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We calculate the Casimir force or dispersive van der Waals force between a spherical nanoparticle and a
planar substrate, both with arbitrary dielectric properties. We show that the force between the sphere and
half-space can be calculated through the interacting surface plasmons of the bodies. Using a Spectral Repre-
sentation formalism, we show that the force of a sphere made of a material A and a half-space made of a
material B differs from the case when the sphere is made of B, and the half-space is made of A. We find that
the difference depends on the plasma frequency of the materials, the geometry, and the distance of separation
between the sphere and half-space. The differences show the importance of the geometry, and make evident the
necessity of realistic descriptions of the system beyond the Derjaguin Approximation or Proximity Theorem
Approximation.
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I. INTRODUCTION

The origin of dispersive forces like Casimir1 and van der
Waals(vW) forces2,3 between atoms and macroscopic bodies
may be attributed to electromagnetic interactions between
their charge distributions induced by quantum vacuum fluc-
tuations, even when they are electrically neutral.1–4 In a first
approximation, the charge distribution of neutral particles
may be represented by electric dipoles. This dipole approxi-
mation was employed by London to calculate the nonre-
tarded van der Waals interaction potential between two iden-
tical polarizable molecules by using perturbation theory in
quantum mechanics.5 Later, Casimir studied a simpler
problem:1 the force between two parallel conducting plates
separated by a distancez, due to the change of the zero-point
energy of the classical electromagnetic modes. He found an
interaction energy per unit area,Vszd=−sp2"c/720ds1/z3d,
wherec is the speed of light. In 1956, Lifshitz3 extended the
theory of Casimir to dielectric semi-infinite slabs. A decade
later, it was shown that the Lifshitz formula could be re-
derived from the zero-point energy of the surface modes of
the slabs.6–8

In recent years, accurate experiments9–13 have been per-
formed to measure the Casimir force, which is one of the
macroscopic manifestations of the fluctuations of the quan-
tum vacuum.1 Most of these experiments10–13 have been
done using a spherical surface and a flat half-space, instead
of two parallel plates, as originally proposed Casimir1 him-
self. The interpretation of the Casimir force in these experi-
ments is based on the Proximity Theorem which was devel-
oped by Derjaguin and collaborators14 to estimate the force
between two curved surfaces of radiiR1 and R2. The Prox-
imity Theorem or Derjaguin Approximation(DA), which as-
sumes that the force on a small area of one curved surface is
due to locally “flat” portions on the other curved surface,
gives the force per unit area,

Fszd = 2pS R1R2

R1 + R2
DVszd,

whereVszd is the Casimir energy per unit area between par-
allel plates separated by a distancez. In the limit, whenR1

=R, andR2→`, the problem reduces to a sphere of radiusR
and a flat plate, givingFszd=2pRVszd. The force obtained
using the DA is a power law function ofz, and at “large”
distancesFszd~z−3, while at short distancesFszd~z−2. This
theorem is supposed to hold whenz!R1,R2; however, the
validity of the DA has not been proved yet.

Johansonn and Apell15 studied the vW force between a
sphere and a semi-infinite slab. They calculated the electro-
magnetic stress tensor associated with the electric field cor-
relation of the system from the Green’s function of the prob-
lem expressed in bispherical coordinates. They concluded
that for small separations the behavior of the attractive force
is consistent with the DA. However, one drawback of this
formalism is that in bispherical coordinates the section sur-
faces become planar(a point) for small(large) values ofz, so
it cannot be used to study the system of a sphere and a
semi-infinite slab for arbitrary values ofz/R.

Casimir showed that the energyUszd between two parallel
perfect conductor plates can be found from the change of the
zero-point energy of the classical electromagnetic field,1

Uszd =
"

2o
i

fviszd − visz→ `dg, s1d

whereviszd are the proper modes that satisfy the boundary
conditions of the electromagnetic field at the plates which are
separated a distancez. For real materials, Lifshitz obtained a
formula to calculate the Casimir force between two parallel
dielectric half-spaces.3 The force per unit area, according to
the Lifshitz formula, is

fszd =
"c

2p2E
0

`

dQ QE
qù0

dk
k3g

q
Re

1

k̃
F 1

js − 1
+

1

jp − 1
G ,

with ja=fr1
ar2

a exps2ik̃zdg−1, wherer j
a is the reflection ampli-

tude coefficient of the half-spacej for the electromagnetic
field with a-polarization. Here,a=s or p, q=v /c, v is the

frequency,c is the speed of light,qW =sQW ,kd is the vacuum

wavevector with projections parallel to the surfaceQW and
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normal to the surfacek, k̃=k+ i0+, andg is the photon occu-
pation number of the statek.

The Lifshitz formula depends only on the reflection coef-
ficients of the plates and the separation between them. These
reflection coefficients can be calculated for arbitrary material
using the surface impedance formalism for semi-infinite
slabs16–18and for finite slabs using, for example, the transfer
matrix formalism.19,20 In addition, one observes that the Lif-
shitz formula is symmetric under the interchange of index
j =1↔2; this means that the force is indistinguishable if the
half-spaces are exchanged, which is natural given the sym-
metry of the system.

The force between a sphere and a half-space made of
arbitrary dielectric materials is commonly calculated using
the DA, where the Casimir energy per unit areaVszd is found
using the Lifshitz formula. As a consequence, the force be-
tween a sphere and a half-space is indistinguishable if the
sphere is made of a material A and the plate is made of B, or
if the sphere is made of B and the plate is made of A. Fur-
thermore, the DA assumes that the interaction of a sphere
with a half-space can be calculated as the interaction of a
plate with a set of plates, and evaluates the force by adding
contributions from various distances, as if the interaction be-
tween plates were independent. However, it is well known
that the Casimir force is not an additive quantity.4,21

In this paper, we show that the geometry of the system is
important. We employ a method based on the determination
of the proper frequencies of the system based on a spectral
representation formalism.22 By calculating the zero-point en-
ergy of all the interacting surface plasmons of a sphere-plate
configuration, we find that the force between dissimilar ma-
terials differs if the sphere is made of a material A and the
plate is made of B, andvice versa. This provides an insight
into the range of validity of the DA or Proximity Theorem.
Also, we find a general formula to calculate the Casimir
force differences between arbitrary materials when the bod-
ies are separated by at least one sphere radius. In particular,
we study the specific case of aluminum and silver. We re-
strict ourselves to the nonretarded limit, i.e., to the case of
small particles at small distances.

II. ZERO-POINT ENERGY OF INTERACTING SURFACE
PLASMONS

A. Parallel plates

In 1968, van Kampen and collaborators6 showed that the
Lifshitz formula in the nonretarded limit is obtained from the
zero-point energy of the interacting surface plasmons of the
half-spaces. Later, Gerlach7 did an extension showing that
this is also true when retardation is included. A comprehen-
sive derivation of the Lifshitz formula using the surface
modes is also found in Ref. 4.

In the case of two parallel plates, in the absence of retar-
dation, the proper electromagnetic modes satisfy the follow-
ing expression:6

F esvd + 1

esvd − 1
G2

expf2kzg − 1 = 0, s2d

for any value of 0økø`. The rootsviskd are identified as
the oscillation frequencies of the surface plasmons. To find

the proper modes, it is necessary to choose a model for the
dielectric function of the plates. To illustrate the procedure
for metallic plates, let us employ the plasma model for the
dielectric function,

esvd = 1 −
vp

2

v2 , s3d

with vp the plasma frequency. Substituting Eq.(3) in Eq. (2),
we find two proper modes that, at large distancesskd@1d,
are given by

v± <
vp

Î2
S1 ±

1

2
expf− kdg −

1

8
expf− 2kdg ± ¯ D . s4d

In the limit kd→`, we obtainv±=vp/Î2 which are the fre-
quencies of the surface plasmon of each half-space. The
zero-point energy per unit area will be given by

E0szd =
1

2

"vp

Î2
2pE

0

`

o
i

viskdk dk. s5d

Now, taking the difference of the zero-point energy when the
two half-spaces are at a distancez, and when they are at
infinity, we obtain the interaction energy of the system per
unit area,

Vszd = −
"vp

Î2

p

16z2 , s6d

which depends on the energy of the surface plasmons of the
half-spaces and the distance between them.

B. Sphere and half-space: Dipolar approximation

Now, let us consider the case of a sphere of radiusa and
dielectric functionessvd, such that the sphere is located at a
minimum distancez from a half-space with dielectric func-
tion epsvd, as shown in Fig. 1. The quantum vacuum fluc-
tuations will induce a charge distribution on the sphere
which also induces a charge distribution in the half-space.
Then, the inducedlm-th multipolar moment on the sphere is
given by23

Qlmsvd = almsvdfVlm
vacsvd + Vlm

subsvdg, s7d

where Vlm
vacsvd is the field associated with the quantum

vacuum fluctuations at the zero-point energy,Vlm
subsvd is the

induced field due to the presence of the half-space, and

FIG. 1. Schematic model of the sphere-substrate system.
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almsvd is the lm-th polarizability of the sphere.
To illustrate the procedure in detail, first we work in the

dipolar approximation, i.e., whenl =1. In Sec. III, we will
calculate the proper modes, taking into account all the high-
multipolar charge distributions. Using the method of images,
the relation between the dipole moment on the spherepWssvd,
and the induced dipole moment on the half-spacepWpsvd, is

pWpsvd = −
1 − epsvd
1 + epsvd

M · pWssvd. s8d

Here, M=s−1,−1,1d is a diagonal matrix whose elements
depend on the choice of the coordinate system. From Eq.(7),
one finds that the total induced dipole moment on the sphere
is

pWssvd = asvdfEW vacsvd + T · pWpsvdg, s9d

where the dipoles are coupled by the dipole-dipole interac-
tion tensor,

T = s3rWrW − r2Id/r5.

Here,I is the identity matrix, andrW is the vector between the
centers of the sphere and the dipole charge distribution on
the half-space. From Fig. 1, we find thatrW=(0,0,2sz+ad),
such thatM ·T=s−1/r3,−1/r3,−2/r3d is a diagonal matrix.
Substituting Eq.(8) in Eq. (9), one finds

F 1

asvd
I + fcsvdM ·TG · pWssvd = Gsvd · pWssvd = EW vacsvd,

s10d

where

fcsvd = f1 − epsvdg/f1 + epsvdg.

Multiplying Eq. (10) by a3, one finds that each term of
a3Gsvd is dimensionless and has two parts: the first part is
only associated with the material properties of the sphere
through its polarizability 1/ãsvd=a3/asvd. The second part
is related to the geometrical properties of the systema, andz,
and also depends on the dielectric properties of the half-
space.

The eigenfrequencies of the sphere-substrate system must
satisfy Eq.(10), and are independent of the exciting field,

EW vacsvd. These frequencies can be obtained from the condi-
tion detGsvd=0, or

F 1

ãsvd
+

fcsvda3

f2sz+ adg3G2F 1

ãsvd
+

2fcsvda3

f2sz+ adg3G = 0. s11d

In the dipolar approximation, we find three terms, one for
each independent coordinate of the system. Given the sym-
metry of the system, the factors belong to thex andy direc-
tions (parallel to the surface) are doubly degenerated. The
second factor belongs to thez direction (normal to the
surface).22 At this point, it is necessary to consider a model
for the dielectric function of the sphere to find the proper
modes. Again, we illustrate the procedure for a metallic
sphere and a half-space of the same material, withepsvd
=essvd=esvd from Eq. (3). Moreover, we use the fact that

the polarizability of the sphere, within the dipolar approxi-
mation and in the quasi-static limit, is given by

asvd = a3essvd − 1

essvd + 2
.

Then, we find that there are two different proper modes for
each factor in Eq.(11), giving a total of six modes for each
z/a. The modes associated with the directions on the surface
plane of the half-space are degenerated.

In Fig. 2(a), we plot, −1/ãsvd and fcsvdf2s1+z/adg−3 as a
function of v /vp for different values ofz/a. The proper
frequencies of the system are given when the black-solid line
and the color-dashed lines intersect each other. The proper
modes at the left-hand side in Fig. 2(a) correspond to the
surface plasmons of the sphere that we denote withv+.
These modes are red-shifted as the sphere approaches the
half-space because of the interaction between bodies. When
the separationz/a increases, the modesv+ go to vp/Î3,
which is the surface plasmon frequency of an isolated sphere.
On the other hand, the proper modes at the right-hand side
correspond to the surface plasmons of the half-space and we
denote them withv−. These modes are blue-shifted as the
sphere approaches the half-space, also because of the inter-
action between the sphere and the half-space. In this case,
when the separationz/a increases, the modev− goes to
vp/Î2, which corresponds to the frequency of the surface
plasmon of the isolated half-space. This behavior of the
modes is clearly observed in Fig. 2(b), where v+/vp and
v−/vp are plotted as a function ofz/a for both factors in Eq.
(11). The modes associate to the left-hand side factor are

FIG. 2. (Color online) (a) Plot of −1/ãsvd in solid line and
fcsvdf2s1+z/adg−3 as a function ofv /vp for different values of
z/a. (b) Proper modesv+ andv− as a function ofz/a.
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plotted in a solid line, while the modes associate to the right-
hand factor are plotted in a dashed line. This shows that the
zero-point energy of the system is directly associated with
the interacting surface plasmons of the sphere and the half-
space.

III. EXACT CALCULATION OF THE ZERO-POINT
ENERGY OF A SPHERE ABOVE A HALF-SPACE

In this section we calculate the proper electromagnetic
modes of the sphere-substrate system, within the nonretarded
limit, including all the high-multipolar interactions. We find
these proper modes using a Spectral Representation
formalism,24–26 and then, we calculate the zero-point energy
using Eq.(1). The Spectral Representation(SR) formalism
separates the contributions of the dielectric properties of the
sphere from the contributions of its geometrical properties.
This separation has advantages over other formalisms and
allows us to perform a systematic study of the sphere-
substrate system that may be very helpful. The details of the
SR formalism can be found in Refs. 22 and 27; here we only
explain it briefly.

We now calculate the proper modes of the system includ-
ing all the high-multipolar charge distributions. Using the
method of images, we find that Eq.(7) becomes

− o
l8m8

F 4pdll8dmm8

s2l + 1dal8m8svd
+ fcsvdAlm

l8m8szdGQl8m8svd = Vlm
vacsvd,

s12d

where Alm
l8m8szd is the matrix that describes the interaction

between sphere and its image.23 The expression for the inter-

action matrixAlm
l8m8szd is given in the Appendix, and it shows

that Alm
l8m8szd depends only on the geometrical properties of

the system. If we have a homogeneous sphere, its polariz-
abilities are independent of the indexm, and are given by23

alsvd =
lfessvd − 1g

lfessvd + 1g + 1
a2l+1 =

nl0

nl0 − usvd
a2l+1, s13d

wherenl0= l / s2l +1d, andusvd=f1−essvdg−1. Notice that in
the above equation for the polarizability, the dielectric prop-
erties of the sphere are separated from its geometrical prop-
erties. By substituting the right-hand side of the above equa-
tion, we rewrite Eq.(12) as

o
l8m8

h− usvddll8dmm8 + Hlm
l8m8sv,zdj

Ql8m8svd

sl8a2l8+1d1/2

= −
sla2l+1d1/2

4p
Vlm

vacsvd, s14d

where thelm, l8m8-th element of the matrixHsv ,zd is

Hlm
l8m8sv,zd = nl80dll8dmm8 + fcsvd

sal+l8+1d
4p

sll 8d1/2Alm
l8m8szd.

s15d

The proper modes are given when the determinant of the
quantity between parentheses in Eq.(14) is equal to zero,
detf−usvdI+Hsv ,zdg=0, that is

Gsv,zd ; p
s

f− usvd + nssv,zdg = 0, s16d

wherenssv ,zd are the eigenvalues ofHsv ,zd. The frequen-
cies of the proper modes atz are found from the last equa-
tion.

The Spectral Representation formalism can be applied in
a very simple way. First, we have to choose a substrate to
calculate the factorfcsvd, we then construct the matrix
Hsv ,zd, and diagonalize it to find its eigenvaluesnssv ,zd.
We can repeat these steps for a set of different values ofz
and v. Notice that the eigenvalues ofHsv ,zd can be found
without making any assumption about the dielectric function
of the sphere. Once we have the eigenvalues as a function of
z andv, we have to consider an explicit form of the dielec-
tric function of the sphere, and calculate the proper mode
frequenciesvsszd from Eq. (16) through the relationusvsd
=nsvs,zd.

To illustrate the procedure, we consider the case where
the sphere and the half-space are both described by the
plasma model of the same plasma frequency. The frequen-
cies of the proper modes are given by

vsszd = vp
Îns„vsszd,z…, s17d

with s=sl ,md, and ns(vsszd ,z) the eigenvalues ofHsv ,zd.
Then, the zero-point energy, in accordance with Eq.(1), is
given by

Uszd =
"vp

2 o
l,m

fÎnlm„vsszd,z… − Înl0g, s18d

where "vp
Înl0="vpÎl / s2l +1d are the energies associated

with the multipolar surface plasmon resonances of the iso-
lated sphere. These modes are found whenz→`, such that
the second term of Eq.(15) is zero. Here,l =1,2, . . . ,L,
whereL is the largest order in the multipolar expansion. For
l =1 we have that"vp

În10="vp/Î3 is the surface plasmon
of the sphere in the dipolar approximation. Whenl →`, we
have "vp

Înl0→"vp/Î2, the surface plasmon of a half-
space.

Now, in the presence of a dielectric half-space, the proper
modes of the sphere are given diagonalizing Eq.(15). These
proper modes are red-shifted always as the sphere ap-
proaches the half-space, and this shift depends on the sepa-
rationz/a. We find that the interaction energy is proportional
to f1/2s1+z/adgb, whereb= l + l8+1 is an integer between 3
and 2L+1. As z/a→0, more and more multipolar interac-
tions must be taken into account andb→2L+1. Finally,
when the sphere is touching the substrate, one would expect
that L→`, so that alsob→`, and the energy atz=0 is
proportional tos1/2dg, with g→`.

CECILIA NOGUEZ AND C. E. ROMÁN-VELÁZQUEZ PHYSICAL REVIEW B70, 195412(2004)

195412-4



From Eq.(18), we find that the behavior of the energy as
a function ofz/a is proportional to the plasma frequency of

the sphere. Then, we can define a dimensionless quantityẼ
;U /"vp. The force along thez axis is

F = −
]Usz/ad

]z
= −

]Usz/ad
]sz/ad

]sz/ad
]z

. s19d

Therefore, the behavior of the force can also be studied using
a quantity independent of the radius of the sphere, and of its

plasma frequency. We define a dimensionless force asF̃
;aF/"vp. In summary, we find a general behavior of the
energy and force between a half-space and a sphere, showing
the potentiality of the Spectral Representation formalism.22

In the same way, we find the dimensionless energy and
force for a system composed of a sphere and a half-space of
similar materials, whose dielectric function is described by
the plasma model of Eq.(3). In Figs. 3(a) and 3(b), we show

Ẽ, andF̃, respectively, as a function ofz/a. In each figure we
show three curves that correspond to three different situa-

tions: (i) when all multipolar interactions are taken into ac-
count, (ii ) when only dipolarsL=1d, and (iii ) when up to
quadrupolarsL=2d interactions are considered. The largest
multipolar moment to achieve convergence of the energy at a
minimum separation ofz/a=0.1 isL=80. We observe thatẼ
andaF̃ are power law functions ofsz/ad−b, whereb depends
on the order of the multipolar interaction considered. Within
the dipolar approximationẼ and F̃a are proportional to
sz/ad−3, and sz/ad−4, respectively. Let us first analyze the
system when up to quadrupolar interactions are taken into
account. In that case, the energy as well as the force show
three different regions:(i) at large distances,z.5a, only
dipolar interactions are important;(ii ) when 5a.z.2a, we
found that dipolar-quadrupolar interactions become impor-
tant andẼ and F̃a are proportional tosz/ad−4, and sz/ad−5

respectively; while (iii ) at small distancesz,2a the
quadrupolar-quadrupolar interaction dominates, andẼ and

F̃a like sz/ad−5, andsz/ad−6, respectively.
When the sphere approaches the substrate the interaction

between high-multipolar moments becomes more and more
important. The attractive force increases more than four or-
ders of magnitude, as compared with the dipolar and quadru-
polar approximations. In Fig. 3(c) we show the difference of

the dimensionless force,usF̃LH−F̃LWd / F̃LHu, as a function of
the separation, withLH and LW the highest and lowest-
multipolar moments taken into account. Here, we show three
curves corresponding toLH=80 and LW=2 (solid line),
LH=80 and LW=1 (dashed line) and, LH=2 and LW=1
(dot-dot-dashed line). We observe that at distancesz.2a the
force can be obtained if up to quadrupolar interactions are
considered. We also find that forz.7a the interaction be-
tween the sphere and the substrate can be modeled using the
dipolar approximation only, like in the Casimir and Polder
model.28 However, at separations smaller thanz,2a, the
quadrupolar approximation also fails, and it is necessary to
include high-multipolar contributions. For example, atz=a
the quadrupolar approximation gives an error of about 10%,
while the dipolar approximation gives an error of about 40%.
At smaller distances likez=a/2, the quadrupolar approxima-
tion gives an error of about 40%, while in the dipolar ap-
proximation the error is 70%. Atz=0.1a both approxima-
tions give an error larger than 90%. To directly compare the
dipolar and quadrupolar approximations, we also plot in Fig.
3(c) the force difference whenLH=2 and LW=1. In this
curve, we clearly observe that even atz=5a there are differ-
ences between the dipolar and quadrupolar approximations
of about 5%.

The large increment of the force at small separations due
to high-multipolar effects could explain the physical origin
of, for example, the large deviations observed in the deflec-
tion of atomic beams by metallic surfaces,29 as well as some
instabilities detected in micro and nano devices. Further-
more, to compare experimental data of some experiments12,30

with the DA, it is necessary to make a significant modifica-
tion to the theory of the Casimir force. In Ref. 12 the authors
found a larger force than the one calculated using DA, while
in Ref. 30 the authors measured a smaller one. Both groups
argue that the discrepancies between theory and experiment

FIG. 3. (Color online) (a) EnergyẼ and(b) force aF̃ as a func-
tion of z/a, with L=80 (dotted line), L=2 (solid line), and L=1

(dashed line). (c) Force difference,usF̃LH−F̃LWd / F̃LHu, using multi-
polar momentsLH=80 andLW=2 (solid line), LH=80 andLW
=1 (dashed line), finally LH=2 andLW=1 (dot-dot-dashed line).
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are due to the same effect: the roughness of the surface.
Indeed, this ambiguity on the interpretation of the measure-
ments indicates that the force between a spherical particle
and a planar substrate involves more complicated interac-
tions than the simple dipole model28 or the DA.14 For ex-
ample, such deviations might be attributed also to high-
multipolar effects.

In this paper, we propose a way to elucidate experimen-
tally two important issues related to the Casimir force:(i) the
relevance of the geometry via the surface plasmon interac-
tions between bodies, and(ii ) the relevance of the high-
multipolar interactions in the sphere-substrate model. In the
next section, we study the case of the Casimir force between
a sphere and a half-space of dissimilar materials that can help
us to clarify these important issues.

IV. CASIMIR FORCE BETWEEN DISSIMILAR
MATERIALS

Using the formalism presented in the previous section, we
calculate the Casimir force for a sphere and a half-space
made of dissimilar materials. To illustrate our results, we
choose silver(Ag) and aluminum(Al ) whose dielectric func-
tions are described by the Drude model,

esvd = 1 −
vp

2

vsv + i/td
, s20d

with plasma frequencies"vp=9.6 eV, and 15.8 eV, and
stvpd−1=0.0019, and 0.04, respectively.32 If the materials
have dielectric functions with nonzero imaginary parts, the
mode frequencies are complex and the direct sum ofvsszd, to
calculate the energy on Eq.(1), is not valid. However, we
can employ the Argument Principle(AP) to calculate the
energy as follows. The AP was first used by van Kampen6

and Gerlach7 to calculate the force between plates. The
reader can consult Ref. 4 for a comprehensive explanation of
the use of the AP within the context of Casimir forces.

According to the Argument Principle method, the sum
over proper modes is given as

Eszd = o
s

"vsszd
2

=
"

4pi
R

C

v
]Gsv,zd

]v

1

Gsv,zd
dv, s21d

using the expression forGsv ,zd in Eq. (16), we find that

Eszd =
"

4pi
o

s
R

C

v
]

]v
logf− usvd + nssv,zdgdv. s22d

The closed contourC is defined as the part along the imagi-
nary axis plus the part along the semicircle on the positive
real axis. In the limit of an infinite semicircle radius, the
integral along the semicircle does not depend on the separa-
tion z; therefore, it does not contribute to the force. The
integral in Eq.(21) is along the imaginaryv axis, so the
dielectric functions are real, the matrixH defined by Eq.(15)
is Hermitian and has real eigenvalues, giving a real energy.
By performing a partial integration, it follows that the inter-
action energy of Eq.(1) is given by

Uszd =
"

2o
i

fviszd − visz→ `dg

=
"

4pi
o

s
E

−i`

i`

dv logf− usvd + nssv,zdg

−
"

4pi
o

l
E

−i`

i`

dv logf− usvd + nl0g. s23d

The force is found as in Eq.(19), where we first find the
derivative of Eq.(23) with respect toz and then the integral
with respect tov. Notice that the last term of Eq.(23) does
not contribute to the force because it does not depend on the
separationz.

In Fig. 4(a), we show the calculated force for an alumi-
num sphere of arbitrary radius above a silver half-space,
aFAl/Ag, as a solid line, and the same for a silver sphere
above an aluminum half-space,aFAg/Al, as a dashed line. We
find that the difference is too small to be observed directly
from the figure. Then, in Fig. 4(b) we show the difference of
the force normalized with the average as a function ofz/a,
given by

DF = 2UFA/B − FB/A

FA/B + FB/A
U , s24d

with A=Al, and B=Ag. Here, we observe that the difference
of force varies as a function ofz/a, such that at small dis-
tancessz,0.5ad, the difference under the interchange of ma-
terials between the sphere and the plane, is less than 3%.
Then, the difference increases as the separation is increased,
and atz.a, it has almost reached its maximum. For these

FIG. 4. (Color online) (a) Force as a function ofz/a, for a
sphere made of Al over an Ag plane(solid line), and for a sphere
made of Ag over an Al substrate(dashed line). (b) Difference of the
force between a sphere made of Al over an Ag substrate, and the
force for a sphere made of Ag over an Al substrate.
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particular materials, the maximum is about 5%, independent
of the radius of the sphere. We find that this value ofDF is
a consequence of the geometry of the system, as we explain
below.

In the previous section, we show that for a minimum
separation larger than 2a, the force can be described with
quadrupolar interactions between the sphere and the sub-
strate. This means that forz.2a the force varies with the
same power-law function. This conclusion can be easily
found from Fig. 3(c). We also show in Sec. II that the Ca-
simir force is given by the interaction of the surface plas-
mons of the sphere and plane. In Fig. 2(b), we observe that
the proper modes of the system forz.a are approximately
given by"vp/Î2 and"vp/Î3, whenL=1. It follows that for
z.a, the force difference is independent ofz, and has the
value

DF . 2*S
"vp

A

Î3
+

"vp
B

Î2
D − S"vp

B

Î3
+

"vp
A

Î2
D

S"vp
A

Î3
+

"vp
B

Î2
D + S"vp

B

Î3
+

"vp
A

Î2
D* ,

=0.202U"vp
A − "vp

B

"vp
A + "vp

BU . s25d

For the case of A=Al, and B=Ag, we find from Eq.(25) that
DF.5%, which is the calculated value shown in Fig. 4(b)
whenz.2a. Whenz,a the difference decreases asz/a also
does, because more and more multipolar interactions become
important as the sphere approaches the plane. In the case of
Al and Ag, the force difference atz/a=0.001 is less than
0.01%, while atz/a=0.1 the difference is about 1.2%. At
z/a=0.001 we takeL=1300 to achieve convergency on the
values of the force. In Eq.(25) we observe that as the plasma
frequency of the materials becomes more dissimilar the dif-
ference of the force becomes larger. For example, for potas-
sium s"vp=3.8 eVd and aluminum we would find thatDF
.12.4% whenz.2a, while for gold s"vp=8.55 eVd and

copper s"vp=10.8 eVd, DF.2.4% when z.2a. On the
other hand, the differences become very small whenz,0.1a
independently of the materials because of the dominant
terms on the force are due to interactions between high-
multipolar surface plasmon which eigenvalues are very simi-
lar for large values ofL, so the force is almost unchangedif
the materials of the bodies are changed.

V. SUMMARY

In this work, we show that the Casimir force between a
sphere and a plane can be calculated through the energy ob-
tained from their interacting surface plasmons. Our result is
in agreement with the work of van Kampen and
collaborators,6 and Gerlach,7 which showed that the Casimir
force between parallel planes can be obtained from the zero-
point energy of the interacting surface plasmons of the
planes. We show that the Casimir force of a sphere made of
a given material A and a plane made of a given material B, is
different from the case when the sphere is made of B, and the
plane is made of A. We obtain a formula to estimate the force
difference for Drude-like materials, when they are separated
by at least two sphere radii. We find that the difference de-
pends on(i) the plasma frequencies of the materials, and(ii )
the distance of separation between the sphere and the plane.
We also find that as the sphere approaches the plane, the
force difference becomes smaller. We conclude that the ge-
ometry of the system is important at distances larger than the
radius of the sphere, where the force is dominated by the
surface plasmons of the bodies. The energy of these surface
plasmons is equal to the plasma frequencies of the materials
times a factor given by the geometry.
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APPENDIX: MULTIPOLAR INTERACTION MATRIX

The tensor that couples the sphere and its image is23

Alm
l8m8 =

Yl+l8
m−m8su,wd

r l+l8+1
F s4pd3sl + l8 + m− m8d ! sl + l8 − m+ m8d!

s2l + 1ds2l8 + 1ds2l + 2l8 + 1dsl + md ! sl − md ! sl8 + m8d ! sl8 − m8d!
G1/2

sA1d

whereYlmsu ,wd are the spherical harmonics. In spherical coordinatesrW=(2sz+ad ,0 ,0), so the spherical harmonics reduce to31

Yl+l8
m−m8s0,wd = F2sl + l8d + 1

4p
G1/2

dm−m8,0. sA2d

This means thatm=m8 and multipolar moments with different azimuthal charge distribution are not able to interact. Therefore,

Alm
l8m8 =

4p

f2sz+ adgl+l8+1
F ssl + l8d ! d2

s2l + 1ds2l8 + 1dsl + md ! sl − md ! sl8 + md ! sl8 − md! G1/2

dmm8, sA3d

which is a symmetric matrix.
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