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Real-space finite-difference method for conductance calculations
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We present a general method for calculating coherent electronic transport in quantum wires and tunnel
junctions. It is based upon a real-space high-order finite-difference representation of the single particle Hamil-
tonian and wave functions. Landauer’s formula is used to express the conductance as a scattering problem.
Dividing space into a scattering region and left and right ideal electrode regions, this problem is solved by
wave function matching in the boundary zones connecting these regions. The method is tested on a model
tunnel junction and applied to sodium atomic wires. In particular, we show that using a high-order finite-
difference approximation of the kinetic energy operator leads to a high accuracy at moderate computational
costs.
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I. INTRODUCTION set. Instead, potentials and wave functions are represented on

The progress in experimental control on the nanometef Uniform real-space grid and differential operators are ap-
scale has enabled studies of electronic transport in quantuRfoximated by a finite-difference approximatidfDA). Pre-
wires of atomic dimensions.The transport properties of Vious implementations of this idea have used a simple first
such systems have to be understood on the basis of thewder FDAZ=24In that case the grid has to be relatively fine
atomic structure. This notion has generated a large effort ifn order to obtain sufficiently converged results. This hinders
recent years to calculate the conductance of quantum wirgfe application to large systems because of the computational
from first principles. Several different approaches have beenosts involved in using fine grids. However, in ground state
formulated, which have a common basis in the Landauer¢DFT) electronic structure calculations high-order FDA's
Blttiker approach to express the conductance of a coherehive been shown to markedly increase the efficiency of real-
system in terms of a quantum mechanical scatteringpace grid techniques by enabling the use of coarse
problem? In such calculations the quantum wire consists of agrids?-27 In this paper we demonstrate that high-order
scattering region of finite size, sandwiched between twd-DAs make it possible to solve the scattering problem much
semi-infinite leads that are considered to be ideal ballistignore efficiently.
wires. Semiempirical tight-binding models have been ex- The method we propose for calculating the conductance
ploited to solve this problerfr Aiming at a better descrip- of a quantum wire is based upon wave function matching
tion of the electronic structure, several current approache@VFM) in the boundary zones connecting the leads and the
rely upon density functional theofpFT). scattering regiori® Unlike transfer matrix methods, however,

The main differences between these approaches lie in thé does not require the explicit calculation of wave functions
approximations that are used to describe the atomic structui8 the scattering regioh!®*1t does not require the explicit
of the leads and in the techniques that are used to solve ttealculation of Green functions eith&r?° which enables us
scattering problem. In pioneering work, jelliugie., free  to solve the scattering problem at real, instead of complex,
electron electrodes have been used to describe the leads athergieg® Our method can be classified as @N) tech-
the scattering wave functions have been obtained by a transique, since the computing costs are determined by the size
fer matrix method or by solving the Lippman-Schwinger of the scattering region with which they scale linearly. A
equatior?® A transfer matrix method has also been used tak+elated technique that uses a linearized muffin tin orbital ba-
ing into account the full atomic structure of the leads at thesis set has been applied to calculate the electronic transport
DFT levell%1 Alternatively, the conductance can be calcu-in layered magnetic materiai$3! Although the formalism
lated using a Green function approach without calculatingoresented here can be extended to the nonequilibrium situa-
the scattering wave functions explicifiySeveral implemen- tion, we consider in this paper the linear response regime
tations of this approach have been formulated that use a l@nly.
calized basis set to form a representation of the scattering This paper is organized as follows. In Sec. Il the main
problem. These implementations mainly differ in the kind ofingredients of our computational method are explained,
basis set used, e.g., Gaussian or numerical atomic orbitals, wthere the computational details can be found in Appendix A.
wavelets'®*1° An embedded Green function approach hasThe accuracy and convergence properties of the method are
been applied using a delocalized basis set of augmentederified on model tunnel junctions in Sec. Il A. The appli-
plane waveg® cation to a more complex system, which consists of a sodium

In this paper we present a technigue for solving the scatatomic wire, is discussed in Sec. Ill B. A summary is given
tering problem of a quantum wire without the use of a basisn Sec. IV.

1098-0121/2004/109)/19540213)/$22.50 70 195402-1 ©2004 The American Physical Society



P. A. KHOMYAKOV AND G. BROCKS PHYSICAL REVIEW B70, 195402(2004)

Il. COMPUTATIONAL METHOD w. 7// R—
[/ / 74 /|
Within the Landauer-Biittiker approach the conductance T (]
G of a quantum wire is expressed in terms of the total trans- (a)
m|SS|OnT(E) ...... . .7 ......
@ Wy Y Y
y/
G=—T(E), 1 4
—T(E) &Y )
assuming spin degeneraty(E) can be obtained by solving £
the quantum mechanical scattering problem at the fixed en-
ergy E. Equation(l) is valid in the linear response regime, /B /B\

where T(E) needs to be evaluated at the Fermi enekgy
=Eg. Our quantum wire is defined as a system consisting of
a finite scattering region that is connected left and right to (b)
semi-infinite leads. The latter are supposed to be “ideal”
wires, which can be described by a periodic potential along
the wire direction. In the scattering region the potential can
have any shape. We consider two cases that can be treated by
essentially the same technique. In the first case the system g 1. (Color onling (a) The system is divided into cells indi-
has a finite cross section perpendicular to the wire directiongated by an indek The cells havé ,W,, andW, grid points in the
whereas in the second case the system is periodic perpeR-y, andz directions, respectively¥; is the supervector that con-
dicular to the wire. The latter case also covers planar intertains the wave function values on all grid points in dellb) H; is
faces and tunnel junctions. the Hamilton matrix connecting grid points within cé|l the B

In order to solve the scattering problem we generalize anatrix connects grid points between neighboring cells and is inde-
method formulated by And& Here one basically solves a pendent of.
single particle Schrodinger equation directly at a fixed en-
ergy E in two steps. In the first step one obtains the modes okjmple finite difference representation of the Schrodinger
the ideal leads. Subsequently the wave functions for the scagquation'221-24However, we will demonstrate that the scat-
tering region are constructed such that they are properlyering problem can be solved much more efficiently using
matched to the solutions in the leads. We use a real-spaggigher-order FDA's withN=4—6.
finite-difference method to represent the Schrodinger equa- '|n 5 FDA the Schrodinger equation of E@) becomes
tion. In the following three subsections we will introduce this
representation and discuss the steps required to solve the

P AT T PV A

Hi-l H, Hi+l

N

scattering problem. (E=Vi) Wik + 2 @Winp + UV nt + 1% k) =0,
n=-N

A. Finite-difference approximation (4)

We start from a single particle equation of the generawhereV,WV;  is a shorthand notation for, W (x;,yx,z) and
form tY?=#2/2mkg, X c,. In order to make a connection to An-
5 do’s formalisnt® we divide the wire into cells of dimension

(E—V(r) 4 ﬁ_vz>q,(r) =0 ) a X a, X a,. The direction of the wire is given by theaxis.

2m ’ The number of grid points in a cell is=a,/h,, Wy=a,/h,,

which represents the Schrodinger equation of a single parandWZ:aZ/hZ for thex, y, andz directions, respectively. We

ticle in a potentiaV. Alternatively, within the DFT scheme it wish to distinguish between two different cases. In the first

. . . case the wire has a finite cross section inya@lane. In the
represents the Kohn-Sham equation the total effectlve second case the wire has an infinite cross section, but it has a
potential. We put the wave functioh and the potentiaV/ on - C : _
- - _ periodic potential in theyz plane, i.e.,V,; w 1=Vik+w.

a equidistant grid in real spaae=(x;,Yx,2), wherex;=X, : : ) X 1KV

. N _ . =V; . In both cases théunit) cell in the yz plane is de-
+jhy, Yi=Yot+kh, z=2+Ih,, andh,,hy,h, are the grid spac- scr]ibéd byW, X W, grid points
ings in thex, y, and z directions, respectively. Following Y 2 9nd p ’

D . The valuesV; ., where the indice$,k,| correspond to a
Refs. 25 and 26 we replace the kinetic energy operator in E%‘ingle celli are Jgflouped into a supgrvectdr- Thl?e idea is
(2) by a high-order FDA. For th& part this gives "

shown in Fig. 1. This supervector has the dimensigg

PU(x Voz) 1 N =LW,W,, which is the total number of real-space grid points
—1’2—' == > ChV (Xj4n Vi Z) s (3) in a cell. If we leti denote the position of the cell along the
oX hn=—n wire then Eq.(4) can be rewritten as
with similar expressions for thg and z parts. Expressions (El -H,)W,+BW,_,+B™W,,=0 (5)
I I = I

for the coefficients, for various values oN are tabulated in
Ref. 26. The simplest approximation in E&) (N=1, where  for i=-x, ... 0. Herel is the N, X N, identity matrix. The
ci=c_1=1 andcy=-2) reduces Eq(2) to the well-known matrix elements of théN,sx N, matricesH; and B can be
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derived straightforwardly from Eq4). The expressions are After filtering out the physical and useful solutions of Eg.
given in Appendix A 1, both for a wire that is finite and for (7) we end up with M pairs of solutionsA,(£), m
a wire that is periodic in theyz plane. For the latteH; =1,... M, where usuallyM <N,.. We construct the normal-
=H,(k;), wherek is a wave vector in the two-dimensional ized vectorsu,(+) from the firstN,; elements of the eigen-
Brillouin zone. In the following this notation is suppressed. vectors of Eq(7) and form theN, X M matrices

Equation(5) has the form of a nearest neighbor tight-
binding equation, expressed in terms of vectors/matrices of U() = (ug() - um()). (8)
dimensionN,s. This form enables us to use Ando’s techniquecnoosing the celi=0 as the origin, one then writes the gen-

to solve the scattering problefh.Note, however, that the gra| solutionW, in this cell as a linear combination of these
matricesB, BT in Eq. (4) are singulafsee Eq(A3)], which  right and left going modes

requires a generalization of this technique.

Wo=Wo(+)+Wy(-), 9
B. Ideal wire where
An ideal wire is defined by a potential that is periodic in M
the direction of the wire, i.eV(Xj+ay, Yk, 2)=V(X;, Yk Z) Of Wo() =U(R)a(®) = 2, Un(*)an(®), (10)
VjsLki=V]k - Since the potential is the same in each cell, the m=1

matrix H;=H in Eq. (5) is independent of the cell position  with a(+) vectors of arbitrary coefficients of dimensidh.
In a periodic system the vectors in subsequent cells are re- Defining theM X M diagonal eigenvalue matrices by
lated by the Bloch condition

(AE)nm= Samim(), (12)

AN =W, (6) _ . o
and using the Bloch condition of E¢6), the solution in the

where\ =€k with k, real for propagating waves and com- other unit cells then can be expressed in a compact form,
plex for evanescenigrowing or decayingwaves. Combin-

ing Egs.(5) and(6) one then obtains the following general- W, =U(+)A'(+)a(+) +U(=)A'(=)a(-). (12)

ized eigenvalue problem: In order to apply Ando’s formalisr it is advantageous
[(EI -H B) <_ Bt 0)]( v, ) to slightly rewrite this. We define thi,s X N,s matricesF(+)

I 0 o 1/ \w_ )% D andF@) by
Formally, the dimension of this problem i&N2. There are a F(:)U(x) =U(H)A), (13
number of trivial solutions, however, sinBgB" are singular
matrices. In Appendix A 2 it is shown how to reduce the E(i)u(i) = U(+)A Y (#). (14)

problem to its AW, W, nontrivial solutions. B

The nontrivial solutions of E¢(7) can be divided into two  Note thatF(+) # F~() since theN,sX M matricesU(+) are
classes. The first class comprises Bloch waves propagating it square(typically M<N,o). This presents no problem,
the right and evanescent waves decaying to the right; thﬁowever and explicit expressions for the matri€e§ are
corresponding eigenvalues are denoted\by). The second given in Appendix A 3. They allow Eq(12) to be rewritten
class comprises Bloch waves propagating to the left or evar, o ursive form
nescent waves decaying to the left; the eigenvalues are de- ’

noted byA(-). The eigenvalues of the propagating waves W, =F(+)W(+) + F(-)W;(-), (15)
have|\(x)|=1 and for evanescent wavpg+t)|s 1. The eva-
nescent states come in pairs, since it is easy to show that for W = F(+)W,(+) + F(-)W(-), (16)

every solution\(+) there is a corresponding solutiof-)

=1/\* (+). It can be shown that the propagating states als@ither of which allows one to construct the full solution for
come in pairs, i.e., for every right propagating waver)  the ideal wire, once the boundary values are[sktEq. (9)].
there is a left propagating wawg-).3?

It makes sense to keep only those evanescent waves for
which 1/6<|\|< 8, whereé is a sufficiently large number.
States with\| outside this interval are extremely fast decay- In a nonideal quantum wire the potential is not periodic,
ing or growing. Such states are not important in matching anvhich means that we have to solve the Schrodinger equation
ideal wire to a scattering region. Typical of finite-difference of Eq. (5) with H; depending upon the positidnalong the
schemes, there are also nonphysical solutions to(Bg. wire. The nonideal regiotthe scattering regioris supposed
which are related to so-called parasitic moéfe¥ . These are  to be finite, spanning the celis 1, ... S3%The left and right
easily recognized and discarded since tHejis are either leads are ideal wires, spanning the céls-=,...,0 andi
extremely small or large and thus fall outside the selectedS+1, ... %, respectively. In the ideal wirebl; does not
interval. Moreover, thesp\|'s are very sensitive to the grid depend on the position of the cell. However, the left lead can
spacing and rapidly go to O or if the grid spacing is de- be different from the right one, so we use the subscri®)L
creased. to denote the formeylatten, i.e., H;=H_,i<1, and H;,

C. Scattering problem
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B B B B B B B B Equations(19) and (22) take care of the coupling of the
"""" I A scattering region to the left and right leads. Equatignfor
. i=1,...,Splus Egs.(18) and (21) form a complete set of
equations from which the vectom¥;,i=0,... S+1, can be
(@) Ho [ HoIHIH, Holl HelHx || He determined describing the waves in the scattering region.
The scattering reflection and transmission coefficients can
e i=0, 1 S, SHL s be deduced from the amplitudes immediately left and right of
B B B B the scattering region, i.eW, andWg,,. If we let the incom-
_ ing wave consist of one specific mod®,,(+)=up, i.e.,
Q / an(+)=6,n In EQ. (9), then the generalized reflection and
5 . transmission probability amplitudes,,, andt,,, are defined
(b) H, |iH; HslIH;.. by
0, 1 S, S+1 <
TR e e Wo(=)= 2 Uy (=),
FIG. 2. (Color onling (a) Schematic representation of a quan- n'=1
tum wire. The left(L) and right(R) leads are ideal wires that span
the cellsi=—x, ...,0 andi=S+1, ... =, respectively. The scatter- Mg
ing region spans cells=1, ... .S (b) The reduced problem spans We,q(+)= E Ur . (+ )t (23
the cellsi=0, ... ,S+1 [see Eq(26)]. n'=1

=Hg,i>S A schematic picture of the structure is shown in Note that at this stage we include all evanescent and propa-
Fig. 2a). We solve Eq(5) over the whole spacé=-x,=,  9ating modes since these form a complete set to represent the

making use of the ideal wire solutions of the previous sectiorftates in the leads. We assume the lead states to be amplitude

to reduce the problem to essentially the scattering regioformalized.

only [see Fig. 2b)].

The reflection and transmission probability amplitudes

For the solution in the left lead the recursion relation offn'n @ndt,, between all possible modes form & X M

EqQ. (16) can be used. This gives for the ce-1
W= Fy(+)Wo(+) + FL(-)Wo(-)
= [FL(+) = FL(=)Wo(+) + FL(- )Wy,

using Eq.(9). The vectorW(+) describes a wave coming in

(17)

from the left. In a scattering problem this vector fixes the

boundary condition. Equatiofl7) allows Eq.(5) for i=0 to
be written as

(El = Ho)Wo+ B, = QWy(+), (18)
where
Ho=H_-BF.(-),
Q=B[F.(-) -F.(+)]. (19)

matrix R and anMg X M| matrix T, respectively. All ele-
ments of these matrices can be found in one go by defining
an N,sX M matrix of all possible incoming modes, i.e.,

Co(+)=UL(+). (24)
Analogous to Eq(23) one then has

Co(=)=Co—Co(+)=U_(-)R,

Csii(+) =Csiy =Ugr(+)T. (25)

Equations(18), (5), and(21) then become
(El ~Ho)Co+B'C; = QU (+),

(El =H)C; +BC;_; +B'Ci,, =0, (26)

For the solution in the right lead we use the recursion

relation of Eq.(15), which gives for the cell=S+2

W,p=Fr(+)Ws(+). (20)

Here we have assumed that in the right lead we have only

(El - ﬁS+1)CS+1 +BCs=0,

i=1,...,S Solving this set of equations fa¢;,i=0,....S
31, gives all possible waves. From E@5) one can then

fight going wave, which corresponds to the transmitteceXtract the generalized reflection and transmission matrices

wave. Equation20) allows Eq.(5) for i=S+1 to be written
as

(EI - HS’Fl)‘I,S'Fl + BlI’SZ 0, (21)
where

ﬁS+1: HR_ BTFR(+) (22)

R andT. An efficient technique for solving the equations is
discussed in Appendix A 4.

In order to calculate the total transmission one has to se-
lect the transmission matrix elements that refer to propagat-
ing modes and discard the ones that refer to evanescent
modes. This is easy, since the propagating modes Mdve
=1 [see the discussion above E§)]. The total transmission
of Eq. (1) is then given by
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m_,mg VR ,
TE) = > ——|twl% (27)
n=1n'=1 UL,n

wherevg» andv, , are the velocities in the direction of
the right propagating waves in the right and left leads in the
modesn’ andn, respectively, andn_, mg are the number of
such modes. Introducing the velocities results from flux nor-
malizing the modes, which is required by current X X
conservatiort? The velocities are given by the expression FIG. 3. (Color onling The potential of Eq(29) in the xy plane
for the casega) V=0 and(b) Vo=Vj.

U= 2% Im(\u'B'uy), (28)
Fig. 3. We solve the scattering problem for this system nu-
where the subscripts (R) need to be added for the left merically in three dimensions by the method outlined in Sec.
(right) leads. Equatiori28) is derived in Appendix A 5. The II. Our results can be verified, however, since this potential is
sign of the calculated velocities is used to distinguish rightin fact separable and limiting cases can be solved analyti-
from left propagating modes. cally. The solutions in they and z directions are Mathieu
functions3® If ;=0 then the solutions in the direction are
also Mathieu functions. 1V, #0 but V=0 the scattering
problem can be solved analyticafiy.Finally, if V;+0 and
Our computational method can be summarized as followsy, 0 the solution in thex direction can be obtained using
First, Eq.(7) is solved in its reduced form, EqA8), to  the separability of the potential and a standard numerical
obtain the modes for both leads. The computing costs of thigo|ver for the resulting ordinary differential equation in the
step scale ad\y;, where Niz=max2N,L-N) X W,W, (see direction3 In the following the latter will be called the “ex-
Appendix A 2. These costs are small compared to the costgct” numerical solution.
of solving the scattering problem. The next step involves As a first test we consider an ideal wire, i¥;=0 in Eq.
selecting the physically relevant modag, and separating (29). The potential is separable and we can write the energy
them into left(+) and right(—) going modes. T_he_ velpcities as E(kky, k) =€, (k)+e, (k) +e, (k), where €(k), k
are calculated using E28) and are used to distinguish left =_/a . " z/a, n=0,1,..., are theeigenvalues of the
from right propagating states. Evanescent states are classifigfhthieu problen®® Figure 4 shows part of the analytical
as growing(+) or decaying(—) on account of their eigen- pand structure for(ky, ky, k) =(0,0,0 — (7/a,0,0. It es-

value. Subsequently, ttiematrices are constructed, H43),  sentially consists of a superposition of one-dimensional band
and the matrix elements that define the boundary conditiong;,ctures e, (k) offset by energiese, (0)+e,(0), n, n,
X y z

on the scattering region are g§eee Eqs(19) and(22)]. The =01 .

comrp])uting costs .Of theseyst.epsbar_e n(;irl:)or. Wi The numerical band structure is obtained by solving Eqg.
The transmission matriX is obtained by solving Ed26) (7) i, its reduced form, EqA8). To obtain the results shown
using the algorithm of Appendix A 4. This is the most time in Fig. 4 we setk,=(k,,k)=(0,0) [cf. Eq.(Ad)], and deter-

consuming step. It scales Sﬂ.\fs, whereNs=LW,W, is the - - : ;
number of grid points in the unit cell ariglis the number of mine the eigenvalues in Eq. (7) as a function ok. For the

unit cells in the scattering region. Note that the scaling is
linear with respect to the siz8 of the scattering region,
which means that this algorithm can be classifiedOgNl).
Finally, the total transmission and the conductance can be
obtained from Eqs(27) and(1).

D. Computational costs

1 [ T T T T T T T T T
08

06 -
IIl. RESULTS <
A. Numerical tests 04 i

In order to test the accuracy of our method we consider a
system described by the model potential

V(r) =V [cog2mx/a) + cog2myla) + cog27z/a)] R A
N (29) E

+
cosH(mx/a)’
FIG. 4. The calculated wave numbky (in units of w/a) as
TheV, term describes an ideal wire by a simple three dimen+unction of the energyE (in units of V) for an ideal wire. The
sional periodic potential with periods=a,=a,=a. TheV;  points indicate the numerical results obtained withW,, W,=8
term describes a barrier in the propagation direction and is andN=4. The solid line indicates the exact solution of the Mathieu
simple model for a tunnel junction. The potential is plotted inproblem.

02 |
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TABLE I. ky(E) (in units of 7r/a) at values ofE (in units of V) [T ]
in the lowest two bands and in the first band gap of Fig. 4; in the L
band gap we findk,=1+i . 1
N L k/(-0.6) k(1.0 #(0.3) I X
~ I X |
1 7 0.694906 0.283091 0.283549 05 x -
10 0.608958 0.322712 0.304238 I xx |
14 0.571387 0.342011 0.312259 - x
100 0.533341 0.359187 0.319658 ol RN
1000 0.533084 0.359425 0.319688 0 1 2 3
4 5 0.544347 0.355049 0.317777 E

7 0.533962 0.358927 0.319476 FIG. 5. (Color onling The total transmission as a function of

10 0.533149 0.359389 0.319673  energy(in units of V;) for the two cased/,=0 (crosses and V,

14 0.533087 0.359425 0.319687 =V, (dot9. In both casek;=(0,0). The solid lines represent the
6 7 0.533228 0.359337 0.319658  analytical solution foNy=0 and the “exact” numerical solution for

10  0.533086 0.359425  0.319688 Vo=Vi:
14 0533082  0.359428  0.319688

the corresponding potential, obtained with lanW,,, W,=8
Exact 0.533082 0.359428 0.319688

grid and aN=4 FDA. This scattering problem can also be
solved analytically/ and the analytical and numerical trans-
propagating states one can write-exp(ik,a). Plotting the  mission probabilities agree within 10
calculated wave numbdg, as function of the energl then Figure 5 also shows the transmission for the case where
allows us to compare the results with the analytical band/,=V,, as calculated numerically using the same parameters
structure. The numerical results shown in Fig. 4 are obtaineds before, i.eS=6: L, W,, W,=8; N=4. This scattering prob-
using a grid ofL, Wy, W,=8 points per period and a FDA |em can be solved only semianalytically; Mathieu solutions
with N=4. Although this grid is relatively coarse, we obtain are used in thg andz directions, and theordinary) differ-
a relative accuracy ok, of 10°°. S ential equation for thex direction is solved “exactly” using
This perhaps surprising accuracy is entirely due to the usgn accurate standard numerical soffeAgain the “exact”
of a high-order FDA. To illustrate this, Table | shows the 3nq numerical transmission probabilities agree within*10
convergence ok, at a number of energids as a function of  compared to tha/,=0 case it is observed that the influence
the orderN of the FDA and the number of grid points  of the periodic potential of the leads upon the transmission is
These particular results were obtained using the separabﬂﬁ&rge_ ForV,=V, the electronic states in the leads are far
of the potential and solving the problem numerically in¥he from free-electron-like(see Fig. 4 In particular, the trans-
direction only, while using analytical solutions for tgeand  ission drops to zero if the energy is inside a band gap,
z directions. FoIN=6 andL =14 the results are converged t0 pecause there are no lead states of that energy.
within 10_7 of the exact result. This is in Sharp contrast to the The numerical calculations accurate|y Capture the trans-
results obtained with a simple first ordéd=1) FDA, where  mission curve over a large energy range, as is shown in Fig.
a similar convergence can only be obtained at the cost of The transmission generally increases with energy due to
using two orders of magnitude more grid points. Using suchhe increasing number of channdlsee Fig. 4. Since the

a large number of grid points in three dimensions is entirelygensity of states peaks at the band edges, the transmission
prohibitive because of the high computational costs in-

volved. For example, aiming at a moderate accuracy of,10 IR S A IR BN A B
it is observed that foN=4 andL =5 the results are markedly
better than forN=1 andL=14. Yet in a three-dimensional
calculation, without using the separability of the potential,
the computing time required for the latter is two orders of 4
magnitude larger than for the former. It means that in order &
to solve a general nonseparable three-dimensional problem
with reasonable accuracy and computational costs, it is vital 2
to use a high-order FDA.

Next we consider the scattering problem and calculate the
total transmission for the case where+ 0. The size of the 0 ke
scattering region is set t8aand outside this region the scat-
tering potentialthe last term of Eq(29)] is set to zero. With
S=6 the results are extremely well converged. As an ex- FIG. 6. (Color onling The total transmission as a function of
ample we have calculated the transmission at normal inCienergy(in units of V;) for the two cases,=(0,0) (dot9 andk;
dence, i.e.k;=(ky,k,)=(0,0). The crosses marked,=0 in  =(0.47,0.2)w/a (triangles. In both cased/,=V,. The solid lines
Fig. 5 represent the numerical results for the transmission akpresent the “exact” numerical solution.
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FIG. 8. (Color onling Structure of an atomic wire consisting of
FIG. 7. The total transmissiofi as a function of the grid size four sodium atoms between two sodium leads terminatedL69)
L=W,=W, for a simpleN=1 FDA, + top curve; and for aN=4 surfaces. The scattering region is bounded by the vertical lines and

FDA, X bottom curve. The horizontal line represents the «axact’the lateral supercell by the horizontal lines. Bulk atoms are indi-
valueT=0.132. The inset shows thé=4 curve on a finer scale for cated by light grayyellow) balls and atoms in the scattering region
T by dark gray(blue) balls.

wire is not very sensitive to its geometiwe have refrained
From optimizing the geometry. Perpendicular to the wire we
apply periodic boundary conditions using &2 lateral su-

peaks at the corresponding energies. The transmission d
pends very much updky as can be observed in Fig. 6, where

the transmission for normal incidenck,=(0,0), can be : :
- . ; percell, which has a lattice parameter of 15868
compared to that fok,=(0.47,0.2)w/a (an arbitrary point If DFT is used to model the electronic structure, E2).

in the Brillouin zong. The difference between the two curves corresponds to the Kohn-Sham equation. The one-electron
can be. easily understood from the band structure of the leadBotentialV(r) in this equation is then given by the sum of the
In particular, fork,=(0.47,0.2)/a there are no band gaps nuclear Coulomb potentials or pseudopotentials, and the
for E>0.14V,, . electronic Hartree and exchange-correlation potentials. The
. To dgmonstrate the convergence .Of 'the numencgl CalCUIa}étter two depend upon the electronic charge density. In lin-
tions, _F'g' 7 Sh.OWS the total transmission as f“”Ct'O’? of the‘ear response the charge density remains that of the ground
sampling densityt =W, =W, for a simpleN=1 and a high- 510 ‘al1owing the electronic potentials to be obtained from a
orderN=4 FDA. The results shown are for one particular gg\¢ consistent ground state calculation. In these calculations
k”:(ky,kz):(0.47,0.2177/a_ and energ)E:_O.SQS/O, but_th_e we employ supercells containing a slab of 13 layers to rep-
convergence at othéq points and energies is very similar. regent the bulk and surface of the leads, and a wira of
The number of propagating channels at tkispoint and  4iomg(see Fig. § We use the local density approximatith,
energy is two, but the total transmission is 0flly0.132,  gng represent the ion cores of the sodium atoms by a local
which means that the barrier is largely reflecting. We cony,geqopotentia The valence electronic wave functions are
clude that the accuracy of the three-dimensional calculatlogxpanded in a plane wave basis set with a kinetic energy
depends very strongly upon the order of the FDA. FOr o iq¢t of 16 Ry. The lateral Brillouin zone is sampled with
=1, L=15, the transmission is converged on a scale 610 5 g« g k,-point grid, using a temperature broadening with
only, but forN=4 it is converged on a scale of Toalready KT,=0.1 evV#
for L=8 (see the inset of Fig.)7 A high-order FDA thus We want to calculate the conductance for various lengths
enables t_he use of a much coarser real-space grid. Since FB?the atomic wire, so for each lengthwe perform a self-
computational costs scale with the number of real-space griglysistent supercell calculation to generate the one-electron
pointsNys asNi=L®, this demonstrates the strength of usingpotential. By expressing the latter in a plane wave basis,
a high-order FDA. Fourier interpolation can be used to obtain a representation
on any real-space grid required for the transport calculations
[cf. Eq. (4)]. An example of the effective potential for va-
lence electrons of a sodium atomic wire is shown in Fig. 9.
We have calculated the electronic transport in sodium For the transport calculations we use a scattering region
atomic wires as examples of more complex systems. Oucomprising the atomic wire and the surface regions of the left
model of a sodium wire consists of left and right leads com-and right leads. Both surface regions consist of five atomic
posed of bulkbco sodium metal terminated by(@00) sur-  layers (see Fig. 8 Periodic boundary conditions and a 2
face, connected by a straight wire of sodium atoms, as ix 2 lateral supercell perpendicular to the wire are applied.
shown in Fig. 8. The atoms in the leads are positioned acthe potential in the scattering region is extracted from the
cording to the bcc structure of bulk sodium, with the cell slab calculations. Outside the scattering region we assume
parameter fixed at the experimental value of 7884 The  that the leads consist of bulk sodium. The potential for the
atoms in the wire are fixed at theibulk) nearest neighbor leads and the value of the Fermi energy are extracted from a
distance of 6.91&, Since geometry relaxation at the bulk calculation. The average bulk potential is lined up with
Na(100) surface is very smafl® and calculations using jel- the average potential in the middle of the supercell &ab.
lium electrodes have shown that the conductance of a sodiume have checked that the spatial dependence of the bulk

B. Sodium atomic wires
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a distance corresponding to the two-atom wire it gives a
conductance of 0.043F,, at distances corresponding to
longer wires this conductance is negligible. Subtracting these
vacuum tunneling values gives the lower curve in Fig. 10.

With the exception of the one-atomic wire, the conduc-
tances are close to unity. This is perhaps not surprising, since
within a tight-binding model atomic wires consisting of a
monovalent atom like sodium are expected to have one open
channel. For perfectly transmitting contacts this would give a
conductance of G,.*® Our calculated conductances for- 1

FIG. 9. (Color onling The effective potential for valence elec- ar_e less tha_ln _150/‘_) s_maller than this value, demonstrating that
trons in thexy plane of the sodium atomic wire shown in Fig 8. this transmission is indeed very high. The conductance of the

Most prominent are the strongly repulsive core regions and th@ne-atomic wire, relative to the vacuum tunneling conduc-

attractive valence regions of the atoms. The difference between tH&nce at this distance, is significantly lower than unity. The
maximum and minimum values of this potential is 32.4 eV. The€lectronic structure of a single atom between two electrodes

Fermi level is at 8.5 eV above the potential minimum. is subsgtantially distorted from the simple single open channel
model:

On a finer scale we find evidence of an even-odd oscilla-
potential is virtually identical to that of the potential in the tion in the conductance obtained in previous stués>
middle of the slab. This means that the connection betweefhe conductance for wires with even tends to be lower
the leads and the scattering region is smooth. There are rifan for those witin odd. In simple tight-binding terms odd-
discontinuities in the potential in the boundary regions thaflumbered atomic wires have a nonbonding level that tends to
could cause Spurious reflections. line up with the Fermi level of the |eadS, which giVeS a h|gh

Figure 10 shows the calculated conducta@¢Ey) at the ~ transmission. For an even-numbered atomic wire, on the
Fermi level as a function of the length of the sodium Other hand, the Fermi level tends to fall in the gap between

atomic wire. The conductance is calculated using a grid spadh@ bonding and antibonding levels of the wire, resulting in a
ing along thex, y, andz directions ofh, , ,=0.67a, (giving lower transmissiof® The size of the even-odd oscillation in
L=6, W,=W,=24) and a FDA of ordeﬁ/\'l:4.46 The 2x2  the conductance depends of course upon the nature of the
lateral Brillouin zone is sampled by a ¥212 uniform contacts between the atomic wire and the leads. Good con-

k;-point grid. With these parameters the calculated conductacts broaden the levels of the atomic wire into wide reso-
tances have converged to well within $G, [where G, ~ hances, which tends to suppress the even-odd oscillation.
=€?/(wh)].4" All wires have a conductance close to unity, OUr wires have good contacts, but the even-odd oscillation

except the one-atortn=1) wire. The high conductance for "eémains distinctly visiblé?

the one-atom wire is foremost due to tunneling between the

left and right leads through vacuum. The latter can be calcu- IV. SUMMARY

lated by omitting the wire and otherwise keeping the geom-

etry fixed. Tunneling through vacuum leads to a conductance We have formulated and implemented a numerical tech-

of 2.20G, per 2x 2 surface cell. Vacuum tunneling decreasesnique for calculating electronic transport in quantum wires

fast with the distance between left and right lead surfaces. A&nd tunnel junctions in the linear response regime, starting
from Landauer’s scattering formalism. It is based upon a
real-space grid representation of the scattering problem. Di-

l ] viding space into left and right ideal leads and a scattering

0.993 - region, the problem is solved byave function matching
» ] First all propagating and evanescent Bloch modes of the

b leads are calculated. Subsequently the states in the scattering

s - region are forced to match to the Bloch modes of the leads.

o A This directly leads to the transmission matrix, which contains

0.865 ] the transmission probability amplitudes between all modes of

the left and right leads, and to the conductance. The comput-

. ing costs of this algorithm scale linearly with the size of the

] scattering region.

It is shown that the use of a high-order finite-difference
approximation for the kinetic energy operator leads to a high
accuracy and efficiency. This is demonstrated for a model

FIG. 10. Top curve: Conductane®(Ey) at the Fermi leve{in  Potential by benchmarking the technique against analytical
units of €2/ 7r4) of a sodium atomic wire as a function of the num- and numerically “exact” solutions. The method is then ap-
ber of atomsn in the wire. Bottom curve: Conductance of a sodium plied to calculate the conductance in sodium atomic wires,
atomic wire relative to vacuum tunneling conductance between twavhere the potential in the wire and in the bulk sodium leads
electrodes without wire. is obtained from self-consistent DFT calculations.

1 2 3 4 5
n
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For a wire that is periodic in thgz plane, the wave func-
tions in Eq (4) must obey Bloch conditions. That is,
\Pl k+W —el yay\IfJ kI and ‘PJ KI+W, —é zaz‘LII‘J Kl where ay a,
are the periods in thgandz dlrect|ons andk,, k) =k, is the
APPENDIX A: COMPUTATIONAL DETAILS Bloch wave vector in thgzplane. These Bloch conditions in

1 H and B matrices theyz plane can be taken into account by defining the blocks

In this section the matriceld; and B, introduced in Sec. (W'D o e ey = — B, n==N, ...,~k,

Il A, are presented explicitly. In order not to complicate the Y

notation the subscript is dropped; all quantities refer to a

single cell. For a wire with a finite cross section in the (0D, keweni) = - ey, n=W, -k ... N,
plane, the matribt is real and symmetric and has the form /

hy =B ... =By O ... 0 O (0D ik i) = =t €% "= =N, .=,
B, hy ... -Byq -By ... O O
H=| & & S S (' Dt erwam = — 8%, 0" =W, =1, ... N
0 o ... 0 0 ...h_ -8 (A4)
0o 0 .. 0 0 ...-p1 h

(A1) The matrixH(k;), which is obtained by substitutinly; by
hj+hj’, j=1,...L,in Eq.(Al), describes a wire that is pe-
HereN is the order of the finite-difference formula usisste ~ fiodic in the yz plane with solutions corresponding to a
Eq. (3)]. We assume that theaxis is in the direction of the Bloch vectork;. This matrix is(compley Hermitian.
wire. L is the number of grid points in thedirection of the
unit cell defined by the periodic potential.

The submatriced, and B, are of dimensionW, X W,,
which is the number of grid points in the cross section of the For an ideal wire, which has a periodic potential along the
wire. Denoting (k,)=k+(I-DW,, k=1,... W, | wire, Eq.(7) has to be solved to find the propagating and the
=1,... W,, as the compound index covering the grid pointsevanescent waves. The precise form of the submatrices in
in the cross section, the nonzero elements of these matric&s. (A1) and(A3) is not important in the following discus-
are easily derived from Eq4): sion. For ease of notation we mention only the dimenslons
(the number of grid points in the& direction and N (the
order of the finite-difference expressjoexplicitly and treat
the wire as quasi-one-dimensional. To find the dimensions of
the matrices in the three-dimensional case, one simply has to

_ Y multiply the dimensions mentioned below Y, X W,.

(M. temp ==ty N#0, Equation(7) is a generalized eigenvaluzy{)roblem of di-
mension 2. Because the matriB is singular it has a num-
(h) ——Z 00 ber of trivial solutionsh=0 andA=c¢. By using a partition-

(kD.(lol+n") " ’ ing technique we will eliminate these trivial solutions and
reduce the problem to theN2nontrivial solutions. The key
point is to split the vector®’; into two parts containing the
first L—N and lastN elements, respectively. The two parts

are denoted by the subscripts 1 and 2. Splitting the matrices
where N=n,n'<N and 1= k,k+nSWy, 1I<sll+n'sW,, H andB in the same way one gets
1=<j=<N. Note that in writing down these matrices we have

2. ldeal wire

(M) y.in = Vi — (o + t+15),

(B, =1 (A2)

assumed thaN <L, W,, W,. In practical calculations on re- )

o Yy W, Hi1 Hi 0 By
alistic systems this will always be the case. v, = , , B= .

The matrixB has the same dimension lds but it is upper Wiz Ha1 Hao 0 By
triangular: (A5)
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Note the special form of the matrig. 3. F matrices
This splitting allows Eq(7) to be written in the form In this section explicit expressions for the matri¢eand
El;;-Hy -Hy, 0 B1, F are given[see Eqgs(13) and(14)]. Following Eq.(8), we
—Ha 4 ABL. Elon— Had ABT 0 B denote the propagating and evanescent modes of the ideal
21 21 =22 T2z 22 22 wire by u,, m=1,... M, whereM <N, and N is the di-
l11 0 =Ny O mension of the vectors. For clarity of notation we omit the
0 [P 0 —M\y labels = for right and left going modes here. As in E®)
we form theN,s X M matrix
Wi,
\II' = oo
% i,2 =0. (AG) U (Ul UM) (AlO)
Vi1
Vi1
From this expression it is clear that the compomdft, ; i : (A11)
enters the problem only in a trivial way a&#;_; ;=1/\ |
XW; .. It can be eliminated by deleting the third row and Ung - Ungu

column in Eq.(A6).

Furthermore, the first row of the matrix does not dependlhe mode vectorsi,, are in general nonorthogonal and we
upon the eigenvalug. Writing out the multiplication for the can form theM X M (positive definit¢ overlap matrix with
first row explicitly, one finds an expression fa; ,, elements

Wi 1=(El;;~H) (HpoWio-BoWig ). (A7) Sn= Ul U = (UpfUp). (A12)

This can be used to eliminat¥; ; from Eq.(A6) to arrive
at the equation

A A Su S\l W) y
{( o )qu)‘) #8) =3 S (A13)

I22 |22

This allows us to construct the dual bagjg, m=1,... M,

with . .
with properties
A11=El 3= Ha—Hay(El 13~ Hi) Hyy, B 5

_ _ -1
A12= = Hay(Bly =H1) "By, Now define theM X N, matrix

Sp1=-Bl,— Bl (El ;1 —Hi) ™ Hyy, .. Ty 1
U= tw'=| ! S NVNTS

S1o=—Bly(Ely;— Hip) 'Byy. (A9) o
Uy - Un M
Equation(A8) is a generalized eigenvalue problem of di-

mension A that can be solved using standard numerical~, . . ~
technique$® In general it gives R e?genvalues)\m and U'S called the pseudoinverse Esf note thatJU =1y, where

i . ; Iy is theM X M identity matrix:
eigenvectorsu,,. As mentioned in the text, some of these Defining th i
solutions are nonphysicét;®*others represent extremely fast efining the matrix
growing or decaying waves. Both of these classes of un- _
wanted solutions are easily filtered out by demanding that F=UAU, (A16)
1/8<|\|< 8, where § is some threshold value. We use this
criterion to select the physically relevant solutions, which aret is easy to show that it is a solution to §d.3). F is in fact
then separated inti@l right going andM left going solutions.  a matrix that projects onto the space spanned by the modes,
These are used to construct the matrices of B)sand(11)  as is easily demonstrated by writing E&16) as
which contain all the information required to describe the

ideal wire. M
The computational cost of solving E@A8) scales as F=> U A T (A17)
(2N)3, whereas the cost of computing the matrices of Eq. m=1

(A9) basically scales aéL—N)3 (which is the cost of the
matrix inversion involveyl Depending on the relative sizes making use of Eqg11) and(A10)~(A15). In a similar way a
of L andN one of these two steps is dominant. solution to Eq.(14) is formed by
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M
F=UA = [umh Xy (A18)
me1 by a standard algorithm, i.eL,U decomposition ofA_; fol-
Note that F=F! only if M=N,, but since M=<NXW, lowed by back substitution, to obtain the matridgésand

X W, <N (see the previous sectipthis will never be the Bi.55 This allows the steps in EgA21) to be rewritten as
case.

A'_B=B" A", _D;=D"_,, (A22)

A',=A;-BB;, D', =-BD. (A23)

4. Scattering problem The solution to Eq(A19) can now be found by back

The scattering problem is described by E2f). Itis con- ~ substitution

veniently written in matrix form as Ay
Csi1=Ag1D s,

A, BT 0 ... 0 Co D
B AL BT .. 0 |/ C | (0 Ci=Du1-BuiCpr, 1=S...,0.  (A24)
0 B A2 . 0 C2 = 0 y i -1 L i
e . . . Again one does not neell;, ; explicitly, but as in Eq(A22)
: one can solve the equivalent set of linear equations. The
0 0 O Asi1/ \Csu 0 reflection and transmission matric& and T can be ex-
(A19) tracted using the special form of the matric@s and Cg, 4,
[see Eq(AZ20)].
with Very often one is interested only in the transmission ma-
- trix. In that case one uses only the first step of the back
Ao =El —Hy, substitution, Eq(A24), which can be written as
A=El-H, i=1,...S A’ Ur(+)T=D'g,. (A25)
This is a set of linear equations for the transmission prob-
As. = El —F|5+1, ability amplitudesT, which can be solved using standard

numerical technique®.

The time consuming steps consist of solving E422),
the computing costs of which scale l4%.5° Using Eq.(A23)
in Eqg. (A21) requires performingS+1 of such steps and

Co=U_ (+)+U_ ()R,

Csi1=Ur(+)T, subsequently solving EqA25) scales as\>. Note that the
full algorithm scales linearly with the siZgof the scattering
D=QU,(+). (A20) region.

All the blocks A—D are N,sX N, matrices. EquatioriA19)
represents a set of linear equations, which can be solved
directly using a standard algorithm. However, the dimension In this section we give a short derivation of the expression
of this problem isN,,;=N,«(S+2), which can be rather large. for the velocities, Eq(28). It is straightforward to show that
Since the computing cost scale:sl\at%t the direct route is not the vectorsu,, of Eq. (8) are a solution of the quadratic

5. Velocities

very practical. eigenvalue equation
It is however quite straightforward to construct an algo- 201
rithm for which the computing cost scales Md3S, i.e., only Am(El = H)up, + Buy + A;B'uy, =0. (A26)

linearly with the sizeS of the scattering region. One has to
make optimal use of the block tridiagonal form of the matrix
in Eq. (A19). The algorithm is a block form of Gaussian
elimination. The firs{and most time consumingtep of this
algorithm is transforming the matrix into upper block trian-
gular form by iteration:

This quadratic eigenvalue equation of dimensiggis com-
pletely equivalent to the linear problem of dimensiadw,2of
Eq. (7). If u,,is aright eigenvector of EqA26) belonging to
the eigenvalua , then by complex conjugation of this equa-
tion one shows that is a left eigenvector belonging to the
eigenvalue ;. For a propagating state),|=1, S0 A\,

A'y=Ao,D',=D, —1/)\m, which means that these left and right eigenvectors
belong to the same eigenvalue.
, —1ot We now start from
AEACBALBL L ) sl (A
D',=-BA/ZD',_,, 1=1,...5+1. (A2D) AUL(El = H)up+ ul Bup + MN2ul Bfu,, =0, (A27)

The inverse matriced/”} in this algorithm are actually not and take the derlvat|vé/dE of this expression. All the terms
needed explicitly. Instead at each step one solves the sets with du,,/dE anddu, /dE drop out, because,, andu' obey
linear equations Eq. (A26) and its complex conjugate, respectlvely The
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remaining terms can be collected and slightly rewritten usinghe fact that the vectors are normalized,um=1. Equation

Eq. (A26); the result is

(A28) yields an expression fod\,/dE. For propagating

states\,,=€'"® and thus

d\p, .
d—g()\mluLBum— AUl BTUm) + Nl U,

d\
== 22— Im(\pu! BTuy) + Ay =0,

e (A28)

di_ 1 A
dE ia\, dE

(A29)

The usual definition of the Bloch velocity,=#"*dE/dk, and

the expression fod\,,/dE extracted from Eq(A28) then

where the last line is obtained by making use\pf=\,, and

give the expression for the velocity of E@8).
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