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Interactions of fast ions with carbon nanotubes: Two-fluid model
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We propose a simple, parameter-free two-fluid model for the collective electron response of a single-walled
carbon nanotube, which treats thh@nd 7 electrons as separate two-dimensional fluids constrained to the same
cylindrical surface. The electrostatic interaction between the fluids gives rise to splitting of the plasmon
frequencies into two groups closely following the experimentally determined longitudinal dispersions of the
o+ and 7 plasmons. The model is used to calculate the induced electron density on the nanotube, as well as
the stopping power for a charged particle moving parallel to the axis of the nanotube. It is found that these
quantities exhibit novel features when the particle speed matches the phase velocity of the quasiacoustic
plasmon.
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[. INTRODUCTION far as the energy losses and the self-energy of fast charges
Collective, or plasmon excitations of electrons on carborf'“rﬁ_ cr?ncerned, the 2D r;lydrqorllynarl]mm mokchel_ gl\éesfthe reiults
nanotubes have been in the focus of intense experiméntalWhich agree very well with those obtained from the
and theoreticdt!! research over the past several years. Suc@electnc—reésgfnse formalism in RPA for a quasifree 2D
processes play an important role in a variety of recently stud!ectron gas:

i : ; ; In the recent work on charged-particle interactions with
ied interactions of charged particles with nanotubes, such a 9.25 X .
screening of the charged impurities in the IongitudinaI%WNT" the 2D electron fluid was assumed to consist of

direction!? channeling of ion or electron nanoscale beams?l four valence electrons per carbon atom, and it is appro-

17 . priate to refer to it as the one-fluid model. This model was
Lr;:?ﬁghelilcirgr?neor:grgig,Iosgrgsler::?nii QE;nLOSt)ug 160 (r)(:sfg(r)_nse shown to give the resonant frequencies for the collective os-

. . : cillations of the combinedr and = electron systems, com-
mation of toroidal electron image states around nano

tubes1819 £ ince Ritchie's di ol il monly known aso+ plasmons;? whereas the lower fre-
ubes. > EVer since Ritcnies discovery ol plasma 0scilla- gyencies, corresponding to the oscillations of thelectron
tions in thin films?® the dielectric response formalism has system alone, were missing in the one-fluid mddeDne

been the most powerful theoretical tool for studying plasmonyay to remedy this situation is to treat theand - electron
excitations in restricted geometries. For example, Arista hagystems as two distinct but interacting 2D fluids confined to
used recently this formalism to study the channeling of fasthe same cylindrical surface of a nanotube. Such a two-fluid
ions through nanocapillaries in soliéfs??as well as the plas- model was first developed by Barton and Eberl¢BE) to
mon excitations in cylindrical nanowires by external chargedstudy the plasmon spectra in fullerefésand was subse-
particles?® In addition, we have recently used an approachquently applied to carbon nanotubfedowever, the BE two-
similar to Arista’s work to evaluate the energy losses of fasfluid model contains adjustable parameters for plasmon fre-
ions moving inside the cylindrical tubulé$ based on the quencies which, although providing the necessary freedom in
dielectric function in random-phase approximati&PA) for  forcing the theoretical plasmon spectra to agree with experi-
carbon nanotube®> ments on carbon structures, are not always desirable in the-
Among various formulations of the dielectric response fororetical modeling.
nonhomogeneous electron systems, the hydrodynamic model We propose here a new, parameter-free version of the
has found a prominent place owing to its analytical simplic-two-fluid model for a SWNT where the presence of internal
ity and physical transparency, while retaining robustness ifnteractions in each of the fluids enables the electrostatic
describing the main physical processes dominated by theoupling between the and# fluids to give rise to a splitting
plasmon excitations in many-electron systén?&>28  of the resonant excitation frequencies into two groups, which
Among different versions of the hydrodynamic model whichclosely correspond to the experimentally identified branches
are applicable to carbon nanotubes, the simplest one assumefsthe high-frequencyr+ 7 plasmons and the low-frequency
that the electrons form a two-dimension2D) charged fluid 7 plasmons-? Furthermore, we wish to investigate how the
confined to the cylindrical surface of a nanotube wall. Such aroperties of this two-fluid model of a SWNT affect the stop-
model has been used to calculate the plasmon spectra in myding power of a point-charge particle channeled through the
tiwalled nanotubesMWNT)® and, recently, to evaluate the nanotube. In Sec. Il we provide the basic equations for the
energy losses of charged particles moving perpendicularly towo-fluid model, and in Sec. Il we discuss the results of
a single-walled nanotub¢SWNT),° as well as the self- calculations of the induced electron density and the stopping
energy and the stopping power of particles moving paraxiallypower, which is followed by the concluding section.
inside a SWNTP?® To the credit of the hydrodynamic model,  Atomic units(a.u) are used throughout, unless otherwise
explicit comparisons were made in Ref. 25 showing that, aindicated.
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Il. BASIC THEORY electrostatic boundary conditiofi€:°?The second term on

the right-hand side of Eq2) is the force due to the internal
Mhteractions in thgth electron fluid, witha;= mn?° being the
square of the speed of propagation of the density distur-
bances in a 2D Fermi electron gas, whereas the third term
with B=1/4 comes from the quantum correction for the ki-
netic energy in this gas and, as such, describes the onset of
single-electron excitations in the fluid® The last term in

Eq. (2) represents the frictional force on an electron due to
scattering on the positive-charge background, wittbeing

The development of the theory begins in a general form
suitable for a MWNT consisting ol concentric cylinders,
each with its own electron densfyput will be eventually
specified to represent two fluids on one cylinder.

We use cylindrical coordinates={r, ¢,z} for an arbitrary
point in space, and defing={a;, ¢,2} to represent the coor-
dinates of a point on the cyllndrlcal surfaceg; of the jth
nanotube. SimilarlyV; ez(a/(92)+a €,(d1d,) dlﬁerentlates

only tangentially to the surface of thqzth nanotube(with 1 the friction coefficient, which we treat here agzanishingly
<]=N). Let the perturbed state of the electron fluid on theg 4| constant.

jth nanotube be described by the electron number density per By using the expansion of the Coulomb potential in cy-
unit arean°+n i(Xj,1), with nJ being the unperturbed electron |inqrical coordinateg?
density on thejth nanotube, and by the velocity field,

oo

uj(x;,1), which only has components tangential to the nano- 1 % dk
tube surfacer=a;. The linearized hydrodynamic model — = f 5
gives, for eachj, the continuity equation for the induced Ix=xl e - (2m)
densityn; 2
x gz )imle=elg(r 1 :m,k), 4)
ani(xi,t) where  g(r,r’;m,k)=4mxl(|Kr K (|Kr) — with  r_
FYO YV -uj(x;, =0, @ =min(r,r) andr-=maxr,r’), while I, and K, are cylin-

drical Bessel functions of integer order, we are led to the
and the momentum-balance equation definition of a Fourier-Besse(FB) transform. So, with

®(r,m,k,») andn;(m,k, ») being the FB transforms of the

potential(or any part of the potentipbnd the induced den-

duj(x;,t) i i i
_JEJ_ VD%, D), . #V ny(x;,t) + ,[Vznj(xj,t)] sity, we can write, respectivefy,
i J
_’yJUJ(XJ,t) (2) S *
d(x,= 2 f f
The first term on the right-hand-side of E@) is the force on e ) (27)?
an electron due to the tangential component of the electric
field, evaluated at the nanotube surface;. The total elec- x @kzHMeiotd (1 m K, o) (5)
tric potential, ®=®,+ ;4 iS obtained from the Poisson
equation in three dimensiori8D)?° as the sum of the exter- %
nal potential and the induced potential due to the perturba- B
tions of the electron fluid densities on all nanotube surfaces, nj(x;,t) = ,E’ (2 )2
E , n,(x, t) Xeikz+imgo—iwt’ﬁj(m’ K, w)_ (6)
X,t d=x/ 3
Pindlx.1) = f Hix = x| & By using Egs.(4)—«6) in Eq. (3), one can express the FB

transform of the induced potential as follows:
wherex| ={a,¢’,z'} andd?x/ =a, d¢’ dz is the differential
surface element on tHéh nanotube. We note in passing that
using Eq.(3) guarantees that the boundary conditions at all ) o
surfaces =a; are automatically satisfiet®25In that context, In order to determine the FB transforms of the individual
it is worthwhile mentioning that the present method of solv-induced densities);, we eliminateu; from Egs.(1) and(2),
ing Egs.(1)~(3), while being limited to the nanotubes placed and use Eq(7) along with the FB transform of the external
in free space, is more direct than the usual approach based potential, CDext(r m,k,w), to obtain the following set of
undetermined coefficients which are fixed by enforcing thecoupled equations fdi’s:

Dyt MK, w) = - E g(r,a;mkafmkw).  (7)
i

m2 m2 2 2
|:w(a)+i'yj)—aj<k2+¥) _,8<k2+¥> :|ﬁj(m,k,w)—zlGj|(m,k)ﬁ|(m,k,w): <k2 ) ext(aj,mkw) (8)
J

i ]

195418-2



INTERACTIONS OF FAST IONS WITH CARBON..

whereG;(m,k) = nfa[k*+(m?/a’)]g(a;,a;m, k).

In general, the set of equatio®) with j=1,2,...,N can
be used to study a MWNT made df concentric cylinders
with a;<a,<---<ay and withn{=nd=---=nd=n,, where
ny=0.428 is the unperturbed density per unit area of all va-
lence electrons in the one-fluid approximation for each
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shell?25 In that context, we note that, upon setting=0,
B=0, ¥,=0, and®.,=0, Eq.(8) becomes identical to the
eigenfrequency equatidi3) in Ref. 6 for the resonant plas-

mon frequencies of a MWNT. However, in order to formu-

late our two-fluid model for a SWNT, we specify E®) to
hold for N=2, and consider that the fluid (j=1) and theo
fluid (j=2) reside on the same cylinder with radia§:a2
=a, whereas n{=n2=n,/4=0.107 and nJ=n’=3ny/4

=0.321 are the unperturbed densities per unit area corre- 0

sponding to oner electron and three electrons per carbon
atom, respectively. In this case, the resulting 2 matrix on
the left-hand side of Eq8) gives the eigenvalue equation for

the resonant frequencies of collective excitations in the tw
fluids, with the following two branches of the dispersion re-

lations for eachm:

_(1)721.+(1)5.+ (wgr_wi')z_i_AZ (9)
R 2 !
where o2 =m0 (Ke+mP/ad)+;(Ke+mP/a?)?+nl a(k?

+m?/a?)g(a,a;m,k) are the(squares of theresonant fre-
quenmes of the individuab- and 7 electron fluids, and\
—\nonoa(k2+m2/a2)g(a a;m,k) describes the electrostatic

-
o
\
\
]
'
3
"
-

Plasmon energy (eV)
=

FIG. 1. Dispersion curve@n eV) w,(m,k) and w_(m,k) from
g. (9), corresponding to the+ 7 and 7 plasmons in a nanotube
with radiusa=7 A, shown versus longitudinal momentukn(in
A1) for several angular modes. Experimental points are from
Refs. 1 and 2.

(presumably lower valugdmodesm. Nevertheless, those
several dispersion curves, displayed in Fig. 1, show a good
agreement with the experimental data, both in the magnitude
and in the trend of the dispersion verskisGiven that the
present two-fluid model is parameter-free, this agreement
lends confidence in the proposed development of the hydro-

interaction among the two fluids. We note at this point thatdynamic model.

the EB version of the two-fluid modél, as applied to
SWNT/ is recovered by settingg=0 andy 0, and by re-
placing the terms with the factorg = 7rn in Egs.(8) and(9)
by the squares of empirical resonant frequenmé,sandw
for the = and o fluids. Given that the terms with; and 8 in
our version of the two-fluid model contain the factdig

+n12/a ), we expect richer dispersion relations than thos

obtamed in the EB versiohLet us also note here that the
terms with 8 do not affect in any substantial way the low-
and the long-wavelengttsmall k) properties of the disper-
sion relations, Eq(9), w;(m,k) and w_(m,k), but the pres-

It is apparent in Fig. 1 that the splitting between the two
groups of plasmon frequencies in K§) is rather substantial
owing to the strong electrostatic interaction between ¢he
and 7 fluids in the two-fluid model. Formally speaking, this
splitting is strictly a consequence of the presence of the in-
ternal interactions in each fluid given by the terms in &j.

gwith the factorsa; and g. To illustrate this point, we note
that, if we sete;=0 and8=0 in Eq. (9) we find w_(m,k)
=0 and w,(m,k)=wy(m,k), where wi=mny(k?+m?/a?)
+7(Kk2+mP/a®)?+nga(k>+m?/a?)g(a,a;m,k)  defines  the
resonant frequencias, in the one-fluid model;?>indicating

ence of such terms guarantees that the electron response tBft theo and fluids collapse into the combineg 7 fluid
the nanotube will be well defined for charged particles movin the absence of the internal interactions. Whe#s 0 and

ing within the 2D electron fluid on the nanotub&

Il. RESULTS
A. Plasmon dispersion

Choosing the example of a SWNT with radias 7 A, we
show in Fig. 1 the two groups of resonant plasmon dispe
sions from Eq(9), w.(m,k) and w_(m,k), versus the longi-
tudinal momentunk and for several angular modes=0, 1,

B+#0 in EQ. (9), our calculations show that the dispersion
curvesw,(m,k) in the upper group in Fig. 1 are quite close to
the corresponding one-fluid frequenciegm, k), so that this
group is designated as the+s plasmons. On the other
hand, the dispersion curves (m,k,) are grouped in Fig. 1
around much lower energies, corresponding to the oscilla-
tions of ther electron fluid alone, and are thus called the
rplasmons:? Moreover, while theo+ 7 plasmon dispersions
exhibit a characteristic dimensional crossover from a 2D to a
one-dimensional electron systéfithe 7 group of plasmon

2, 3, and 4, along with the experimental points from thefrequencies exhibits weaker dispersions. In particular, the

EELS measurements of plasmon energies in bundles ah=0 mode in them-plasmon group exhibits a remarkably
SWNTs with the predominant values of radii being 74A. linear dispersion for long wavelengths, which can be derived
The experimental configuration is certainly more complexanalytically in the formw_=ky3wny/8. Given the promi-
than the present study of an isolated SWNT, so that the exaence of them=0 mode in various interaction configura-
perimental data display some kind of an average over variousons, it seems appropriate to call it quasiacoustic plasmon
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mode. We note that a similar acoustic plasmon was discov- x10 , , ,
ered some time ago in the electron-hole plasma of a carbon — Yo
nanotubé. In addition, another linear plasmon dispersion has 10 = Mone
been recently discovered in the coupling modes for two par-
allel nanotubes, and a possibility of the low-velocity drift g
instability of the electron plasma was discus$eReasoning
along similar lines, we expect here that important effects will
take place in the response of the two-electron fluid to a
charged particle moving parallel to a SWNT at the speed
which closely matches the phagend the groupvelocity v,
of the acoustic plasmon in the two-fluid model, given by
€ acou
Va=V3mNy/8=0.71.

Induced density

—40 -20 0 20 40

B. Induced electron density z
We further study the induced electron density on the x10™ . . .
nanotube due to an external point cha@emoving on a ol ::m

paraxial trajectoryxy(t) ={rq, ¢g,vt}, SO thatde,(r,m,k, »)
=27g(r,ro;m,K) S(w—kv)exp(=imgg). It should be noted
that, owing to the translational invariance of the system in
the z direction, both the induced density and the induced
potential will be stationary in the moving frame of reference
attached to the external charge. Choosing the external par-
ticle to be proton(Q=1) moving along the axi¢r,=0) of a
SWNT with radiusa=7 A, we calculate the dependencén
the moving framgof the total induced electron density in the
two-fluid model,ny,,=n,+n_, and compare it in Figs. 2 and . . .
3 with the induced density in the one-fluid model,, for a —40 20 0 20 40
range of the particle speeds Because of the expected in-
stabilities atv =v,, we choose the friction coefficients to be
small but finite parametersy,=v,.=7y= 1U3Qp, with Q,
=vy4mny/a being a plasma frequency of a SWNT with the
radius a.?»?®> Note that, becauser,=0, we have v=3
Dy, M, K, ) =812 w—kv)Ko(|K|r) 80, SO that all contri-
butions to the induced densities and the potential come from
them=0 terms in the FB series, E¢b) and(6). We also note
that all curves shown in Figs. 2 and 3 have integrals aver
which amount to27a)™%, indicating that a complete screen-
ing of the external charg®=1 takes place on the nanotube.
In the range of speeds above the threshold of abeut
for the excitations of ther+ 7 plasmons, one can observe in
Fig. 2 that bothn,,. and ny,, exhibit a development of the
usual wake effect with increasing which manifests in the
induced-density oscillations trailing the external charge FIG. 2. Induced electron densiti@g,,e and ny,, (in a.u) from
(z<0). Apart from some minor differences in the periods the one-fluid and two-fluid models, versus distanci® a.u) in the
and in the phases of these oscillations, the one-fluid and thmoving frame of reference, for a proton moving along the axis of a
two-fluid models give remarkably similar results for the nanotube with radius=7 A, at several speeds=2, 2.5, and 3
speeds above=2. On the other hand, for almost alvalues  (a.u).
in the low-speed range,<0v <2, our calculations show that
None 2Nd Ny, are practically on top of each other, just like in asymmetry in the induced electron density,,(2) in the
Fig. 2(a), both describing a symmetrical, bell-shaped accufange of speeds displayed in Fig. 3. The most surprising
mulation of the electrons on the nanotube wall which screetiesult is thatn,,,(z) exhibits oscillations fov =0.72, shown
the moving proton. in Fig. 3b), which precedethe external particléz>0), in
However, Fig. 3 shows careful inspection of a narrowcontrast to the trailing wake patterns shown in Figé) 2nd
range of the particle speeds around0.71 and reveals ex- 2(c). Our calculations show that this physically puzzling be-
pected, yet qualitatively surprising differences in thele-  havior of the two-fluid model is accompanied by the strong,
pendences of,,, and ny,, Namely, while the one-fluid out-of-phase individual polarizations of theand = fluids,
model maintains an almost rigidly shaped bell cunyg(z), similar to the earlier observations in the electron-hole plasma
the two-fluid model gives rise to the development of a strongon nanotube$.We finally note that the calculations also

Induced density

10

(8]
7 T

Induced density

0 20 40
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FIG. 3. Induced electron densiti@g,e and ny,, (in a.u) from
the one-fluid and two-fluid models, versus distan¢a a.u) in the
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x10~

Stopping power
N

0.65 07 0.75 08
v

FIG. 4. Stopping powe(in a.u) versus speed (in a.u) for a
proton moving along the axis of a nanotube with radie’ A. (a)
Stopping power§,,. and S, (in a.u) from the one-fluid and two-
fluid models, with the friction constany= 1(T3Qp. (b) Stopping
power Sy, for two friction constantsy=103(), and y=10"2Q,,

S= Qidbjg/ az|xzxo(t), we calculate the velocity dependences
of the stopping power§,,. and S, from the one-fluid and
the two-fluid models, respectively. We first show in Fig. 4 the
results for a proton moving along the axig=0) of a SWNT
with radiusa=7 A, in which case only then=0 modes con-
tribute to bothS;,,c and S, In Fig. 4a), we have used the
friction coefficienty= 1(T3Qp and, not surprisingly, the two
curves S, and S, are found to be almost on top of each
other, except for a narrow peak B,, at aroundv=0.71,
which is absent ir§,,. It can be argued that the broad parts
of both curves in Fig. @) describe the excitation of the
high-energy o+ 7 plasmon with m=0 for speedsv>2,

moving frame of reference, for a proton moving along the axis of ayhereas the solitary peak B, describes the excitation of

nanotube with radiua=7 A, at several speeds=0.70, 0.72, and
0.74 (a.u).

show that, while both induced densities,. and n,, are
insensitive to the variations icsmall) values ofy for high
speedsy > 2, shown in Fig. 2, the oscillations m,,,, shown
in Fig. 3b), are heavily damped when both the frictiprand
the nanotube radiua increase.

C. Stopping power

the low-energy acoustie plasmon withm=0 when the pro-
ton speed matches its phase veloaity=0.71. As it was
shown earlier forS,,,?° we have also verified here that the
bulk parts of the stopping power curves for 2 in Fig. 4a)

are insensitive to the variations {emall) values ofy. How-
ever, owing to the linear dispersion of the acoustiplas-
mon with m=0, the peak structure at=0.71 is quite sensi-
tive to this variation, which is illustrated in Fig(ld) for two
values of the friction constanty=10"°Q, and y=102Q,,
These results suggest a possibility of having a drift instability

Using the definition of the stopping power for a point at v=v,,** which could provide a means of probing the col-
charge Q moving parallel to the axis of a nanotube, lective electron excitations on the nanotubes, but they also
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X107 , , , identify in Fig. 5b) several peaks corresponding to the ex-
citations of thewr plasmons wittm=0, 1, 2, and 3, in a nice
correspondence with the plasmon dispersion curves shown
in Fig. 1.

IV. CONCLUDING REMARKS

We have proposed a simple, parameter-free version of the
two-fluid model for the hydrodynamic response of the elec-
trons on a SWNT, which treats the and 7 electrons as
separate 2D charged fluids constrained to the same cylindri-
cal surface. The strong electrostatic interaction between the
fluids gives rise to the splitting of the collective-excitation
frequencies into two sets which closely follow the experi-
mental dispersion curves for the high-enetgy# plasmons
and the low-energyr plasmons. In particular, the=0 mode
y.0010 of the 7r plasmons exhibits a quasiacoustic, linear dispersion
_ y.o.omd’p versus the longitudinal wave number. Calculations of the in-
duced electron density on the nanotube and the stopping
power for a charged particle moving parallel to the nanotube
axis show that, at the particle speeds above the threshold for
sl | the o+ plasmon excitations, the two-fluid model essen-
tially follows the results of the one-fluid model, whereas the
range of low particle speeds reveals some effects due to the
7 plasmon excitations in the two-fluid model. In particular,
when the particle speed matches the phase velocity of the
acousticrr plasmon, the induced density shows oscillations
which precede the position of the particle, in contrast to the
usual wake oscillations, whereas the speed dependence of the
stopping power of the particle displays peaked structures
around that phase velocity. It has been found that, while the

FIG. 5. Stopping powefin a.u) versus speed (in a.u) for a hlgh-speed stopping power is insensitive to the frlctlon_ coef_-
proton moving at distance;=a/2 from the axis of a nanotube ficiént, the low-speed peaks are quite dependent on it. This
with radius a=7 A. (a) Stopping powersS,,e and Sy, (in a.u) finding points to a need to further improve the proposed
from the one-fluid and two-fluid models, with the friction constant two-fluid model by carefully examining the role of damping
y=103Q,. (b) Stopping powerS,, for two friction constants, ~at lower plasmon frequencies.
y=1073Q, and y=1072Q,, While the present work uses the linearized version of hy-

. o drodynamic model, it is important to consider the nonlinear
point to the need of a careful examination of the role ofeffects in future developments. In that context, the existing
various damping mechanisms for the low-frequency plasmoRp and 2D nonlinear approaches for low velocities may pro-

molgi_es.” i order 1o illustrate the effects of the ol vide a background for important future compari$éat On
inally, in order 1o Hustrate the €lects of the plasmon o gher hand, implementation of the two-fluid model into a

ﬁ?c'tgtt'ﬁgsrevgﬁﬂ?f?o or;ntge St?grp;ngrgtzvr;/er;ov\;i Sg?\{\r’];n future quasiparticle-lifetime investigation might give contri-
9- Bone Swo P 9 bution to understanding electron excitations in graphite-

distancery=a/2 from the axis of a SWNT with radius 33
a=7 A. Again, the two curves are on top of each other inbased nanostructurés:
Fig. 5a) for the _speedsp above the threshold for the+ = ACKNOWLEDGMENTS

plasmon excitations, and they both closely reproduce the
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