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We propose a simple, parameter-free two-fluid model for the collective electron response of a single-walled
carbon nanotube, which treats thes andp electrons as separate two-dimensional fluids constrained to the same
cylindrical surface. The electrostatic interaction between the fluids gives rise to splitting of the plasmon
frequencies into two groups closely following the experimentally determined longitudinal dispersions of the
s+p andp plasmons. The model is used to calculate the induced electron density on the nanotube, as well as
the stopping power for a charged particle moving parallel to the axis of the nanotube. It is found that these
quantities exhibit novel features when the particle speed matches the phase velocity of the quasiacousticp

plasmon.
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I. INTRODUCTION

Collective, or plasmon excitations of electrons on carbon
nanotubes have been in the focus of intense experimental1,2

and theoretical3–11 research over the past several years. Such
processes play an important role in a variety of recently stud-
ied interactions of charged particles with nanotubes, such as,
screening of the charged impurities in the longitudinal
direction,12 channeling of ion or electron nanoscale beams
through the nanotubes,13–17 probing the nanotube response
by the electron energy loss spectroscopy(EELS),9,10 or for-
mation of toroidal electron image states around nano-
tubes.18,19 Ever since Ritchie’s discovery of plasma oscilla-
tions in thin films,20 the dielectric response formalism has
been the most powerful theoretical tool for studying plasmon
excitations in restricted geometries. For example, Arista has
used recently this formalism to study the channeling of fast
ions through nanocapillaries in solids,21,22as well as the plas-
mon excitations in cylindrical nanowires by external charged
particles.23 In addition, we have recently used an approach
similar to Arista’s work to evaluate the energy losses of fast
ions moving inside the cylindrical tubules,24 based on the
dielectric function in random-phase approximation(RPA) for
carbon nanotubes.3,5

Among various formulations of the dielectric response for
nonhomogeneous electron systems, the hydrodynamic model
has found a prominent place owing to its analytical simplic-
ity and physical transparency, while retaining robustness in
describing the main physical processes dominated by the
plasmon excitations in many-electron systems.6–9,25–28

Among different versions of the hydrodynamic model which
are applicable to carbon nanotubes, the simplest one assumes
that the electrons form a two-dimensional(2D) charged fluid
confined to the cylindrical surface of a nanotube wall. Such a
model has been used to calculate the plasmon spectra in mul-
tiwalled nanotubes(MWNT)6 and, recently, to evaluate the
energy losses of charged particles moving perpendicularly to
a single-walled nanotube(SWNT),9 as well as the self-
energy and the stopping power of particles moving paraxially
inside a SWNT.25 To the credit of the hydrodynamic model,
explicit comparisons were made in Ref. 25 showing that, as

far as the energy losses and the self-energy of fast charges
are concerned, the 2D hydrodynamic model gives the results
which agree very well with those obtained from the
dielectric-response formalism in RPA for a quasifree 2D
electron gas.5,24

In the recent work on charged-particle interactions with
SWNT,9,25 the 2D electron fluid was assumed to consist of
all four valence electrons per carbon atom, and it is appro-
priate to refer to it as the one-fluid model. This model was
shown to give the resonant frequencies for the collective os-
cillations of the combineds and p electron systems, com-
monly known ass+p plasmons,1,2 whereas the lower fre-
quencies, corresponding to the oscillations of thep electron
system alone, were missing in the one-fluid model.25 One
way to remedy this situation is to treat thes andp electron
systems as two distinct but interacting 2D fluids confined to
the same cylindrical surface of a nanotube. Such a two-fluid
model was first developed by Barton and Eberlein(BE) to
study the plasmon spectra in fullerenes,27 and was subse-
quently applied to carbon nanotubes.7 However, the BE two-
fluid model contains adjustable parameters for plasmon fre-
quencies which, although providing the necessary freedom in
forcing the theoretical plasmon spectra to agree with experi-
ments on carbon structures, are not always desirable in the-
oretical modeling.

We propose here a new, parameter-free version of the
two-fluid model for a SWNT where the presence of internal
interactions in each of the fluids enables the electrostatic
coupling between thes andp fluids to give rise to a splitting
of the resonant excitation frequencies into two groups, which
closely correspond to the experimentally identified branches
of the high-frequencys+p plasmons and the low-frequency
p plasmons.1,2 Furthermore, we wish to investigate how the
properties of this two-fluid model of a SWNT affect the stop-
ping power of a point-charge particle channeled through the
nanotube. In Sec. II we provide the basic equations for the
two-fluid model, and in Sec. III we discuss the results of
calculations of the induced electron density and the stopping
power, which is followed by the concluding section.

Atomic units (a.u.) are used throughout, unless otherwise
indicated.
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II. BASIC THEORY

The development of the theory begins in a general form
suitable for a MWNT consisting ofN concentric cylinders,
each with its own electron density,6 but will be eventually
specified to represent two fluids on one cylinder.

We use cylindrical coordinatesx=hr ,w ,zj for an arbitrary
point in space, and definex j =haj ,w ,zj to represent the coor-
dinates of a point on the cylindrical surfacer =aj of the j th
nanotube. Similarly,¹ j = êzs] /]zd+aj

−1êws] /]wd differentiates
only tangentially to the surface of thej th nanotube(with 1
ø j øN). Let the perturbed state of the electron fluid on the
j th nanotube be described by the electron number density per
unit area,nj

0+njsx j ,td, with nj
0 being the unperturbed electron

density on the j th nanotube, and by the velocity field,
u jsx j ,td, which only has components tangential to the nano-
tube surfacer =aj. The linearized hydrodynamic model
gives, for eachj , the continuity equation for the induced
densitynj,

25

] njsx j,td
] t

+ nj
0¹ j ·u jsx j,td = 0, s1d

and the momentum-balance equation,

] u jsx j,td
] t

= u¹ jFsx,tdur=aj
−

a j

nj
0¹ jnjsx j,td +

b

nj
0¹ jf¹ j

2njsx j,tdg

− g ju jsx j,td. s2d

The first term on the right-hand-side of Eq.(2) is the force on
an electron due to the tangential component of the electric
field, evaluated at the nanotube surfacer =aj. The total elec-
tric potential, F=Fext+Find, is obtained from the Poisson
equation in three dimensions(3D)25 as the sum of the exter-
nal potential and the induced potential due to the perturba-
tions of the electron fluid densities on all nanotube surfaces,

Findsx,td = − o
l
E d2xl8

nlsxl8,td
ix − xl8i

, s3d

wherexl8=hal ,w8 ,z8j andd2xl8=al dw8 dz8 is the differential
surface element on thelth nanotube. We note in passing that
using Eq.(3) guarantees that the boundary conditions at all
surfacesr =aj are automatically satisfied.6,9,25In that context,
it is worthwhile mentioning that the present method of solv-
ing Eqs.(1)–(3), while being limited to the nanotubes placed
in free space, is more direct than the usual approach based on
undetermined coefficients which are fixed by enforcing the

electrostatic boundary conditions.6,7,9,25The second term on
the right-hand side of Eq.(2) is the force due to the internal
interactions in thej th electron fluid, witha j =pnj

0 being the
square of the speed of propagation of the density distur-
bances in a 2D Fermi electron gas, whereas the third term
with b=1/4 comes from the quantum correction for the ki-
netic energy in this gas and, as such, describes the onset of
single-electron excitations in the fluid.9,25 The last term in
Eq. (2) represents the frictional force on an electron due to
scattering on the positive-charge background, withg j being
the friction coefficient, which we treat here as a(vanishingly)
small constant.

By using the expansion of the Coulomb potential in cy-
lindrical coordinates,29

1

ix − x8i
= o

m=−`

` E
−`

`

dk

s2pd2

3eiksz−z8d+imsw−w8dgsr,r8;m,kd, s4d

where gsr ,r8 ;m,kd;4pImsukur,dKmsukur.d with r,

=minsr ,r8d and r.=maxsr ,r8d, while Im and Km are cylin-
drical Bessel functions of integer orderm, we are led to the
definition of a Fourier-Bessel(FB) transform. So, with

F̃sr ,m,k,vd and ñjsm,k,vd being the FB transforms of the
potential(or any part of the potential) and the induced den-
sity, we can write, respectively,25

Fsx,td = o
m=−`

` E
−`

`

dk

s2pd2E
−`

`

dv

2p

3eikz+imw−ivtF̃sr,m,k,vd, s5d

njsx j,td = o
m=−`

` E
−`

`

dk

s2pd2E
−`

`

dv

2p

3eikz+imw−ivtñjsm,k,vd. s6d

By using Eqs.(4)–(6) in Eq. (3), one can express the FB
transform of the induced potential as follows:

F̃indsr,m,k,vd = − o
j

gsr,aj ;m,kdajñjsm,k,vd. s7d

In order to determine the FB transforms of the individual
induced densities,ñj, we eliminateu j from Eqs.(1) and(2),
and use Eq.(7) along with the FB transform of the external

potential, F̃extsr ,m,k,vd, to obtain the following set of
coupled equations forñj’s:

Fvsv + ig jd − a jSk2 +
m2

aj
2 D − bSk2 +

m2

aj
2 D2Gñjsm,k,vd − o

l

Gjlsm,kdñlsm,k,vd = − nj
0Sk2 +

m2

aj
2 DF̃extsaj,m,k,vd, s8d
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whereGjlsm,kd;nj
0alfk2+sm2/aj

2dggsaj ,al ;m,kd.
In general, the set of equations(8) with j =1,2,… ,N can

be used to study a MWNT made ofN concentric cylinders
with a1,a2,¯,aN and with n1

0=n2
0=¯=nN

0 ;n0, where
n0=0.428 is the unperturbed density per unit area of all va-
lence electrons in the one-fluid approximation for each
shell.9,25 In that context, we note that, upon settinga j =0,
b=0, g j =0, andFext=0, Eq. (8) becomes identical to the
eigenfrequency equation(13) in Ref. 6 for the resonant plas-
mon frequencies of a MWNT. However, in order to formu-
late our two-fluid model for a SWNT, we specify Eq.(8) to
hold for N=2, and consider that thep fluid s j =1d and thes
fluid s j =2d reside on the same cylinder with radiusa1=a2

;a, whereas n1
0;np

0 =n0/4=0.107 and n2
0;ns

0 =3n0/4
=0.321 are the unperturbed densities per unit area corre-
sponding to onep electron and threes electrons per carbon
atom, respectively. In this case, the resulting 232 matrix on
the left-hand side of Eq.(8) gives the eigenvalue equation for
the resonant frequencies of collective excitations in the two
fluids, with the following two branches of the dispersion re-
lations for eachm:

v±
2 =

vp
2 + vs

2

2
±ÎSvp

2 − vs
2

2
D2

+ D2, s9d

where vs,p
2 =pns,p

0 sk2+m2/a2d+ 1
4sk2+m2/a2d2+ns,p

0 ask2

+m2/a2dgsa,a;m,kd are the(squares of the) resonant fre-
quencies of the individuals and p electron fluids, andD
=Îns

0np
0ask2+m2/a2dgsa,a;m,kd describes the electrostatic

interaction among the two fluids. We note at this point that
the EB version of the two-fluid model,27 as applied to
SWNT,7 is recovered by settingb=0 andg j =0, and by re-
placing the terms with the factorsa j =pnj

0 in Eqs.(8) and(9)
by the squares of empirical resonant frequenciesvrp

2 andvrs
2

for thep ands fluids. Given that the terms witha j andb in
our version of the two-fluid model contain the factorssk2

+m2/aj
2d, we expect richer dispersion relations than those

obtained in the EB version.7 Let us also note here that the
terms withb do not affect in any substantial way the low-m
and the long-wavelength(small k) properties of the disper-
sion relations, Eq.(9), v+sm,kd and v−sm,kd, but the pres-
ence of such terms guarantees that the electron response of
the nanotube will be well defined for charged particles mov-
ing within the 2D electron fluid on the nanotube.9,25

III. RESULTS

A. Plasmon dispersion

Choosing the example of a SWNT with radiusa=7 Å, we
show in Fig. 1 the two groups of resonant plasmon disper-
sions from Eq.(9), v+sm,kd andv−sm,kd, versus the longi-
tudinal momentumk and for several angular modesm=0, 1,
2, 3, and 4, along with the experimental points from the
EELS measurements of plasmon energies in bundles of
SWNTs with the predominant values of radii being 7 Å.1,2

The experimental configuration is certainly more complex
than the present study of an isolated SWNT, so that the ex-
perimental data display some kind of an average over various

(presumably lower valued) modes m. Nevertheless, those
several dispersion curves, displayed in Fig. 1, show a good
agreement with the experimental data, both in the magnitude
and in the trend of the dispersion versusk. Given that the
present two-fluid model is parameter-free, this agreement
lends confidence in the proposed development of the hydro-
dynamic model.

It is apparent in Fig. 1 that the splitting between the two
groups of plasmon frequencies in Eq.(9) is rather substantial
owing to the strong electrostatic interaction between thes
andp fluids in the two-fluid model. Formally speaking, this
splitting is strictly a consequence of the presence of the in-
ternal interactions in each fluid given by the terms in Eq.(2)
with the factorsa j and b. To illustrate this point, we note
that, if we seta j =0 andb=0 in Eq. (9), we find v−sm,kd
=0 and v+sm,kd=v0sm,kd, where v0

2=pn0sk2+m2/a2d
+ 1

4sk2+m2/a2d2+n0ask2+m2/a2dgsa,a;m,kd defines the
resonant frequenciesv0 in the one-fluid model,9,25 indicating
that thes andp fluids collapse into the combineds+p fluid
in the absence of the internal interactions. Whena j Þ0 and
bÞ0 in Eq. (9), our calculations show that the dispersion
curvesv+sm,kd in the upper group in Fig. 1 are quite close to
the corresponding one-fluid frequenciesv0sm,kd, so that this
group is designated as thes+p plasmons. On the other
hand, the dispersion curvesv−sm,k,d are grouped in Fig. 1
around much lower energies, corresponding to the oscilla-
tions of thep electron fluid alone, and are thus called thep
plasmons.1,2 Moreover, while thes+p plasmon dispersions
exhibit a characteristic dimensional crossover from a 2D to a
one-dimensional electron system,3,6 the p group of plasmon
frequencies exhibits weaker dispersions. In particular, the
m=0 mode in thep-plasmon group exhibits a remarkably
linear dispersion for long wavelengths, which can be derived
analytically in the formv−=kÎ3pn0/8. Given the promi-
nence of them=0 mode in various interaction configura-
tions, it seems appropriate to call it quasiacoustic plasmon

FIG. 1. Dispersion curves(in eV) v+sm,kd and v−sm,kd from
Eq. (9), corresponding to thes+p and p plasmons in a nanotube
with radius a=7 Å, shown versus longitudinal momentumk (in
Å−1) for several angular modesm. Experimental points are from
Refs. 1 and 2.

INTERACTIONS OF FAST IONS WITH CARBON… PHYSICAL REVIEW B 70, 195418(2004)

195418-3



mode. We note that a similar acoustic plasmon was discov-
ered some time ago in the electron-hole plasma of a carbon
nanotube.4 In addition, another linear plasmon dispersion has
been recently discovered in the coupling modes for two par-
allel nanotubes, and a possibility of the low-velocity drift
instability of the electron plasma was discussed.11 Reasoning
along similar lines, we expect here that important effects will
take place in the response of the two-electron fluid to a
charged particle moving parallel to a SWNT at the speedv
which closely matches the phase(and the group) velocity va
of the acoustic plasmon in the two-fluid model, given by
va=Î3pn0/8=0.71.

B. Induced electron density

We further study the induced electron density on the
nanotube due to an external point chargeQ moving on a

paraxial trajectoryx0std=hr0,w0,vtj, so thatF̃extsr ,m,k,vd
=2pgsr ,r0;m,kddsv−kvdexps−imw0d. It should be noted
that, owing to the translational invariance of the system in
the z direction, both the induced density and the induced
potential will be stationary in the moving frame of reference
attached to the external charge. Choosing the external par-
ticle to be protonsQ=1d moving along the axissr0=0d of a
SWNT with radiusa=7 Å, we calculate thez dependence(in
the moving frame) of the total induced electron density in the
two-fluid model,ntwo=ns+np, and compare it in Figs. 2 and
3 with the induced density in the one-fluid model,none, for a
range of the particle speedsv. Because of the expected in-
stabilities atv<va, we choose the friction coefficients to be
small but finite parameters,gs=gp;g=10−3Vp, with Vp

=Î4pn0/a being a plasma frequency of a SWNT with the
radius a.24,25 Note that, because r0=0, we have

F̃extsr ,m,k,vd=8p2dsv−kvdK0sukurddm,0, so that all contri-
butions to the induced densities and the potential come from
them=0 terms in the FB series, Eq.(5) and(6). We also note
that all curves shown in Figs. 2 and 3 have integrals overz
which amount tos2pad−1, indicating that a complete screen-
ing of the external chargeQ=1 takes place on the nanotube.

In the range of speeds above the threshold of aboutv=2
for the excitations of thes+p plasmons, one can observe in
Fig. 2 that bothnone and ntwo exhibit a development of the
usual wake effect with increasingv, which manifests in the
induced-density oscillations trailing the external charge
sz,0d. Apart from some minor differences in the periods
and in the phases of these oscillations, the one-fluid and the
two-fluid models give remarkably similar results for the
speeds abovev=2. On the other hand, for almost allv values
in the low-speed range, 0,v,2, our calculations show that
none andntwo are practically on top of each other, just like in
Fig. 2(a), both describing a symmetrical, bell-shaped accu-
mulation of the electrons on the nanotube wall which screen
the moving proton.

However, Fig. 3 shows careful inspection of a narrow
range of the particle speeds aroundv=0.71 and reveals ex-
pected, yet qualitatively surprising differences in thez de-
pendences ofnone and ntwo. Namely, while the one-fluid
model maintains an almost rigidly shaped bell curvenoneszd,
the two-fluid model gives rise to the development of a strong

asymmetry in the induced electron densityntwoszd in the
range of speeds displayed in Fig. 3. The most surprising
result is thatntwoszd exhibits oscillations forv<0.72, shown
in Fig. 3(b), which precedethe external particlesz.0d, in
contrast to the trailing wake patterns shown in Figs. 2(b) and
2(c). Our calculations show that this physically puzzling be-
havior of the two-fluid model is accompanied by the strong,
out-of-phase individual polarizations of thes and p fluids,
similar to the earlier observations in the electron-hole plasma
on nanotubes.4 We finally note that the calculations also

FIG. 2. Induced electron densitiesnone and ntwo (in a.u.) from
the one-fluid and two-fluid models, versus distancez (in a.u.) in the
moving frame of reference, for a proton moving along the axis of a
nanotube with radiusa=7 Å, at several speeds:v=2, 2.5, and 3
(a.u.).
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show that, while both induced densitiesnone and ntwo are
insensitive to the variations in(small) values ofg for high
speeds,v.2, shown in Fig. 2, the oscillations inntwo, shown
in Fig. 3(b), are heavily damped when both the frictiong and
the nanotube radiusa increase.

C. Stopping power

Using the definition of the stopping power for a point
charge Q moving parallel to the axis of a nanotube,

S= uQ]Find/]zux=x0std, we calculate the velocity dependences
of the stopping powersSone andStwo from the one-fluid and
the two-fluid models, respectively. We first show in Fig. 4 the
results for a proton moving along the axissr0=0d of a SWNT
with radiusa=7 Å, in which case only them=0 modes con-
tribute to bothSone andStwo. In Fig. 4(a), we have used the
friction coefficientg=10−3Vp and, not surprisingly, the two
curvesSone and Stwo are found to be almost on top of each
other, except for a narrow peak inStwo at aroundv=0.71,
which is absent inSone. It can be argued that the broad parts
of both curves in Fig. 4(a) describe the excitation of the
high-energy s+p plasmon with m=0 for speedsv.2,
whereas the solitary peak inStwo describes the excitation of
the low-energy acousticp plasmon withm=0 when the pro-
ton speed matches its phase velocityva=0.71. As it was
shown earlier forSone,

25 we have also verified here that the
bulk parts of the stopping power curves forv.2 in Fig. 4(a)
are insensitive to the variations in(small) values ofg. How-
ever, owing to the linear dispersion of the acousticp plas-
mon with m=0, the peak structure atv=0.71 is quite sensi-
tive to this variation, which is illustrated in Fig. 4(b) for two
values of the friction constant,g=10−3Vp and g=10−2Vp.
These results suggest a possibility of having a drift instability
at v=va,

11 which could provide a means of probing the col-
lective electron excitations on the nanotubes, but they also

FIG. 3. Induced electron densitiesnone and ntwo (in a.u.) from
the one-fluid and two-fluid models, versus distancez (in a.u.) in the
moving frame of reference, for a proton moving along the axis of a
nanotube with radiusa=7 Å, at several speeds:v=0.70, 0.72, and
0.74 (a.u.).

FIG. 4. Stopping power(in a.u.) versus speedv (in a.u.) for a
proton moving along the axis of a nanotube with radiusa=7 Å. (a)
Stopping powersSone andStwo (in a.u.) from the one-fluid and two-
fluid models, with the friction constantg=10−3Vp. (b) Stopping
powerStwo for two friction constants,g=10−3Vp andg=10−2Vp.
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point to the need of a careful examination of the role of
various damping mechanisms for the low-frequency plasmon
modes.

Finally, in order to illustrate the effects of the plasmon
excitations withmÞ0 on the stopping power, we show in
Fig. 5 the results forSone andStwo for a proton moving at the
distance r0=a/2 from the axis of a SWNT with radius
a=7 Å. Again, the two curves are on top of each other in
Fig. 5(a) for the speedsv above the threshold for thes+p
plasmon excitations, and they both closely reproduce the
data obtained earlier, including those based on the dielectric
function in RPA.25 In the low-speed region,Stwo dis-
plays multiple peaks, which are shown in Fig. 5(b) for
g=10−3Vp andg=10−2Vp, exhibiting the sensitivity of these
peaks to damping. For the smallerg value, one can easily

identify in Fig. 5(b) several peaks corresponding to the ex-
citations of thep plasmons withm=0, 1, 2, and 3, in a nice
correspondence with thep plasmon dispersion curves shown
in Fig. 1.

IV. CONCLUDING REMARKS

We have proposed a simple, parameter-free version of the
two-fluid model for the hydrodynamic response of the elec-
trons on a SWNT, which treats thes and p electrons as
separate 2D charged fluids constrained to the same cylindri-
cal surface. The strong electrostatic interaction between the
fluids gives rise to the splitting of the collective-excitation
frequencies into two sets which closely follow the experi-
mental dispersion curves for the high-energys+p plasmons
and the low-energyp plasmons. In particular, them=0 mode
of the p plasmons exhibits a quasiacoustic, linear dispersion
versus the longitudinal wave number. Calculations of the in-
duced electron density on the nanotube and the stopping
power for a charged particle moving parallel to the nanotube
axis show that, at the particle speeds above the threshold for
the s+p plasmon excitations, the two-fluid model essen-
tially follows the results of the one-fluid model, whereas the
range of low particle speeds reveals some effects due to the
p plasmon excitations in the two-fluid model. In particular,
when the particle speed matches the phase velocity of the
acousticp plasmon, the induced density shows oscillations
which precede the position of the particle, in contrast to the
usual wake oscillations, whereas the speed dependence of the
stopping power of the particle displays peaked structures
around that phase velocity. It has been found that, while the
high-speed stopping power is insensitive to the friction coef-
ficient, the low-speed peaks are quite dependent on it. This
finding points to a need to further improve the proposed
two-fluid model by carefully examining the role of damping
at lower plasmon frequencies.

While the present work uses the linearized version of hy-
drodynamic model, it is important to consider the nonlinear
effects in future developments. In that context, the existing
3D and 2D nonlinear approaches for low velocities may pro-
vide a background for important future comparison.30,31 On
the other hand, implementation of the two-fluid model into a
future quasiparticle-lifetime investigation might give contri-
bution to understanding electron excitations in graphite-
based nanostructures.32,33
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FIG. 5. Stopping power(in a.u.) versus speedv (in a.u.) for a
proton moving at distancer0=a/2 from the axis of a nanotube
with radius a=7 Å. (a) Stopping powersSone and Stwo (in a.u.)
from the one-fluid and two-fluid models, with the friction constant
g=10−3Vp. (b) Stopping powerStwo for two friction constants,
g=10−3Vp andg=10−2Vp.
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