PHYSICAL REVIEW B 70, 195412(2004)

Dispersive force between dissimilar materials: Geometrical effects

Cecilia Nogue? and C. E. Roman-Velazquez
Instituto de Fisica, Universidad Nacional Autonoma de México, Apartado Postal 20-364, D.F. 01000, Mexico
(Received 21 November 2003; revised manuscript received 20 August 2004; published 11 Novemper 2004

We calculate the Casimir force or dispersive van der Waals force between a spherical nanoparticle and a
planar substrate, both with arbitrary dielectric properties. We show that the force between the sphere and
half-space can be calculated through the interacting surface plasmons of the bodies. Using a Spectral Repre-
sentation formalism, we show that the force of a sphere made of a material A and a half-space made of a
material B differs from the case when the sphere is made of B, and the half-space is made of A. We find that
the difference depends on the plasma frequency of the materials, the geometry, and the distance of separation
between the sphere and half-space. The differences show the importance of the geometry, and make evident the
necessity of realistic descriptions of the system beyond the Derjaguin Approximation or Proximity Theorem
Approximation.
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I. INTRODUCTION =R, andR,— =, the problem reduces to a sphere of radius

The origin of dispersive forces like Casirhiand van der and a flat plate, giving#(z)=2mRV(2). The force obtained
Waals(VW) force€-3 between atoms and macroscopic bodiesusing the DA is a power law function of, and at *large”
may be attributed to electromagnetic interactions betweefistancesF(z)«z3, while at short distance$(z) <z 2. This
their charge distributions induced by quantum vacuum fluctheorem is supposed to hold whereR;,R,; however, the
tuations, even when they are electrically neutrdln a first  validity of the DA has not been proved yet.
approximation, the charge distribution of neutral particles Johansonn and Apél studied the vW force between a
may be represented by electric dipoles. This dipole approxisphere and a semi-infinite slab. They calculated the electro-
mation was employed by London to calculate the nonremagnetic stress tensor associated with the electric field cor-
tarded van der Waals interaction potential between two idenrelation of the system from the Green’s function of the prob-
tical polarizable molecules by using perturbation theory inlem expressed in bispherical coordinates. They concluded
quantum mechanics. Later, Casimir studied a simpler that for small separations the behavior of the attractive force
problem? the force between two parallel conducting platesis consistent with the DA. However, one drawback of this
separated by a distanzedue to the change of the zero-point g5 majism is that in bispherical coordinates the section sur-
energy 'of the classical elgctromagnetlc modes. He found ap, a5 pecome planga poiny for small(large values ofz, so
interaction energy per unit ared(z)=~(m*hc/720(1/Z), it cannot be used to study the system of a sphere and a
wherec is the speed of light. In 1956, Lifshitextended the semi-infinite slab for arbitrary values afR.

theory of Casimir to dielectric semi-infinite slabs. A decade  casimir showed that the enertyz) between two parallel

later, it was shown that the Lifshitz formula could be re- o et conductor plates can be found from the change of the
derived gogm the zero-point energy of the surface modes 0bqq_noint energy of the classical electromagnetic field
the slab$- '

In recent years, accurate experiméntshave been per- 3
formed to measure the Casimir force, which is one of the U@ :EE [wi(2) — wi(z— =], (1)
macroscopic manifestations of the fluctuations of the quan- :

) 13 .

tum vacuum: Most of these experimerifs®® have been where w;(2) are the proper modes that satisfy the boundary
done using a spherical surface and a flat half—spz;ﬁ‘cmg, insteadnditions of the electromagnetic field at the plates which are
of two parallel plates, as originally proposed Casmfim-  sonarated a distangeFor real materials, Lifshitz obtained a

self. The interpretation of the Casimir force in these experixormia to calculate the Casimir force between two parallel
ments is based on the Proximity Theorem which was develgig|eciric half-spacedThe force per unit area, according to
oped by Derjaguin and collaboratétgo estimate the force the Lifshitz formula. is

between two curved surfaces of radj andR,. The Prox-
imity Theorem or Derjaguin ApproximatiofDA), which as- A Kg 1] 1 1
sumes that the force on a small area of one curved surface is f(2) = FJ dQQ| dk—=ReZ o1 mo1|
due to locally “flat” portions on the other curved surface, ™o =0 9 kLE ¢

gives the force per unit area,

with &*=[rirg exp(ZiEz)]‘l, wherer " is the reflection ampli-
Fl2)= 277( RiR, )V(z), t_ude Cpefficient c_Jf the half-spagefor the electromz_;lgnetic
Ri+R, field with a-polarization. Herep=s or p, g=w/c, o is the

whereV(z) is the Casimir energy per unit area between parfrequency.c is the speed of lightg=(Q.k) is the vacuum
allel plates separated by a distarcdn the limit, whenR;  wavevector with projections parallel to the surfaQeand
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normal to the surfack, k=k+i0*, andg is the photon occu- z

pation number of the state 4 4
The Lifshitz formula depends only on the reflection coef-

ficients of the plates and the separation between them. These £,(®)

reflection coefficients can be calculated for arbitrary material
using the surface impedance formalism for semi-infinite

slabg%-18and for finite slabs using, for example, the transfer z

matrix formalism!®2° In addition, one observes that the Lif- 3

shitz formula is symmetric under the interchange of index H117117777777777//77177777777//7 /17
j=1<2; this means that the force is indistinguishable if the €p(®)

half-spaces are exchanged, which is natural given the sym- .
metry of the system. FIG. 1. Schematic model of the sphere-substrate system.

The force between a sphere and a half-space made of
arbitrary dielectric materials is commonly calculated usingthe proper modes, it is necessary to choose a model for the
the DA, where the Casimir energy per unit adéa) is found  dielectric function of the plates. To illustrate the procedure
using the Lifshitz formula. As a consequence, the force befor metallic plates, let us employ the plasma model for the
tween a sphere and a half-space is indistinguishable if thgjelectric function,
sphere is made of a material A and the plate is made of B, or
if the sphere is made of B and the plate is made of A. Fur- R
thermore, the DA assumes that the interaction of a sphere flw)=1-—, 3
with a half-space can be calculated as the interaction of a
plate with a set of plates, and evaluates the force by addingith », the plasma frequency. Substituting &8) in Eq. (2),
contributions from various distances, as if the interaction bewe find two proper modes that, at large distanfes> 1),
tween plates were independent. However, it is well knowrare given by

N

w

that the Casimir force is not an additive quanti#. 1 1
In this paper, we show that the geometry of the system is W, = 3_9(1 += exf - kd] - = exf - 2kd] + - -- ) (4)
important. We employ a method based on the determination N 2 8

of the proper frequencies of the system based on a spectrpnl
representation formalisi?.By calculating the zero-point en-
ergy of all the interacting surface plasmons of a sphere—platg
configuration, we find that the force between dissimilar ma-
terials differs if the sphere is made of a material A and the lhw -

plate is made of B, andice versa This provides an insight &2 = E_FEZWJ > wi(Kk dk (5)

into the range of validity of the DA or Proximity Theorem. V2 0 i

Also, we find a general formula to calculate the CasimirNow, taking the difference of the zero-point energy when the
force differences between arbitrary materials when the bodwwo half-spaces are at a distanzeand when they are at

ies are separated by at least one sphere radius. In particul@ifinity, we obtain the interaction energy of the system per
we study the specific case of aluminum and silver. We reynit area,

strict ourselves to the nonretarded limit, i.e., to the case of
small particles at small distances. W2) = - ho, ©)

Il. ZERO-POINT ENERGY OF INTERACTING SURFACE V2 16z
PLASMONS which depends on the energy of the surface plasmons of the
half-spaces and the distance between them.

the limit kd— o, we obtainw, = wp/ V2 which are the fre-
uencies of the surface plasmon of each half-space. The
ero-point energy per unit area will be given by

A. Parallel plates

In 1968, van Kampen and collaboratbshowed that the
Lifshitz formula in the nonretarded limit is obtained from the
zero-point energy of the interacting surface plasmons of the Now, let us consider the case of a sphere of radiasd
half-spaces. Later, Gerlatilid an extension showing that dielectric functiones(w), such that the sphere is located at a
this is also true when retardation is included. A comprehenminimum distancez from a half-space with dielectric func-
sive derivation of the Lifshitz formula using the surface tion e,(w), as shown in Fig. 1. The quantum vacuum fluc-
modes is also found in Ref. 4. tuations will induce a charge distribution on the sphere

In the case of two parallel plates, in the absence of retawhich also induces a charge distribution in the half-space.
dation, the proper electromagnetic modes satisfy the followThen, the inducetim-th multipolar moment on the sphere is
ing expression: given by

{ () + 1} ® exel2ka 120, @ Qun(0) = (@) [Vi2w) + V2 w)], (7)

e(w) -1 where V|29w) is the field associated with the quantum
for any value of Gsk=o. The rootsw;(k) are identified as vacuum fluctuations at the zero-point enel’yﬁﬁjb(w) is the
the oscillation frequencies of the surface plasmons. To findnduced field due to the presence of the half-space, and

B. Sphere and half-space: Dipolar approximation
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am(w) is thelm-th polarizability of the sphere. L 20— T
To illustrate the procedure in detail, first we work in the Q Zla= 0.01 (a)
dipolar approximation, i.e., wheh=1. In Sec. lll, we will 2 [ — —za= 0.1 ;
calculate the proper modes, taking into account all the high- S 10k ———7a=05 E’s\ .
multipolar charge distributions. Using the method of images, z | da=10 5112 v)r
the relation between the dipole moment on the sppgi®), o i l/ N - .
and the induced dipole moment on the half-spag®), is B 0.0 C e
« .= Y
- l1-ew), . 3 i /\ i1z
=-——2—. : 8 = \i
Pol() 1+ey(w) Ps(w) ® g 1.0 R TTR WT N
| £ ; X ;| £
Here, M=(-1,-1,) is a diagonal matrix whose elements 00 02 040)/%06 g8 L0
depend on the choice of the coordinate system. Fron{Bg. 0. 8 p———————r——
one finds that the total induced dipole moment on the sphere NS ® |
is 5 NS
R < 0.7 =
pi(w) = a(@)[Ew) + T Byw)], 9) s 1 .
where the dipoles are coupled by the dipole-dipole interac- 3 0.6} -
tion tensor, QT' | _——= ]
T = (3FF = r2)/r®. S 05 ./’ 4
Here,l is the identity matrix, and is the vector between the —t— L
. S 0 1 2 3 4 5
centers of the sphere and the dipole charge distribution on zla

the half-space. From Fig. 1, we find that(0,0,2z+a)),
such thatM-T=(-1/r%,-1/r3,-2/r% is a diagonal matrix.
Substituting Eq(8) in Eq. (9), one finds

FIG. 2. (Color onling (a) Plot of —=1/a(w) in solid line and
fo(w)[2(1+2z/a)]"% as a function ofw/ w, for different values of
z/a. (b) Proper modes, andw_ as a function ofz/a.

1 R s R =
[a(w)I+ fc(“’)M'T] Ps(@) = 6(0) - piw) = E™w), the polarizability of the sphere, within the dipolar approxi-
(10) mation and in the quasi-static limit, is given by
where _a&w)—1
alw)=a () +2

fo(w) =[1 - () [1 + ex(w)].
Multiplying Eq. (10) by a3, one finds that each term of Then, we find that there are two different proper modes for

a%C(w) is dimensionless and has two parts: the first part ig¢ach factor in Eq(11), giving a total of six modes for each

only associated with the material properties of the spheré/a- The modes associated with the directions on the surface

through its polarizability 1%(w)=a%/a(w). The second part Plane of the half-space are degenerated.

is related to the geometrical properties of the systeandz, In Fig. 2(a), we plot, ~1/(w) andf(w)[2(1+z/a)]*as a

and also depends on the dielectric properties of the halffunction of w/w, for different values ofz/a. The proper

space. frequencies of the syste_m are given when the black-solid line
The eigenfrequencies of the sphere-substrate system mu@id the color-dashed lines intersect each other. The proper

satisfy Eq.(10), and are independent of the exciting field, modes at the left-hand side in Fig(a® correspond to the
surface plasmons of the sphere that we denote with

vau 1 1
Eonqg);.(;::)ai% fr(()arquenmes can be obtained from the Condl:I'hese modes are red-shifted as the sphere approaches the
’ half-space because of the interaction between bodies. When
1 f(wa® |?| 1 2f(w)a® the separatiorz/a increases, the modes, go to w,/ V3,
o) + 2z+a)P]| | #w) + [2z+a) |~ 0. (11 which is the surface plasmon frequency of an isolated sphere.
On the other hand, the proper modes at the right-hand side
In the dipolar approximation, we find three terms, one forcorrespond to the surface plasmons of the half-space and we
each independent coordinate of the system. Given the synalenote them withw_. These modes are blue-shifted as the
metry of the system, the factors belong to thendy direc-  sphere approaches the half-space, also because of the inter-
tions (parallel to the surfageare doubly degenerated. The action between the sphere and the half-space. In this case,
second factor belongs to the direction (normal to the when the separatioa/a increases, the mode_ goes to
surface.?? At this point, it is necessary to consider a model w,/ V2, which corresponds to the frequency of the surface
for the dielectric function of the sphere to find the properplasmon of the isolated half-space. This behavior of the
modes. Again, we illustrate the procedure for a metallicmodes is clearly observed in Fig(t2, where w,/w, and
sphere and a half-space of the same material, wjit) o_/ w, are plotted as a function af a for both factors in Eq.
=ew)=€(w) from Eq. (3). Moreover, we use the fact that (11). The modes associate to the left-hand side factor are
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plotted in a solid line, while the modes associate to the right- . @'
hand factor are plotted in a dashed line. This shows that the Hlmm (0,2) =198 Sy + To(@)
zero-point energy of the system is directly associated with

the interacting surface plasmons of the sphere and the half- (15
space.

—(” r)llelr’nm’(z)_

aa
The proper modes are given when the determinant of the
quantity between parentheses in Ef4) is equal to zero,

def-u(w)l+H(w,2)]=0, that is

G(w,2 = [I[- u(w) + ndw,2]=0, (16)

IIl. EXACT CALCULATION OF THE ZERO-POINT
ENERGY OF A SPHERE ABOVE A HALF-SPACE

In this section we calculate the proper electromagnetic
modes of the sphere-substrate system, within the nonretardechereny(w,z) are the eigenvalues df(w,z). The frequen-
limit, including all the high-multipolar interactions. We find cies of the proper modes atare found from the last equa-
these proper modes using a Spectral Representatidion.
formalism?4-26and then, we calculate the zero-point energy The Spectral Representation formalism can be applied in
using Eq.(1). The Spectral Representatio8R) formalism  a very simple way. First, we have to choose a substrate to
separates the contributions of the dielectric properties of thealculate the factorf.(w), we then construct the matrix
sphere from the contributions of its geometrical propertiesH(w,z), and diagonalize it to find its eigenvaluegw,z).
This separation has advantages over other formalisms antfe can repeat these steps for a set of different values of
allows us to perform a systematic study of the sphereandw. Notice that the eigenvalues df(w,z) can be found
substrate system that may be very helpful. The details of thgjithout making any assumption about the dielectric function
SR formalism can be found in Refs. 22 and 27; here we onlyf the sphere. Once we have the eigenvalues as a function of
explain it briefly. z andw, we have to consider an explicit form of the dielec-
We now calculate the proper modes of the system includtric function of the sphere, and calculate the proper mode
ing all the high-multipolar charge distributions. Using the frequencieswy(z) from Eq. (16) through the relatioru(w,)

method of images, we find that E(/) becomes =n(ws,2).
To illustrate the procedure, we consider the case where
47781 Sy - . the sphere and the half-space are both described by the
- m + () A (2 |Qm(w) =V i w), plasma model of the same plasma frequency. The frequen-
I'm’ m cies of the proper modes are given by
12 042) = op\nd 2, 7

with s=(I,m), and nyw¢(z),2) the eigenvalues ofl(w,2).

where A}'m'(z) is the matrix that describes the interaction Then, the zero-point energy, in accordance with B, is

m
between sphere and its imaffelhe expression for the inter-

" given by
action matrixA}mm (2) is given in the Appendix, and it shows
that Alr;]m'(z) depends only on the geometrical properties of Uz) = h—wEE [Vnm(ws(2),2) - \“'m], (18)
the system. If we have a homogeneous sphere, its polariz- 2 im

abilities are independent of the index and are given &¢ whereﬁwp\s’ﬂ:ﬁwp\,ll(m +1) are the energies associated

with the multipolar surface plasmon resonances of the iso-
lated sphere. These modes are found whernro, such that
the second term of Eq5) is zero. Herel=1,2,...L,
wherel is the largest order in the multipolar expansion. For
_ . . I=1 we have thatw,\n;p=fiw,/\3 is the surface plasmon

_ —r1_ 1 pViio p

Wheren|o—|/(2|+1), and U(w)—[l es(a))] . N0t|Ce that n Of the Sph(ie in the dlpolar approximation. WHeHOO, we

the above equation for the polarizability, the dielectric prop-p5ve % Jno—#wy/\2, the surface plasmon of a half-
erties of the sphere are separated from its geometrical ProRy 4 ce priio P

grties. By supstituting the right-hand side of the above equa- Now, in the presence of a dielectric half-space, the proper
tion, we rewrite Eq(12) as modes of the sphere are given diagonalizing @&). These
proper modes are red-shifted always as the sphere ap-
Qrpy(w) proaches the half-space, and this shift depends on the sepa-
. rationz/a. We find that the interaction energy is proportional

__efw) —1] 2+1- Mo 20+1

W) @+ 0+ 10 mo-u@ P

D - U(@) 81 By + HI™ (0,2)}

I’ (Ia® v to[1/2(1+z/a)]?, whereB=I+I"+1 is an integer between 3
(Ila2+1)12 . a}nd 2+1. As z/a—>0,_more and more multipolar _interac—
=—TV,m°(w), (14)  tions must be taken into account am—2L+1. Finally,
when the sphere is touching the substrate, one would expect
that L— o, so that alsoB— o, and the energy at=0 is
where thelm,|’'m’-th element of the matriXl(w,z) is proportional to(1/2)?, with y— o,
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tions: (i) when all multipolar interactions are taken into ac-
count, (i) when only dipolar(L=1), and (iii) when up to
quadrupolar(L=2) interactions are considered. The largest
multipolar moment to achieve convergence of the energy at a

minimum separation af/a=0.1 isL=80. We observe that

andaF are power law functions afz/a)#, whereg depends

] on the order of the multipolar interaction considered. Within
2 3 4 the dipolar approximatiorf and Fa are proportional to
11 1 (z/a)™%, and (z/a)™4, respectively. Let us first analyze the
system when up to quadrupolar interactions are taken into
T T 1T 1 11 account. In that case, the energy as well as the force show
three different regions(i) at large distancesz>5a, only
dipolar interactions are importanj) when > z>2a, we
found that dipolar-quadrupolar interactions become impor-
- tant and€ and Fa are proportional toz/a)™*, and (z/a)™®
respectively; while (iii) at small distancesz<2a the
quadrupolar-quadrupolar interaction dominates, &nend

- Fa like (z/a)™°, and(z/a)~8, respectively.

111 1 1 1 31 1 1 i When the sphere approaches the substrate the interaction
between high-multipolar moments becomes more and more
important. The attractive force increases more than four or-
() - ders of magnitude, as compared with the dipolar and quadru-
polar approximations. In Fig.(8) we show the difference of

the dimensionless forcé(F-"-F-W)/FtH|, as a function of
the separation, withtH and LW the highest and lowest-
multipolar moments taken into account. Here, we show three
curves corresponding ttH=80 and LW=2 (solid line),
LH=80 andLW=1 (dashed ling and, LH=2 and LW=1
To= (dot-dot-dashed lineWe observe that at distances 2a the
Ja force can be obtained if up to quadrupolar interactions are
considered. We also find that far>7a the interaction be-
tween the sphere and the substrate can be modeled using the
dipolar approximation only, like in the Casimir and Polder
model?® However, at separations smaller thas 2a, the
quadrupolar approximation also fails, and it is necessary to
include high-multipolar contributions. For example,zata
the quadrupolar approximation gives an error of about 10%,
) . while the dipolar approximation gives an error of about 40%.
F“’”.‘ Eq.(18),lwe find that the behavior of the energy as At smaller distances like=a/2, the quadrupolar approxima-
a function ofz/a is proportional to the plasma frequengy of tion gives an error of about 40%, while in the dipolar ap-
the sphere. Then, we can define a dimensionless quattity proximation the error is 70%. At=0.1a both approxima-

0.00
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FIG. 3. (Color onling (a) EnergyE and(b) force aF as a func-
tion of z/a, with L=80 (dotted ling, L=2 (solid line), andL=1
(dashed ling (c) Force difference|(F-H-F-W)/FLH|, using multi-
polar momentd. H=80 andLW=2 (solid line), LH=80 andLW
=1 (dashed ling finally LH=2 andLW=1 (dot-dot-dashed line

=Ulhwy. The force along the axis is tions give an error larger than 90%. To directly compare the
dipolar and quadrupolar approximations, we also plot in Fig.

=- (Za) =- Uz a(z/a). (19 3(c) the force difference whelH=2 andLW=1. In this

Jz dza) oz curve, we clearly observe that evenzat5a there are differ-

Therefore, the behavior of the force can also be studied usin n;izut;e;&een the dipolar and quadrupolar approximations

a quantity independent of the radius of the sphere, ang of it The large increment of the force at small separations due
plasma frequency. We define a dimensionless forcé=as 1 high-multipolar effects could explain the physical origin
=aF/fiwp. In summary, we find a general behavior of the ¢ for example, the large deviations observed in the deflec-
energy and force between a half-space and a sphere, showifgy, of atomic beams by metallic surfac®sas well as some
the potentiality of the Spectral Representation formafiém. jnstanilities detected in micro and nano devices. Further-
In the same way, we find the dimensionless energy angyore, to compare experimental data of some experirteiits
force for a system composed of a sphere and a half-space @fith the DA, it is necessary to make a significant modifica-
similar materials, whose dielectric function is described byiion to the theory of the Casimir force. In Ref. 12 the authors
the plasma model of E3). In Figs. 38) and 3b), we show  found a larger force than the one calculated using DA, while
&, andF, respectively, as a function afa. In each figure we in Ref. 30 the authors measured a smaller one. Both groups
show three curves that correspond to three different situaargue that the discrepancies between theory and experiment
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are due to the same effect: the roughness of the surface. -10°3
Indeed, this ambiguity on the interpretation of the measure-
ments indicates that the force between a spherical particle

and a planar substrate involves more complicated interac- &
tions than the simple dipole mod&lor the DA* For ex- L
ample, such deviations might be attributed also to high- b
multipolar effects.

In this paper, we propose a way to elucidate experimen-
tally two important issues related to the Casimir forggthe
relevance of the geometry via the surface plasmon interac-
tions between bodies, an@i) the relevance of the high-
multipolar interactions in the sphere-substrate model. In the
next section, we study the case of the Casimir force between
a sphere and a half-space of dissimilar materials that can help
us to clarify these important issues.

3
[=)}

Difference (%)
N

IV. CASIMIR FORCE BETWEEN DISSIMILAR
MATERIALS 0

Using the formalism presented in the previous section, we zla
calculate the Casimir force for a sphere and a half-space
made of dissimilar materials. To illustrate our results, we FIG. 4. (Color onling (a) Force as a function of/a, for a
choose silvetAg) and aluminun{Al) whose dielectric func- SPhere made of Al over an Ag plarigolid line), and for a sphere

tions are described by the Drude model, made of Ag over an Al substratdashed ling (b) Difference of the
force between a sphere made of Al over an Ag substrate, and the
w2 force for a sphere made of Ag over an Al substrate.
fw)=1-—"—) (20
w(w+il7) "
with plasma frequenciegiw,=9.6 eV, and 15.8 eV, and U?2) :EE [wi(2) - wi(z— )]
(1w,)™1=0.0019, and 0.04, respectivéf.If the materials : _
have dielectric functions with nonzero imaginary parts, the h '°°
mode frequencies are complex and the direct sumya, to = 4_m§ Lw dw log[- u(w) + ny(w,2)]

calculate the energy on E@l), is not valid. However, we .
can employ the Argument PrinciplgAP) to calculate the h ”
energy as follows. The AP was first used by van Kanipen - 4_77,2 j dw log[- u(@) + nyg]. (23
and Gerlach to calculate the force between plates. The oo

reader can consult Ref. 4 for a comprehensive explanation ofhe force is found as in Eq19), where we first find the

the use of the AP within the context of Casimir forces.  gerivative of Eq.(23) with respect taz and then the integral

According to the Argument Principle method, the sumyth respect tow. Notice that the last term of Eq23) does
over proper modes is given as not contribute to the force because it does not depend on the

separatiore.
=2 had2) = iﬂg wMde (21) In Fig. 4@), we show the calculated force for an alumi-
s 2 Ami )¢ do  G(w,2) num sphere of arbitrary radius above a silver half-space,

) ) ) ) aFayag, @s a solid line, and the same for a silver sphere

using the expression fdB(w,2) in Eq. (16), we find that above an aluminum half-spac&ay, as a dashed line. We

find that the difference is too small to be observed directly
from the figure. Then, in Fig.(®) we show the difference of
the force normalized with the average as a functiorz/af,
given by
The closed contou€ is defined as the part along the imagi-

nary axis plus the part along the semicircle on the positive

real axis. In the limit of an infinite semicircle radius, the

integral along the semicircle does not depend on the separa-

tion z, therefore, it does not contribute to the force. Thewith A=Al, and B=Ag. Here, we observe that the difference
integral in Eq.(21) is along the imaginaryw axis, so the of force varies as a function affa, such that at small dis-
dielectric functions are real, the matrikdefined by Eq(15)  tancesz<0.5a), the difference under the interchange of ma-

is Hermitian and has real eigenvalues, giving a real energyerials between the sphere and the plane, is less than 3%.
By performing a partial integration, it follows that the inter- Then, the difference increases as the separation is increased,
action energy of Eq(l) is given by and atz>a, it has almost reached its maximum. For these

E(2)= wi log[- U(w) + Ndw,2)]dw. (22)
c Jdw

L
4 5

Far —Faia

AF=2 , (24)

Fas * Feia
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particular materials, the maximum is about 5%, independentopper (fw,=10.8 eV}, AF=2.4% whenz>2a. On the

of the radius of the sphere. We find that this value\df is  other hand, the differences become very small whe®.1a

a consequence of the geometry of the system, as we explaindependently of the materials because of the dominant

below. terms on the force are due to interactions between high-
In the previous section, we show that for a minimum multipolar surface plasmon which eigenvalues are very simi-

separation larger thana? the force can be described with lar for large values of., so the force is almost unchangedif

quadrupolar interactions between the sphere and the suthe materials of the bodies are changed.

strate. This means that far>2a the force varies with the

same power-law function. This conclusion can be easily V. SUMMARY

found from Fig. 3c). We also show in Sec. Il that the Ca-

simir force is given by the interaction of the surface plas- In this work, we show that the Casimir force between a

mons of the sphere and plane. In Figb2 we observe that Sphere and a plane can be calculated through the energy ob-

the proper modes of the system fora are approximately tained from their interacting surface plasmons. Our result is

given byfiw,/\2 andfiw,/\3, whenL=1. It follows that for ~ in agreement with the work of van Kampen and

z>a, the force difference is independent nfand has the collaborator$, and GerlacH,which showed that the Casimir

value force between parallel planes can be obtained from the zero-
A B B A point energy of the interacting surface plasmons of the
ho, ho ho, ho imi

% %) (2% T% planes. We show that the Casimir force of a sphere made of

3 2 V3 2 a given material A and a plane made of a given material B, is
AF=2 PSP PPN N different from the case when the sphere is made of B, and the

(—rp— + —_9) + (—_E + —_"—) plane is made of A. We obtain a formula to estimate the force

V3 V3 V2 difference for Drude-like materials, when they are separated

by at least two sphere radii. We find that the difference de-

_ ﬁwAE - ﬁwBE pends on(i) the plasma frequencies of the materials, énd
=0.20 ﬁwﬁ + ﬁw,? : (25 the distance of separation between the sphere and the plane.

We also find that as the sphere approaches the plane, the
For the case of A=Al, and B=Ag, we find from E@5) that  force difference becomes smaller. We conclude that the ge-
AF=5%, which is the calculated value shown in Figby ometry of the system is important at distances larger than the
whenz>2a. Whenz<athe difference decreases&s also  radius of the sphere, where the force is dominated by the
does, because more and more multipolar interactions becomgrface plasmons of the bodies. The energy of these surface
important as the sphere approaches the plane. In the casegiasmons is equal to the plasma frequencies of the materials
Al and Ag, the force difference at/a=0.001 is less than times a factor given by the geometry.

0.01%, while atz/a=0.1 the difference is about 1.2%. At

z/a=0.001 we takd-=1300 to achieve convergency on the ACKNOWLEDGMENTS
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APPENDIX: MULTIPOLAR INTERACTION MATRIX

The tensor that couples the sphere and its imagfe is

|'m'_Y|n+1|_'m’(9a‘P){ (Am31+1"+m=-m) ! (I +]" =m+m’)! ]1’2 "

m T |2+ D@ D@2+ DA Fm A=) (1 +m) (- m)!
whereY, (6, ¢) are the spherical harmonics. In spherical coordinétg®(z+a),0,0), so the spherical harmonics reducé'to

200 +1") + 1]1’2

. St - (A2)

Y (0,0) = [
This means thain=m’ and multipolar moments with different azimuthal charge distribution are not able to interact. Therefore,
p g

4m [ (#1172 ]1'2
[2z+a)]* L@+ D+ DA+ L@ -m L +mr -mt |

which is a symmetric matrix.

AT = (A3)
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