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In this work we investigate the influence of self-affine roughness on the friction coefficient of a rubber body
onto a solid surface at high speeds. The roughness is characterized by the rms amplitudew, the correlation
length j, and the roughness exponentH. It is shown that the friction coefficient decreases with increasing
correlation lengthj and increasing roughness exponentH for sufficiently large correlation lengths. However,
for small correlation lengths the opposite behavior takes place because the system is within the strong rough-
ness limit or equivalently average local surface slopes larger than 1. Moreover, direct plots of the friction
coefficient as a function of the roughness exponentH indicate that as the correlation lengthj decreases, a
maximum of the friction coefficient develops. The latter is followed by a continous increment of the friction
coefficient with increasingH and decreasingj.
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I. INTRODUCTION

The friction properties associated with a rubber body slid-
ing onto a hard solid surface are important from the funda-
mental and technological point of view. The latter includes
the car industry(e.g., tire construction, wiper rubber blades),
cosmetic industry etc.1–4 The low elastic modulus of rubbers
and the high internal friction over a wide range of frequen-
cies makes them different from other solids.2,5 Sliding, how-
ever, onto real solid surfaces occurs predominantly on rough
surfaces with some or even significant degrees of
randomness.6,7 In this case, the surfaces usually possess
roughness over various length scales rather than a single one,
which has to be taken carefully into account in contact-
related phenomena as that of adhesion and friction.5

The friction force between a rubber body and a hard
rough solid substrate has two major contributions that are
called hysteric and adhesive.1 In general, adhesion is the re-
sult of molecular bonding between the two surfaces in con-
tact. If the bond strength is the same at all bond sites, the
friction force that resists sliding will be proportional to the
total area of contact. The adhesive component is important
for clean and relative smooth surfaces,5 which will not be the
case here. The hysteric component arise from the oscillating
forces that the surface asperities exert onto the rubber sur-
face, leading effectively to cyclic deformations and energy
dissipation due to internal frictional damping.5 As a result the
hysteric contribution will have the same temperature depen-
dence as that of an elastic complex modulusEsvd (Ref. 5). In
addition, depending on the sliding velocity, the low elastic
modulus of rubbers leads to instabilities(that produce de-
tachment waves) at high sliding velocities and relatively
smooth surfaces(Schallamachwaves1). This case will be
excluded here.

In general, if rubber body slides with velocityV over a
sinousoidal rough surface with periodL, then it will feel
fluctuating forces with frequenciesv<V/L. The contribu-
tion of surface roughness to the friction coefficientm f at a
length scaleL is maximum for the frequencyv<V/L, which
is located in the transition regime between rubber(low v)

and glass(high v) behavior[Fig. 1(a)].5 Therefore for a ran-
dom surface with a wide distribution of length scalesL, it
will be present a wide distribution of frequency components
in the Fourier decomposition of the surface stresses acting on
the sliding rubber.5

Figure 1(a) shows the general velocity dependence of the
rubber coefficient of kinetic friction.5 After the glassy region
for high velocities,m f saturates to a constant value when
wear and local heating effects are ignored.5 Indeed, it was
found that the friction coefficientm f to scale asm f ,w/jH

(Ref. 5) with w the rms roughness amplitude andj the in-
plane roughness correlation length. The latter expression in-
dicates that the friction coefficientm f decreases with increas-
ing roughness exponentH, and/or increasing correlation
lengthj (assuming fixed rms roughness amplitudew).

The result of Persson5 at high sliding velocities was de-
rived by means of a power-law approximation for the self-
affine roughness spectrum, which is valid for lateral wave-
lengths qj.1 with j the in-plane roughness correlation
length. On the other hand, the present work concentrates on
the effect of roughness including contributions from rough-
ness wavelengthsqjø1, and performing more accurate cal-
culations of the friction coefficientm f in order to account for
more details as a function of the self-affine roughness param-
etersw, j, and H. The latter will be possible in terms of
analytic forms for the roughness spectrum in Fourier space
that facilitate exact calculation also of the local surface slope,
which is an essential quantity in the theory proposed by Per-
sson to describe rubber friction on rough surfaces.5

II. THEORY OF FRICTION AT HIGH SLIDING VELOCITY

For a rubber body of Young modulusE and Poisson ratio
n that slides on a rough solid surface with velocityV, the
frictional shear stress along the sliding axis[e.g., the x axis,
Fig. 1(b)] is given by5

s f = − j E qxCsqdPsqdfMzzs− qW,− qxVdg−1d2qW . s1d

Csqd is the Fourier transform of the autocorrelation function
Csnd=khsrWdhs0dl with hsrWd the surface roughness height
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skhl=0d. k…l is an ensemble average over possible rough-
ness configurations.Mzz is thez component of the tensor that
relates the surface stress along thez direction with the cor-
responding displacement assumed equal tohsrWd (Ref. 5). The
contact factorPsqd is the fraction of the original nominal
contact area where contact remains when we study the con-
tact area on the length scale 2p /q (Ref. 5).

For high sliding velocity orV@cL, wherecL is the logi-
tudinal sound velocity in the solid,Mzz is given by(see also
the Appendix)5

Mzz= − jsrcLVqxd−1 s2d

with qx=q cosw and w the axis between slidingx axis and
wave vectorqW =sqx,qyd on thexy plane.r is the rubber mass
density. Substitution of Eq.(2) into Eq. (1) yields

s f = rcLVE
qL

Qc

q3CsqdPsqddq. s3d

The lower limit of integration isqL=2p /L with L the size of
the nominal contact areasL@jd, and the upper limit of inte-

gration isQc=p /ao with ao of microscopic dimensions. Fur-
thermore, if only elastic deformation occurs,Psqd is given
by5

Psqd =
2

p
E

0

+` sinx

x
e−x2Gsqddx, s4d

Gsqd =
pr2cL

2V2

2so
2 E

qL

q

q3Csqddq. s5d

Although, at high sliding velocities the rubber is in the glassy
region wherecL can be treated as constant(independent of
frequency), for a real system wear and high local tempera-
tures at the rubber/solid interface have to be taken also into
account.

In the high velocity limit orpGsqd.1, one should em-
ploy the expansion sinx=on=0,̀ s−1dnx2n+1/ s2n+1d! in Eq.
(4), which yields

FIG. 1. (a) Schematic of the kinetic friction
coefficient of a rubber body sliding onto a rough
solid substrate in the absence of local heating and
wear effects.(b) Sliding geometry of a rubber
body onto a rough solid substrate.
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m f =
ÎprcL

so
o
n=0

+`
s− 1dn

s2n + 1d22n+1n!
S so

2

pr2cL
2Dn+1/2

V−2nx

3E
qL

Qc

q3CsqddqH1

2
E

qL

q

q3CsqddqJ−sn+1/2d

. s6d

For very high velocity orpGsqd@1, the first-order term of
Eq. (6) yields

m f =E
qL

Qc

q3CsqdFE
qL

q

q3CsqddqG−1/2

dq. s7d

Therefore, the coefficient of friction given by Eq.(7) is in-
dependent of the sliding velocityV (by neglecting also tem-
perature effects and wear processes).5 This is the result of the
presence of the factorPsqd because otherwise the friction
coefficient would grow linearly with the sliding velocityV.
Moreover, Eq.(7) shows that the higher-order terms(n.1 in
the expansion) decay as inverse power laws,V−2nd of the
sliding velocity.

III. RESULTS AND DISCUSSION

As Eqs.(4)–(7) indicate, in order to calculate the coeffi-
cient of frictionm f the knowledge of the roughness spectrum
Csqd is necessary. A wide variety of surfaces/interfaces are
well described by a kind of roughness associated with self-
affine scaling,7 for which Csqd scales as a power-lawCsqd
~q−2−2H if qj@1, andCsqd~const if qj!1 (Ref. 7). The
roughness exponentH is a measure of the degree of surface
irregularity,7 such that small values ofH characterize more
jagged or irregular surfaces at short length scaless,jd. The
self-affine scaling behavior is satisfied by the simple model8

Csqd =
1

2p

w2j2

s1 + aq2j2d1+H s8d

with a=s1/2Hdf1−s1+aQc
2j2d−Hg if 0 ,H,1 (power-law

roughness), and a=s1/2dlnf1+aQc
2j2g if H=0 (logarithmic

roughness).8 The parameterw is the rms roughness ampli-
tude, andQc=p /ao with ao of the order of atomic dimen-
sions. For other correlation models see also Refs. 9 and 10.

Substitution of Eq.(8) into Eq. (4) yields the analytic
form

E
qL

q

q3Csqddq=
1

2p
F w2

2a2j2GF 1

1 − H
hTq

1−H − TL
1−Hj

+
1

H
hTq

−H − TL
−HjG s9d

with Tq=s1+aq2j2d and TL=s1+aqL
2j2d. Equation (9) fur-

thers the calculations of the friction coefficientm f. For the
limiting casesH=0 andH=1 one has to employ the identity
lnsxd=limc→0s1/cdsxc−1d. Therefore, we obtain

E
qL

q

uq3CsqddquH=0 =
1

2p

w2

2a2j2Faj2sq2 − qL
2d + lnSTL

Tq
DG ,

s10d

E
qL

q

uq3CsqddquH=1 =
1

2p

w2

2a2j2FlnSTq

TL
D + hTq

−1 − TL
−1jG .

s11d

Moreover, sinceCsqd~w2, Eq. (7) yields for the friction
coefficient (at high velocities) the simple dependencem f
~w, while any complex dependence will arise solely from
the roughness parametersH andj. If, however, we consider
higher-order terms from Eq.(6), then the dependence onw is
more complex. Indeed, then-order term yields a contribution
,w1−n. If, however, we consider for the factorPsqd the in-
terpolation form5 Psqd=h1+fpGsqdg3/2j−1/3, then the friction
coefficient is given by the more complex expression

m f =
s f

so
=

rcL

so
VE

qL

Qc

q3CsqdF1

+ V3p3r3cL
3

2so
3 H1

2
E

qL

q

q3CsqddqJ3/2G−1/3

dq, s12d

which indicates a more complex dependence on the rough-
ness amplitudew.

Furthermore, as Fig. 2(a) indicates the friction coefficient
m f decreases with increasing correlation lengthj or decreas-
ing roughness ratiow/j (for rms roughness amplitudew
fixed) due to surface smoothing at large lateral roughness
wavelengths. However, the relative decrement of the friction
coefficient increases with increasing roughness exponentH
or smoother surfaces at short wavelengths. Clearly the influ-
ence of the roughness exponentH on m f is more significant
at larger correlation lengthsj.

Nonetheless, a peculiar behavior for the friction coeffi-
cientm f develops for small roughness exponentsH s,0.3d as
Fig. 2(b) indicates. Indeed, for correlation lengths
j,200 nm (or w/j.0.01) the friction coefficientm f is
lower in magnitude for smaller roughness exponentsH,
while the opposite behavior takes place for larger correlation
lengthsj. Moreover, the variation of the friction coefficient
is faster for larger roughness exponentsH in the small cor-
relation length regime(or w/j.0.05).

If we examine the direct dependence of the friction coef-
ficient m f on the roughness exponentH then we also observe
a nontrivial behavior. Clearly for rougher surfaces at large
wavelengths or smaller correlation lengthsj, the friction co-
efficient m f has a maximum as a function of the roughness
exponentH as Fig. 3(a) clearly indicates. The maximum po-
sition, however, shifts to lower roughness exponentsH with
increasing correlation lengthj. The magnitude of the maxi-
mum weakens drastically and disappears for very weak
roughness(or w/j!1) as Fig. 3(b) indicates. Moreover, the
presence of a maximum at moderate correlation lengthsj
indicates a multivalued behavior ofm f with respect to the
roughness exponentH.

If we reduce further the correlation lengthj, the friction
coefficientm f increases with increasing roughness exponent
H [Fig. 4(a)]. The latter appears rather contraintuitive, as it
points against the notion that the rougher the surface the
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higher the friction coefficient. The latter is shown in Figs. 2
and 3 after the position of the maximum. However, the pres-
ence of the maximum, in Fig. 3(a) and the continuous incre-
ment of the friction coefficientm f for small correlation
lengthsj as in Fig. 4(a) are taking place within the strong
roughness limitu¹hu.1. The latter is well quantified in
terms of the local surface sloperrms=Îku¹hu2l or

rrms=Îs2pdE
qL

Qc

q3Csqddq= F w
Î2aj

GF 1

1 − H
hTQc

1−H

− TL
1−Hj +

1

H
hTQc

−H − TL
−HjG1/2

, s13d

which as Fig. 4(b) indicates is rather large(rrms.1; strong
roughness) for small correlation lengthsj and small rough-
ness exponentssH,0.5d. The latter is responsible for the
behavior shown in Figs. 4(a) and 3. Therefore, in the limit of
strong roughnesssrrms.1d as a function of the lateral corre-

lation lengthj, there is a limiting value ofjo below that the
friction coefficient m f increases with increasing roughness
exponentH. At any rate, this is the result of the presence of
the contact factorPsqd in Eq. (3) that effectively yields the
friction coefficientm f. If the contact factorPsqd is set equal
to unity then not onlym f would increase with increasing
sliding velocityV, but also would follow the behavior of the
average local sloperrms with respect to the self-affine rough-
ness parametersw, j, andH [Fig. 4(b)].

Finally, we should point out that in actual situations be-
sides adhesive and hysteric friction, the rubber produces trac-
tion forces through tearing and wear. As deformation stresses
and sliding speeds increase(e.g., tires in racing cars), the
local stress can exceed the tensile strength of the rubber es-
pecially near the point of a sharp irregularity. The high local
stress can deform the internal rubber structure beyond the
point of elastic recovery. Indeed, when polymer bonds and
cross-links are stressed to failure the material can no longer
recover completely, leading to tearing. The latter absorbs

FIG. 2. (a) Friction coefficientm f vs rough-
ness correlation lengthj with w=5 nm, ao

=0.3 nm,L=100mm, and various roughness ex-
ponentsH sù0.3d. (b) Same as in(a) but for low
roughness exponentsH sø0.3d.
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energy and results in additional friction forces within the
contact surface. Wear processes is the ultimate result of tear-
ing.

IV. CONCLUSIONS

In summary, the coefficient of kinetic frictionm f at high
sliding velocities of rubbers onto solid substrates can be
strongly influenced by the roughness characteristics(in the
absence of wear and local heating processes). It is shown that
the friction coefficient decreases with increasing correlation
length j and increasing roughness exponentH for signifi-
cantly large correlation lengths. For sufficiently small corre-
lation lengths the opposite behavior takes place since the
system is within the strong roughness limit or equivalently
local surface slopes larger than 1. The complexity of the
situation is revealed in direct plots of the friction coefficient
as a function of the roughness exponentH. For large corre-
lation lengths the friction coefficient decreases with increas-
ing H. However, as the correlation lengthj decreases, a
maximum occurs followed by a continuous decrement of the
friction coefficient with deceasingH andj.
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APPENDIX

In the more general case of lower sliding velocities one
must use Eq.(1) for Mzz, the more general expression of
which Eq. (2) is a limiting case.5 In this case, if we define

S=sv2cT
−2−2q2d2+4q2PP̃ with P̃= ± sv2cT

−2−q2± j«d1/2, P
= ± sv2cL

−2−q2± j«d1/2, (where « is an infinitesimal positive
number and6 corresponds, respectively, to positive and
negative frequenciesv), transverse and longitudinal sound
velocities, respectively, bycT

2=Ef2rs1+ndg−1 and cL
2=Es1

−ndfrs1−2nds1+ndg−1, the tensorMzzalong thez direction is
given by5

FIG. 3. (a) Friction coefficientm f vs roughness exponentH with
w=5 nm, ao=0.3 nm,L=100mm, and various roughness correla-
tion lengthsj. (b) Friction coefficientm f vs roughness exponentH
with the same parameters as in Fig. 3(a), but with greater detail
around the maximum.

FIG. 4. (a) Friction coefficientm f vs roughness exponentH with
w=5 nm, ao=0.3 nm, L=100mm, and various relatively low
roughness correlation lengthsj. (b) Local surface sloperrms vs the
roughness correlation lengthj for various roughness exponentsH.
The dotted line indicates the weak roughness regimesrrms,1d.
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Mzz= − j
1

rcT2

Psq,vd
Ssq,vd

S v

cT
D2

sA1d

with the elastic modulusE and Poisson ration depending on
frequency. A qualitative model for the elastic modulusEsvd
is given by the rheological model5

Esvd =
E1fs1 + ad + svtd2g

s1 + ad2 + svtd2 − j
avtE1

s1 + ad2 + svtd2 sA2d

with E1=Es`d, Es`d /Es0d=1+a (typically a=103), and 1/t
the flip rate of molecular segments, which are configuration
changes responsible for the viscoelastic properties of the rub-
ber body.
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