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A method of coherent manipulation of the electron tunneling in quantum dots is proposed, which utilizes the
quantum interference in nonadiabatic double crossing of the discrete energy levels. In this method, we need
only a smoothly varying gate voltage to manipulate electrons, without a sudden switching on and off. A
systematic design of a smooth gate pulse is presented with a simple analytic formula to drive the two-level
electronic state to essentially an arbitrary target state, and numerical simulations for complete transfer of an
electron is shown for coupled double quantum dots and an array of quantum dots. Estimation of the manipu-
lation time shows that the present method can be employed in realistic quantum dots.
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Quantum dots(QDs) have been attracting much attention
recently because of the fundamental interest in the quantum-
mechanical properties they show as man-made atoms and
molecules.1 The potential application of future quantum de-
vices also stimulates the research interest in QDs. Especially,
the recent success in the observation of a coherent oscillation
of an electron in double quantum dots(DQDs) of
semiconductors2 enhanced the motivation to utilize QDs as
elements of new information processing devices(i.e., qubits)
based on the principle of quantum mechanics.3 Similar phe-
nomena have been reported also for Josephson qubits.4 From
a theoretical side, a number of proposals to control the tun-
neling coherence by applying time-dependent external fields
have been presented, both for a double-well potential
model5–7 and for a simplified two-level model.8–11 See, Gri-
foni and Hänggi12 for a review on driven tunneling systems.

The coherent manipulation of the electronic states is a
prerequisite foundation for the realization of such quantum
devices. Therefore, it is quite crucial to develop techniques
on how to drive electronic states within the framework of
quantum mechanics. The experimental realization of coher-
ent manipulations of electronic states in QDs2 and Josephson
qubits4 has utilized the Rabi oscillation13 induced by a sud-
den switching of the gate voltage. For example, in order to
transfer an excess electron from the left dot to the right dot,
one applies a rectangular voltage pulse that brings the two-
level system to the resonant condition suddenly, and after a
half period of the Rabi oscillation, brings back to the off-
resonant state suddenly again.2 This requires high-frequency
components in the gate fields, which in some cases may pose
a difficulty in actual applications.

In the present work, we propose an alternative technique
for the coherent manipulation. The process requires only a
smoothly varying gate voltage in contrast to the manipula-
tion by the Rabi oscillation. This is based on the nonadia-
batic transition in level crossing systems. Therefore, we call
it the nonadiabatic manipulation. It will be shown that, using
a simple analytic formula, we can design a smooth temporal
profile of the gate voltage that brings about desired transfor-
mation of the electronic state in coupled QDs. Our proposal
here will extend the option for the coherent manipulation.

The principle of nonadiabatic manipulation is based on
the celebrated Landau-Zener formula.14,15The Landau-Zener
mechanism has been recently studied as a possible imple-
mentation of qubit operations.16–18 With a suitable sequence
of level crossing, interference effects and dissipative effects
can be used to implement quantum memory devices.17 Inter-
ference patterns of qubits in a periodic controlling is useful
to estimate a decoherence time of qubits.18 In the Landau-
Zener mechanism, not only a transition probability but also a
quantum phase is very important and useful for manipula-
tion. In the present work, we use an asymptotically exact
time evolution of the wave function to control a transition
probability and a quantum phase. One aspect of controlling
them is to use the transfer-matrix technique. The essence of
the transfer matrix was derived by Zener15 as early as 1932,
and its usefulness in elucidating the role of quantum coher-
ence was shown in a periodically driven two-level system.9

In the following, we show some examples of nonadiabatic
manipulation for a DQD and for an array of QDs.

First let us consider electronic states in a simple DQD, the
Hamiltonian of which is given by

Hstd = «1stdu1lk1u + «2u2lk2u + gsu1lk2u + u2lk1ud, s1d

where u1l and u2l describe the state in which the electron
occupies a discrete level in the left and right dots, respec-
tively. Without loss of generality, we can assume that only
the energy of the stateu1l is modulated by the gate voltage,
since only the relative energy is relevant for the coherent
dynamics. Let us take a gate voltage that drives«1std from
t=0 to t= tf as shown in Fig. 1: namely, the diabatic energy
«1std crosses«2 twice att1 andt2. Now we ask what the state
vector ucstfdl for the two-level system is at the final state of
the double crossing provided it starts fromucs0dl. If the mag-
nitude of the tunneling parameterg is small enough, as is
usually the case, the transition is localized around the level
crossings. In such a situation, the time evolution of the two-
level system can well be decomposed into a coherent succes-
sion of free propagations and the Landau-Zener-type impul-
sive transitions at around level-crossing timest1 and t2.

We expanducstdl as
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ucstdl = C1stdu1l + C2stdu2l, s2d

and define a column vectorCstd;fC1std ,C2stdgT, whereT
means a transpose. Then, within the approximation of impul-
sive transitions, we have

Cstfd = Ustf,t2dTst2,t1dUst1,0dCs0d, s3d

whereUst9 ,t8d is a free propagator,

Ust9,t8d =Se− i
"

e
t8
t9 duE+sud 0

0 e− i
"

e
t8
t9duE−sud

D , s4d

in which E+sud and E−sud are the adiabatic eigenvalues for
the upper and the lower branch, respectively, and are given
by E±=h«1sud+«2±Îf«1sud−«1g2+4g2j /2. The matrix

Tst2,t1d represents the scattering by the double crossing. The
time dependence of«1std at the crossings is approximated by
a linear function with the rate of changev= uds«1std
−«2d /dtu measured att= t1 and t2. In the present work, we
assume for simplicity thatv is the same att1 andt2, although
this is by no means a restriction. Then we find

Tst2,t1d = MTVst2,t1dM , s5d

in which M is the transfer matrix

M = S Îq − Î1 − qeif

Î1 − qe−if Îq
D , s6d

whereq;exps−2pdd with d;g2/"v, and f is the Stokes
phase,

f = p/4 + argGs1 − idd + dsln d − 1d, s7d

with theg functionGszd. The propagatorVst2,t1d is given by

Vst2,t1d = Se− i
"

et1

t2 duE−sud 0

0 e− i
"

et1

t2 duE+sud
D . s8d

We find easily

Tst2,t1d = e−iS1K, s9d

whereS1=1/2"et1
t2duhE+sud+E−sudj and

K =S qei
S
2 + s1 − qde−is2f+S

2d Îqs1 − qdfe−isf+S
2d − eisf+S

2dg
Îqs1 − qdfe−isf+S

2d − eisf+S
2dg qe−i

S
2 + s1 − qdeis2f+S

2d D , s10d

whereS is the relative phase,

S=
1

"
E

t1

t2

hE+sud − E−sudjdu,

which is proportional to the hatched area in Fig. 1. The ma-
trix K plays an essential role to determine the population
dynamics in our manipulation, while other factors only de-
termine the relative phase. Note that the relative phase is
easily controlled by the free propagation.

In order to realize the complete transfer, we tune the
speed of passage to yieldq=1/2, i.e., v=2pg2/" log 2. The
K matrix is then reduced to

K =1e−if̄ cos
Q

2
− i sin

Q

2

− i sin
Q

2
eif̄ cos

Q

2
2 , s11d

whereQ;S+2f̄ is the phase factor which comes from the
relative phaseS between the double crossing and the Stokes

phasef̄. From Eq.(7), the Stokes phase is fixed to bef̄
=0.495039. . .. If we introduce the Bloch vectorpW defined for
the density matrixr;ucstdlkcstdu and the Pauli matricessW
;ssx,sy,szd by

r =
1

2
s1 + pW · sW d, s12d

the initial vectorpW i =s0,0,1d which corresponds toucl= u1l is
transformed byK into

pW f = Fsin Q cosSf̄ −
p

2
D, sin Q sinSf̄ −

p

2
D,cosQG .

s13d

The above formula indicates that we can drive a two-level
system essentially to any desired state starting from the state
u1l by controlling the relative phaseS for the fixed value of
v. If we set Q=psmod2pd, we havepW f =s0,0,−1d, which
corresponds to the complete transfer fromu1l to u2l; the con-
structive interference between the two transition paths,u1l
→ u1l→ u2l and u1l→ u2l→ u2l results in the complete trans-

FIG. 1. Schematic picture of time dependence of energies of
dots. The solid lines are the energies of two dots, and the dashed
lines are the eigenvalues.
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fer. If we set, on the other hand,Q=2psmod2pd, we have
pW f =s0,0,1d, which indicates the complete reflection to the
initial state because of the destructive interference.19

Furthermore, if we chooseQ=p /2smod2pd, theK matrix
is reduced to

K =
1
Î2
S e−if̄ e−ip/2

e−ip/2 eif̄
D . s14d

It is an easy matter to see that, by an appropriate change of
phase factors for the two-level system, the aboveK matrix is
transformed into the Hadamard matrix,

1
Î2

S1 1

1 − 1
D .

For illustrative examples, we show some numerical simu-
lations of electron transfer between coupled arrays of QDs.
Our aim is to transfer an electron from QD to QD using
smoothly varying gate voltages. In Fig. 2, the time depen-
dence of the population in the left dotP1std and the right dot
P2std are shown for the the initial conditionP1s0d=1 and
P2s0d=0. The parameter values aree1s0d=1.0 meV,e2=0,
andg=0.01 meV. The gate voltage is designed to modulate
e1std as estd=e1s0d+Afcossvtd−1g. The two parameters
A and v are adjusted to satisfy the conditions
v=2pg2/" log 2 at t= t1,t2 and Q=3p. The time depen-
dence of the adiabatic energies is shown in the inset. As
shown in Fig. 2, the transfer of the electron is almost perfect.
Error of manipulation can be estimated as the deviation of
probability P2std from unity after one process. We found a
quite small error 1−P2std,0.0011. It should be noted that,
although a large energy separation is required before and
after the double-crossing events in order that the Landau-
Zener theory works well, and that the stationary population
in the respective dot is well defined, the energy separation in
the intermediate state att.p /v need not be very large. This
can be seen in the oscillation inP1std with a relatively large

amplitude in the intermediate state. Thus, we find that our
recipe works well beyond our expectation, although it is
based on the formalism of Zener which is asymptotically
exact in the limit of scattering fromt=−` to t=`. We have
also ascertained that the electron can be transferred from QD
to QD one by one for an array of coupled QDs in which the
energy levels are distributed randomly by a suitably designed
temporal profile of the local gate voltages according to our
method.

In contrast to the local control of the gate voltages, we
may transfer an electron through an array of QDs by a global
control using a time-dependent electric field, if the energy
levels of the QDs are arranged regularly in a specific manner.
For example, consider astaggered-dots modelfor which the
Hamiltonian without the electric field is given by

H0 = o
l=1

n

«l
s0dullkl u + o

l=1

n−1

gsullkl + 1u + h.c.d, s15d

where the energy levels are arranged alternately,«2l−1
s0d =D,

«2l
s0d=0, as shown in Fig. 3(a). If an oscillating electric field

Estd is applied along the direction of the dot array, the energy
of the lth dot is modulated as«lstd=«l

s0d+sl −1deaEstd, where
−e is the electric charge anda is the separation between the
dots, i.e.,the lattice constant. By settingEstd=E0sinsvtd, we
can attain a succession of double crossing between neighbor-
ing QDs[see Fig. 3(a)]. Each level undergoes a double cross-
ing with those in the left dot and the right dot once in a
period of oscillation. The velocity of the energy change is
given by v= uds«lstd−«l+1d /dtu=eaudEstd /dtu measured at
crossing times. We have carried out the simulation of the
population dynamics for an array of 10 dots for parameter

FIG. 2. The probabilitiesP1std andP2std are shown as a function
of time. In the inset, the time dependences of eigenenergies are also
shown. The unit of time is" /meV.4.14310−13 s.

FIG. 3. Global control by an oscillating electric field.(a) Sche-
matic picture of time dependence of the staggered dots model.(b)
The probability finding electron in each dot is shown as a function
of time.
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values g=0.01 meV,D=0.5 meV. As shown in Fig. 3(b),
starting from the dot atl =1, the electron can be transferred
from QD to QD successfully to the final target dot after five
oscillations of the global field. We obtain an error of manipu-
lation as 1−P10std,0.018 after one process. If the dots array
is isolated, the electron is reflected at the right end of the
array, and is transferred back to the left end, thus repeating a
back-and-forth motion driven by the oscillating field. It is
interesting to note that the direction of the transfer depends
on the phase of the oscillating field. If we start from the dot
at say l =5, it moves to the right by the fieldEstd
=E0sinsvtd, but to the left byEstd=−E0sinsvtd. In this way,
we may carry the electron from an initial dot to the target dot
at will by an appropriate design of the temporal profile of the
external electric field.

In actual materials, the quantum system is always dis-
turbed by various sources of decoherence. First of all, in
order that our proposal is realizable, the coherence must be
maintained during the Landau-Zener transition timeDt.9

This is given, in the order of magnitude, as

Dt .
2g

v
=

"

g

log 2

p
. s16d

In addition, the coherence time should be longer than the
period between the double crossingDT. t2− t1. This is
roughly given forQ=p as

DT . 2Î"S

v
=

2"

g
Î log 2sp − 2f̄d

2p
. s17d

If we use the valueg,10 m eV, Dt andDT are estimated as
Dt.1.4310−11 s andDT.6.3310−11 s, respectively. Thus
DT+Dt,7.7310−11 s will be required for the coherent
time. This is of the same order as the manipulation time by
the Rabi oscillation"p /2g, and is much shorter than the
reported decoherence time in the order of 10 nsec.2

To summarize, we proposed a unique method to manipu-
late electronic states in quantum dots, which utilizes the
quantum coherence between transition paths in the Landau-
Zener-type successive level crossings. Starting from a local-
ized state to one of the levels, we can reach arbitrary con-
figuration of the two-level system. This may be regarded as a
Mach-Zehnder-type interferencein the time domain, in
which the dynamical phase between the crossings plays a
role of the optical path length. We would like to stress here
that the interference effect between nonadiabatic transition
paths in driven systems will provide quantum phenomena,
and should be exploited for tools of electron manipulation.22

The coherent destruction of tunneling found by Grossmann
et al.,6 for example, can be regarded as a result of destructive
interference between transition paths.9
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