasma physics, and applied more recently to metal
clusters.10 In these models, the valence electrons are assimi-
lated to an inhomogeneous electron plasma. Here, we shall
focus our attention on alkali metals, and more specifically
sodium films, for which the influence of the core electrons
can be neglected; such systems can be realized
experimentally.11 The semiclassical electron dynamics can be
described in phase space by the Vlasov equation, coupled
self-consistently to Poisson’s equation.

The numerical resolution of the Vlasov equation is usu-
ally performed by particle-in-cell(PIC) methods, which ap-
proximate the distribution function by a finite number of test
particles.10 However, the numerical noise inherent to this
method is too large to allow a precise description of the
distribution function in phase space. Further, due to the finite
number of particles used, PIC methods inevitably introduce
some amount of random noise in the Vlasov dynamics,
which drives the system towards classical Maxwell-
Boltzmann thermalization. Therefore, the fermionic charac-
ter of the electrons is not preserved during time evolution,12

which constitutes a major drawback for any PIC method. The
accuracy of PIC simulations can be somewhat improved by
using finite-size particles13 or by introducingad hoccollision
operators.14 Nevertheless, Maxwell-Boltzmann thermaliza-
tion is still observed after some time. In addition, these cor-
rections make it difficult to separate the mean-field Vlasov
dynamics from the effect of suchad hocterms.

On the contrary, Eulerian codes15 rely on the solution of
the Vlasov equation on a regular mesh in the phase space
sx,vd. They generally achieve finer resolution and display
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better convergence and stability properties than the corre-
sponding PIC codes. As they are not based on discrete par-
ticles, Eulerian codes do not introduce any statistical noise
liable to drive the electron gas towards Boltzmann equilib-
rium. Here, we shall employ a recently developed Eulerian
scheme,16 which is capable of preserving the fermionic char-
acter of the electron distributionexactly and for all times.
Thanks to this numerical technique, we have been able to
obtain clean and meaningful information on the electron and
ion thermalization in a thin metal film.

In the forthcoming simulations, time is normalized in
units of the inverse plasmon frequencyvpe

−1, velocity in units
of the Fermi speedvF, and length in units ofLF=vF /vpe. For
alkali metals we haveLF=0.59srs/a0d1/2 Å, vpe

−1=1.33
310−2srs/a0d3/2 fs, EF=50.11srs/a0d−2 eV, and TF=5.82
3105srs/a0d−2 K, where rs is the Wigner-Seitz radius. For
sodium,rs=4a0 with a0=0.529 Å. The electron and ion plas-
mon period are, respectively, 0.67 fss<6.28vpe

−1d and
137.68 fss<1300vpe

−1d. In the following, me and mi are the
electron and ion mass ande denotes the absolute electron
charge.

We consider a system of electrons interacting via a Cou-
lomb potential and confined within a slab of thicknessL. The
ion background is represented by a positive charge density
with soft edges,risxd;enisxd=en̄ih1+expfsuxu−L /2d /sigj−1,
wheren̄i =3/s4prs

3d is the ion density of the bulk metal and
si a diffuseness parameter.10 In this jellium model, the self-
consistent electrostatic potential depends only on the coordi-
nate normal to the surface(here notedx). Thus, the motion of
an electron parallel to the surface of the film is completely
decoupled from the motion normal to the surface, and a one-
dimensional(1D) model can be adopted.

Initially, electrons and ions are assumed to be at thermal
equilibrium with the same temperature. The electrons are
treated by a semiclassical Thomas-Fermi approach, their en-
ergy distribution being a three-dimensional(3D) Fermi-Dirac
function with temperatureTe. The 1D distribution is obtained
by integrating over the velocity variables parallel to the sur-
face. For an equilibrium at finite electron temperature, the
1D Fermi-Dirac distribution reads as

fesx,v,0d =
3

4

n̄i

vF

Te

TF
lnF1 + expS−

esx,vd − m

kBTe
DG , s1d

where esx,vd=mev2/2−efsxd is the single-particle energy
andm is the chemical potential. AtTe=0, the above expres-
sion becomes linear ine. The ions are classical and initially
obey a Maxwell-Boltzmann distribution with densitynisxd
and temperatureTi.

The calculation of the ground state is thus reduced to the
resolution of Poisson’s equation

d2f

dx2 =
e

«0
fnesxd − nisxdg, s2d

with ne=efedv. The chemical potentialm is determined by
requiring global charge neutralityenedx=enidx. We have not
included any exchange-correlation energy in the model, al-
though this could be done relatively easily within the local-
density approximation.18 These effects are of minor impor-

tance and should not change the conclusions of the present
work. The above nonlinear Poisson equation is solved with
an iterative method that yields the self-consistent potential
fsxd and the corresponding electron distributionfesx,v ,0d.

We consider situations where no linear momentum is
transferred parallel to the plane of the surface(i.e., only ex-
citations with qi=0 are taken into account). This situation
corresponds to the excitation of the slab with optical pulses17

and also to the response to a uniform electric field oriented
normal to the surface. The dispersion relation of the slab
collective modes is given by the well-known expression18

v±sqid=vpeÎs17e−qiLd /2. For qi=0, only longitudinal
modes(volume plasmon withv=vpe) can be excited.

The evolution of the electron and ion distribution func-
tions fe and f i is governed by the Vlasov equations

]fe,i

]t
+ v

]fe,i

]x
−

qe,i

me,i

]f

]x

]fe,i

]v
= 0, s3d

whereqe=−e, qi = +Ze (we consider only monovalent met-
als,Z=1). The ion and electron Vlasov equations are coupled
via the electrostatic potential, obtained self-consistently at
each instant from Poisson’s equation(2).

The stability properties of the numerical technique em-
ployed here have been tested by preparing the system in its
ground state and letting it evolve self-consistently without
any perturbation. By definition, the ground state is a station-
ary solution of the Vlasov-Poisson system and should remain
stable under the time evolution. However, PIC codes show a
rather quick deterioration of the Fermi-Dirac ground state,
which relaxes to a Boltzmann distribution in a fews<13d
electron plasmon cycles.13,14 With our Eulerian code, no de-
parture from the Fermi-Dirac equilibrium can be detected for
times as long asvpet=1000, corresponding to more than 150
plasmon cycles. The initial and final energy distributions(ob-
tained by integratingfe over different energy surfaces) are
shown in Fig. 1(thin solid lines) and are virtually indistin-
guishable on the scale of the figure. The total energy is con-
served within an error of less than 0.05%.

We now turn to the case where a perturbation is imposed
on the initial equilibrium in order to excite the electron dy-
namics. All simulations were performed using realistic pa-

FIG. 1. Electron energy distribution att=0 (thin solid line) and
vpet=1000 (thick solid line) for fixed ions. The dashed line is a
Fermi-Dirac function withTe=0.084TF. The inset shows a zoom
around the Fermi surface.
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rameters: an initial temperatureTe=Ti =0.008TF.300 K, a
diffuseness parametersi =0.3LF,18 and a slab of thickness
L=100LF.118 Å.17 In order to assess the impact of the ion
dynamics on the electron thermalization, two sets of simula-
tions were performed: with fixed ionssmi →`d and with mo-
bile sodium ionssmi =42228med. The thin film is excited by
imposing a constant velocity shiftdv to the initial electron
distribution. In this way, an amount of energyE* = Ldv2/2
(in normalized units) is injected into the system. We have
adjusted the value ofdv=0.08vF in order to haveE*
=2 eV, which is typical for experiments using femtosecond
laser pulses.1,2 The resulting energy distribution function at
vpet=1000 is displayed in Fig. 1(thick solid line) for the
fixed-ions case. For the sake of comparison, a Fermi-Dirac
distribution with temperatureTe

final=0.084TF is also plotted
on the same graph(dashed line). This final temperature is
obtained from the electron thermal energy(see next para-
graph for its definition) corresponding to the electron distri-
bution atvpet=1000. Clearly, the electron gas has evolved
towards a new quasiequilibrium state characterized by a dis-
tribution function close to a Fermi-Dirac function with a
temperature higher than the ground state.

In order to investigate the approach to such a quasiequi-
librium state, the time evolution of some pertinent energy
quantities was analyzed.(All energies are normalized toEF.)
The total energy of the electron gas is given byEtot=Ekin
+Epot. Further, the kinetic energy can be split into three parts:
(i) the kinetic energy of the center of massEc.m.

= 1
2 ef je

2sxd /nesxdgdx (where je=evfedv is the electron cur-
rent); (ii ) the Thomas-Fermi energy(energy of the equivalent
zero-temperature state with the same density) ETF

= 1
5 enesxd5/3dx; and (iii ) the thermal energyEth=Ekin−Ec.m.

−ETF. In Fig. 2, the time evolution ofEth, Epot, andEc.m. is
shown for two runs with fixed(solid lines) and mobile
(dashed line) ions. For clarity, only theEpot andEc.m. corre-
sponding to the fixed-ion case are depicted on the figure, as
they are almost identical to those observed in the mobile-ion
simulation(apart from some weak damping).

Several phases can be identified in the time evolution. An
initial phase corresponds to the damped collective oscilla-
tions of the electron gas occurring at the plasmon frequency
vpe. These fast oscillations are observed in the behavior of
Epot and Ec.m. up to vpet.200. At this time, the center-of-
mass energy is almost entirely converted into thermal energy

(kinetic energy around the Fermi surface). The Thomas-
Fermi energy(not shown in the figure) remains almost un-
changed during the entire run. After saturation of the thermal
energy atvpet.200, a slowly oscillating behavior appears,
with a period of<100vpe

−1. This period is roughly equal to
the time of flight of out-of-equilibrium electrons traveling
through the slab at a velocity close to the Fermi velocity of
the metal. It corresponds to particles colliding with either
surface and being reflected back. Indeed, we have verified
that the oscillation period doubles when considering a film
that is twice as thick as the present one. The persistence of
such oscillations indicates that the thermalization process ob-
served in Fig. 1 is not quite complete by the end of the run.
These results show that electron-surface interactions play an
important role in the thermalization process. This is not un-
expected, since the thickness of the slab is smaller than the
electron mean free path, which, for bulk sodium, is equal to
340 Å.19

Similar oscillations were recently measured in transient
reflection experiments on thin gold films, and it was ob-
served that the oscillation period scales linearly with the
thickness of the film.20 The explanation provided by the au-
thors (electrons bouncing back and forth against the film
surfaces at a speed close tovF) is basically identical to our
interpretation of the present numerical results.

Further, comparing the evolution ofEth for the runs with
mobile and fixed ions, it appears that energy exchanges be-
tween the electrons and the lattice occur much faster(vpet
=150, corresponding to 16 fs) than in the bulk metal, and
well before complete internal electron thermalization has oc-
curred. However, these early energy exchanges are localized
at the film surfaces(see Fig. 3) and complete electron-ion

FIG. 2. Time evolution of several energy quantities. Solid lines:
fixed ions; dot-dashed line: mobile ions.

FIG. 3. Electron(left) and ion(right) phase space portraits. Note
that the times arenot the same for ions and electrons.
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thermalization over the entire film will take much longer.
The fine resolution of our Eulerian code allows us to in-

vestigate in detail the microscopic electron and ion dynamics
in the relevant phase space. The electron phase space dynam-
ics is shown in Fig. 3(left frames), where fesx,v ,td is dis-
played forvpet=0, 50, and 100. It is clear that the perturba-
tion propagates coherently from surface to surface with a
speedv0.0.85vF, slightly smaller than the Fermi velocity.
Coherent structures(vortices) are indeed observed around
the phase space region with velocityv0. These structures
correspond to nonequilibrium electrons being trapped in the
propagating wave and are known to appear in wave-particle
interactions in classical plasmas.21 These results demonstrate
beyond any doubt that heat transport is ballistic and occurs at
a velocity close tovF, in agreement with experimental mea-
surements in thin gold films.1,2 When the perturbation
reaches the opposite surfacesvpet.120d, it is reflected back
and interacts with the rest of the nonequilibrium electrons,
thus inducing a loss of the coherence(vortices are de-
stroyed). After several collisions with the surfaces, most of
the nonequilibrum electrons are spread in a region around the
Fermi surface, leading to a high-temperature quasiequilib-
rium state with a Fermi-Dirac energy distribution, as was
shown in Fig. 1. Nevertheless, such mean-field thermaliza-
tion is not quite complete, as the final energy distribution is
not exactly a Fermi-Dirac one(Fig. 1) and some periodic
oscillations still persist(Fig. 2).

The related ion phase space dynamics is depicted in Fig. 3

(right frames), wheref isx,v ,td is plotted for several instants.
We note that the electron-ion energy exchange is localized at
the surfaces of the slab,7 where the ions are accelerated to
velocities much larger than their initial thermal speed
ÎkBTi /mi .3310−4vF. The energy necessary to accelerate
the ions to such velocities is mainly extracted from the elec-
tron kinetic energy, as shown in Fig. 2, whereEth decreases
significantly for the simulation with mobile ions. We stress
that the electron-ion coupling observed here is due to the
mean field alone via Poisson’s equation.

In summary, the present results provide insights into the
processes of electron thermalization in confined metallic
structures, with particular emphasis on the role of surfaces.
Thanks to accurate Vlasov simulations, we have shown that
electron thermalization can be achieved, to a large extent,
even in the absence of binary electron-electron collisions.
This mean-field quasithermalization is due to nonequilibrium
electrons bouncing back and forth against the film surfaces at
a speed close to the Fermi velocity of the metal. Further,
nonequilibrium electrons begin to interact with the ion lattice
well before internal electron thermalization is completed, so
that a significant fraction of the electron thermal energy is
transferred very early to the lattice.

We thank P. Bertrand, J.-Y. Bigot, and F. Huot for helpful
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the computers of the IDRIS computing center, Orsay, France.
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