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The existence of resonant enhanced transmission and the collimation of light waves by subwavelength slits
in metal films[for example, see Ebbesenet al., Nature(London) 391, 667 (1998) and Lezecet al., Science
297, 820 (2002)] leads to the basic question: Can a light pulse be enhanced and simultaneously localized in
space and time by a subwavelength slit? To address this question, the spatial distribution of the energy flux of
an ultrashort(femtosecond) wave packet diffracted by a subwavelength(nanometer-size) slit was analyzed by
using the conventional approach based on the Neerhoff and Mur solution of Maxwell’s equations. The results
show that a light pulse can be enhanced by orders of magnitude and simultaneously localized in the near-field
diffraction zone at the nm and fs scales. Possible applications in nanophotonics are discussed.
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I. INTRODUCTION

In the last decade nanostructured optical elements based
on the scattering of light waves by subwavelength-size metal
objects, such as particles and screen holes, have been inves-
tigated intensively. The most impressive features of the op-
tical elements are resonant enhancement and spatial localiza-
tion of optical fields by the excitation of electron waves in
the metal(for example, see the studies in Refs. 1–37). Re-
cently some nanostructures, namely a single subwavelength
slit, a grating with subwavevelength slits, and a subwave-
length slit surrounded by parallel deep and narrow grooves
attracted a particular attention of researchers. The study of
resonant enhanced transmission and the collimation of waves
in close proximity to a single subwavelength slit acting as a
microscope probe1–3 was connected with the developing
near-field scanning microwave and optical microscopes with
subwavelength resolution.4–7 The resonant transmission of
light by a grating with subwavelength slits or a subwave-
length slit surrounded by grooves is an important effect for
nanophotonics.8–11 The transmissivity, on the resonance, can
be orders of magnitude greater than out of the resonance. It
was understood that the enhancement effect has a two-fold
origin: First, the field increases due to a pure geometrical
reason, the coupling of incident plane waves with waveguide
mode resonances located in the slit, and further enhancement
arises due to the excitation of coupled surface plasmon po-
laritons localized on both surfaces of the slit(grating).10–12A
dominant mechanism responsible for the extraordinary trans-
mission is the resonant excitation of the waveguide mode in
the slit giving a Fabry-Perot like behavior.11 In addition to
the extraordinary transmission, a series of parallel grooves
surrounding a nanometer-size slit can produce a micrometer-
size beam that spreads to an angle of only few degrees.9 The
light collimation, in this case, is achieved by the excitation of
coupled surface plasmon polaritons in the grooves.12 At ap-
propriate conditions, a single subwavelength slit flanked by a
finite array of grooves can act as a “lens” focusing light.13 It

should be noted that the diffractive spreading of a beam can
be reduced also by using a structured aperture or an effective
nanolens formed by a self-similar linear chain of metal
nanospheres.14,15

New aspects of the problem of resonantly enhanced trans-
mission and the collimation of light are revealed when the
nanostructures are illuminated by an ultra-short(femtosec-
ond) light pulse.16–20 For instance, in the study,16 the unique
possibility of concentrating the energy of an ultrafast excita-
tion of an “engineered” or a random nanosystem in a small
part of the whole system by means of phase modulation of
the exciting fs pulse was predicted. The study17 theoretically
demonstrated the feasibility of nm-scale localization and
distortion-free transmission of fs visible pulses by a single
metal slit, and further suggested the feasibility of simulta-
neous super resolution in space and time of the near-field
scanning optical microscopy(NSOM). The quasi-diffraction-
free optics based on the transmission of pulses by a subwave-
length nano-slit has been suggested to extend the operation
principle of a 2D NSOM to the “not-too-distant” field regime
(up to ,0.5 wavelength).18 Some interesting effects, namely
the pulse delay and long living resonant excitations of elec-
tromagnetic fields in the resonant-transition gratings, were
recently described in the studies.19,20

The great interest to resonant enhanced transmission, spa-
tial localization(collimation) of continuous waves, and light
pulses by subwavelength metal slits leads to the basic ques-
tion: Can a light pulse be enhanced and simultaneously lo-
calized in space and time by a subwavelength slit? If the field
enhancement can be achieved together with nm-scale spatial
and fs-scale temporal localizations, this could greatly in-
crease the potentials of the nanoslit systems in high-
resolution applications, especially in near-field scanning mi-
croscopy and spectroscopy. In the present article we test
whether the resonant enhancement could only be obtained at
the expense of the spatial and temporal broadening of a light
wavepacket. To address this question, the spatial distribution
of the energy flux of an ultrashort(fs) pulse diffracted by a
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subwavelength(nanosized) slit in a thick metal film of per-
fect conductivity will be analyzed by using the conventional
approach based on the Neerhoff and Mur solution of Max-
well’s equations. In short, we first will summarize the theo-
retical development of Neerhoff and Mur(Sec. II) and the
model will then be used to calculate the spatial distribution
of the energy flux of the transmitted pulse(wavepacket) un-
der various regimes of the near-field diffraction(Sec. III).
We will show that a light pulse can be enhanced by orders of
magnitude and simultaneously localized in the near-field dif-
fraction zone at the nm and fs scales. The implications of the
results for diffraction-unlimited near- and far-field optics will
then be discussed. In Sec. IV we summarize the results and
present the conclusions.

II. THEORETICAL BACKGROUND

An adequate description of the transmission of light
through a subwavelength nano-sized slit in a thick metal film
requires a solution of Maxwell’s equations with complicated
boundary conditions. The light-slit interaction problem even
for a continuous wave can be solved only by extended two-
dimensional sx,zd numerical computations. The three-
dimensionalsx,z,td character of the pulse-slit interaction
makes the numerical analysis even more difficult. Let us
consider the near-field diffraction of an ultrashort pulse
(wavepacket) by a subwavelength slit in a thick metal screen
of perfect conductivity by using the conventional approach
based on the Neerhoff and Mur solution of Maxwell’s equa-
tions. Before presenting a treatment of the problem for a
wavepacket, we briefly describe the Neerhoff and Mur
formulation1,3 for a continuous wave(a Fourierv component
of a wavepacket). The transmission of a plane continuous
wave through a slit(waveguide) of width 2a in a screen of
thicknessb is considered. The perfectly conducting nonmag-
netic screen placed in vacuum is illuminated by a normally
incident plane wave under TM polarization(magnetic-field
vector parallel to the slit), as shown in Fig. 1. The magnetic
field of the wave is assumed to be time harmonic and con-
stant in they direction:

HW sx,y,z,td = Usx,zdexps− ivtdeWy. s1d

The electric field of the wave(1) is found from the scalar
field Usx,zd using Maxwell’s equations:

Exsx,z,td = −
ic

ve1
]zUsx,zdexps− ivtd, s2d

Eysx,z,td = 0, s3d

Ezsx,z,td =
ic

ve1
]xUsx,zdexps− ivtd. s4d

Notice that the restrictions in Eq.(1) reduce the diffraction
problem to one involving a single scalar fieldUsx,zd in two
dimensions. The field is represented byUjsx,zd (j =1,2,3 in
each of the three regions I, II, and III). The field satisfies the
Helmholtz equation:

s¹2 + kj
2dUj = 0, s5d

wherej =1, 2, 3. In region I, the fieldU1sx,zd is decomposed
into three components:

U1sx,zd = Uisx,zd + Ursx,zd + Udsx,zd, s6d

each of which satisfies the Helmholtz equation.Ui represents
the incident field, which is assumed to be a plane wave of
unit amplitude:

Uisx,zd = exps− ik1zd. s7d

Ur denotes the field that would be reflected if there were no
slit in the screen and thus satisfies

Ursx,zd = Uisx,2b − zd. s8d

Ud describes the diffracted field in region I due to the pres-
ence of the slit. With the above set of equations and standard
boundary conditions for a perfectly conducting screen, a
unique solution exists for the diffraction problem. To find the
field, the 2-dimensional Green’s theorem is applied with one
function given byUsx,zd and the other by a conventional
Green’s function:

s¹2 + kj
2dGj = − dsx − x8,z− z8d, s9d

wheresx,zd refers to a field point of interest;x8 ,z8 are inte-
gration variables,j =1, 2, 3. SinceUj satisfies the Helmholtz
equation, Green’s theorem reduces to

Usx,zd =E
Boundary

sG ]nU − U ]nGddS. s10d

The unknown fieldsUdsx,zd ,U3sx,zd, andU2sx,zd are found
using the reduced Green’s theorem and boundary conditions
on G,

Udsx,zd = −
e1

e2
E

−a

a

G1sx,z;x8,bdDUbsx8ddx8, s11d

for b,z,`,

U3sx,zd =
e3

e2
E

−a

a

G3sx,z;x8,0dDU0sx8ddx8, s12d

for −`,z,0,

FIG. 1. Propagation of a continuous wave through a subwave-
length nano-sized slit in a thick metal film.
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U2sx,zd = −E
−a

a

fG2sx,z;x8,0dDU0sx8d

− U0sx8d]z8G2sx,z;x8,z8duz→0+dx8

+E
−a

a

fG2sx,z;x8,bdDUbsx8d

− Ubsx8d]z8G2sx,z;x8,z8duz→b−dx8, s13d

for uxu,a and 0,z,b. The boundary fields in Eqs.
(11)–(13) are defined by

U0sxd = U2sx,zduz→0+, s14d

DU0sxd = ]zU2sx,zduz→0+, s15d

Ubsxd = U2sx,zduz→b−, s16d

DUbsxd = ]zU2sx,zduz→b−. s17d

In regions I and III the two Green’s functions in Eqs.(11)
and (12) are given by

G1sx,z;x8,z8d =
i

4
fH0

s1dsk1Rd + H0
s1dsk1R8dg, s18d

G3sx,z;x8,z8d =
i

4
fH0

s1dsk3Rd + H0
s1dsk3R9dg, s19d

with

R= fsx − x8d2 + sz− z8d2g1/2, s20d

R8 = fsx − x8d2 + sz+ z8 − 2bd2g1/2, s21d

R9 = fsx − x8d2 + sz+ z8d2g1/2, s22d

whereH0
s1d is the Hankel function. In region II, the Green’s

function in Eq.(13) is given by

G2sx,z;x8,z8d =
i

4ag0
expsig0uz− z8ud +

i

2a
o
m=1

`

gm
−1

3 cosfmpsx + ad/2agcosfmpsx8 + ad/2ag

3 expsigmuz− z8ud, s23d

wheregm=fk2
2−smp /2ad2g1/2. The field can be found at any

point once the four unknown functions in Eqs.(14)–(17)
have been determined. The functions are completely deter-
mined by a set of four integral equations:

2Ub
i sxd − Ubsxd =

e1

e2
E

−a

a

G1sx,b;x8,bdDUbsx8ddx8, s24d

U0sxd =
e3

e2
E

−a

a

G3sx,0;x8,0dDU0sx8ddx8, s25d

1

2
Ubsxd = −E

−a

a FG2sx,b;x8,0dDU0sx8d

− U0sx8d]z8G2sx,b;x8,z8dUz→0+Gdx8

+E
−a

a

fG2sx,b;x8,bdDUbsx8dgdx8, s26d

1

2
U0sxd =E

−a

a

fG2sx,0;x8,bdDUbsx8d

− Ubsx8d]z8G2sx,0;x8,z8duz→b−dx8

−E
−a

a

fG2sx,0;x8,0dDU0sx8dgdx8, s27d

whereuxu,a, and

Ub
i sxd = exps− ik1bd. s28d

The coupled integral equations(24)–(27) for the four bound-

ary functions are solved numerically. The magneticHW sx,z,td
and electricEW sx,z,td fields of the diffracted wave in region
III are found by using Eq.(12). The fields are given by

HW sx,z,td = i
a

N

e3

e2
o
j=1

N

H0
s1dfk3

Îsx − xjd2 + z2g

3sDUW 0d j exps− ivtdeWy, s29d

Exsx,z,td = −
a

N

Îe3

e2
o
j=1

N
z

Îsx − xjd2 + z2
H1

s1dfk3
Îsx − xjd2 + z2g

3 sDUW 0d j exps− ivtd, s30d

Eysx,z,td = 0, s31d

Ezsx,z,td =
a

N

Îe3

e2
o
j=1

N
x − xj

Îsx − xjd2 + z2
H1

s1dfk3
Îsx − xjd2 + z2g

3 sDUW 0d j exps− ivtd, s32d

where xj =2as j −1/2d /N−a, j =1,2,… ,N;N.2a/z;H1
s1d is

the Hankel function. The coefficientssDUW 0d j are found by
solving numerically the four integral equations(24)–(27).
For more details of the model and the numerical solution of
the coupled integral equations(24)–(27) see Refs. 1,3.

Let us now consider the diffraction of an ultra-short pulse
(wavepacket). The magnetic field of the incident pulse is
assumed to be Gaussian-shaped in time and both polarized
and constant in they direction:

HW sx,y,z,td = Usx,zdexpf− 2 lns2dst/td2gexps− iv0tdeWy,

s33d

wheret is the pulse duration andv0=2pc/l0 is the central
frequency. The pulse can be composed in the wavepacket
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form of a Fourier time expansion(for example, see Refs.
17,18):

HW sx,y,z,td =E
−`

`

HW sx,z,vdexps− ivtddv. s34d

The electric and magnetic fields of the diffracted pulse are
found by using the expressions(1)–(32) for each Fourierv
component of the wavepacket(34). This algorithm is imple-
mented numerically by using the discrete Fast Fourier-
Transform (FFT) instead of the integral(34). The spectral
interval fvmin,vmaxg and the sampling pointsvi are opti-
mized by matching the FFT result to the original function
(33).

The above presented approach deals with the incident
waves having TM polarization. This polarization is consid-
ered for the following reasons. According to the theory of
waveguides, the vectorial wave equations for this polariza-
tion can be reduced to one scalar equation describing the
magnetic fieldH of TM modes. The electric componentE of
these modes is found using the fieldH and Maxwell’s equa-
tions. The reduction simplifies the diffraction problem to one
involving a single scalar field in only two dimensions. The
TM scalar equation for the componentH is decoupled from
the similar scalar equation describing the fieldE of TE
(transverse electric) modes. Hence, the formalism works
analogously for TE polarization exchanging theE and H
fields. Moreover, in the case of perfectly conducting non-
magnetic screen placed in the vacuum considered in the
present paper, the symmetry of wave equations indicates that
large transmission coefficients(enhancement effect) do exist
at the same experimental conditions for the TM and TE po-
larizations.

III. NUMERICAL ANALYSIS AND DISCUSSION

In this section, we test whether a light pulse can be reso-
nantly enhanced and simultaneously localized in space and
time by a subwavelength nano-sized metal slit. To address
this question, the spatial distribution of the energy flux of the
transmitted pulse under various regimes of the near-field dif-

fraction is analyzed numerically. The electricEW and magnetic

HW fields of the transmitted pulse in the near-field diffraction
zone are computed by solving the equations(1)–(32) for
each Fourierv component of the wavepacket(34). The am-
plitude of a FFTv component of the wavepacket transmitted
through the slit depends on the wavelengthl=2pc/v. Ow-
ing to the dispersion, the Fourier spectra of the transmitted
wavepacket changes leading to a modification of the pulse
width and duration. The dispersion of a continuous wave is
usually described by the normalized transmission coefficient
Tcwsld, which is calculated by integrating the normalized
energy fluxSz/Sz

i over the slit width:1,3

Tcw = −
Îe1

4a
E

−a

a

lim
z→0−

fsExHy
* + Ex

*Hydgdx, s35d

where Sz
i is the energy flux of the incident wave of unit

amplitude;Sz is the transmitted flux. Equation(35), which

includes the evanescent modes that decay in the far zone,
defines the transmission coefficient in the near-field zone. In
order to establish guidelines for the results of our numerical
analysis, we computed the transmission coefficient
Tcwsl ,a,bd for a continuous wave(Fourierv component) as
a function of screen thicknessb and/or wavelengthl for
different values of slit width 2a. Throughout the computa-
tions, the magnitude of the incident magnetic field is as-
sumed to be equal to 1. We consider a perfectly conducting
nonmagnetic screen placed in vacuumse1=e2=e3=1d As an
example, the dependenceTcw=Tcwsbd computed for the
wavelength l=800 nm and the slit width 2a=25 nm is
shown in Fig. 2. The dispersionTcw=Tcwsld for 2a=25 nm
and different values of the screen thicknessb is presented in
Fig. 3. In Fig. 2, we note the transmission resonances ofl /2
periodicity with the peak heightsTcw<l /2pa at the reso-
nances. Notice that the resonance positions and the peak
heights are in agreement with the results.2,3 The resonance

FIG. 2. The transmission coefficientTcw for a continuous wave
(v-Fourier component of a wavepacket) as a function of screen
thicknessb computed for the wavelengthl=800 nm and the slit
width 2a=25 nm. Curves A, B, and C correspond to the numerical
near-field formula(35), the analytical near-field formula(36) and
the analytical far-field formula(39), respectively. For computational
reasons, in the case of curve C the limits of the integral were chosen
to −1000l and 1000l instead of −̀ and `; the computation was
performed atz=−10l.

FIG. 3. The dispersionTcw=Tcwsld for a continuous wave
(v-Fourier component of a wavepacket) computed for the slit width
2a=25 nm and different values of the screen thicknessb: A—350
nm and B—200 nm. The Fourier spectra(curves C and D) are
presented for the comparison. Curves C and D show the Fourier
spectra of incident wavepackets with central wavelengthl0

=800 nm and durationt=100 fs andt=5 fs, respectively, which
were used in the computations presented in Figs. 4 and 5.
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peaks appear with a spacing of 400 nm, but at values some-
what smaller than 400, 800, 1200 nm, etc. In order to better
understand the shift of the resonant wavelengths from the
naively expected values we have derived a simple analytical
formula (36) for the transmission coefficientTcw
=Tcwsa,b,ld of a narrow slit(the fundamental mode only is
retained):

Tcwsa,b,ld =
a

2sp/ld
fsRe„Dsb,ld…d2 + sIm„Dsb,ld…d2g,

s36d

where

Dsb,ld =
4

2isp/ldFFexpS2ib
p

l
DSAsld −

i

2p/l
DG2

− SAsld +
i

2p/l
D2G−1

s37d

and

Asld = iaFH0
s1dsld +

p

2
(H0sld ·H1

s1dsld + H1sld ·H0
s1dsld)G .

s38d

In Eq. (38), H0
s1dsld and H1

s1dsld are the Hankel functions,
while H0sld andH1sld are the Struve functions. It is inter-
esting to compare the “near-field”sz!ld transmittance with
the conventional “far-zone”sz@ld transmittance measured
in experiments. The transmittance in the far-field zone can be
described by the following formula:

Tcw = −
Îe1

4a
E

−`

`

sExHy
* + Ex

*Hyddx. s39d

Figure 2 compares the transmission coefficientsTcw=Tcwsbd
calculated by using the formula(36) with the values given by
the numerical solution of the equations(24)–(27) and (35)
and the values obtained from the evaluation of(39). We no-
tice that the results are practically undistinguishable. An
analysis of the denominator of the formula(36) indicates that
for 2a/l small enough, the transmissionTcw=Tcwsbd will
exhibit the maximums around wavelengths,l /2. The shifts
of the resonance wavelengths from the valuel /2 are caused
by the wavelength dependent terms in the denominator of
Eq. (36).

The dispersionTcw=Tcwsld presented in Fig. 3 indicates
the wave-slit interaction behavior, which is similar to those
of a Fabry-Perot resonator. The transmission resonance
peaks, however, have a systematic shift towards longer
wavelengths. An analysis of the denominator of the formula
(36) indicates that for 2a/l small enough, the transmission
Tcw=Tcwsld will exhibit the Fabry-Perot like maximums
around wavelengths where sinskbd is zero. Such a behavior
has already been described in Refs. 11,21,22. The shifts of
the resonance wavelengths from the Fabry-Perot resonances
are caused by the wavelength dependent terms in the de-
nominator of Eq.(36). It should be noted that the values of
the shifts calculated using Eq.(36) are in good agreement

with the shifts calculated using the analytical formula(8) of
the study.21 Our computations showed that the peak heights
at the main(strongest) resonant wavelengthl0

R (in the case
of Fig. 3, l0

R=500 or 800 nm) are given byTcwsl0
R,ad

<l0
R/2pa. Notice that the Fabry-Perot like behavior of the

transmission coefficient is in agreement with analytical and
experimental results published earlier.21,22 The enhancement
coefficient sTcw,30d calculated using Eqs.(35) and (36),
however, is different from the attenuationsTcw,1d predicted
by the study.21 The one order difference between the experi-
mental value and the enhancement calculated in the present
article is attributed to the small transverse dimensionDsD
,l /2d of the metal plates that form the slit. In our calcula-
tions we studied a slit in the infinite transverse dimension
sD=`d.

An analysis of Fig. 3 indicates that a minimum thickness
of the screen is required to get the waveguide resonance
inside the slit at a given wavelength. The result is in agree-
ment with the study,21 which demonstrated that there is no
transmission peaks at the conditionb,l /2. Notice that the
transmission enhancement mediated by surface plasmons
does exist at considerably smaller thicknesses of the metal in
comparison with the thickness required for the waveguide
resonance. The surface plasmons/polaritons are excited in the
skin, the depth of which is about the extinction length of the
energy decay of an electromagnetic wave in the metal. For
instance, the extinction length in an aluminum screen is
,4 nm for l=800 nm. Therefore, for not too narrow slits
s2a=25 nmd in thick screens(b=200 and 350 nm) consid-
ered in the paper, the finite skin depth does not fundamen-
tally modify the process of the extraordinary optical trans-
mission. At the wavelength 800 nm, the 10-times
enhancementfTcwsa,ld<l /2pa<10g is limited by the slit
width s2a=25 nmd. In the far-infrared regionsl<100 mmd
several orders of magnitude enhancement can be achieved at
the same experimental conditions. It should be noted that the
optimal choice of parameters has been discussed in the lit-
erature and the obtained enhancement by the factors 10 and
1000 are typical for continuous waves in the optical and
far-infrared spectral ranges. In the case of narrower and thin-
ner slits, however, the influence of the finite conductivity
effects on the transmission and localization of a pulse should
be taken into account.3,21

The existence of transmission resonances for Fourierv
components of a wavepacket leads to the following question:
What effect does the resonant enhancement have on the spa-
tial and temporal localization of a light pulse? Presumably,
the high transmission at resonance occurs when the system
efficiently channels Fourier components of the wavepacket
from a wide area through the slit. At resonance, one might
assume that if the energy flow is symmetric about the screen,
the pulse width and duration should increase very rapidly
past the screen. Thus the large pulse strength associated with
resonance could only be obtained at the expense of the spa-
tial and temporal broadening of the wavepacket. To test this
hypothesis, the spatial distributions of the energy flux of a
transmitted wavepacket were computed for different slit
thicknesses corresponding to the resonance and anti-
resonance position. The characteristic difference between the
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resonant and nonresonant transmissions could be understood
better through a single figure of the field distributions in all
regions I, II, and III. However, it seems to be impossible to
do this, because the visualization of a pulse by a single figure
requires a 4-dimensionalsU ,x,z,td coordinate system or a
great number of 3-dimensional figures at different locations
and suitable fixed times in all the regions. Therefore we
present the eight 3-dimensional distributions[Figs. 4(a)–4(d)
and 5(a)–5(d)] only in the zone of main interest(region III).
As an example, Figs. 4(a) and 5(a) show the energy flux of
the anti-resonantly transmitted pulses. Figures 4(b) and 5(b)
correspond to the case of the waveguide-mode resonance in
the slit. Figures 4 and 5 show the transmitted pulses at the
distancesuzu=a/2 anda, respectively. The rigorous analysis3

showed that the number of modes required for the accurate
computation of the transmittance, near-field distribution, and
other optical characteristics of the system is given by
N.2a/z, whereN is the number of the waveguide modes
and z is the distance from the screen. Therefore at the dis-
tancesuzu=a/2 anda the calculations required at least 4 and
2 modes, respectively.

The shape and intensity of an output pulse depends on the
slit parameters and the spectral width of the pulse. For nar-
row slits, the spectral width of a 100-fs input pulse is smaller
compared to the spectral width of the resonant transmission
(see Fig. 3). The comparison of the flux distribution pre-
sented in Fig. 4(a) with that of Fig. 4(b) shows that, for the
parameter values adopted, a transmitted wavepacket is en-
hanced by one order of magnitude and simultaneously local-
ized in the 25-nm and 100-fs domains of the near-field dif-
fraction zone. The shapes of the intensity distributions of the
output pulses are very much the same off and on resonance.

The figures differ only in the order of magnitude ofSz. Thus
at the distanceuzu=a/2, the slit resonantly enhances the in-
tensity of the pulse without its spatial and temporal broaden-
ing. The result can be easily understood by considering the
dispersion properties of the slit. For the screen thicknessb
=200 nm, the amplitudes of the Fourier components of the
wavepacket, whose central wavelengthl0 is detuned from
the main(at 500 nm) resonance, are practically unchanged in
the wavelength region near 800 nm(see curve B in Fig. 3).
This provides the dispersion- and distortion-free nonresonant
transmission of the wavepacket[Figs. 4(a) and 5(a)]. In the
case of the thicker screensb=350 nmd, the slit transmission
experiences a strong mode-coupling regime at the wave-
lengths near 800 nm(see curve A of Fig. 3) that leads to a
profound and uniform enhancement of amplitudes of all of
the Fourierv components of the wavepacket(see curve C in
Fig. 3). Thus, the slit resonantly enhances by one order of
magnitude the intensity of the pulse without its spatial and
temporal broadenings[Figs. 4(b) and 5(b)]. Also, notice that
at the distanceuzu=a [Figs. 5(a) and 5(b)], both the reso-
nantly and anti-resonantly transmitted pulses experience
natural spatial broadening in the transverse direction, while
their durations are practically unchanged. The spectral width
of a 5-fs input pulse, however, is bigger than the spectral
width of the resonant transmission(Fig. 3). In this case the
durations of the resonantly transmitted 5-fs pulses are longer
in comparison with the pulses transmitted off the resonance
[Figs. 4(c) and 4(d) and, respectively, 5(c) and 5(d)]. We also
notice that the enhancement of the intensity of 5-fs pulses is
approximately two times lower in comparison with the
100-fs pulses. The temporal broadening of the pulse and the
decrease of the enhancement indicates a natural limitation for

FIG. 4. The energy flux of a transmitted pulse at the distanceuzu=a/2. (a), (c) The nonresonant transmission by the slit(2a=25 nm,
b=200 nm;t=100 fs and 5 fs, respectively). (b), (d) The resonant transmission by the slit(2a=25 nm,b=350 nm;t=100 fs and 5 fs,
respectively). The central wavelength of the incident wavepacket isl0=800 nm.
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the simultaneous temporal and spatial localization of a pulse
together with its enhancement.

By comparing the data for anti-resonant and resonant
transmissions presented in Figs. 4 and 5 one can see that at
the appropriate values of the distanceuzu and the wavepacket
spectral widthDv the resonance effect does not influence the
spatial and temporal localization of the wavepacket. To
verify this somewhat unexpected result, the FWHMs of the
transmitted pulse in the transverse and longitudinal direc-
tions were calculated for different values of the slit width 2a,
central wavelengthl0 and pulse durationt<1/Dvp as a
function of screen thicknessb at two particular near-field
distancesuzu=a/2 anda from the screen. It was seen that, at
the dispersion-free resonant transmission condition
Dvp,Dvr, the transmitted pulse indeed does not experience
temporal broadening. Thus the temporal localization associ-
ated with the durationt of the incident pulse remains prac-
tically unchanged under the transmission. The value oft is
determined by the dispersion-free conditiont
<1/Dvp.1/Dvr, whereDvr =Dvrsad practically does not
depend on the screen thicknessb. We found that the energy
flux of the transmitted wavepacket can be enhanced by a
factor Tcwsl0

R,ad<l0
R/2pa by the appropriate adjusting of

the screen thicknessb=bsl0
Rd, for an example see Figs. 3–5.

Thus the wavepacket can be enhanced by a factorl0
R/2pa

and simultaneously localized in the time domain at thet
=tsad scale. It was also seen that the FWHM of the trans-
mitted pulse in the transverse direction depends on the wave-
packet central wavelengthl0 and the distancez from the slit.
Nevertheless, the FWHM of the transmitted pulse can be

always reduced to the value 2a by the appropriate decreasing
of the distanceuzu= uzsadu from the screen(uzu=a/2, in the
case of Fig. 4). Thus high transmission can be achieved with-
out concurrent loss in the degree of temporal and spatial
localizations of the pulse. In retrospect, this result is reason-
able, since the symmetry of the problem for a time-harmonic
continuous wave(Fourierv component of a wavepacket) is
disrupted by the presence of the initial and reflected fields in
addition to the diffracted field on one side[Eq. (6)]. As the
thickness changes, the fieldsUd andU3 change only in mag-
nitude, but the fieldU1 changes in distribution as well since
it involves the sum ofUd with unchanging fieldsUi andUr.
At resonance, the distribution ofU1 leads to channeling of
the radiation, but the distribution ofU3 remains unaffected.
By the appropriate adjusting of the slit-pulse parameters a
light pulse can be enhanced by orders of magnitude and si-
multaneously localized in the near-field diffraction zone at
the nm and fs scales.

The limitations of the above analysis must be considered
before the results are used for a particular experimental de-
vice. The resonant enhancement with simultaneous nm-scale
spatial and fs-scale temporal localizations of a light by a
subwavelength metal nano-slit is a consequence of the as-
sumption of the screen perfect conductivity. The slit can be
made of perfectly conductive(at low temperatures) materi-
als. In the context of current technology, however, the use of
conventional materials like metal films at room temperature
is more practical. Notice that a metal can be considered as a
perfect conductor in the microwave range. As a general cri-
terion, the perfect conductivity assumption should remain
valid as far as the slit width and the screen thickness exceed

FIG. 5. The energy flux of a transmitted pulse at the distanceuzu=a. (a), (c) The nonresonant transmission by the slit(2a=25 nm,
b=200 nm;t=100 fs and 5 fs, respectively). (b) The resonant transmission by the slit(2a=25 nm,b=350 nm;t=100 fs and 5 fs, respec-
tively). The central wavelength of the incident wavepacket isl0=800 nm.
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the extinction length for the Fourierv components of a
wavepacket within the metal. The light intensity decays in
the metal screen at the rate ofIs= I0 exps−b/dd, where d
=dsld is the extinction length in the screen. The aluminum
has the largest opacitysd,11 nmd in the spectral region
l.100 nm.17 The extinction length increases from 11 to 220
nm with decreasing the wavelength from 100 to 50 nm.
Hence, the perfect conductivity is a very good approximation
in a situation involving a relatively thicksb.25 nmd alumi-
num screen and a wavepacket of the durationt<1/Dvp hav-
ing the Fourier components in the spectral region
l.100 nm. However, in the case of thinner screens, shorter
pulses and smaller central wavelengths of wavepackets, the
metal films are not completely opaque. This would reduce a
value of spatial localization of a pulse due to passage of the
light through the screen in the region away from the slit.
Moreover, the phase shifts of the Fourier components along
the propagation path caused by the skin effect can modify the
enhancement coefficient and temporal localization properties
of the slit.

The above analysis is directly applicable to the two-
dimensional near-field scanning optical microscopy and
spectroscopy. Although the computations were performed in
the case of normal incidence, the preliminary analysis shows
that in the case of oblique incidence the enhancement effect
can be kept without further spatial and temporal broadening
of the pulse. In a conventional 2D NSOM, a subwavelength
s2a,ld slit illuminated by a continuous wave is used as a
near-fieldsuzu,ad light source providing the nm-scale reso-
lution in space.3–5,7 The nonresonant transmission of fs
pulses could provide ultrahigh resolution of 2D NSOM si-
multaneously in space and time.17,18 The above-described
resonantly enhanced transmission together with nm- and fs-
scale localizations in the space and time of a pulse could
greatly increase the potentials of the 2D near-field scanning
optical microscopy and spectroscopy, especially in high-
resolution applications. However, as a model for a NSOM tip
a hole (quadratic, rectangular, or circular) would be more
appropriate than a slit-type waveguide. The consequences of
the limitation of region II also in they direction will result in
faster attenuation of the amplitude of the waveguide modes
compared to the slit-type waveguide modes.3 This should
affect the enhancement and spatial and temporal broadening
of the pulse. Moreover, the walls of the 2D slit have to be
parallel over all the thickness to provide the resonance en-
hancement effect. Pulled NSOM 3D tips, however, usually
have conical ends. In the case of the tapered NSOM 3D
waveguides one should also take into account the decrease of
the resonant enhancement effect with an increase of the
waveguide taper angle. It should be also noted that the high
transmission fTcwsl0

R,ad<l0
R/2pag of a pulse can be

achieved without concurrent loss in the temporal and spatial

localizations of the pulse only at shortfuzu= uzsadug distances
from the slit. The presence of a microscopic sample(a mol-
ecule, for example) placed at the short distance in strong
interaction with the NSOM slit modifies the boundary con-
ditions. In the case of a strong slit-sample-pulse interaction,
which takes place at the distanceuzu!0.1a, the response
function accounting for the modification of the quantum me-
chanical behavior of the sample should be taken into consid-
eration. The potential applications of the effect of the reso-
nantly enhanced transmission together with nm- and fs-scale
localizations of a pulse are not limited to near-field micros-
copy and spectroscopy. Broadly speaking, the effect con-
cerns all physical phenomena and photonic applications in-
volving a transmission of light by a single subwavelength
nano-slit, a grating with subwavelength slits, and a subwave-
length slit surrounded by parallel grooves(see the studies in
Refs. 1–37 and references therein). For instance, the effect
could be used for sensors, communications, optical switching
devices, and microscopes.

IV. CONCLUSION

In the present article we have considered the question of
whether a light pulse can be enhanced and simultaneously
localized in space and time by a subwavelength metal nano-
slit. To address this question, the spatial distributions of the
energy flux of an ultrashort(fs) pulse diffracted by a sub-
wavelength(nanosized) slit in a thick metal screen of perfect
conductivity have been analyzed by using the conventional
approach based on the Neerhoff and Mur solution of Max-
well’s equations. The analysis of the spatial distributions for
various regimes of the near-field diffraction demonstrated
that the energy flux of a wavepacket can be enhanced by
orders of magnitude and simultaneously localized in the
near-field diffraction zone at the nm and fs scales. The ex-
traordinary transmission, together with nm- and fs-scale lo-
calizations of the light pulse, make the nano-slit structures
attractive for many photonic purposes, such as sensors, com-
munication, optical switching devices, and NSOM. We also
believe that the addressing of the above-mentioned basic
question gains insight into the physics of near-field resonant
diffraction.
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