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Electrons confined in a flat semiconductor quantum dot with a parabolic in-plane potential act like a
collective many-particle oscillator under coherent intraband excitation. We investigate theoretically the prop-
erties of these oscillators under a simultaneous scale transformation of the lateral dimensions and the electron
occupation number. As the lateral size increases from a few(tgpical for self-assembled dot$o the
mesoscopic regime, the physics of the system is changing qualitatively: Quantization effects gradually lose
importance against Coulomb interactions and eventually the electron lake in a mesoscopic dot resembles a
classical Wigner liquid. This parabolically confined “Wigner lake” behaves to the outside like a form-elastic
“superparticle” of high charge. It can be coherently controlled by THz dipole radiation just like a single
electron, but with reduced Brownian diffusion in the phonon heat bath. We propose a flexible method to
fabricate single mesoscopic dots of a controlled shape, Coulomb-coupled groups of dots, and almost arbitrary
potential landscapes, using current semiconductor technology. As a first example, the collective modes of two
Coulomb-coupled superparticles in neighboring dots are calculated. Also, we consider the possibility of steer-
ing a superparticle with shaped laser pulses to follow any complex two-dimensional orbit.
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[. INTRODUCTION Historically, the first quantum dot structures were not self-
assembled, but fabricated in a controllable technological pro-
cess. Normally one started from a burried two-dimensional
The name “quantum dot” implies a zero-dimensional sys{2D) electron gas, which provided the longitudinal confine-
tem with strong size quantization—i.e., with spatial dimen-ment. Then, the lateral confinement was either achieved by
sions smaller than the de Broglie wavelength of the confinegtching a free-standing pillaf or by superposing an electro-
electrons and holes. At present, the most prominent angtatic lateral confinement field. The latter was typically cre-
widely studied examples in the semiconductor communityated by some modulated gate electrode, which at the same
are probably self-assembled d¢&AD’s). These are usually time allowed precise tuning of the electronic occupation of
flat, lenslike objects with a lateral size of several 10 nm andpe dot3-5 With both approaches, huge periodic dot arrays
a height of a few nm, which can to a good approximation be&:qy|q pe fabricated. Often, again, the effective in-plane po-
described by parabolic in-plane confinement potentials. Theyantial of each dot was parabolic to a good approximation.
typically host fewer than ten particles and have quantized These “old” type of dots had a comparatively weak con-

level spacings around 50 meV. The scientific work on thes(?inement with typical level spacings 10 meV and could be

systems Is mainly focused on their optical interband IoroloerE)ccupied by a relatively large number of electrons, but not
ties, as for example PL spectra.

The self-organized growth of quantum dots is CertainlyS|multaneously by holes. Naturally, the investigations then

elegant and convenient. However, it is not possible with thisconcentrated on the intraband excitations of these systems in

approach to fully control the resulting effective confinementthe far-infrared FIR) regime, frequently combined with lon-

potential, in the sense that one could create arbitrary potergi'[udinal magnetic fields, in order to' enhance the lateral con-
tial landscapegas has long been possible for simple Iayeredf'nement- It was, however, quickly discovered that the optical
systems like multiple quantum wejlsTherefore it is also spectra show almost no dependence on the electron number
difficult to build more Comp'ex Systems on the basis ofin each dO? The reason was found in the generalized Kohn
SAD’s as elementary building blocks. For example, the mostheorenf~8 It states that, in the special case of parabolic
natural extension of an “artificial atom,” a coupled quantumlateral potentials, the only collective dipole resonances are
dot molecule, can be formed in a vertically stacked configutigid center-of-mass motions of the electron gas as a whole,
ration using strain fields. But to achieve lateral couplimg and those have the same absorption spectrum as a single
the form of interdot tunneling or at least via Coulomb figlds electron. This result seems to have been received with a cer-
would be extremely difficult. The main obstacle for realizing tain disappointment in the community. Thus, with the time
this and other interesting many-dot systetitee ordered lat- the main focus of interest moved to electron-hole complexes
eral arrays of Coulomb coupled dots with collective opticalin SAD’s with a strong size quantization, in which many-
mode$ is the huge interdot spacings compared to the shorbody effects are more significant and specioalependto a
effective range of the induced Coulomb fields of the dots. certain degreeon the particle numbers.

A. Quantum dots
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U under the transformatior —r/s? Primarily, the lateral
stretching widens the parabolic regime and reduces the ef-
fective curvature @ of the potential, which in turdowers

the resonance frequenay, of the harmonic oscillator. In the
gquantum regime, the spacirgy=% v, of the energy ladder is
decreasing untisize quantization is no longer the dominat-
ing factor of the system.

With the energetic density of levels thus growing, a larger
numberNg of electrons can be added to the well befdre
reachesEy,,. Since the potential profile is also smoothened
by the spatial stretching transformation, a classical descrip-
tion of these particles becomes applicable even for relatively
low kinetic energies. In other wordthe scaled-up dot can
host a larger superparticle and undergoes a gradual transi-
tion from the quantum to the (semi)classical regime

When excited with resonant laser light of circular in-plane
polarization, the superparticle will orbit around the dot center
like in a cyclotron. In the stationary state, the external driv-
ing field will just compensate for the energy losses due to the
(mainly coherentemission of phonons and electromagnetic
radiation. The radius,,, of the orbit then depends on the
effective relaxation timer and the laser field strengthy.
However, if we consider these quantities as fixibe, orbital
radius r,,, increases with the scaling parameter s

Combined with the huge charge=Nge of the superpar-

FIG. 1. Schematic drawing of the lateral potential well of a ficle, its large orbital radius,, leads to arextremely good
rotationally symmetric quantum dot. The upper part shows the?olarizability Qroq,/Eq of the oscillator Due to thesuperra-
screened potential profilesolid line) versus thex coordinate, to- ~ diance effecof the Ng electrons oscillating in phase, it will
gether with a parabolic approximatiqashed ling of the bare  thereforeemit a high power of coherent radiatipmvhich
potential. The lower part depicts some characteristic equipotentighould be relatively easy to detect experimentally.
lines in thex-y plane. The shaded region corresponds to the area But also in the optical near field close to the dot, the ac
occupied by electrons. electric fields induced by the charge oscillation will be much

stronger compared to typical SAD systems. This enables a
B. Mesodots significant Coulomb interaction between neighboring meso-
dotsand opens the way to coupled oscillator networks and

In this paper, the case of weak confineméatge siz¢  optically active regular dot arrays.
and high electronigno holeg occupation is reconsidered.  High polarizability also means that it is possible to drive
We shall call such systems mesoscopic dots or “mesodotsthe oscillator with relatively small laser fields into the non-
As their lateral size is growing from nanoscopieveral harmonic regimé® Such a system is therefore also ideally
10 nm) to mesoscopi¢0.1-1um), the physics is altered in  suited for nonlinear optical experimentiicluding effects
qualitative ways, providing interesting opportunities for bothlike higher and subharmonic generation or multistability.
fundamental investigations and new applications. In the extreme case, it becomes possible to achiemra

To see this, consider a 2D rotationally symmetric potentiakplete ionizationof the oscillator, once,,> rio,. As we shall
well U(r) of Gaussian-like shapgompare Fig. L Assume  show later, one can also think of coherent control experi-
the potential is paraboli€U=ar?) for radii r<rpa flattens  ments in which the superparticle is transferred all optically
out for r=ry,, and becomes essentially zero forr,,.  from one mesodot to a close by neighbor and then stays there
With one or more electrons bound in the well, the systenmin a metastable state until it is transferred back by another
represents an opticalscillator for in-plane polarized light, shaped laser pulse.
with a harmonical response for sufficiently weak excitation. Compared, for example, to coherent control of Rydberg

As we shall demonstrate in detail later on, the wholeatoms, the mesodot system fundamentally suffers from very
packet of bound electrons can move collectively and withoushort decoherence tim&sften in the sub-ps scgledue to
dispersion in a parabolic potential as a comsaugerparticle  the efficient electron-phonon coupling in the semiconductor
of giant chargeQ.® In practice, the numbe of electrons  matrix. However, using nonresonant circular polarized exci-
that can be added to this superparticle is limited, becausgtion, it is possible in principle to control the radiug, and
eventually its growing radiuss becomes comparable to the orbital velocityv,,, of the superparticle independently from
width r ., of the parabolic regime. At this point, the Fermi each other. In this way, the kinetic enerEan(m*/Z)vﬁrb
energy ¢ is equal to the “maximum parabolic energy” can always be kept below the thresh@gd, for LO phonon
Epa,:arf)ar of the well. emissiont! thus effectively turning off this scattering

How are the properties of this superoscillator changingchannel? It has been shown that in wide quantum wells,
when its spatial dimensions are scaled up by a fegtere.,  where the quantization energy, is below E, o, the relax-
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ation timesr increase dramaticallgup to almost 1 ng pro-
vided the electron temperature is also kept @se Ref. 13
and references thergin

In addition, we will demonstrate later that the center-of-
mass motion of the superparticle intrinsically has smaller
Brownian velocity fluctuations than that of a single constitu-
ent electron. In combination, these features suggest that su-
perparticles in mesodots aveell suited for coherent control
and that these systems can haweeay high oscillator qual-
ity.

Finally, we would like to mention a practically important
advantage connected with the larger size of mesodots: They
are in arange accessible by modern semiconductor fabrica-
tion techniquegcompare section belowwhich allow a spa- \ oy J
tially selective control of the sample properties in the lateral . ,
dim)énsion. On the mesoscopic s?:alep, itpis possible to create FlG' 2'.(C0|0f, onh_ne) Schematic ”samplg structure of a mesos-

. . . . copic dot in the “doping ball model.” The figure shovaong the
practhally arbltra.ry lateral pOte.ntlal landscapedike Con_. growth coordinatez running from bottom to topthe doping ball
figurations of different .pOt.emlal valleys and Connectmgwith the positively charged donors, the longitudinal quantum well
channels. In the future, it might therefo.re even become POSjith the 3D confined electrons and a light pulse, seen as a time-
sible to perform coherent control experiments of a complex-dependent electric field.
ity comparable to those in the field of “femtochemistry” with

complex molecules. For thi it | ired t trol th tial fluct
The paper will be organized as follows: In the following ~Or this purpose, 1t IS required to control the spatial fluctua-
tions of the local donor density in the remote impurity layer.

section, we will propose methods for the fabrication of me- ) . d o )
sodot systems. Then the properties of these systems will b%uch a spatially selective doping method is indeed available

quantitatively investigated in a simple analytical model. Fi-ts'nﬁe. Sz\{f{?llt y(lelars )[N'th t?el Iﬁcuged_ |or(1j be.‘fmlB%
nally, we will summarize and discuss some of the future echnique. aflows o control (he doping densily 1ater-
ally on a scale of less than 100 nm. In the casa dbping
prospects. . .. . : L o .
with Si ions, the implantation profile in the longitudinal di-
rection(along the beamdepends on parameters like the ion
IIl. FABRICATION METHODS acceleration voltage and the beam curfédf With a proper

As in the case of the “old” type of quantum dots, our Choice, the width of the bell-curve-shaped ion distribution

concept is also based on a two-dimensional quantum welf@n also be reduced to the order of 100 nm. In principle, one
which is then turned into a zero-dimensional system by su¢@n thus write arbitrary 3D doping patterns within the limits
perposing a lateral confinement potential. If the well isOf this spatial resolutiof? 2!
n-modulation doped, it becomes occupied by electrons, leav- [N the simplest case, the FIB method allows us to concen-
ing behind positively charged donors in the impurity layer. rate all the donors in a bounded region of mesoscopic size
Due to statistical fluctuations of the local doping concentraro at distanced from the quantum wellcompare Fig. 2
tion, the Coulomb potentiall(x,y,2) of these charged do- ' NiS Ieads to the formation of a single mesoscopic quantum
nors is never completely homogeneous in the latéxay) dot Wlth tunable properties, as will be shown in the following
directions, but fluctuates randomly around some averaggcction- Note that due to the suppression of short-range po-
.y - . tential fluctuations by the spacer layer, the resulting lateral
value U(2). For finite (but not too largg spacer layer thick-  hqtential minimum in the well is rather robust against varia-

nessesd, only the long-wavelength Fourier cOmponents  ions of the doping concentration on an atomic séale.
=d of the potential fluctuations are transmitted to the quan-

tum well plane. This leads to a smooth lateral potential land-
scape of hills and valleys, which are approximately parabolic
around the extremal points. A. Doping ball model

The electrons in the quantum well are attracted by the
local potential minima and will develop density maxima at
these lateral positions. Normally, the Fermi level is located a
energies above the highest hills of the potential landscap,
and thus Fhe electron density is only vyeakly modulated]-n a sphere of radiuRp, centered at a distance> Ry away
However, in the case of extreme potential fluctuations the. "\l at positior(x=0, y=0, z=—d) (compare Fig.
electron sea will desintegrate into spatially isolated “lakes” I z ]
and, thereby, natural quantum dots are formed. While thi<)- If the density distributiomp(R) of the charged dopands is
disorder-induced localization of the electron gaacompa- 3D rotationally symmetric within the sphex€doping ball
nied by a metal-insulator transitipris unwanted for most model), they produce a Coulomb potential which appears
applications, we propose to use this effect purposefully foffom the outside like that of a single point char@g
the generation of designable in-plane potential landscapes.ef np(R)d*R=€N.

Ill. THEORY AND RESULTS

Let us start thus with a 2D quantum film in tke 0 plane

of a host semiconductor matrix, defined by a narrow rectan-

ular potential well of widtha in the electric quantum
it.22 Assume, for simplicity, that all donors are contained
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a consequence, all the Coulomb-related energies, in particu-
lar the depthU, of the unscreened potential well, grow lin-

Np electrons early with the scaling factor ddy,— sUy. The curvature of
per dot the parabola, on the contrary, is reduced by the lateral
stretching, witha — a/s.
L We numerically evaluate the scaling behavior of the dop-

ing ball model for the case of the GaAs/AlGaAs semicon-
ductor system, using an effective electron mass nof
=0.065n, and a relative dielectric constant gf=12.7. The
scaling is started a=1 with only one donofNy=1) placed

at a distance ofi=10 nm from the quantum well. Under
these conditions, the lateral well has a small depthJgf
=11.3 meV and hosts a single electravith significant size
quantization. The scaling parametsris then increased from

1 to 100. In the final setting, there axg=10" electrons in a
mesoscopic dot of sizé=1 um and deptiJ,=1.13 eV. Our
main range of interest is located in between these extreme
cases.

s Np electr.
per dot

D. Classical regime

|‘ ’l Electrons propagating with high kinetic ener@yin a
smooth potential landscape are expected to behave like clas-

sical particles. A condition for this quasiclassical regime is
that many de Broglie wavelengths,g(E) =277/ V2m*E fit
into the linear dimensioh(E) of the spatial region which is
FIG. 3. Schgmatic diagram, c_iepicting the simultanenous SCE_‘“”Q:Iassically accessible to the particle—i.e., wh&z U(r).
of the spa_tlal size and electronic occupation number for a pair Oin a parabolic potentia&U:arz at energyE, this accessible
mesoscopic dots. length scalel can be estimated byJ(1/2)=E, yielding
I(E)=sy\E/a. For the ratio we obtain |/\pg

B. Mesodot potential =[2m*/ (7h2) "2~ 12E, We require thail/\pg)>1 in the
In particular, the potential profilg(x,y)=U(F)=U(r) cre-  classical regime; i.e., there exists a minimum kinetic energy
ated in the quantum well plane zt0 is given by for a particle to behave classical. Since the ratio scales like
\VsSE we find that in the limit of larges this minimum energy
u(r) = —&Np _ ~Noko (1) tends towards zero: Mesodots are classical systems.

AmegeNr2+d?  \r?+d?

wheree, is the static dielectric constant akgla convenient E. Single-particle oscillator
abbreviation used frequently in the following. The full width  Next consider a single electron of effective massand

at half maximuml of this in-plane potential well i$=v3d.  chargeq=-e in the mesodot. In the electric quantum limit,
Here, we are pnma_rlly interested in the mesoscopic limit,j;¢ dynamics is restricted to lateral motiorig) = (x(t), y(t))
whered> g, with d |)_/II’_19 somewhere in them anda in the .._parallel to the quantum film. Due to the smooth lateral po-
nm range. By combining the weak lateral Coulomb well with g y4ia) \ve can describe this lateral dynamics classically on

the tight longitudinal confinement of the quantum film, oneé e pais of Newton's laws of mechanics. The electron expe-
obtains a “mesodot” with tunable properties. As can be seen

in Fig. 1, the Coulomb well is parabolic for small deviations "€nces & confinement forckg,=-VU(F), which is har-
from the minimum—i.e. U(r <rp) = ar? with ry,~0.4d. ~ monic in the parabolic regiorf (1 <r,)==2ar. This 2D
(At r=r,, the relative error is smaller than 1% and grows atoscillator has a classical eigenfrequer(cy resonance fre-
r=d to around 29%. The depthU,=|U(r=0)|=Npko/d  quency wo=v2a/m*, with a scaling behavior ofaw,
and curvature @=Npk,/d® can be controlled independently — wo/\s.
by a proper choice of the two design paramefégsandd. In the semiconductor matrix, the electron will experience
additional coupling to the phonon heat bath, in the form of
statistical scattering events, which change the direction and
C. Dot scaling modulus of the electron momentum. For the purpose of this
In the following we will repeatedly consider a simulta- simple analytical investigation, we shall for the time being
neous scaling of the spatial size and electron occupatiolJnore the fluctuating part of the electron-phonon interaction
number of the dotécompare Fig. § Within the framework ~and retain only an average deterministic friction force pro-
of the doping ball model, this is achieved by the simpleportional to the velocityF;=—-2y, where 2»=m*/7 and r
design parameter transformatiosis- sd andNp —s°Np. As  is an empirical relaxation time. This force will also provide
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relaxation of the electron to the stable equilibrium position indensity distributionn®(r) and lateral radiusg of the lake

the dot center. are determined by a balance between the compressive con-
In addition, the electron will be controlled by external finement forceF.,=—2ar and the expansive forces due to

coherent radiation. Typically, this radiation will propagate temperature, Coulomb repulsion, and the “Fermi pressure”

along the longitudinalz) direction and be linearly or circu- (related to the Pauli principle for an electron gas in the de-

larly polarized in the film plane. In our classical model, light 9enerate limit, when the Fermi levéig is greater or com-

. . . - . parable tokgT). In the following, we will roughly estimate
is described as a time-dependent electric fieg, acting on these three contributions, occasionally using simple scaling

the electron with a forcd==qE(t). For resonant optical arguments.
excitation of a typical mesoscopically sized dot, the light At high temperature—i.e., in the nondegenerate limit
field must have relatively low photon energigs,=%iwg in  whenkgT> ®—the particles will obey a Boltzmann statis-
the range of a few meV, which belongs to the THz regime. tics. Then, in our two-dimensional system with parabolic in-
The dipole approximation for the electron-light interac- plane confinement and neglecting screening, the density dis-
tion is applicable under the condition that the wavelengthribution of the electrons is Gaussian(,2>(r):ngz)e‘(””)z
\=2m(co/ V&) wy be large compared to the typical size of with a spatial spread;=ksT/@ independent from the par-
the system, which is given bg in the doping ball model. ticle numberNg. Note that the thermal lake radiug for a
Since the ratio\/d scales like 1{s, the dipole approxima- given confinement parametercan be reduced arbitrarily by
tion would eventually break down in the limit of extremely lowering the temperature.
large dot sizes. However, this happens beyond our regime of The Coulomb repulsion force can be estimated as follows:
interest. ) If, in the equilibrium situation, all electrons are confined
For arbitrary control fieldsE(t), the electron dynamics Wfithr:n a disk Ofdradiuﬁ' E tf;]e mean intgrpafrtic!lé di”stance is
i - P ; of the same order. Thus the magnitude of ¢redially out-
fOIIO,WS fr9m m r_'_:"“ff Ff”+FeXP, For 'statlona.lry monog:hro- ward directegl Coulomb force on a particle at the border of
r_n?tlc excitation with I_|gh'_[ polarlze_d_ in the dlrectlon_, E(t)_ the lake (at radiusrg) should scale like|Feoul=73(Ne
—.eXEO coswt, the oscillatingx Posmon of the partlsle 2|s —1)k0/r§, where 72 is a dimensionless geometry factor of
given ,b{' X(1)=qEo Re{R(w)e}.  Here R(w)=1/[m"(wy  grger 1. Equatindr o, with the inward-directed confinement
—w)+im*(w/7)] is the complex-frequency-dependent re-oce |, 1=2ar; yields in the limit of many particlesg
sponse function. The induced amplitude of the electron os-= (koNg/2a) Y3,
ciIIat_ion is Ax(w):qu|R(2w)|. In the static_ limit(w=0) one The corresponding potential Coulomb energy s,y
obtainsAx(0) =qEy/ (M*w;y), which grows linearly as a func- =y N./r. This is also the amount by which the screened
tion of the scaling parametekx(0) —sAx(0); i.e., this quan-  potential well is flatter than the bare well without electrons
tity is stretched together with the characteristic dimensiongsee Fig. J; i.e., the effective depth i8¢ Ng)=Uy—Ecou
of the potential. At resonanc@w=wo), the amplitude de- and it becomes zero at a maximum filling factor G,
pends on the relaxation time ax(wp)=qEy7/(M*wg). This =432,
dynamic amplitude is only proportional t, but one should In the doping ball model, we can express 2y the design
keep in mind that in the mesoscopic regime we expect mucharameters @=kyNp/d® and find thatr = 5f3d. Numerical
longer relaxation times. Note also that the polarizability of simulations(see latey confirm this scaling relation and show
the oscillator isNpgAX/Ey (scaling likes® in the static and  that # is indeed of order unity. Note that with.~d, the
like s°? in the dynamic cage Its quality factor is Q outer electrons would already be located beyond the strictly
=AX(wo)/ AX(0) = wor. parabolic confinement region. To avoid this, it is required to
We can define a critical electric field strengiy, for  work with filling factors smaller than 1.
resonant light, at which the oscillating particle starts to trans- Next, we compute the Fermi ener@)¢ of the degenerate
gress the limitry,, of the parabolic confinement region, electron gas, relative to the potential of the screened well at
En=m"wqf par/ (97). This corresponds to a radiation power its center. From numerical simulations we find that on a scale
density of(P/A)y. = (CoeoV€)EZ, . For stronger fields, we ex- of Uy the screened potential well is essentially flat in the
pect nonlinear effects in the optical properties of the oscillaregion r<rg and then increases steeply forrg. As a
tor. simple approximation, we can therefore assume that the in-
teracting electrons self-consistently “feel” a disklike confine-
F. Electron lake ment potentialcompare Fig. 1 Neglecting size quantization
Under the condition that the conduction ba@@B) edge  €ffects for the large spatial scales we are interested in, we
at the dot centex=0, y=0, z=0) be sufficiently low com- ~Can assign a constant 2D density of sta¥8=m"/(7%% to
pared to the doped barrier region, B} donors in the doping €ach space-energy element within the disk. Since the spatial
ball inject their electrons into the dot. However, for many area of the disk issrZ and its energetic “height” is given by
applications it will be useful if the electron occupation num- the Fermi energype, the numbeiNg of electrons in the disk
ber N of the dot can be tuned between zero and its maxiis Ne=®e(m*/(mh?))(@rg). This yields a Fermi energy of
mum possible valudp.?* We thus define a dimensionless CI)E:(n%Z/m*)NE/(er):(whzlm*)néi), wherengj is the av-
filling factor f=Ng/Np, which varies between 0 and 1. erage 2D electron density in the lake.
The Ng mobile particles will then collect around the dot  Let us now consider the scaling behavior of the above
center and form there an electron “lake.” The equilibriumquantities. First we note that with-=7f'/%d, the radius of
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1000 y T T Coulomb and Fermi energies are still of comparable magni-
= (@) h/];/'u tude. However, if we choose, for instanse,32, we have an
> 100 Coul 3 interesting physical situation: The thermal energy is an order
E @ ] of magnitude belowbg, while E.,, is more than one order
8 10 E 3 higher thandg; i.e., this should correspond to the Wigner
E oot —e ] crystal regime. At a filling factor of =0.1 (which guarantees
1E kT 0 T that all electrons are in the parabolic regimene would
ol . have about 100 electrons in a Wigner lake of radiusgn®,

1 10 100 absorbing at a photon energy of about 2 ne¥rresponding
to a frequency of 0.5 THz and a wavelength of 0.17 ymm
The cases=32 is realized with design parameteld,
=1024 andd=0.32 um, which is feasible with standard FIB
technology.(The numberNy of donors in the doping ball
corresponds, for example, to a ball radius of g and
inside the ball to a homogeneous doping densityl\lésﬁ
=2.45x 10" cm™3).
The analysis above thus leads to the following conclusion:
In the limit of low temperature, weak confinement, and large
1 10 100 particle numbellarge scaling parametay, the density dis-
Scaling Parameter s tribution and radius of the electron lake are mainly deter-
mined by the Coulomb repulsion between the electrons. The
FIG. 4. Double-logarithmic plot of the various characteristic en- gjtation then corresponds to a confined classical Wigner
ergies versus the scaling parameser(@ Corresponds to filling  ¢rystal at zero temperature and to a Wigner liquid at higher
feictorle, (b) to f=0.1. The dashed vertical line marks the casetemperature& Asymptotically, the Coulomb energy and the
$=32. lake radius grow linearly witfs, while the average 2D elec-
the electron lake at fixed filling factor grows in proportion tron density and Fermi energy remain constant.
with the other spatial dimensionsg— srg. Since Ng in-

g

Energy (meV)

creases quadratically wity the average 2D density of elec- G. Screened potential

trons in the lake remains asymptotically Constanfb) In order to check the above scaling relations, we have
=const, and the same holds for the Fermi enerdy,  performed two different kinds of numerical simulations of
=const. the mesoscopic electron lake under 2D parabolic confine-

The Coulomb energ¥cq,=koNe/re, on the other hand, ment, assuming low temperature and zero thickness of the
scales linearly witts. Therefore, in the mesoscopic regime, it system in the longitudinal direction

will be the Coulomb effects that determine the physics of the The first calculation is based on a semiclassical con-
electron gas. We can calculate the critical lake radiggt  tinuum model. It describes the system by 2D rotationally
which the Coulomb and Fermi energies become equal. Thisymmetric profiles of the electron densit{?(r) and the total
yieldsrc=#/2/(kom*)=ay; i.€., the transition to the Coulomb- (screeneyl potential V() =U(F) + V(). Here, U is the un-
dominated regime occurs as soon as the lake radius exceeglgreened lateral potential well aitis the Hartree contribu-
the effective Bohr radius, of the system. tion, which results via Poisson’s equation from the 3D charge
_ Nc_)te thatdg can also be interpreted as a measure of th%istribution p(3)(|5)=(—e)n(2>(F)5(z—O). In accordance with
Kinetic energy of the electrons afig, as the typical poten- our mesoscopic regime of interest, the electron density was

tial energy of the interaction. In the limico,> Pg, we omputed semiclassicallygneglecting size quantization ef-

expect a phase transition from a gaseous to a liquid or soli Lets, assuming locally the constant density of states of a
state of the many-particle system. We have also seen abo% ,s stem. This yields n@(7)=[m"/(7h?)] [ dEAE
that the system can be described classically for sufficiently_v g(F)%f((dDI—E)/(k T)3)/ where(x) is the Heaviside step
larges. At zero temperature, the electron lake will thus form, “sc E Bl

a classical Wigner crystal, where all particles arrange in (,Iunctlon andf(x)=1/(1+¢") the F(ezr)m| fgnctlon. For agiven
triangular lattice.(The lattice constant in the center of the t0tal number of electronse=/n'*(F)d’r, the Fermi level
lake will be smaller than at its border, because of the con®e density profilen®(7), and total screened potentidl. ()
finement of the lake. A quantum mechanical study of Wigne@ve been determined self-consistently. _
crystallization for small particle numbers can be found, e.g., For the calculation we chose a parabolic potential of cur-
in Refs. 25 and 26. At higher temperatures the crystal will vature 2x=Npko/d®, with design parametersip =100 and
melt and resemble a Wigner liquid, but still with pronouncedd=0.1 um, corresponding to a scaling variablessf10. The
interparticle correlations. resulting screened potentid¥g.(r) for various electron fill-

In the double-logarithmic plots of Fig. 4 we show how the ing factorsf=0.0,0.2,0.4,0.6,0.8,1.0 are plotted in Fig. 5.
various characteristic energies scale vetfior filling factors ~ One can clearly see that the self-consistent well is flat at the
f=1 andf=0.1, respectively. We have also included the resobottom of the electron lake and increases quadratically for
nance photon energy of the oscillatokwy=%\2a/m*  >Te. The inset shows the Coulomb energigs,, [corre-
«s12, and the thermal energy @it 4 K. Fors<4 or so, the  sponding also t&/(F=0)] as a function of electron number
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FIG. 5. Self-consistent potentialsolid lineg and bare potential
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(dashed ling of a parabolic lateral confinement, correponding to a X-Position (um)
mesodot with scaling parametex 10. The numberg0, 20, 40, 60,
80, and 10D denote the respective electron numbigs The inset FIG. 7. Stable equilibrium configuration of 100 classical elec-

is a double-logarithmic plot of the Coulomb energgreened po- trons in a parabolic lateral confinement, corresponding to the same
tential atr=0) versus electron numbégdots, compared to the ana- Situation as in Figs. 5 and 6 fdiz=100.
lytic relation (solid line, »=0.575.

tial positions and velocities for the particles and then simply
Ne in a double-logarithmic plot, together with the analytic |et them relax, according to Newton's lawsAs expected,
scaling relation for a fitted geometry factor p£0.575. Fig-  the particles “self-organize” into the highly correlated
ure 6 depicts the radial dependence of the electron densityjigner lattice state independently from the initial conditions.
profilesn®(r) for the same parameters as in Fig. 5. Note that  The simulation was performed for the same parameters as
if the bottom of the lake were really perfectly flat, the elec-in Figs. 5 and 6. As a typical example of the resulting equi-
tron density would be constant. Actually, the screened well isibrium particle configuration, we present in Fig. 7 the case
only approximately flat on a scale dcoy (Or Ug), but  of Nz=100. One finds a triangular lattice order and a particle
slightly increases with radius Thus the corresponding den- density that decrease from the center to the shore of the
sity profile drops continuously from a maximum at the well electron lake. We have determined the lake radii as a func-

center to zero at the border of the lake. The inset shows thgon of the particle number and again confirmed the
lake radius versus electron number in a double-logarithmicc Né/3 relation.

plot, confirming the analytic scaling relation. There is a con-
stant factor between the simulated and analytic data, due to
the somewhat arbitrary definition of the lake radius. H. Superparticle concept

In the second type of simulation, thé: electrons were . . L
described completely classically as point particles with re- Parabollq poten_t_|als are pecuhar In many re_spects and
pulsive Coulomb interactions, subject also to the radiatoMe of their specific properties are _connected W't“gw_
forces of the lateral potential well and to friction forces pro- eralized Kohn theorem. Although.thls theor'em aqd Its con-
portional to the velocity. The temperature was assumed zergeguences _have alr_eady_ t_)een dlscussed In various p_ubllca-
Since the equilibrium electron lake is a “fixed point” of the tions, we will reconsider it in the following for our classical

dissipative dynamical system, we defined some random ini'-‘neSOdOt syst.em. . . . .
P y 4 The Hamilton function of the isolaté® interacting

04 . i , . N-electron system in the parabolic confinement region reads
13
03} i 512 * 2
3 H=S P S b e IS vir - 2
023&,&1«; T R ,;1 2m* 2 2 (Fi) 2% (Fi=1)). @

e
-

The center-of-masgc.m. position S of the N particles is
given bys=(1/N)Zf;, their total mass byvi=Nnv. We can

‘ I fi lati itiorgs, = (1/N)(F, —
T also define relative positiorgs; =(1/N)(fj—r;) and, based on

Radius r (um) those, the new variablel§i=215ij. The quantityﬁi can be
interpreted as the distance vector of particlelative to the

FIG. 6. Electron density profiles, corresponding to the self- . =
consistent potentials of Fig. 5. The vertical dashed lines mark thg'm" and one can easily demonstra’ge the propEyiy=0.

“shore” of the electron lake. The inset is a double-logarithmic plot!f the original variablesr; (and pi=m"r;) in our Hamilton
of the lake radiugdetermined fromthe shore linegersus electron
number (dot9, compared to the analytic relatiofsolid line, » _
=0.575. =ps+m*D;, respectively, one obtains

2D electron desnsity 1® (10%cm™)

0.0 L
0.00 0.05

function are replaced byf;=§+D; (and 5i:m*§+m*5i
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H= Hcom+ Hrel + Hee

_[2M+ 2(§)

* - *wZ . 1 . ]

+> lﬁ(Di)2+ M(Di)z} + [—E V(Ndi‘)l-
~| 2 2 2 j

3

This shows, first, that the center of mass and relative degrees
of freedom of the interactingN-particle system are com- A
pletely decoupled in the case of a parabolic confinement.
Second, the Coulomb interactions affect the relative coordi-
nates&ij only.

This separation is also possible in the presence of friction
forces. For example, the friction force on tik particle can

_ . FIG. 8. Schematic of a superpartigitne-dotted circlep con-
be written as a sum of two partéﬁi):—Zyﬂ:—zys*— 2’)’5i- sisting of three electronglack dot3, located at three different po-
n ™. ape . .
We now reinclude the external dipole radiation, which wesitions within a mesodot. The c.m. of the superparticle is repre-

. . L I ircle. Th lid black h
have described by a time-dependent electric fi&lt). The sented by a small grey circle. The solid black arrows denote the

. . . . “cohesive” forces, which in combination with the repulsive Cou-
corresponding term in the Hamilton function reablg, lomb forces tend to restore the size and inner configuration of the

:—QEZiﬁ. Performing again the above variable transforma-superparticle after deformation. The dashed arrows stand for the
tion, we obtainHext:—QI§§, whereQ=Ngq s the total charge ¢M- forces, acting on the superparticle as a whole and pulling it
of the N electrons. Since the electric field is spatially homo-Pack to the center of the mesodot.

geneous, it simultaneously and_e_qually acts on each part'_dﬁarticle will then start to move away from its specific relative
and so accelerates the group rigidly as a whole, conservingasiiion within the configuration. However, since it started
its internal configuration. _ from an equilibrium position, the particle will experience
The fact that dipole radiation selectively acts on the c.mg|astic restoring forces in the network of its neighbors. Note
motion, while the Coulomb term affects only the relative also that the termi(m*w2/2)(Dy)?] in Eq. (3) acts to pull

configuration, renders effects of the electron-electron 'nterbarticlek back towards the momentary c.m. position of the

action unobservable with dipole radiation in parabolic COn'|ake. These conditions are schematically depicted in Fig. 8.
_flnements, whert_a those degrt_aes of freedom are completely Therefore, with a little time delay, the momentusp
independent. This is the basm_message of the often-statgqn*m;k transferred from the phonon to partitevill spread
Kohn theorem. We would now like to focus on some rathergyer the totalN-electron system, leading to complex lattice
obvious idea related to the Kohn theorem, which to somgjibrations of the Wigner crystal. In the limit of large particle
degree has appeared already several times in the ”teratufﬁlmberS, this process may S|mp|y be viewed as a “heating”
(see, for example, Ref.)Bbut seems to have not been fully of the lake. But thanks to the gradual slowing down of the
exploited so far: the motion of a “superparticle.” particles due to the friction force, this thermal energy will on
Assume we put theé\ electrons into the parabolic me- the long run transfer to the semiconductor lattice and even-
sodot, starting from some random initial condition. Let theretually be dissipated. As a result, the lake will restore its equi-
be friction forces, but no light field yet. As we have seenlibrium shape within a view relaxation times i.e., it actu-
above, the particles spontaneously relax to a stable equilitally shows form-elastic behavié?.
rium configuratioR®—namely, the circular electron “lake” of For these reasons, it is natural to view the compact packet
radiusrg. In this situation, the c.m. will coincide with the of N electrons as a composite superparticle of formal mass

potential minimum§=0, and the internal configuratiome- ~ M=Nm" and charge@=Nq at the position of the c.m. When
sembling a Wigner crystal at low temperatuvéll be deter-  subject to an external homogeneous electric figldhe su-

mined by a balance between repulsive Coulomb and comperparticle reacts with an accelerati@s F,/M=QE/M

pressive confinement forces. . :qE/ m*, the same as for an individual electron. Also most of
If we now apply a proper electric fiel& as a control  the oscillator properties listed abofia particular, the eigen-

force, we can statically displace the lake from fi¥eD posi-  frequencyw, and the frequency-dependent amplitude w)]

tion or dynamically move it around in the dot plane. All this depend only on the rati®/M=qg/m* and thus remain un-

will not change the internal configuration of the particles, aschanged. However, the polarizabili®Ax/E, of the sup-

long as we take care not to leave the parabolic region. eroscillator isN times bigger than for a single particle. Note
The only way to disturb the shape of the lake is by apply-that when observed from a sufficient distancerg, the

ing different forces on each particle. Imagine, for simplicity, Coulomb field of the superpatrticle will appear like that of a

a single force kick on a specific electréx—for example,  single giant charg€=Ng.

induced by a phonon scattering event—which instanta- Finally, let us discuss the effect of single-particle stochas-

neously changes its velocity by an amounf,. The kicked tic phonon scattering events on the orbit of the superparticle
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as a whole. As a simple model for this diffusion process into the system. As we have computed a little earlier, this shifts
the heat bath, assume thaesides the deterministic friction superparticle 1 byAx=qE,/(m*®?). We can insert this shift

forceg the velocities'; of all particles are changed synchro- into the equation forAEj, and calculate the ratio between
nously each time intervadt by small, statistically indepen- the induced and external field B, which givesAE;,4/Eg
dent random vectordy;. Let the directions of the increments :NEkO/m*w§L3.
be isotropic(angles equally distributed between 0 and) 2 In order to have a significant dynamic interdot Coulomb
and their moduli be constapiu;|=Av,. Then, the total mo-  coupling, we require that this ratio should be comparable to
mentum transferred to the superparticle in one intedtas  unity or, at least, around 1/10. It is important to realize at
given by Ap;=m*=,Avy, corresponding to a velocity change this point that the ratio is invariant under our scale
of Avg=Aps/M=(1/N)2,Avy, which is also isotropic. Using transformatior—i.e., (AE;4/Eo) = °. Therefore, interacting
complex numbers to represent the 2D vecters;o=v€®  dot arrays can be realized in the technologically convenient
(wherev stands for the modulus ang for the phase ob), mesoscopic regime, despite the huge interdot distances. If we
yields AT¢=(Avo/N)Z &% or Avg/Avy=|(1/N)Z&9|. The express the oscillator eigenfrequency by the design param-
modulus of the random phasor sum on the right-hand sideters of the doping ball mode&v§:2a/m*:NDk0/(m*d3),
(RHS) of the last equation obeys a Rayleigh distribution withwe obtain for the ratio the simple resultAE;,q/Ep)
a mean value ofAvg/Avg)s, =17/ (4N). Consequently, the =f(L/d)™3.
Brownian velocity fluctuations of the superparticle are sup- In practice L must be at least as big as.2 27'/3{*/%d or,
pressed by a factdd~2 compared to the individual electron. otherwise, the two electron lakes will merge. This yields,
In the limit of large particle numbersl it will follow an independently from the filling factorAE;,q/Ey=1/8%, so
almost deterministic trajectory, which justifies the simple in-that coupling effects should indeed be observable. Note that
corporation of electron-phonon coupling in the form of anthe condition of two dots almost “touching” each other can
effective friction force. This feature is particularly useful for be realized easily in the mesoscopic regime, but probably not
the coherent control of the superparticle by suitably shapewith SAD’s.
laser pulses.

We can thus summarize: Whéhelectrons with repulsive J. Coupled modes
Coulomb interactions are placed into a parabolic confine- oy next goal is to compute the coupled modes of the
ment, they collectively form a superparticle of ma¥k  yo-dot system in the parabolic regime. The dictd andi
=Nm" and charge€Q=Ngq. It has a preferred shape and inner—» pjaced along the axis at distancé., are characterized
structure(the circular “Wigner lake” of radiugg) and is  py the curvatures @ and the corresponding undisturbed
stabilized in this form by elastic forces. If, in addition, each eigenfrequenciess,. They are occupied by, electrons,

particle is subject to a friction force, the superparticle will \yhich form superparticles with the total massds=N;m*
restore its inner and outer equilibrium configuration after any, g total charge®,=-Nie.

d_eformation._ This shape restoration and refocus_,ing mecha- Already without any external light field, the static Cou-
nism works independently from the present position of theomp repulsion between the two superparticles leads to shifts
c.m. of the superparticle, the motion of which can be selecyt the in-plane equilibrium positions of the left particle from
tively controlled by an external electric fielel The stochas- ,=(0,0) to rj=r;+ &7 =(0-5;,0) and of the right particle
tic velocity fluctuations gf the superparticle c.m. are sup-from r,=(L,0) to fy=r,+&,=(L+4,,0), so that the new ef-
pressed by a factor of IN. fective interdot distance is’ =L+ &, + &,. The static shiftss,
are determined by the relationv2s; =2a,6,=N;N,K,/(L")?,
which yields a third-order polynomial equation féy.
The parabolic confinement potentials of the dots as a
We have seen above that the superparticle oscillates in fainction of absolute superparticle positioss are U;(S)
parabolic mesodot just like a single electron, yet with re-=a;(§-;)?. In their new equilibrium positions; =f;+ &},
duced Brownian noise. But there is another advantage, corthe superparticles are no longer at the minifaf their
nected with its giant charge: The induced electric fields\are respective confinement potentials. However, this does not in-
times stronger and can thus provide Coulomb coupling befluence the effective confinement forces, as long as the para-
tween neighboring dots even at mesoscopic separations lolic region is not left. If we denote withs =(Ax;,Ay;), the
the um range. relative displacement of superpartidlefrom its new rest
For a quantitative analysis, we consider two mesodotposition—i.e.,§ =r] +A§=(;+ &) + AS—we find for a para-
with interdot distancé., placed at positionR,=(0,0,0 and  bolic potential thatU;j(AS)=U>+(2¢;F,)AS +;(A§)?. The
F-izz(L,0,0). Let the first dot have the design parameters first term on the RHS is an irrelevant constant potential shift._
The second term corresponds to a homogeneous electric
field, which for smallAs| is just exactly compensated by the
LA : . Coulomb field of the other particle. The third term describes
elgctrlc field Ei%d:NE(kO/q)/LZ' If superparticle 1_ IS oW 5 parabolic confinement a?ound tinew equilibrium posi-
shifted for some reason by an amoufk, the induced tion, with thesamecurvature as before.
change of electric field &R, is AEnq=[Ng(ko/q)/L3]AX. In It is important to realize that this relaxation into a new
particular, assume that we apply an external electric #gld global equilibrium configuration has a similar effect on the

I. Interacting superparticles

and Np and a filling factorf=Ng/Np. Its Ng-fold charged
superparticle, resting in equilibrium B, produces aR, an
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two superparticles as the formation of the Wigner crystal had 4 y y y T

in each single dot: The purely repulsive Coulomb force be- :"Wi‘:)
tween the superparticles is effectively transformed into that 3 i:‘?,‘;l;‘(_i i
of a spring of relaxed length’, which is still repulsive for = [ ~. = = y-pol. ()

[x,=X,| <L’, but becomesttractivefor |x;—x,|>L’, at least
with respect to thex direction. On the other hand, if the
superparticles are displaced in thelirection, the Coulomb
interaction is repulsive whenevygy differs fromy,. Keeping
this in mind, we now proceed to determine the coupled

~
T

Resonance Energy (meV)
T
N

(+,-)

FIG. 9. Resonance frequenck&(xyy)

of two Coulomb-coupled

modes of the system. ol . . . .
Our system has four degrees of freedgiabeled from 04 06 03 10 12 14
now on byk=1, ... ,4—namely, the components of the rela- Effoctive interdot distance 1’ un)
tive displacements of the superparticles from their new rest
positions, Asﬁ_(AXL’Ayi)' We can thus define a four- mesodotghostingN; =N,=1000 electronsas a function of the ef-
dimensional vecto5=(Axy,Ax,,Ay;,Ay,) (note the capital  fective distancd.’ between the superparticles, for light polarized in
S) which completely describes the spatial configuration ofthe x andy directions. The two mesodots are aligned along>the
the two superparticles. Without friction, external light fields, axis. The uncoupled resonances are assuméedvat2 meV and
and dynamic Coulomb interactions the equations of motioriw,=1.5 meV, respectively.
in these coordinates would read,S.=-2¢,S.. 2, 2 T3 5

We next have to consider the total interaction energy w?_= w1 ‘”2+3i \/ w1~ @ +<E) . (8
V(S =N;Noko[ (L +S,—S)2+(S,—S3)2] "2, For small devia- ' 2 M 2 M
tions from equilibrium, we can expand this expression up to  For a special case, the eigenfrequencies of the coupled
terms of second order in the formV=Vy+2,gS  system have been plotted as functions of the effective dis-
+(1/2)Z nSrAmnSy, With the gradientg,=(8V/8S)s-6 and  tancel’ in Fig. 9 (see the solid and short-dashed cujves
the Hess matridd,,,=(8°V/ 6S,6S,)&¢. Then, the Coulomb  Without coupling(a=0, corresponding to the right side of
forces are given bﬁﬁoulz —0—S1AuS,. Note that the static  the figure the modes are at the undisturbed frequencies and
—g, terms are exactly compensated by the parabolic confinezorrespond to independent oscillations of the two superpar-
ment forces in equilibrium. The terr-AyS,) is the force ~ ticles. With increasing coupling, both modes shift to bihas
acting on coordinaté, if coordinaten is changed from zero With - finally saturating at its upper limi{/(1/2)(wf+wj)
to the valueS,. One finds that in the case of dots alignedandw. diverging. In the high-coupling regime, the mode
along thex axis, the Hess matrix is block diagonal and hascorresponds to a pure c.m. moti¢he superparticles oscil-
the simple form lating in phasg and thew_-mode to a relative motioiithe

superparticles oscillating out of phasklowever, as we shall

+a -a 0 0 see later, all the oscillator strength will then be concentrated
in the c.m. mode, so that the diverging relative mode is ac-

-a +a 0 O

A= ' (4)  tually not observable for strong coupling.
0O O +b -b The result for they modes is analogougee the long-
0 0 -b +b dashed and dotted curves in Fig, Bowever with the posi-

tive coupling parameten exchanged by the negativie
with the two interaction parameters given by  Therefore one obtains with increasiti a shift to thered of
= +2N;Noky/ (L7)3 andb=-N;Noko/ (L")3 for thex andy di-  these modes, with the c.m. modeow given by w,) ap-
rections. proaching the limity(1/2)(w?+ »3) from below and the rela-
Including the dynamic Coulomb forces into the equationsti:/e mtcr)1de r?ecomtfs even SOEIQN tr;e criticalt COUD'"}Q
: ; &= ; strength, wheres_ becomes 0, the system spontaneously po-
g;tr;og(o(g leigiMf(na_i%i‘i; Z't‘ﬁgns‘éig\;\éen\llglsfg tg(reoﬁlr:a-m Iarize% already in the equilibrium gonfigurgtio)rOnly thg P

2 _ 2 _ c.m. mode is actually excitable with dipole light falling ver-
Znl 0 dant A/ M Jun ="ty Because of the block tically on the double-dot system.

o e gt racy ' Finaly e acress te quesion of hw strong the cou
reads ' pling parametela has to be in orc_Jer to get e_xperlmentally
observable effects. To answer this, we confine ourselves to
2 B the special case of equal undisturbed oscillator frequencies,
(w1+ (a/My) (@/My) )(Ul> _ wz(“l) (5y @1= . In the limit of small coupling we then consider the
- (a/M,) wg +(a/My) / \uy U/’ ratio of the Coulomb-induced frequency shii, — w4) to the
undisturbed resonance positienq and obtain(w,—w;)/ w;
which is easily diagonalized. For the special case of equak NDkO/m*wiLg’. This is exactly the ratidE;,q/ Eg, which we
electron occupations in both dofd;=N,=N, one finds the have computed above. We conclude again that the mesodots
following eigenfrequencies. _ for the two coupled modes must be laterally close on a scale df for significant
in x directions: coupling3?
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K. Coherent control An extreme departure of the superparticle from the poten-

Modern optical technology makes it possible to createt'al minimum to beyond the binding region corresponds to an

(phase-locked sequences aftense, ultrashort laser pulses !on|z"at_|on of the mesodot. Another example of "femtochem-
in various frequency regimes and to shape their time Stry” in semiconductor nanostructures would be the all-
dependent electric field into almost any desired féfm. optical transfer of the guperpartlcle from one me_sodot toa
When applied to a system of electrons, such shaped puls&?ﬁe b}t/ nle(;%hct:)or.l Usgngtmoletpularl dytnamlc_:s S|mulat|on_s
act as electrical “steering forces” for the particles and caf/th up to oulomb Interacting electrons in Mesoscopic

thus be used to coherently control their temporal evolutionmUItIdOt potentials, we have simulated a transfer. It was

For example, such techniques allow atoms to excite and staﬁgund that such an experiment seems to be feasible with

bilize quasiclassical Rydberg wave packets of electroncurrent techniques. However, these numerical results will be

which orbit at extreme distances from the nucleus with ver)PUb“Shed separately in another paper.

small dispersior® Alternatively, the ionization process of IV. SUMMARY AND OUTLOOK
atoms can be controlled in a phase-sensitive manner with the _ _ _
correct choice of time-dependent light fieffsEven more In this paper we have proposed to use spatially selective

spectacular experiments have been demonstrated in the fiefping techniques like the focused ion beam technique to
called “femtochemistry,” where complex chemical reactionscreate designable lateral potential landscapes within the
could be steered into a desired reaction pathway with variouglane of a quantum well. In the simplest case, this would be
coherent control methods.In these cases, one often had to & rotationally symmetric potential minimum, termed a me-

use evolutionary pulse optimization to find the optimum lightsodot. Compared to self-organized quantum dots, typical me-
pulse shape. Of course, several coherent control experimerggdots have a very flat confinement potential and small reso-
have been demonstrated with semiconductor nanostructuré@nce energies of the corresponding harmonic oscillator.
as well, and some of those were performed in the |ower:rhey can host hundreds or thousands of electrons, which will
frequency regime of intra-conduction-band transitions inat low temperatures form a confined, classical Wigner crystal
which we are mostly interested héfe. of mesoscopically large radius. At somewhat higher tempera-

As we have already pointed out in the Introduction, me-tures the crystal will melt and form a “Wigner lake.” It is
sodots are particularly well suited for coherent control be-dynamically characterized by center-of-mass coordinates and
cause of their tunable properties, low dispersion, and statisd large number of internal degrees of freedom.
tical stability of the superparticle and high polarizability of ~ Within the parabolic confinement regime, the electrons in
the corresponding oscillator. In addition, one can also thinkhe Wigner lake collectively respond to time-dependent di-
of more complex potential landscapes, tailor-made for théole fields as a single superparticle of giant charge, which
purpose of all-optical control of a many-electron system. can be identified with the c.m. of the ensemble.

The simplest type of such experiments would be indepen- Random phonon scattering events of the individual elec-
dent control of the stationary orbital raditg, (or potential ~ trons can temporarily disturb the inner configuration of the
energy Epot:argrb) and velocity vy, [Or kinetic energy lake, but the combination of parabolic cqnflnement forces
Ewn=(m*/2)v2,] of the superparticle. To achieve this, and_ the electror_fs mutual C_oulomb repu_l_5|on leads to an ef-
one has to choose the frequency of the exciting light forcdective restoration mechamsn_’n. In addmon, .the Brownian
as  w=vgp/rgn and its  amplitude  as Fey fluctuations of the superpartlcl_e are statistically redyced
=T\ (2a—M* 0?2+ (2yw)2. Note that in the limit of small compared to those of the constituent electrons. As a simple

friction y— 0, resonant excitation will always lead to a situ- @PProximation, it may therefore be possible to describe the
ation with Eo=Eyip. In order to establish, say, an orbit with effect of the phonon collisions on the superparticle level as a
large radius but small kinetic energlyelow the optical pho- detfarmmlstl_c, velocity-dependent friction force. Since the I_<|—
non thresholy nonresonant excitation is required. In such an€tic energies of the electrons can be kept below the optical
experiment, one could, for instance, drive the superparticl@®"0non threshold in our mesoscopic system, it is possible to
gradually out of the parabolic confinement regime andlurn off the most critical decoherence mechanism in host
thereby excite its internal vibrational modes. The success ofemiconductors like, e.g., GaAs. _ _
the control could be monitored by detecting coherently the AS @ collective oscillator, the superparticle bound in a
emitted radiation of the accelerated supercharge. typical mesodot will have a high polarizability, due to the
Periodic orbits more complex than circles or ellipses andi9h charge and weak binding. Already with relatively weak
nonperiodic motions of the electron lake are also excitabl&Ontinuous-wave excitation it can be driven on a mesoscopi-
with suitable light fields. If we treat phonon scattering in the Cally large orbit, which could be monitored using the coher-
approximative model of a velocity-dependent effective fric-ENtly eémitted radiation of the accelerated charge. Also, the
tion force, we can actually choose an arbitrary ofij for mduce_d gl_ectrlc(nean field will pe sufficiently strong tc_) en-
the superpatrticle, insert it into Newton’s equation of motion,able significant Coulomb coupling between neighboring me-

. . . - sodots, opening the way to arrays and more complex opti-
and directly compute the required light control forg(t) ¢4y active systems. Furthermore, such designable potential

=2af(t)+2yr(t)+m*r(t). However, once the superparticle landscapes would be ideally suited for coherent control ex-
leaves the parabolic regime, it will start to disperse spatiallyperiments of various kinds. In particular, the superparticle
and its control becomes much more demandiagd inter-  can in principle be steered to follow any desired mesoscopic
esting. orbit, at least within the parabolic region.
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For stronge(but feasiblg optical excitation, the superpar- close by neighbor. It would stay there for a long time in a
ticle starts to probe the nonparabolic outer part of the laterametastable statghigh potential barriers and mesoscopic spa-
confinement potential, leading to various nonlinear effectstial distances prevent a return to the first minimum by ther-
In this regime the superparticle’s c.m. and internal degrees dhal or tunneling processgsuntil a second shaped optical
freedom are no longer decoupled. This allows us, for exPulSe brings it back.

ample, to excite lattice vibrations of the Wigner crystal even ' Order fo further investigate the behavior of interacting
with dipole radiation. At the same time, of course, the com-droups of classical electrons in mesoscopic po_tentlal land-
: ’ ’ capes under the presence of phonon scattering, we have

pactness of the superparticle will be lost and the C°“|°mkfs)erformed extended molecular dynamics simulaticosbe
repulsion will cause dispersion. In the extreme case, the mesypjished in a forthcoming papemwhich theoretically con-
sodot can be “ionized” partially or completely in(eoher-  firm the above expectations. We hope that our article will
ently) controlled way. In particular, it should be possible to also stimulate some experimental investigations in the pro-
transfer a superparticle all optically from one mesodot to gosed directions.
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