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Electrons confined in a flat semiconductor quantum dot with a parabolic in-plane potential act like a
collective many-particle oscillator under coherent intraband excitation. We investigate theoretically the prop-
erties of these oscillators under a simultaneous scale transformation of the lateral dimensions and the electron
occupation number. As the lateral size increases from a few nm(typical for self-assembled dots) to the
mesoscopic regime, the physics of the system is changing qualitatively: Quantization effects gradually lose
importance against Coulomb interactions and eventually the electron lake in a mesoscopic dot resembles a
classical Wigner liquid. This parabolically confined “Wigner lake” behaves to the outside like a form-elastic
“superparticle” of high charge. It can be coherently controlled by THz dipole radiation just like a single
electron, but with reduced Brownian diffusion in the phonon heat bath. We propose a flexible method to
fabricate single mesoscopic dots of a controlled shape, Coulomb-coupled groups of dots, and almost arbitrary
potential landscapes, using current semiconductor technology. As a first example, the collective modes of two
Coulomb-coupled superparticles in neighboring dots are calculated. Also, we consider the possibility of steer-
ing a superparticle with shaped laser pulses to follow any complex two-dimensional orbit.
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I. INTRODUCTION

A. Quantum dots

The name “quantum dot” implies a zero-dimensional sys-
tem with strong size quantization—i.e., with spatial dimen-
sions smaller than the de Broglie wavelength of the confined
electrons and holes. At present, the most prominent and
widely studied examples in the semiconductor community
are probably self-assembled dots(SAD’s). These are usually
flat, lenslike objects with a lateral size of several 10 nm and
a height of a few nm, which can to a good approximation be
described by parabolic in-plane confinement potentials. They
typically host fewer than ten particles and have quantized
level spacings around 50 meV. The scientific work on these
systems is mainly focused on their optical interband proper-
ties, as for example PL spectra.

The self-organized growth of quantum dots is certainly
elegant and convenient. However, it is not possible with this
approach to fully control the resulting effective confinement
potential, in the sense that one could create arbitrary poten-
tial landscapes(as has long been possible for simple layered
systems like multiple quantum wells). Therefore it is also
difficult to build more complex systems on the basis of
SAD’s as elementary building blocks. For example, the most
natural extension of an “artificial atom,” a coupled quantum
dot molecule, can be formed in a vertically stacked configu-
ration using strain fields. But to achieve lateral coupling(in
the form of interdot tunneling or at least via Coulomb fields)
would be extremely difficult. The main obstacle for realizing
this and other interesting many-dot systems(like ordered lat-
eral arrays of Coulomb coupled dots with collective optical
modes) is the huge interdot spacings compared to the short
effective range of the induced Coulomb fields of the dots.

Historically, the first quantum dot structures were not self-
assembled, but fabricated in a controllable technological pro-
cess. Normally one started from a burried two-dimensional
(2D) electron gas, which provided the longitudinal confine-
ment. Then, the lateral confinement was either achieved by
etching a free-standing pillar1,2 or by superposing an electro-
static lateral confinement field. The latter was typically cre-
ated by some modulated gate electrode, which at the same
time allowed precise tuning of the electronic occupation of
the dot.3–5 With both approaches, huge periodic dot arrays
could be fabricated. Often, again, the effective in-plane po-
tential of each dot was parabolic to a good approximation.

These “old” type of dots had a comparatively weak con-
finement with typical level spacings,10 meV and could be
occupied by a relatively large number of electrons, but not
simultaneously by holes. Naturally, the investigations then
concentrated on the intraband excitations of these systems in
the far-infrared(FIR) regime, frequently combined with lon-
gitudinal magnetic fields, in order to enhance the lateral con-
finement. It was, however, quickly discovered that the optical
spectra show almost no dependence on the electron number
in each dot.3 The reason was found in the generalized Kohn
theorem.6–8 It states that, in the special case of parabolic
lateral potentials, the only collective dipole resonances are
rigid center-of-mass motions of the electron gas as a whole,
and those have the same absorption spectrum as a single
electron. This result seems to have been received with a cer-
tain disappointment in the community. Thus, with the time
the main focus of interest moved to electron-hole complexes
in SAD’s with a strong size quantization, in which many-
body effects are more significant and spectrado depend(to a
certain degree) on the particle numbers.
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B. Mesodots

In this paper, the case of weak confinement(large size)
and high electronic(no holes) occupation is reconsidered.
We shall call such systems mesoscopic dots or “mesodots.”
As their lateral size is growing from nanoscopic(several
10 nm) to mesoscopics0.1–1mmd, the physics is altered in
qualitative ways, providing interesting opportunities for both
fundamental investigations and new applications.

To see this, consider a 2D rotationally symmetric potential
well Usrd of Gaussian-like shape(compare Fig. 1). Assume
the potential is parabolicsU=ar2d for radii r , rpar, flattens
out for r ù rpar, and becomes essentially zero forr ù r ion.
With one or more electrons bound in the well, the system
represents an opticaloscillator for in-plane polarized light,
with a harmonical response for sufficiently weak excitation.

As we shall demonstrate in detail later on, the whole
packet of bound electrons can move collectively and without
dispersion in a parabolic potential as a compactsuperparticle
of giant chargeQ.9 In practice, the numberNE of electrons
that can be added to this superparticle is limited, because
eventually its growing radiusrE becomes comparable to the
width rpar of the parabolic regime. At this point, the Fermi
energy FE is equal to the “maximum parabolic energy”
Epar=arpar

2 of the well.
How are the properties of this superoscillator changing

when its spatial dimensions are scaled up by a factors—i.e.,

under the transformationr → r /s? Primarily, the lateral
stretching widens the parabolic regime and reduces the ef-
fective curvature 2a of the potential, which in turnlowers
the resonance frequencyv0 of the harmonic oscillator. In the
quantum regime, the spacinge10="v0 of the energy ladder is
decreasing untilsize quantization is no longer the dominat-
ing factor of the system.

With the energetic density of levels thus growing, a larger
numberNE of electrons can be added to the well beforeFE
reachesEpar. Since the potential profile is also smoothened
by the spatial stretching transformation, a classical descrip-
tion of these particles becomes applicable even for relatively
low kinetic energies. In other words,the scaled-up dot can
host a larger superparticle and undergoes a gradual transi-
tion from the quantum to the (semi)classical regime.

When excited with resonant laser light of circular in-plane
polarization, the superparticle will orbit around the dot center
like in a cyclotron. In the stationary state, the external driv-
ing field will just compensate for the energy losses due to the
(mainly coherent) emission of phonons and electromagnetic
radiation. The radiusrorb of the orbit then depends on the
effective relaxation timet and the laser field strengthE0.
However, if we consider these quantities as fixed,the orbital
radius rorb increases with the scaling parameter s.

Combined with the huge chargeQ=NEe of the superpar-
ticle, its large orbital radiusrorb leads to anextremely good
polarizability Qrorb/E0 of the oscillator. Due to thesuperra-
diance effectof the NE electrons oscillating in phase, it will
thereforeemit a high power of coherent radiation, which
should be relatively easy to detect experimentally.

But also in the optical near field close to the dot, the ac
electric fields induced by the charge oscillation will be much
stronger compared to typical SAD systems. This enables a
significant Coulomb interaction between neighboring meso-
dots and opens the way to coupled oscillator networks and
optically active regular dot arrays.

High polarizability also means that it is possible to drive
the oscillator with relatively small laser fields into the non-
harmonic regime.10 Such a system is therefore also ideally
suited for nonlinear optical experiments, including effects
like higher and subharmonic generation or multistability.

In the extreme case, it becomes possible to achieve acom-
plete ionizationof the oscillator, oncerorb. r ion. As we shall
show later, one can also think of coherent control experi-
ments in which the superparticle is transferred all optically
from one mesodot to a close by neighbor and then stays there
in a metastable state until it is transferred back by another
shaped laser pulse.

Compared, for example, to coherent control of Rydberg
atoms, the mesodot system fundamentally suffers from very
short decoherence times(often in the sub-ps scale), due to
the efficient electron-phonon coupling in the semiconductor
matrix. However, using nonresonant circular polarized exci-
tation, it is possible in principle to control the radiusrorb and
orbital velocityvorb of the superparticle independently from
each other. In this way, the kinetic energyEkin=sm* /2dvorb

2

can always be kept below the thresholdELO for LO phonon
emission,11 thus effectively turning off this scattering
channel.12 It has been shown that in wide quantum wells,
where the quantization energye10 is below ELO, the relax-

FIG. 1. Schematic drawing of the lateral potential well of a
rotationally symmetric quantum dot. The upper part shows the
screened potential profile(solid line) versus thex coordinate, to-
gether with a parabolic approximation(dashed line) of the bare
potential. The lower part depicts some characteristic equipotential
lines in thex-y plane. The shaded region corresponds to the area
occupied by electrons.
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ation timest increase dramatically(up to almost 1 ns), pro-
vided the electron temperature is also kept low(see Ref. 13
and references therein).

In addition, we will demonstrate later that the center-of-
mass motion of the superparticle intrinsically has smaller
Brownian velocity fluctuations than that of a single constitu-
ent electron. In combination, these features suggest that su-
perparticles in mesodots arewell suited for coherent control
and that these systems can have avery high oscillator qual-
ity.

Finally, we would like to mention a practically important
advantage connected with the larger size of mesodots: They
are in arange accessible by modern semiconductor fabrica-
tion techniques(compare section below), which allow a spa-
tially selective control of the sample properties in the lateral
dimension. On the mesoscopic scale, it is possible to create
practically arbitrary lateral potential landscapes, like con-
figurations of different potential valleys and connecting
channels. In the future, it might therefore even become pos-
sible to perform coherent control experiments of a complex-
ity comparable to those in the field of “femtochemistry” with
complex molecules.

The paper will be organized as follows: In the following
section, we will propose methods for the fabrication of me-
sodot systems. Then the properties of these systems will be
quantitatively investigated in a simple analytical model. Fi-
nally, we will summarize and discuss some of the future
prospects.

II. FABRICATION METHODS

As in the case of the “old” type of quantum dots, our
concept is also based on a two-dimensional quantum well,
which is then turned into a zero-dimensional system by su-
perposing a lateral confinement potential. If the well is
n-modulation doped, it becomes occupied by electrons, leav-
ing behind positively charged donors in the impurity layer.
Due to statistical fluctuations of the local doping concentra-
tion, the Coulomb potentialUsx,y,zd of these charged do-
nors is never completely homogeneous in the lateralsx,yd
directions, but fluctuates randomly around some average

value Ūszd. For finite (but not too large) spacer layer thick-
nessesd, only the long-wavelength Fourier componentsl
ùd of the potential fluctuations are transmitted to the quan-
tum well plane. This leads to a smooth lateral potential land-
scape of hills and valleys, which are approximately parabolic
around the extremal points.

The electrons in the quantum well are attracted by the
local potential minima and will develop density maxima at
these lateral positions. Normally, the Fermi level is located at
energies above the highest hills of the potential landscape
and thus the electron density is only weakly modulated.
However, in the case of extreme potential fluctuations the
electron sea will desintegrate into spatially isolated “lakes”
and, thereby, natural quantum dots are formed. While this
disorder-induced localization of the electron sea(accompa-
nied by a metal-insulator transition) is unwanted for most
applications, we propose to use this effect purposefully for
the generation of designable in-plane potential landscapes.

For this purpose, it is required to control the spatial fluctua-
tions of the local donor density in the remote impurity layer.
Such a spatially selective doping method is indeed available
since several years with the focused ion beam(FIB)
technique.14,15 It allows to control the doping density later-
ally on a scale of less than 100 nm. In the case ofn doping
with Si ions, the implantation profile in the longitudinal di-
rection(along the beam) depends on parameters like the ion
acceleration voltage and the beam current.16,17With a proper
choice, the width of the bell-curve-shaped ion distribution
can also be reduced to the order of 100 nm. In principle, one
can thus write arbitrary 3D doping patterns within the limits
of this spatial resolution.18–21

In the simplest case, the FIB method allows us to concen-
trate all the donors in a bounded region of mesoscopic size
RD at distanced from the quantum well(compare Fig. 2).
This leads to the formation of a single mesoscopic quantum
dot with tunable properties, as will be shown in the following
section. Note that due to the suppression of short-range po-
tential fluctuations by the spacer layer, the resulting lateral
potential minimum in the well is rather robust against varia-
tions of the doping concentration on an atomic scale.22

III. THEORY AND RESULTS

A. Doping ball model

Let us start thus with a 2D quantum film in thez=0 plane
of a host semiconductor matrix, defined by a narrow rectan-
gular potential well of widtha in the electric quantum
limit.23 Assume, for simplicity, that all donors are contained
in a sphere of radiusRD, centered at a distanced.RD away
from the well at positionsx=0, y=0, z=−dd (compare Fig.

2). If the density distributionnDsRW d of the charged dopands is
3D rotationally symmetric within the sphere(“doping ball
model”), they produce a Coulomb potential which appears
from the outside like that of a single point chargeQD

=eenDsRW dd3R=eND.

FIG. 2. (Color online) Schematic sample structure of a mesos-
copic dot in the “doping ball model.” The figure shows(along the
growth coordinatez running from bottom to top) the doping ball
with the positively charged donors, the longitudinal quantum well
with the 3D confined electrons and a light pulse, seen as a time-
dependent electric field.
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B. Mesodot potential

In particular, the potential profileUsx,yd=UsrWd=Usrd cre-
ated in the quantum well plane atz=0 is given by

Usrd =
− e2ND

4pe0er
Îr2 + d2

=
− NDk0

Îr2 + d2
, s1d

whereer is the static dielectric constant andk0 a convenient
abbreviation used frequently in the following. The full width
at half maximuml of this in-plane potential well isl =Î3d.
Here, we are primarily interested in the mesoscopic limit,
whered@a, with d lying somewhere in themm anda in the
nm range. By combining the weak lateral Coulomb well with
the tight longitudinal confinement of the quantum film, one
obtains a “mesodot” with tunable properties. As can be seen
in Fig. 1, the Coulomb well is parabolic for small deviations
from the minimum—i.e.,Usr , rpard<ar2, with rpar<0.4d.
(At r =rpar the relative error is smaller than 1% and grows at
r =d to around 29%.) The depthU0= uUsr =0du=NDk0/d
and curvature 2a=NDk0/d3 can be controlled independently
by a proper choice of the two design parametersND andd.

C. Dot scaling

In the following we will repeatedly consider a simulta-
neous scaling of the spatial size and electron occupation
number of the dots(compare Fig. 3). Within the framework
of the doping ball model, this is achieved by the simple
design parameter transformationsd→sd andND→s2ND. As

a consequence, all the Coulomb-related energies, in particu-
lar the depthU0 of the unscreened potential well, grow lin-
early with the scaling factor orU0→sU0. The curvature of
the parabola, on the contrary, is reduced by the lateral
stretching, witha→a /s.

We numerically evaluate the scaling behavior of the dop-
ing ball model for the case of the GaAs/AlGaAs semicon-
ductor system, using an effective electron mass ofm!

=0.065m0 and a relative dielectric constant ofer =12.7. The
scaling is started ats=1 with only one donorsND=1d placed
at a distance ofd=10 nm from the quantum well. Under
these conditions, the lateral well has a small depth ofU0
=11.3 meV and hosts a single electron(with significant size
quantization). The scaling parameters is then increased from
1 to 100. In the final setting, there areND=104 electrons in a
mesoscopic dot of sized=1 mm and depthU0=1.13 eV. Our
main range of interest is located in between these extreme
cases.

D. Classical regime

Electrons propagating with high kinetic energyE in a
smooth potential landscape are expected to behave like clas-
sical particles. A condition for this quasiclassical regime is
that many de Broglie wavelengthslDBsEd=2p" /Î2m!E fit
into the linear dimensionlsEd of the spatial region which is
classically accessible to the particle—i.e., whereE.UsrWd.
In a parabolic potentialU=ar2 at energyE, this accessible
length scalel can be estimated byUsl /2d=E, yielding
lsEd=sÎE/a. For the ratio we obtain l /lDB

=f2m! / sp2"2dg1/2a−1/2E. We require thatsl /lDBd@1 in the
classical regime; i.e., there exists a minimum kinetic energy
for a particle to behave classical. Since the ratio scales like
ÎsE, we find that in the limit of larges this minimum energy
tends towards zero: Mesodots are classical systems.

E. Single-particle oscillator

Next consider a single electron of effective massm! and
chargeq=−e in the mesodot. In the electric quantum limit,
its dynamics is restricted to lateral motionsrWstd=(xstd ,ystd)
parallel to the quantum film. Due to the smooth lateral po-
tential, we can describe this lateral dynamics classically on
the basis of Newton’s laws of mechanics. The electron expe-

riences a confinement forceFW cnf=−¹UsrWd, which is har-

monic in the parabolic region,FW cnfsr , rpard=−2arW. This 2D
oscillator has a classical eigenfrequency(or resonance fre-
quency) v0=Î2a /m!, with a scaling behavior ofv0
→v0/Îs.

In the semiconductor matrix, the electron will experience
additional coupling to the phonon heat bath, in the form of
statistical scattering events, which change the direction and
modulus of the electron momentum. For the purpose of this
simple analytical investigation, we shall for the time being
ignore the fluctuating part of the electron-phonon interaction
and retain only an average deterministic friction force pro-

portional to the velocity,FW fri =−2grẆ, where 2g=m! /t andt
is an empirical relaxation time. This force will also provide

FIG. 3. Schematic diagram, depicting the simultanenous scaling
of the spatial size and electronic occupation number for a pair of
mesoscopic dots.
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relaxation of the electron to the stable equilibrium position in
the dot center.

In addition, the electron will be controlled by external
coherent radiation. Typically, this radiation will propagate
along the longitudinalszd direction and be linearly or circu-
larly polarized in the film plane. In our classical model, light

is described as a time-dependent electric fieldEW std, acting on

the electron with a forceFW ext=qEW std. For resonant optical
excitation of a typical mesoscopically sized dot, the light
field must have relatively low photon energiesEphot="v0 in
the range of a few meV, which belongs to the THz regime.

The dipole approximation for the electron-light interac-
tion is applicable under the condition that the wavelength
l=2psc0/Îerd /v0 be large compared to the typical size of
the system, which is given byd in the doping ball model.
Since the ratiol /d scales like 1/Îs, the dipole approxima-
tion would eventually break down in the limit of extremely
large dot sizes. However, this happens beyond our regime of
interest.

For arbitrary control fieldsEW std, the electron dynamics

follows from m!rẄ=FW cnf+FW fri +FW ext. For stationary monochro-

matic excitation with light polarized in thex direction,EW std
=eWxE0 cosvt, the oscillatingx position of the particle is
given by xstd=qE0 RehRsvdeivtj. Here Rsvd=1/fm!sv0

2

−v2d+ im!sv /tdg is the complex-frequency-dependent re-
sponse function. The induced amplitude of the electron os-
cillation is Dxsvd=qE0uRsvdu. In the static limitsv=0d one
obtainsDxs0d=qE0/ sm!v0

2d, which grows linearly as a func-
tion of the scaling parameter,Dxs0d→sDxs0d; i.e., this quan-
tity is stretched together with the characteristic dimensions
of the potential. At resonancesv=v0d, the amplitude de-
pends on the relaxation time asDxsv0d=qE0t / sm!v0d. This
dynamic amplitude is only proportional toÎs, but one should
keep in mind that in the mesoscopic regime we expect much
longer relaxation timest. Note also that the polarizability of
the oscillator isNDqDx/E0 (scaling likes3 in the static and
like s5/2 in the dynamic case). Its quality factor is Q
=Dxsv0d /Dxs0d=v0t.

We can define a critical electric field strengthENL for
resonant light, at which the oscillating particle starts to trans-
gress the limit rpar of the parabolic confinement region,
ENL=m!v0rpar/ sqtd. This corresponds to a radiation power
density ofsP/AdNL=sc0e0

ÎerdENL
2 . For stronger fields, we ex-

pect nonlinear effects in the optical properties of the oscilla-
tor.

F. Electron lake

Under the condition that the conduction band(CB) edge
at the dot center(x=0, y=0, z=0) be sufficiently low com-
pared to the doped barrier region, allND donors in the doping
ball inject their electrons into the dot. However, for many
applications it will be useful if the electron occupation num-
ber NE of the dot can be tuned between zero and its maxi-
mum possible valueND.24 We thus define a dimensionless
filling factor f=NE/ND, which varies between 0 and 1.

The NE mobile particles will then collect around the dot
center and form there an electron “lake.” The equilibrium

density distributionns2dsrWd and lateral radiusrE of the lake
are determined by a balance between the compressive con-
finement forceFcnf=−2ar and the expansive forces due to
temperature, Coulomb repulsion, and the “Fermi pressure”
(related to the Pauli principle for an electron gas in the de-
generate limit, when the Fermi levelFE is greater or com-
parable tokBT). In the following, we will roughly estimate
these three contributions, occasionally using simple scaling
arguments.

At high temperature—i.e., in the nondegenerate limit
whenkBT@FE—the particles will obey a Boltzmann statis-
tics. Then, in our two-dimensional system with parabolic in-
plane confinement and neglecting screening, the density dis-
tribution of the electrons is Gaussian,ns2dsrd=n0

s2de−sr / rTd2

with a spatial spreadrT=ÎkBT/a independent from the par-
ticle numberNE. Note that the thermal lake radiusrT for a
given confinement parametera can be reduced arbitrarily by
lowering the temperature.

The Coulomb repulsion force can be estimated as follows:
If, in the equilibrium situation, all electrons are confined
within a disk of radiusrE, the mean interparticle distance is
of the same order. Thus the magnitude of the(radially out-
ward directed) Coulomb force on a particle at the border of
the lake (at radius rE) should scale likeuFCoulu=h3sNE

−1dk0/ rE
2, whereh3 is a dimensionless geometry factor of

order 1. EquatingFCoul with the inward-directed confinement
force uFcnfu=2arE yields in the limit of many particlesrE
=hsk0NE/2ad1/3.

The corresponding potential Coulomb energy isECoul
=k0NE/ rE. This is also the amount by which the screened
potential well is flatter than the bare well without electrons
(see Fig. 1); i.e., the effective depth isUeffsNEd=U0−ECoul

and it becomes zero at a maximum filling factor offmax
=h3/2.

In the doping ball model, we can express 2a by the design
parameters 2a=k0ND /d3 and find thatrE=hf1/3d. Numerical
simulations(see later) confirm this scaling relation and show
that h is indeed of order unity. Note that withrE<d, the
outer electrons would already be located beyond the strictly
parabolic confinement region. To avoid this, it is required to
work with filling factors smaller than 1.

Next, we compute the Fermi energyFE of the degenerate
electron gas, relative to the potential of the screened well at
its center. From numerical simulations we find that on a scale
of U0 the screened potential well is essentially flat in the
region r ø rE and then increases steeply forr . rE. As a
simple approximation, we can therefore assume that the in-
teracting electrons self-consistently “feel” a disklike confine-
ment potential(compare Fig. 1). Neglecting size quantization
effects for the large spatial scales we are interested in, we
can assign a constant 2D density of statesDs2d=m! / sp"2d to
each space-energy element within the disk. Since the spatial
area of the disk isprE

2 and its energetic “height” is given by
the Fermi energyFE, the numberNE of electrons in the disk
is NE=FE(m! / sp"2d)sprE

2d. This yields a Fermi energy of
FE=sp"2/m!dNE/ sprE

2d=sp"2/m!dnav
s2d, wherenav

s2d is the av-
erage 2D electron density in the lake.

Let us now consider the scaling behavior of the above
quantities. First we note that withrE=hf1/3d, the radius of

MESOSCOPIC DOTS AS COLLECTIVE TERAHERTZ… PHYSICAL REVIEW B 70, 195433(2004)

195433-5



the electron lake at fixed filling factor grows in proportion
with the other spatial dimensions,rE→srE. Since NE in-
creases quadratically withs, the average 2D density of elec-
trons in the lake remains asymptotically constant,nav

s2d

=const, and the same holds for the Fermi energy,FE
=const.

The Coulomb energyECoul=k0NE/ rE, on the other hand,
scales linearly withs. Therefore, in the mesoscopic regime, it
will be the Coulomb effects that determine the physics of the
electron gas. We can calculate the critical lake radiusrC at
which the Coulomb and Fermi energies become equal. This
yields rC="2/ sk0m

!d=a0; i.e., the transition to the Coulomb-
dominated regime occurs as soon as the lake radius exceeds
the effective Bohr radiusa0 of the system.

Note thatFE can also be interpreted as a measure of the
kinetic energy of the electrons andECoul as the typical poten-
tial energy of the interaction. In the limitECoul@FE, we
expect a phase transition from a gaseous to a liquid or solid
state of the many-particle system. We have also seen above
that the system can be described classically for sufficiently
larges. At zero temperature, the electron lake will thus form
a classical Wigner crystal, where all particles arrange in a
triangular lattice.(The lattice constant in the center of the
lake will be smaller than at its border, because of the con-
finement of the lake. A quantum mechanical study of Wigner
crystallization for small particle numbers can be found, e.g.,
in Refs. 25 and 26.) At higher temperatures the crystal will
melt and resemble a Wigner liquid, but still with pronounced
interparticle correlations.

In the double-logarithmic plots of Fig. 4 we show how the
various characteristic energies scale withs, for filling factors
f =1 andf =0.1, respectively. We have also included the reso-
nance photon energy of the oscillator,"v0="Î2a /m!

~s−1/2, and the thermal energy atT=4 K. Fors,4 or so, the

Coulomb and Fermi energies are still of comparable magni-
tude. However, if we choose, for instance,s=32, we have an
interesting physical situation: The thermal energy is an order
of magnitude belowFE, while ECoul is more than one order
higher thanFE; i.e., this should correspond to the Wigner
crystal regime. At a filling factor off =0.1 (which guarantees
that all electrons are in the parabolic regime), one would
have about 100 electrons in a Wigner lake of radius 0.2mm,
absorbing at a photon energy of about 2 meV(corresponding
to a frequency of 0.5 THz and a wavelength of 0.17 mm).
The cases=32 is realized with design parametersND
=1024 andd=0.32mm, which is feasible with standard FIB
technology.(The numberND of donors in the doping ball
corresponds, for example, to a ball radius of 0.1mm and
inside the ball to a homogeneous doping density ofND

s3d

=2.4531017 cm−3).
The analysis above thus leads to the following conclusion:

In the limit of low temperature, weak confinement, and large
particle number(large scaling parameters), the density dis-
tribution and radius of the electron lake are mainly deter-
mined by the Coulomb repulsion between the electrons. The
situation then corresponds to a confined classical Wigner
crystal at zero temperature and to a Wigner liquid at higher
temperatures. Asymptotically, the Coulomb energy and the
lake radius grow linearly withs, while the average 2D elec-
tron density and Fermi energy remain constant.

G. Screened potential

In order to check the above scaling relations, we have
performed two different kinds of numerical simulations of
the mesoscopic electron lake under 2D parabolic confine-
ment, assuming low temperature and zero thickness of the
system in the longitudinal directionz.

The first calculation is based on a semiclassical con-
tinuum model. It describes the system by 2D rotationally
symmetric profiles of the electron densityns2dsrWd and the total
(screened) potentialVscrsrWd=UsrWd+VsrWd. Here,U is the un-
screened lateral potential well andV is the Hartree contribu-
tion, which results via Poisson’s equation from the 3D charge

distribution rs3dsRW d=s−edns2dsrWddsz−0d. In accordance with
our mesoscopic regime of interest, the electron density was
computed semiclassically(neglecting size quantization ef-
fects), assuming locally the constant density of states of a
2D system. This yields ns2dsrWd=fm! / sp"2dgedEu(E
−VscrsrWd)f(sFE−Ed / skBTd), whereusxd is the Heaviside step
function andfsxd=1/s1+exd the Fermi function. For a given
total number of electrons,NE=ens2dsrWdd2r, the Fermi level
FE, density profilens2dsrWd, and total screened potentialVscrsrWd
have been determined self-consistently.

For the calculation we chose a parabolic potential of cur-
vature 2a=NDk0/d3, with design parametersND=100 and
d=0.1 mm, corresponding to a scaling variable ofs=10. The
resulting screened potentialsVscrsrd for various electron fill-
ing factors f =0.0,0.2,0.4,0.6,0.8,1.0 are plotted in Fig. 5.
One can clearly see that the self-consistent well is flat at the
bottom of the electron lake and increases quadratically for
r . rE. The inset shows the Coulomb energiesECoul [corre-

sponding also toVscrsrW=0Wd] as a function of electron number

FIG. 4. Double-logarithmic plot of the various characteristic en-
ergies versus the scaling parameters. (a) Corresponds to filling
factor f =1, (b) to f =0.1. The dashed vertical line marks the case
s=32.
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NE in a double-logarithmic plot, together with the analytic
scaling relation for a fitted geometry factor ofh=0.575. Fig-
ure 6 depicts the radial dependence of the electron density
profilesns2dsrd for the same parameters as in Fig. 5. Note that
if the bottom of the lake were really perfectly flat, the elec-
tron density would be constant. Actually, the screened well is
only approximately flat on a scale ofECoul (or U0), but
slightly increases with radiusr. Thus the corresponding den-
sity profile drops continuously from a maximum at the well
center to zero at the border of the lake. The inset shows the
lake radius versus electron number in a double-logarithmic
plot, confirming the analytic scaling relation. There is a con-
stant factor between the simulated and analytic data, due to
the somewhat arbitrary definition of the lake radius.

In the second type of simulation, theNE electrons were
described completely classically as point particles with re-
pulsive Coulomb interactions, subject also to the radial
forces of the lateral potential well and to friction forces pro-
portional to the velocity. The temperature was assumed zero.
Since the equilibrium electron lake is a “fixed point” of the
dissipative dynamical system, we defined some random ini-

tial positions and velocities for the particles and then simply
let them relax, according to Newton’s laws.27 As expected,
the particles “self-organize” into the highly correlated
Wigner lattice state independently from the initial conditions.

The simulation was performed for the same parameters as
in Figs. 5 and 6. As a typical example of the resulting equi-
librium particle configuration, we present in Fig. 7 the case
of NE=100. One finds a triangular lattice order and a particle
density that decrease from the center to the shore of the
electron lake. We have determined the lake radii as a func-
tion of the particle number and again confirmed therE
~NE

1/3 relation.

H. Superparticle concept

Parabolic potentials are peculiar in many respects and
some of their specific properties are connected with the(gen-
eralized) Kohn theorem. Although this theorem and its con-
sequences have already been discussed in various publica-
tions, we will reconsider it in the following for our classical
mesodot system.

The Hamilton function of the isolated28 interacting
N-electron system in the parabolic confinement region reads

H = o
i=1

N
spW id2

2m! + o
i

m!v0
2

2
srWid2 +

1

2o
i,j

VsrWi − rW jd. s2d

The center-of-mass(c.m.) position sW of the N particles is
given bysW=s1/NdoirWi, their total mass byM =Nm!. We can

also define relative positionsdW i j =s1/NdsrWi −rW jd and, based on

those, the new variablesDW i =o jdW i j . The quantityDW i can be
interpreted as the distance vector of particlei relative to the

c.m., and one can easily demonstrate the propertyoiDW i =0W.

If the original variablesrWi (and pW i =m!rẆi) in our Hamilton

function are replaced byrWi =sW+DW i (and pW i =m!sẆ+m!DẆ i

=pWs+m!DẆ i, respectively), one obtains

FIG. 5. Self-consistent potentials(solid lines) and bare potential
(dashed line) of a parabolic lateral confinement, correponding to a
mesodot with scaling parameters=10. The numbers(0, 20, 40, 60,
80, and 100) denote the respective electron numbersNE. The inset
is a double-logarithmic plot of the Coulomb energy(screened po-
tential atr =0) versus electron number(dots), compared to the ana-
lytic relation (solid line, h=0.575).

FIG. 6. Electron density profiles, corresponding to the self-
consistent potentials of Fig. 5. The vertical dashed lines mark the
“shore” of the electron lake. The inset is a double-logarithmic plot
of the lake radius(determined fromthe shore lines) versus electron
number (dots), compared to the analytic relation(solid line, h
=0.575).

FIG. 7. Stable equilibrium configuration of 100 classical elec-
trons in a parabolic lateral confinement, corresponding to the same
situation as in Figs. 5 and 6 forNE=100.
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H = Hcom+ Hrel + Hee

= F spWsd2

2M
+

Mv0
2

2
ssWd2G

+ o
i
Fm!

2
sDẆ id2 +

m!v0
2

2
sDW id2G + F1

2o
i,j

VsNdW i jdG .

s3d

This shows, first, that the center of mass and relative degrees
of freedom of the interactingN-particle system are com-
pletely decoupled in the case of a parabolic confinement.
Second, the Coulomb interactions affect the relative coordi-

natesdW i j only.
This separation is also possible in the presence of friction

forces. For example, the friction force on theith particle can

be written as a sum of two parts,FW fri
sid =−2grẆi =−2gsẆ−2gDẆ i.

We now reinclude the external dipole radiation, which we

have described by a time-dependent electric fieldEW std. The
corresponding term in the Hamilton function readsHext

=−qEW oirWi. Performing again the above variable transforma-

tion, we obtainHext=−QEWsW, whereQ=Nq is the total charge
of the N electrons. Since the electric field is spatially homo-
geneous, it simultaneously and equally acts on each particle
and so accelerates the group rigidly as a whole, conserving
its internal configuration.

The fact that dipole radiation selectively acts on the c.m.
motion, while the Coulomb term affects only the relative
configuration, renders effects of the electron-electron inter-
action unobservable with dipole radiation in parabolic con-
finements, where those degrees of freedom are completely
independent. This is the basic message of the often-stated
Kohn theorem. We would now like to focus on some rather
obvious idea related to the Kohn theorem, which to some
degree has appeared already several times in the literature
(see, for example, Ref. 8), but seems to have not been fully
exploited so far: the motion of a “superparticle.”

Assume we put theN electrons into the parabolic me-
sodot, starting from some random initial condition. Let there
be friction forces, but no light field yet. As we have seen
above, the particles spontaneously relax to a stable equilib-
rium configuration29—namely, the circular electron “lake” of
radius rE. In this situation, the c.m. will coincide with the

potential minimum,sW=0W, and the internal configuration(re-
sembling a Wigner crystal at low temperature) will be deter-
mined by a balance between repulsive Coulomb and com-
pressive confinement forces.

If we now apply a proper electric fieldEW as a control

force, we can statically displace the lake from thesW=0W posi-
tion or dynamically move it around in the dot plane. All this
will not change the internal configuration of the particles, as
long as we take care not to leave the parabolic region.

The only way to disturb the shape of the lake is by apply-
ing different forces on each particle. Imagine, for simplicity,
a single force kick on a specific electronk—for example,
induced by a phonon scattering event—which instanta-
neously changes its velocity by an amountDvWk. The kicked

particle will then start to move away from its specific relative
position within the configuration. However, since it started
from an equilibrium position, the particle will experience
elastic restoring forces in the network of its neighbors. Note
also that the termfsm!v0

2/2dsDW kd2g in Eq. (3) acts to pull
particle k back towards the momentary c.m. position of the
lake. These conditions are schematically depicted in Fig. 8.

Therefore, with a little time delay, the momentumDpW
=m!DvWk transferred from the phonon to particlek will spread
over the totalN-electron system, leading to complex lattice
vibrations of the Wigner crystal. In the limit of large particle
numbers, this process may simply be viewed as a “heating”
of the lake. But thanks to the gradual slowing down of the
particles due to the friction force, this thermal energy will on
the long run transfer to the semiconductor lattice and even-
tually be dissipated. As a result, the lake will restore its equi-
librium shape within a view relaxation timest; i.e., it actu-
ally shows form-elastic behavior.30

For these reasons, it is natural to view the compact packet
of N electrons as a composite superparticle of formal mass
M =Nm! and chargeQ=Nq at the position of the c.m. When

subject to an external homogeneous electric fieldEW , the su-

perparticle reacts with an accelerationsẄ=FW tot/M =QEW /M

=qEW /m!, the same as for an individual electron. Also most of
the oscillator properties listed above[in particular, the eigen-
frequencyv0 and the frequency-dependent amplitudeDxsvd]
depend only on the ratioQ/M =q/m! and thus remain un-
changed. However, the polarizabilityQDx/E0 of the sup-
eroscillator isN times bigger than for a single particle. Note
that when observed from a sufficient distancer @ rE, the
Coulomb field of the superparticle will appear like that of a
single giant chargeQ=Nq.

Finally, let us discuss the effect of single-particle stochas-
tic phonon scattering events on the orbit of the superparticle

FIG. 8. Schematic of a superparticle(fine-dotted circles), con-
sisting of three electrons(black dots), located at three different po-
sitions within a mesodot. The c.m. of the superparticle is repre-
sented by a small grey circle. The solid black arrows denote the
“cohesive” forces, which in combination with the repulsive Cou-
lomb forces tend to restore the size and inner configuration of the
superparticle after deformation. The dashed arrows stand for the
c.m. forces, acting on the superparticle as a whole and pulling it
back to the center of the mesodot.
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as a whole. As a simple model for this diffusion process in
the heat bath, assume that(besides the deterministic friction

forces) the velocitiesrẆi of all particles are changed synchro-
nously each time intervaldt by small, statistically indepen-
dent random vectorsDvW i. Let the directions of the increments
be isotropic(angles equally distributed between 0 and 2p)
and their moduli be constantuDvW iu=Dv0. Then, the total mo-
mentum transferred to the superparticle in one intervaldt is
given byDpWs=m!okDvWk, corresponding to a velocity change
of DvWs=DpWs/M =s1/NdokDvWk, which is also isotropic. Using
complex numbers to represent the 2D vectors,vW ↔ ṽ=veiw

(wherev stands for the modulus andw for the phase ofṽ),
yields Dṽs=sDv0/Ndoke

iwk or Dvs/Dv0= us1/Ndoke
iwku. The

modulus of the random phasor sum on the right-hand side
(RHS) of the last equation obeys a Rayleigh distribution with
a mean value ofkDvs/Dv0lav=Îp / s4Nd. Consequently, the
Brownian velocity fluctuations of the superparticle are sup-
pressed by a factorN−1/2 compared to the individual electron.
In the limit of large particle numbersN it will follow an
almost deterministic trajectory, which justifies the simple in-
corporation of electron-phonon coupling in the form of an
effective friction force. This feature is particularly useful for
the coherent control of the superparticle by suitably shaped
laser pulses.

We can thus summarize: WhenN electrons with repulsive
Coulomb interactions are placed into a parabolic confine-
ment, they collectively form a superparticle of massM
=Nm! and chargeQ=Nq. It has a preferred shape and inner
structure(the circular “Wigner lake” of radiusrE) and is
stabilized in this form by elastic forces. If, in addition, each
particle is subject to a friction force, the superparticle will
restore its inner and outer equilibrium configuration after any
deformation. This shape restoration and refocusing mecha-
nism works independently from the present position of the
c.m. of the superparticle, the motion of which can be selec-

tively controlled by an external electric fieldEW . The stochas-
tic velocity fluctuations of the superparticle c.m. are sup-
pressed by a factor of 1/ÎN.

I. Interacting superparticles

We have seen above that the superparticle oscillates in a
parabolic mesodot just like a single electron, yet with re-
duced Brownian noise. But there is another advantage, con-
nected with its giant charge: The induced electric fields areN
times stronger and can thus provide Coulomb coupling be-
tween neighboring dots even at mesoscopic separations in
the mm range.

For a quantitative analysis, we consider two mesodots

with interdot distanceL, placed at positionsRW 1=s0,0,0d and

RW 2=sL ,0 ,0d. Let the first dot have the design parametersd
and ND and a filling factor f =NE/ND. Its NE-fold charged

superparticle, resting in equilibrium atRW 1, produces atRW 2 an
electric field Eind

0 =NEsk0/qd /L2. If superparticle 1 is now
shifted for some reason by an amountDx, the induced

change of electric field atRW 2 is DEind=fNEsk0/qd /L3gDx. In
particular, assume that we apply an external electric fieldE0

to the system. As we have computed a little earlier, this shifts
superparticle 1 byDx=qE0/ sm!v1

2d. We can insert this shift
into the equation forDEind and calculate the ratio between

the induced and external field atRW 2, which givesDEind/E0
=NEk0/m!v1

2L3.
In order to have a significant dynamic interdot Coulomb

coupling, we require that this ratio should be comparable to
unity or, at least, around 1/10. It is important to realize at
this point that the ratio is invariant under our scale
transformation—i.e., sDEind/E0d~s0. Therefore, interacting
dot arrays can be realized in the technologically convenient
mesoscopic regime, despite the huge interdot distances. If we
express the oscillator eigenfrequency by the design param-
eters of the doping ball model,v1

2=2a /m!=NDk0/ sm!d3d,
we obtain for the ratio the simple resultsDEind/E0d
= fsL /dd−3.

In practice,L must be at least as big as 2rc=2h1/3f1/3d or,
otherwise, the two electron lakes will merge. This yields,
independently from the filling factor,DEind/E0=1/8h, so
that coupling effects should indeed be observable. Note that
the condition of two dots almost “touching” each other can
be realized easily in the mesoscopic regime, but probably not
with SAD’s.

J. Coupled modes

Our next goal is to compute the coupled modes of the
two-dot system in the parabolic regime. The dotsi =1 andi
=2, placed along thex axis at distanceL, are characterized
by the curvatures 2ai and the corresponding undisturbed
eigenfrequenciesvi. They are occupied byNi electrons,
which form superparticles with the total massesMi =Nim

!

and total chargesQi =−Nie.
Already without any external light field, the static Cou-

lomb repulsion between the two superparticles leads to shifts
of the in-plane equilibrium positions of the left particle from
rW1=s0,0d to rW18=rW1+drW1=s0−d1,0d and of the right particle
from rW2=sL ,0d to rW28=rW2+drW2=sL+d2,0d, so that the new ef-
fective interdot distance isL8=L+d1+d2. The static shiftsdi
are determined by the relation 2a1d1=2a2d2=N1N2k0/ sL8d2,
which yields a third-order polynomial equation ford1.

The parabolic confinement potentials of the dots as a
function of absolute superparticle positionssWi are UissWid
=aissWi −rWid2. In their new equilibrium positionsrWi8=rWi +drWi,
the superparticles are no longer at the minimarWi of their
respective confinement potentials. However, this does not in-
fluence the effective confinement forces, as long as the para-
bolic region is not left. If we denote withDsWi =sDxi ,Dyid, the
relative displacement of superparticlei from its new rest
position—i.e.,sWi =rWi8+DsWi =srWi +drWid+DsWi–we find for a para-
bolic potential thatUisDsWid=Ui

0+s2aidrWidDsWi +aisDsWid2. The
first term on the RHS is an irrelevant constant potential shift.
The second term corresponds to a homogeneous electric
field, which for smalluDsWiu is just exactly compensated by the
Coulomb field of the other particle. The third term describes
a parabolic confinement around thenew equilibrium posi-
tion, with thesamecurvature as before.

It is important to realize that this relaxation into a new
global equilibrium configuration has a similar effect on the
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two superparticles as the formation of the Wigner crystal had
in each single dot: The purely repulsive Coulomb force be-
tween the superparticles is effectively transformed into that
of a spring of relaxed lengthL8, which is still repulsive for
ux1−x2u,L8, but becomesattractivefor ux1−x2u.L8, at least
with respect to thex direction. On the other hand, if the
superparticles are displaced in they direction, the Coulomb
interaction is repulsive whenevery1 differs fromy2. Keeping
this in mind, we now proceed to determine the coupled
modes of the system.

Our system has four degrees of freedom(labeled from
now on byk=1, . . . ,4)—namely, the components of the rela-
tive displacements of the superparticles from their new rest
positions, DsWi =sDxi ,Dyid. We can thus define a four-

dimensional vectorSW =sDx1,Dx2,Dy1,Dy2d (note the capital
S) which completely describes the spatial configuration of
the two superparticles. Without friction, external light fields,
and dynamic Coulomb interactions the equations of motion

in these coordinates would readMkS̈k=−2akSk.
We next have to consider the total interaction energy

VsSWd=N1N2k0fsL8+S2−S1d2+sS4−S3d2g−1/2. For small devia-
tions from equilibrium, we can expand this expression up to
terms of second order in the formV=V0+okgkSk
+s1/2domnSmAmnSn, with the gradientgk=sdV/dSkdSW=0W and
the Hess matrixAmn=sd2V/dSmdSndSW=0W. Then, the Coulomb

forces are given byFW k
coul=−gk−onAknSn. Note that the static

−gk terms are exactly compensated by the parabolic confine-
ment forces in equilibrium. The terms−AknSnd is the force
acting on coordinatek, if coordinaten is changed from zero
to the valueSn. One finds that in the case of dots aligned
along thex axis, the Hess matrix is block diagonal and has
the simple form

Akn =1
+ a − a 0 0

− a + a 0 0

0 0 + b − b

0 0 − b + b
2 , s4d

with the two interaction parameters given bya
= +2N1N2k0/ sL8d3 andb=−N1N2k0/ sL8d3 for the x andy di-
rections.

Including the dynamic Coulomb forces into the equations

of motion yieldsMkS̈k=−2akSk−onAknSn. We insert the an-
satz Skstd=uke

ivt and obtain the eigenvalue problem
onfvk

2dkn+sAkn/Mkdgun=v2uk. Because of the block-
diagonal matrix on the RHS, it can be solved separately for
the two spatial directions. The equation for thex direction
reads

Sv1
2 + sa/M1d − sa/M1d
− sa/M2d v2

2 + sa/M2d
DSu1

u2
D = v2Su1

u2
D , s5d

which is easily diagonalized. For the special case of equal
electron occupations in both dots,N1=N2=N, one finds the
following eigenfrequenciesv+,− for the two coupled modes
in x directions:

v+,−
2 =

v1
2 + v2

2

2
+

a

M
±ÎUv1

2 − v2
2

2
U2

+ S a

M
D2

. s6d

For a special case, the eigenfrequencies of the coupled
system have been plotted as functions of the effective dis-
tanceL8 in Fig. 9 (see the solid and short-dashed curves).
Without coupling(a=0, corresponding to the right side of
the figure) the modes are at the undisturbed frequencies and
correspond to independent oscillations of the two superpar-
ticles. With increasing coupling, both modes shift to theblue,
with v− finally saturating at its upper limitÎs1/2dsv1

2+v2
2d

andv+ diverging. In the high-coupling regime, thev− mode
corresponds to a pure c.m. motion(the superparticles oscil-
lating in phase) and thev−-mode to a relative motion(the
superparticles oscillating out of phase). However, as we shall
see later, all the oscillator strength will then be concentrated
in the c.m. mode, so that the diverging relative mode is ac-
tually not observable for strong coupling.

The result for they modes is analogous(see the long-
dashed and dotted curves in Fig. 9), however with the posi-
tive coupling parametera exchanged by the negativeb.
Therefore one obtains with increasingubu a shift to thered of
these modes, with the c.m. mode(now given by v+) ap-
proaching the limitÎs1/2dsv1

2+v2
2d from below and the rela-

tive mode becomes even softer.(At the critical coupling
strength, wherev− becomes 0, the system spontaneously po-
larizes already in the equilibrium configuration.) Only the
c.m. mode is actually excitable with dipole light falling ver-
tically on the double-dot system.

Finally, we address the question of how strong the cou-
pling parametera has to be in order to get experimentally
observable effects. To answer this, we confine ourselves to
the special case of equal undisturbed oscillator frequencies,
v1=v2. In the limit of small coupling we then consider the
ratio of the Coulomb-induced frequency shiftsv+−v1d to the
undisturbed resonance positionv1 and obtainsv+−v1d /v1

=NDk0/m!v1
2L3. This is exactly the ratioDEind/E0, which we

have computed above. We conclude again that the mesodots
must be laterally close on a scale ofd for significant
coupling.31

FIG. 9. Resonance frequencies"vsx,yd
s+,−d of two Coulomb-coupled

mesodots(hostingN1=N2=1000 electrons) as a function of the ef-
fective distanceL8 between the superparticles, for light polarized in
the x and y directions. The two mesodots are aligned along thex
axis. The uncoupled resonances are assumed at"v1=2 meV and
"v1=1.5 meV, respectively.
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K. Coherent control

Modern optical technology makes it possible to create
(phase-locked sequences of) intense, ultrashort laser pulses
in various frequency regimes and to shape their time-
dependent electric field into almost any desired form.32

When applied to a system of electrons, such shaped pulses
act as electrical “steering forces” for the particles and can
thus be used to coherently control their temporal evolution.
For example, such techniques allow atoms to excite and sta-
bilize quasiclassical Rydberg wave packets of electrons,
which orbit at extreme distances from the nucleus with very
small dispersion.33 Alternatively, the ionization process of
atoms can be controlled in a phase-sensitive manner with the
correct choice of time-dependent light fields.34 Even more
spectacular experiments have been demonstrated in the field
called “femtochemistry,” where complex chemical reactions
could be steered into a desired reaction pathway with various
coherent control methods.35 In these cases, one often had to
use evolutionary pulse optimization to find the optimum light
pulse shape. Of course, several coherent control experiments
have been demonstrated with semiconductor nanostructures
as well, and some of those were performed in the lower-
frequency regime of intra-conduction-band transitions in
which we are mostly interested here.36

As we have already pointed out in the Introduction, me-
sodots are particularly well suited for coherent control be-
cause of their tunable properties, low dispersion, and statis-
tical stability of the superparticle and high polarizability of
the corresponding oscillator. In addition, one can also think
of more complex potential landscapes, tailor-made for the
purpose of all-optical control of a many-electron system.

The simplest type of such experiments would be indepen-
dent control of the stationary orbital radiusrorb (or potential
energy Epot=arorb

2 ) and velocity vorb [or kinetic energy
Ekin=sm! /2dvorb

2 ] of the superparticle. To achieve this,
one has to choose the frequency of the exciting light force
as v=vorb/ rorb and its amplitude as Fext

=rorbÎs2a−m!v2d2+s2gvd2. Note that in the limit of small
friction g→0, resonant excitation will always lead to a situ-
ation with Epot=Ekin. In order to establish, say, an orbit with
large radius but small kinetic energy(below the optical pho-
non threshold), nonresonant excitation is required. In such an
experiment, one could, for instance, drive the superparticle
gradually out of the parabolic confinement regime and
thereby excite its internal vibrational modes. The success of
the control could be monitored by detecting coherently the
emitted radiation of the accelerated supercharge.

Periodic orbits more complex than circles or ellipses and
nonperiodic motions of the electron lake are also excitable
with suitable light fields. If we treat phonon scattering in the
approximative model of a velocity-dependent effective fric-
tion force, we can actually choose an arbitrary orbitrWstd for
the superparticle, insert it into Newton’s equation of motion,

and directly compute the required light control forceFW exstd
=2arWstd+2grẆstd+m!rẄstd. However, once the superparticle
leaves the parabolic regime, it will start to disperse spatially
and its control becomes much more demanding(and inter-
esting).

An extreme departure of the superparticle from the poten-
tial minimum to beyond the binding region corresponds to an
ionization of the mesodot. Another example of “femtochem-
istry” in semiconductor nanostructures would be the all-
optical transfer of the superparticle from one mesodot to a
close by neighbor. Using molecular dynamics simulations
with up to 100 Coulomb interacting electrons in mesoscopic
multidot potentials, we have simulated a transfer. It was
found that such an experiment seems to be feasible with
current techniques. However, these numerical results will be
published separately in another paper.

IV. SUMMARY AND OUTLOOK

In this paper we have proposed to use spatially selective
doping techniques like the focused ion beam technique to
create designable lateral potential landscapes within the
plane of a quantum well. In the simplest case, this would be
a rotationally symmetric potential minimum, termed a me-
sodot. Compared to self-organized quantum dots, typical me-
sodots have a very flat confinement potential and small reso-
nance energies of the corresponding harmonic oscillator.
They can host hundreds or thousands of electrons, which will
at low temperatures form a confined, classical Wigner crystal
of mesoscopically large radius. At somewhat higher tempera-
tures the crystal will melt and form a “Wigner lake.” It is
dynamically characterized by center-of-mass coordinates and
a large number of internal degrees of freedom.

Within the parabolic confinement regime, the electrons in
the Wigner lake collectively respond to time-dependent di-
pole fields as a single superparticle of giant charge, which
can be identified with the c.m. of the ensemble.

Random phonon scattering events of the individual elec-
trons can temporarily disturb the inner configuration of the
lake, but the combination of parabolic confinement forces
and the electron’s mutual Coulomb repulsion leads to an ef-
fective restoration mechanism. In addition, the Brownian
fluctuations of the superparticle are statistically reduced
compared to those of the constituent electrons. As a simple
approximation, it may therefore be possible to describe the
effect of the phonon collisions on the superparticle level as a
deterministic, velocity-dependent friction force. Since the ki-
netic energies of the electrons can be kept below the optical
phonon threshold in our mesoscopic system, it is possible to
turn off the most critical decoherence mechanism in host
semiconductors like, e.g., GaAs.

As a collective oscillator, the superparticle bound in a
typical mesodot will have a high polarizability, due to the
high charge and weak binding. Already with relatively weak
continuous-wave excitation it can be driven on a mesoscopi-
cally large orbit, which could be monitored using the coher-
ently emitted radiation of the accelerated charge. Also, the
induced electric(near) field will be sufficiently strong to en-
able significant Coulomb coupling between neighboring me-
sodots, opening the way to arrays and more complex opti-
cally active systems. Furthermore, such designable potential
landscapes would be ideally suited for coherent control ex-
periments of various kinds. In particular, the superparticle
can in principle be steered to follow any desired mesoscopic
orbit, at least within the parabolic region.
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For stronger(but feasible) optical excitation, the superpar-
ticle starts to probe the nonparabolic outer part of the lateral
confinement potential, leading to various nonlinear effects.
In this regime the superparticle’s c.m. and internal degrees of
freedom are no longer decoupled. This allows us, for ex-
ample, to excite lattice vibrations of the Wigner crystal even
with dipole radiation. At the same time, of course, the com-
pactness of the superparticle will be lost and the Coulomb
repulsion will cause dispersion. In the extreme case, the me-
sodot can be “ionized” partially or completely in a(coher-
ently) controlled way. In particular, it should be possible to
transfer a superparticle all optically from one mesodot to a

close by neighbor. It would stay there for a long time in a
metastable state(high potential barriers and mesoscopic spa-
tial distances prevent a return to the first minimum by ther-
mal or tunneling processes), until a second shaped optical
pulse brings it back.

In order to further investigate the behavior of interacting
groups of classical electrons in mesoscopic potential land-
scapes under the presence of phonon scattering, we have
performed extended molecular dynamics simulations(to be
published in a forthcoming paper), which theoretically con-
firm the above expectations. We hope that our article will
also stimulate some experimental investigations in the pro-
posed directions.
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