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We present a general method for calculating coherent electronic transport in quantum wires and tunnel
junctions. It is based upon a real-space high-order finite-difference representation of the single particle Hamil-
tonian and wave functions. Landauer’s formula is used to express the conductance as a scattering problem.
Dividing space into a scattering region and left and right ideal electrode regions, this problem is solved by
wave function matching in the boundary zones connecting these regions. The method is tested on a model
tunnel junction and applied to sodium atomic wires. In particular, we show that using a high-order finite-
difference approximation of the kinetic energy operator leads to a high accuracy at moderate computational
costs.
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I. INTRODUCTION

The progress in experimental control on the nanometer
scale has enabled studies of electronic transport in quantum
wires of atomic dimensions.1 The transport properties of
such systems have to be understood on the basis of their
atomic structure. This notion has generated a large effort in
recent years to calculate the conductance of quantum wires
from first principles. Several different approaches have been
formulated, which have a common basis in the Landauer-
Büttiker approach to express the conductance of a coherent
system in terms of a quantum mechanical scattering
problem.2 In such calculations the quantum wire consists of a
scattering region of finite size, sandwiched between two
semi-infinite leads that are considered to be ideal ballistic
wires. Semiempirical tight-binding models have been ex-
ploited to solve this problem.3–6 Aiming at a better descrip-
tion of the electronic structure, several current approaches
rely upon density functional theory(DFT).

The main differences between these approaches lie in the
approximations that are used to describe the atomic structure
of the leads and in the techniques that are used to solve the
scattering problem. In pioneering work, jellium(i.e., free
electron) electrodes have been used to describe the leads and
the scattering wave functions have been obtained by a trans-
fer matrix method7 or by solving the Lippman-Schwinger
equation.8,9 A transfer matrix method has also been used tak-
ing into account the full atomic structure of the leads at the
DFT level.10,11 Alternatively, the conductance can be calcu-
lated using a Green function approach without calculating
the scattering wave functions explicitly.12 Several implemen-
tations of this approach have been formulated that use a lo-
calized basis set to form a representation of the scattering
problem. These implementations mainly differ in the kind of
basis set used, e.g., Gaussian or numerical atomic orbitals, or
wavelets.13–19 An embedded Green function approach has
been applied using a delocalized basis set of augmented
plane waves.20

In this paper we present a technique for solving the scat-
tering problem of a quantum wire without the use of a basis

set. Instead, potentials and wave functions are represented on
a uniform real-space grid and differential operators are ap-
proximated by a finite-difference approximation(FDA). Pre-
vious implementations of this idea have used a simple first
order FDA.21–24 In that case the grid has to be relatively fine
in order to obtain sufficiently converged results. This hinders
the application to large systems because of the computational
costs involved in using fine grids. However, in ground state
(DFT) electronic structure calculations high-order FDA’s
have been shown to markedly increase the efficiency of real-
space grid techniques by enabling the use of coarse
grids.25–27 In this paper we demonstrate that high-order
FDA’s make it possible to solve the scattering problem much
more efficiently.

The method we propose for calculating the conductance
of a quantum wire is based upon wave function matching
(WFM) in the boundary zones connecting the leads and the
scattering region.28 Unlike transfer matrix methods, however,
it does not require the explicit calculation of wave functions
in the scattering region.7,10,11 It does not require the explicit
calculation of Green functions either,12–20 which enables us
to solve the scattering problem at real, instead of complex,
energies.29 Our method can be classified as anOsNd tech-
nique, since the computing costs are determined by the size
of the scattering region with which they scale linearly. A
related technique that uses a linearized muffin tin orbital ba-
sis set has been applied to calculate the electronic transport
in layered magnetic materials.30,31 Although the formalism
presented here can be extended to the nonequilibrium situa-
tion, we consider in this paper the linear response regime
only.

This paper is organized as follows. In Sec. II the main
ingredients of our computational method are explained,
where the computational details can be found in Appendix A.
The accuracy and convergence properties of the method are
verified on model tunnel junctions in Sec. III A. The appli-
cation to a more complex system, which consists of a sodium
atomic wire, is discussed in Sec. III B. A summary is given
in Sec. IV.
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II. COMPUTATIONAL METHOD

Within the Landauer-Büttiker approach the conductance
G of a quantum wire is expressed in terms of the total trans-
missionTsEd

G =
e2

p"
TsEd, s1d

assuming spin degeneracy.2 TsEd can be obtained by solving
the quantum mechanical scattering problem at the fixed en-
ergy E. Equation(1) is valid in the linear response regime,
where TsEd needs to be evaluated at the Fermi energyE
=EF. Our quantum wire is defined as a system consisting of
a finite scattering region that is connected left and right to
semi-infinite leads. The latter are supposed to be “ideal”
wires, which can be described by a periodic potential along
the wire direction. In the scattering region the potential can
have any shape. We consider two cases that can be treated by
essentially the same technique. In the first case the system
has a finite cross section perpendicular to the wire direction,
whereas in the second case the system is periodic perpen-
dicular to the wire. The latter case also covers planar inter-
faces and tunnel junctions.

In order to solve the scattering problem we generalize a
method formulated by Ando.28 Here one basically solves a
single particle Schrödinger equation directly at a fixed en-
ergyE in two steps. In the first step one obtains the modes of
the ideal leads. Subsequently the wave functions for the scat-
tering region are constructed such that they are properly
matched to the solutions in the leads. We use a real-space
finite-difference method to represent the Schrödinger equa-
tion. In the following three subsections we will introduce this
representation and discuss the steps required to solve the
scattering problem.

A. Finite-difference approximation

We start from a single particle equation of the general
form

SE − Vsr d +
"2

2m
¹2DCsr d = 0, s2d

which represents the Schrödinger equation of a single par-
ticle in a potentialV. Alternatively, within the DFT scheme it
represents the Kohn-Sham equation withV the total effective
potential. We put the wave functionC and the potentialV on
a equidistant grid in real spacer =sxj ,yk,zld, where xj =x0

+ jhx, yk=y0+khy, zl =z0+ lhz, andhx,hy,hz are the grid spac-
ings in the x, y, and z directions, respectively. Following
Refs. 25 and 26 we replace the kinetic energy operator in Eq.
(2) by a high-order FDA. For thex part this gives

]2Csxj,yk,zld
]x2 <

1

hx
2 o

n=−N

N

cnCsxj+n,yk,zld, s3d

with similar expressions for they and z parts. Expressions
for the coefficientscn for various values ofN are tabulated in
Ref. 26. The simplest approximation in Eq.(3) (N=1, where
c1=c−1=1 and c0=−2) reduces Eq.(2) to the well-known

simple finite difference representation of the Schrödinger
equation.12,21–24However, we will demonstrate that the scat-
tering problem can be solved much more efficiently using
higher-order FDA’s withN=4–6.

In a FDA the Schrödinger equation of Eq.(2) becomes

sE − Vj ,k,ldC j ,k,l + o
n=−N

N

stn
xC j+n,k,l + tn

yC j ,k+n,l + tn
zC j ,k,l+nd = 0,

s4d

whereV,C j ,k,l is a shorthand notation forV,Csxj ,yk,zld and
tn
x,y,z="2/2mhx,y,z

2 3cn. In order to make a connection to An-
do’s formalism28 we divide the wire into cells of dimension
ax3ay3az. The direction of the wire is given by thex axis.
The number of grid points in a cell isL=ax/hx, Wy=ay/hy,
andWz=az/hz for thex, y, andz directions, respectively. We
wish to distinguish between two different cases. In the first
case the wire has a finite cross section in theyz plane. In the
second case the wire has an infinite cross section, but it has a
periodic potential in theyz plane, i.e.,Vj ,k+Wy,l =Vj ,k,l+Wz
=Vj ,k,l. In both cases the(unit) cell in the yz plane is de-
scribed byWy3Wz grid points.

The valuesC j ,k,l where the indicesj ,k, l correspond to a
single cell i are grouped into a supervectorCi. The idea is
shown in Fig. 1. This supervector has the dimensionNrs
=LWyWz, which is the total number of real-space grid points
in a cell. If we leti denote the position of the cell along the
wire then Eq.(4) can be rewritten as

sEI − H idCi + BCi−1 + B†Ci+1 = 0 s5d

for i =−` , . . . ,`. HereI is theNrs3Nrs identity matrix. The
matrix elements of theNrs3Nrs matricesH i and B can be

FIG. 1. (Color online) (a) The system is divided into cells indi-
cated by an indexi. The cells haveL ,Wy, andWz grid points in the
x, y, andz directions, respectively.Ci is the supervector that con-
tains the wave function values on all grid points in celli. (b) H i is
the Hamilton matrix connecting grid points within celli; the B
matrix connects grid points between neighboring cells and is inde-
pendent ofi.
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derived straightforwardly from Eq.(4). The expressions are
given in Appendix A 1, both for a wire that is finite and for
a wire that is periodic in theyz plane. For the latterH i
=H isk id, wherek i is a wave vector in the two-dimensional
Brillouin zone. In the following this notation is suppressed.

Equation (5) has the form of a nearest neighbor tight-
binding equation, expressed in terms of vectors/matrices of
dimensionNrs. This form enables us to use Ando’s technique
to solve the scattering problem.28 Note, however, that the
matricesB ,B† in Eq. (4) are singular[see Eq.(A3)], which
requires a generalization of this technique.

B. Ideal wire

An ideal wire is defined by a potential that is periodic in
the direction of the wire, i.e.,Vsxj +ax,yk,zld=Vsxj ,yk,zld or
Vj+L,k,l =Vj ,k,l. Since the potential is the same in each cell, the
matrix H i =H in Eq. (5) is independent of the cell positioni.
In a periodic system the vectors in subsequent cells are re-
lated by the Bloch condition

lCi = Ci+1, s6d

wherel=eikxax with kx real for propagating waves and com-
plex for evanescent(growing or decaying) waves. Combin-
ing Eqs.(5) and (6) one then obtains the following general-
ized eigenvalue problem:

FSEI − H B

I 0
D − lS− B† 0

0 I
DGS Ci

Ci−1
D = 0. s7d

Formally, the dimension of this problem is 2Nrs. There are a
number of trivial solutions, however, sinceB ,B† are singular
matrices. In Appendix A 2 it is shown how to reduce the
problem to its 2NWyWz nontrivial solutions.

The nontrivial solutions of Eq.(7) can be divided into two
classes. The first class comprises Bloch waves propagating to
the right and evanescent waves decaying to the right; the
corresponding eigenvalues are denoted byls+d. The second
class comprises Bloch waves propagating to the left or eva-
nescent waves decaying to the left; the eigenvalues are de-
noted byls−d. The eigenvalues of the propagating waves
haveuls±du=1 and for evanescent wavesuls±du+1. The eva-
nescent states come in pairs, since it is easy to show that for
every solutionls+d there is a corresponding solutionls−d
=1/l* s+d. It can be shown that the propagating states also
come in pairs, i.e., for every right propagating wavels+d
there is a left propagating wavels−d.32

It makes sense to keep only those evanescent waves for
which 1/d, ulu,d, whered is a sufficiently large number.
States withulu outside this interval are extremely fast decay-
ing or growing. Such states are not important in matching an
ideal wire to a scattering region. Typical of finite-difference
schemes, there are also nonphysical solutions to Eq.(7),
which are related to so-called parasitic modes.33,34These are
easily recognized and discarded since theirulu’s are either
extremely small or large and thus fall outside the selected
interval. Moreover, theseulu’s are very sensitive to the grid
spacing and rapidly go to 0 or̀ if the grid spacing is de-
creased.

After filtering out the physical and useful solutions of Eq.
(7) we end up with M pairs of solutions lms±d, m
=1, . . . ,M, where usuallyM !Nrs. We construct the normal-
ized vectorsums±d from the firstNrs elements of the eigen-
vectors of Eq.(7) and form theNrs3M matrices

Us±d = „u1s±d ¯ uMs±d…. s8d

Choosing the celli =0 as the origin, one then writes the gen-
eral solutionC0 in this cell as a linear combination of these
right and left going modes

C0 = C0s+ d + C0s− d, s9d

where

C0s±d = Us±das±d = o
m=1

M

ums±dams±d, s10d

with as±d vectors of arbitrary coefficients of dimensionM.
Defining theM 3M diagonal eigenvalue matrices by

„Ls±d…nm= dnmlms±d, s11d

and using the Bloch condition of Eq.(6), the solution in the
other unit cells then can be expressed in a compact form,

Ci = Us+ dLis+ das+ d + Us− dLis− das− d. s12d

In order to apply Ando’s formalism,28 it is advantageous
to slightly rewrite this. We define theNrs3Nrs matricesFs±d
and F̃s±d by

Fs±dUs±d = Us±dLs±d, s13d

F̃s±dUs±d = Us±dL−1s±d. s14d

Note thatF̃s±dÞF−1s±d since theNrs3M matricesUs±d are
not square(typically M !Nrs). This presents no problem,

however, and explicit expressions for the matricesF̃ ,F are
given in Appendix A 3. They allow Eq.(12) to be rewritten
in recursive form,

Ci+1 = Fs+ dCis+ d + Fs− dCis− d, s15d

Ci−1 = F̃s+ dCis+ d + F̃s− dCis− d, s16d

either of which allows one to construct the full solution for
the ideal wire, once the boundary values are set[cf. Eq. (9)].

C. Scattering problem

In a nonideal quantum wire the potential is not periodic,
which means that we have to solve the Schrödinger equation
of Eq. (5) with H i depending upon the positioni along the
wire. The nonideal region(the scattering region) is supposed
to be finite, spanning the cellsi =1, . . . ,S.35 The left and right
leads are ideal wires, spanning the cellsi =−` , . . . ,0 andi
=S+1, . . . ,̀ , respectively. In the ideal wiresH i does not
depend on the position of the cell. However, the left lead can
be different from the right one, so we use the subscript L(R)
to denote the former(latter), i.e., H i =HL , i ,1, and H i
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=HR, i .S. A schematic picture of the structure is shown in
Fig. 2(a). We solve Eq.(5) over the whole space,i =−` ,`,
making use of the ideal wire solutions of the previous section
to reduce the problem to essentially the scattering region
only [see Fig. 2(b)].

For the solution in the left lead the recursion relation of
Eq. (16) can be used. This gives for the celli =−1

C−1 = F̃Ls+ dC0s+ d + F̃Ls− dC0s− d

= fF̃Ls+ d − F̃Ls− dgC0s+ d + F̃Ls− dC0, s17d

using Eq.(9). The vectorC0s+d describes a wave coming in
from the left. In a scattering problem this vector fixes the
boundary condition. Equation(17) allows Eq.(5) for i =0 to
be written as

sEI − H̃0dC0 + B†C1 = QC0s+ d, s18d

where

H̃0 = HL − BF̃Ls− d,

Q = BfF̃Ls− d − F̃Ls+ dg. s19d

For the solution in the right lead we use the recursion
relation of Eq.(15), which gives for the celli =S+2

CS+2 = FRs+ dCS+1s+ d. s20d

Here we have assumed that in the right lead we have only a
right going wave, which corresponds to the transmitted
wave. Equation(20) allows Eq.(5) for i =S+1 to be written
as

sEI − H̃S+1dCS+1 + BCS= 0, s21d

where

H̃S+1 = HR − B†FRs+ d. s22d

Equations(19) and (22) take care of the coupling of the
scattering region to the left and right leads. Equation(5) for
i =1, . . . ,S plus Eqs.(18) and (21) form a complete set of
equations from which the vectorsCi , i =0, . . . ,S+1, can be
determined describing the waves in the scattering region.

The scattering reflection and transmission coefficients can
be deduced from the amplitudes immediately left and right of
the scattering region, i.e.,C0 andCS+1. If we let the incom-
ing wave consist of one specific mode,C0s+d=uL,n, i.e.,
ams+d=dmn in Eq. (9), then the generalized reflection and
transmission probability amplitudesrn8n and tn8n are defined
by

C0s− d = o
n8=1

ML

uL,n8s− drn8n,

CS+1s+ d = o
n8=1

MR

uR,n8s+ dtn8n. s23d

Note that at this stage we include all evanescent and propa-
gating modes since these form a complete set to represent the
states in the leads. We assume the lead states to be amplitude
normalized.

The reflection and transmission probability amplitudes
rn8n and tn8n between all possible modes form anML 3ML
matrix R and anMR3ML matrix T, respectively. All ele-
ments of these matrices can be found in one go by defining
an Nrs3ML matrix of all possible incoming modes, i.e.,

C0s+ d = ULs+ d. s24d

Analogous to Eq.(23) one then has

C0s− d = C0 − C0s+ d = ULs− dR,

CS+1s+ d = CS+1 = URs+ dT . s25d

Equations(18), (5), and(21) then become

sEI − H̃0dC0 + B†C1 = QULs+ d,

sEI − H idCi + BCi−1 + B†Ci+1 = 0, s26d

sEI − H̃S+1dCS+1 + BCS= 0,

i =1, . . . ,S. Solving this set of equations forCi , i =0, . . . ,S
+1, gives all possible waves. From Eq.(25) one can then
extract the generalized reflection and transmission matrices
R andT. An efficient technique for solving the equations is
discussed in Appendix A 4.

In order to calculate the total transmission one has to se-
lect the transmission matrix elements that refer to propagat-
ing modes and discard the ones that refer to evanescent
modes. This is easy, since the propagating modes haveulu
=1 [see the discussion above Eq.(8)]. The total transmission
of Eq. (1) is then given by

FIG. 2. (Color online) (a) Schematic representation of a quan-
tum wire. The left(L) and right(R) leads are ideal wires that span
the cellsi =−` , . . . ,0 andi =S+1, . . . ,̀ , respectively. The scatter-
ing region spans cellsi =1, . . . ,S. (b) The reduced problem spans
the cellsi =0, . . . ,S+1 [see Eq.(26)].
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TsEd = o
n=1,n8=1

mL,mR vR,n8

vL,n
utn8nu2, s27d

wherevR,n8 and vL,n are the velocities in thex direction of
the right propagating waves in the right and left leads in the
modesn8 andn, respectively, andmL, mR are the number of
such modes. Introducing the velocities results from flux nor-
malizing the modes, which is required by current
conservation.12 The velocities are given by the expression

vn = −
2ax

"
Imslnun

†B†und, s28d

where the subscripts L(R) need to be added for the left
(right) leads. Equation(28) is derived in Appendix A 5. The
sign of the calculated velocities is used to distinguish right
from left propagating modes.

D. Computational costs

Our computational method can be summarized as follows.
First, Eq. (7) is solved in its reduced form, Eq.(A8), to
obtain the modes for both leads. The computing costs of this
step scale asNid

3 , where Nid=maxs2N,L−Nd3WyWz (see
Appendix A 2). These costs are small compared to the costs
of solving the scattering problem. The next step involves
selecting the physically relevant modesum and separating
them into left(1) and right(2) going modes. The velocities
are calculated using Eq.(28) and are used to distinguish left
from right propagating states. Evanescent states are classified
as growing(1) or decaying(2) on account of their eigen-
value. Subsequently, theF matrices are constructed, Eq.(13),
and the matrix elements that define the boundary conditions
on the scattering region are set[see Eqs.(19) and(22)]. The
computing costs of these steps are minor.

The transmission matrixT is obtained by solving Eq.(26)
using the algorithm of Appendix A 4. This is the most time
consuming step. It scales asSNrs

3 , whereNrs=LWyWz is the
number of grid points in the unit cell andS is the number of
unit cells in the scattering region. Note that the scaling is
linear with respect to the sizeS of the scattering region,
which means that this algorithm can be classified asOsNd.
Finally, the total transmission and the conductance can be
obtained from Eqs.(27) and (1).

III. RESULTS

A. Numerical tests

In order to test the accuracy of our method we consider a
system described by the model potential

Vsr d = V0fcoss2px/ad + coss2py/ad + coss2pz/adg

+
V1

cosh2spx/ad
. s29d

TheV0 term describes an ideal wire by a simple three dimen-
sional periodic potential with periodsax=ay=az=a. The V1
term describes a barrier in the propagation direction and is a
simple model for a tunnel junction. The potential is plotted in

Fig. 3. We solve the scattering problem for this system nu-
merically in three dimensions by the method outlined in Sec.
II. Our results can be verified, however, since this potential is
in fact separable and limiting cases can be solved analyti-
cally. The solutions in they and z directions are Mathieu
functions.36 If V1=0 then the solutions in thex direction are
also Mathieu functions. IfV1Þ0 but V0=0 the scattering
problem can be solved analytically.37 Finally, if V1Þ0 and
V0Þ0 the solution in thex direction can be obtained using
the separability of the potential and a standard numerical
solver for the resulting ordinary differential equation in thex
direction.38 In the following the latter will be called the “ex-
act” numerical solution.

As a first test we consider an ideal wire, i.e.,V1=0 in Eq.
(29). The potential is separable and we can write the energy
as Eskx,ky,kzd=enx

skxd+eny
skyd+enz

skzd, where enskd, k
=−p /a, . . . ,p /a, n=0,1, . . ., are theeigenvalues of the
Mathieu problem.36 Figure 4 shows part of the analytical
band structure forskx,ky,kzd=s0,0,0d→ sp /a,0 ,0d. It es-
sentially consists of a superposition of one-dimensional band
structuresenx

skxd offset by energieseny
s0d+enz

s0d, ny, nz

=0,1, . . ..
The numerical band structure is obtained by solving Eq.

(7) in its reduced form, Eq.(A8). To obtain the results shown
in Fig. 4 we setk i=sky,kzd=s0,0d [cf. Eq. (A4)], and deter-
mine the eigenvaluesl in Eq. (7) as a function ofE. For the

FIG. 3. (Color online) The potential of Eq.(29) in the xy plane
for the cases(a) V0=0 and(b) V0=V1.

FIG. 4. The calculated wave numberkx (in units of p /a) as
function of the energyE (in units of V0) for an ideal wire. The
points indicate the numerical results obtained withL, Wy, Wx=8
andN=4. The solid line indicates the exact solution of the Mathieu
problem.
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propagating states one can writel=expsikxad. Plotting the
calculated wave numberkx as function of the energyE then
allows us to compare the results with the analytical band
structure. The numerical results shown in Fig. 4 are obtained
using a grid ofL, Wy, Wz=8 points per period and a FDA
with N=4. Although this grid is relatively coarse, we obtain
a relative accuracy onkx of 10−3.

This perhaps surprising accuracy is entirely due to the use
of a high-order FDA. To illustrate this, Table I shows the
convergence ofkx at a number of energiesE as a function of
the orderN of the FDA and the number of grid pointsL.
These particular results were obtained using the separability
of the potential and solving the problem numerically in thex
direction only, while using analytical solutions for they and
z directions. ForN=6 andL=14 the results are converged to
within 10−7 of the exact result. This is in sharp contrast to the
results obtained with a simple first ordersN=1d FDA, where
a similar convergence can only be obtained at the cost of
using two orders of magnitude more grid points. Using such
a large number of grid points in three dimensions is entirely
prohibitive because of the high computational costs in-
volved. For example, aiming at a moderate accuracy of 10−2,
it is observed that forN=4 andL=5 the results are markedly
better than forN=1 andL=14. Yet in a three-dimensional
calculation, without using the separability of the potential,
the computing time required for the latter is two orders of
magnitude larger than for the former. It means that in order
to solve a general nonseparable three-dimensional problem
with reasonable accuracy and computational costs, it is vital
to use a high-order FDA.

Next we consider the scattering problem and calculate the
total transmission for the case whereV1Þ0. The size of the
scattering region is set toSaand outside this region the scat-
tering potential[the last term of Eq.(29)] is set to zero. With
S=6 the results are extremely well converged. As an ex-
ample we have calculated the transmission at normal inci-
dence, i.e.,k i=sky,kzd=s0,0d. The crosses markedV0=0 in
Fig. 5 represent the numerical results for the transmission of

the corresponding potential, obtained with anL, Wy, Wz=8
grid and aN=4 FDA. This scattering problem can also be
solved analytically,37 and the analytical and numerical trans-
mission probabilities agree within 10−4.

Figure 5 also shows the transmission for the case where
V0=V1, as calculated numerically using the same parameters
as before, i.e.S=6; L, Wy, Wz=8; N=4. This scattering prob-
lem can be solved only semianalytically; Mathieu solutions
are used in they andz directions, and the(ordinary) differ-
ential equation for thex direction is solved “exactly” using
an accurate standard numerical solver.38 Again the “exact”
and numerical transmission probabilities agree within 10−4.
Compared to theV0=0 case it is observed that the influence
of the periodic potential of the leads upon the transmission is
large. ForV0=V1 the electronic states in the leads are far
from free-electron-like(see Fig. 4). In particular, the trans-
mission drops to zero if the energy is inside a band gap,
because there are no lead states of that energy.

The numerical calculations accurately capture the trans-
mission curve over a large energy range, as is shown in Fig.
6. The transmission generally increases with energy due to
the increasing number of channels(see Fig. 4). Since the
density of states peaks at the band edges, the transmission

TABLE I. kxsEd (in units ofp /a) at values ofE (in units ofV0)
in the lowest two bands and in the first band gap of Fig. 4; in the
band gap we findkx=1+ikx.

N L kxs−0.6d kxs1.0d kxs0.3d

1 7 0.694906 0.283091 0.283549

10 0.608958 0.322712 0.304238

14 0.571387 0.342011 0.312259

100 0.533341 0.359187 0.319658

1000 0.533084 0.359425 0.319688

4 5 0.544347 0.355049 0.317777

7 0.533962 0.358927 0.319476

10 0.533149 0.359389 0.319673

14 0.533087 0.359425 0.319687

6 7 0.533228 0.359337 0.319658

10 0.533086 0.359425 0.319688

14 0.533082 0.359428 0.319688

Exact 0.533082 0.359428 0.319688

FIG. 5. (Color online) The total transmission as a function of
energy(in units of V1) for the two casesV0=0 (crosses) and V0

=V1 (dots). In both casesk i=s0,0d. The solid lines represent the
analytical solution forV0=0 and the “exact” numerical solution for
V0=V1.

FIG. 6. (Color online) The total transmission as a function of
energy(in units of V1) for the two casesk i=s0,0d (dots) and k i

=s0.47,0.21dp /a (triangles). In both casesV0=V1. The solid lines
represent the “exact” numerical solution.

P. A. KHOMYAKOV AND G. BROCKS PHYSICAL REVIEW B70, 195402(2004)

195402-6



peaks at the corresponding energies. The transmission de-
pends very much uponk i as can be observed in Fig. 6, where
the transmission for normal incidence,k i=s0,0d, can be
compared to that fork i=s0.47,0.21dp /a (an arbitrary point
in the Brillouin zone). The difference between the two curves
can be easily understood from the band structure of the leads.
In particular, fork i=s0.47,0.21dp /a there are no band gaps
for E.0.14V0.

To demonstrate the convergence of the numerical calcula-
tions, Fig. 7 shows the total transmission as function of the
sampling densityL=Wy=Wz for a simpleN=1 and a high-
order N=4 FDA. The results shown are for one particular
k i=sky,kzd=s0.47,0.21dp /a and energyE=0.895V0, but the
convergence at otherk i points and energies is very similar.
The number of propagating channels at thisk i point and
energy is two, but the total transmission is onlyT=0.132,
which means that the barrier is largely reflecting. We con-
clude that the accuracy of the three-dimensional calculation
depends very strongly upon the order of the FDA. ForN
=1, L=15, the transmission is converged on a scale of 10−2

only, but forN=4 it is converged on a scale of 10−3 already
for L=8 (see the inset of Fig. 7). A high-order FDA thus
enables the use of a much coarser real-space grid. Since the
computational costs scale with the number of real-space grid
pointsNrs asNrs

3 =L9, this demonstrates the strength of using
a high-order FDA.

B. Sodium atomic wires

We have calculated the electronic transport in sodium
atomic wires as examples of more complex systems. Our
model of a sodium wire consists of left and right leads com-
posed of bulk(bcc) sodium metal terminated by a(100) sur-
face, connected by a straight wire of sodium atoms, as is
shown in Fig. 8. The atoms in the leads are positioned ac-
cording to the bcc structure of bulk sodium, with the cell
parameter fixed at the experimental value of 7.984a0.

39 The
atoms in the wire are fixed at their(bulk) nearest neighbor
distance of 6.915a0. Since geometry relaxation at the
Na(100) surface is very small,40 and calculations using jel-
lium electrodes have shown that the conductance of a sodium

wire is not very sensitive to its geometry,41 we have refrained
from optimizing the geometry. Perpendicular to the wire we
apply periodic boundary conditions using a 232 lateral su-
percell, which has a lattice parameter of 15.968a0.

If DFT is used to model the electronic structure, Eq.(2)
corresponds to the Kohn-Sham equation. The one-electron
potentialVsr d in this equation is then given by the sum of the
nuclear Coulomb potentials or pseudopotentials, and the
electronic Hartree and exchange-correlation potentials. The
latter two depend upon the electronic charge density. In lin-
ear response the charge density remains that of the ground
state, allowing the electronic potentials to be obtained from a
self-consistent ground state calculation. In these calculations
we employ supercells containing a slab of 13 layers to rep-
resent the bulk and surface of the leads, and a wire ofn
atoms(see Fig. 8). We use the local density approximation,42

and represent the ion cores of the sodium atoms by a local
pseudopotential.43 The valence electronic wave functions are
expanded in a plane wave basis set with a kinetic energy
cutoff of 16 Ry. The lateral Brillouin zone is sampled with
an 838 k i-point grid, using a temperature broadening with
kTel=0.1 eV.44

We want to calculate the conductance for various lengths
of the atomic wire, so for each lengthn we perform a self-
consistent supercell calculation to generate the one-electron
potential. By expressing the latter in a plane wave basis,
Fourier interpolation can be used to obtain a representation
on any real-space grid required for the transport calculations
[cf. Eq. (4)]. An example of the effective potential for va-
lence electrons of a sodium atomic wire is shown in Fig. 9.

For the transport calculations we use a scattering region
comprising the atomic wire and the surface regions of the left
and right leads. Both surface regions consist of five atomic
layers (see Fig. 8). Periodic boundary conditions and a 2
32 lateral supercell perpendicular to the wire are applied.
The potential in the scattering region is extracted from the
slab calculations. Outside the scattering region we assume
that the leads consist of bulk sodium. The potential for the
leads and the value of the Fermi energy are extracted from a
bulk calculation. The average bulk potential is lined up with
the average potential in the middle of the supercell slab.45

We have checked that the spatial dependence of the bulk

FIG. 7. The total transmissionT as a function of the grid size
L=Wy=Wz for a simpleN=1 FDA, 1 top curve; and for aN=4
FDA, 3 bottom curve. The horizontal line represents the “exact”
valueT=0.132. The inset shows theN=4 curve on a finer scale for
T.

FIG. 8. (Color online) Structure of an atomic wire consisting of
four sodium atoms between two sodium leads terminated by(100)
surfaces. The scattering region is bounded by the vertical lines and
the lateral supercell by the horizontal lines. Bulk atoms are indi-
cated by light gray(yellow) balls and atoms in the scattering region
by dark gray(blue) balls.
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potential is virtually identical to that of the potential in the
middle of the slab. This means that the connection between
the leads and the scattering region is smooth. There are no
discontinuities in the potential in the boundary regions that
could cause spurious reflections.

Figure 10 shows the calculated conductanceGsEFd at the
Fermi level as a function of the lengthn of the sodium
atomic wire. The conductance is calculated using a grid spac-
ing along thex, y, andz directions ofhx,y,z=0.67a0 (giving
L=6, Wy=Wz=24) and a FDA of orderN=4.46 The 232
lateral Brillouin zone is sampled by a 12312 uniform
k i-point grid. With these parameters the calculated conduc-
tances have converged to well within 10−3G0 [where G0
=e2/ sp"d].47 All wires have a conductance close to unity,
except the one-atomsn=1d wire. The high conductance for
the one-atom wire is foremost due to tunneling between the
left and right leads through vacuum. The latter can be calcu-
lated by omitting the wire and otherwise keeping the geom-
etry fixed. Tunneling through vacuum leads to a conductance
of 2.20G0 per 232 surface cell. Vacuum tunneling decreases
fast with the distance between left and right lead surfaces. At

a distance corresponding to the two-atom wire it gives a
conductance of 0.047G0; at distances corresponding to
longer wires this conductance is negligible. Subtracting these
vacuum tunneling values gives the lower curve in Fig. 10.

With the exception of the one-atomic wire, the conduc-
tances are close to unity. This is perhaps not surprising, since
within a tight-binding model atomic wires consisting of a
monovalent atom like sodium are expected to have one open
channel. For perfectly transmitting contacts this would give a
conductance of 1G0.

48 Our calculated conductances forn.1
are less than 15% smaller than this value, demonstrating that
this transmission is indeed very high. The conductance of the
one-atomic wire, relative to the vacuum tunneling conduc-
tance at this distance, is significantly lower than unity. The
electronic structure of a single atom between two electrodes
is substantially distorted from the simple single open channel
model.8

On a finer scale we find evidence of an even-odd oscilla-
tion in the conductance obtained in previous studies.8,49–52

The conductance for wires withn even tends to be lower
than for those withn odd. In simple tight-binding terms odd-
numbered atomic wires have a nonbonding level that tends to
line up with the Fermi level of the leads, which gives a high
transmission. For an even-numbered atomic wire, on the
other hand, the Fermi level tends to fall in the gap between
the bonding and antibonding levels of the wire, resulting in a
lower transmission.53 The size of the even-odd oscillation in
the conductance depends of course upon the nature of the
contacts between the atomic wire and the leads. Good con-
tacts broaden the levels of the atomic wire into wide reso-
nances, which tends to suppress the even-odd oscillation.
Our wires have good contacts, but the even-odd oscillation
remains distinctly visible.54

IV. SUMMARY

We have formulated and implemented a numerical tech-
nique for calculating electronic transport in quantum wires
and tunnel junctions in the linear response regime, starting
from Landauer’s scattering formalism. It is based upon a
real-space grid representation of the scattering problem. Di-
viding space into left and right ideal leads and a scattering
region, the problem is solved bywave function matching.
First all propagating and evanescent Bloch modes of the
leads are calculated. Subsequently the states in the scattering
region are forced to match to the Bloch modes of the leads.
This directly leads to the transmission matrix, which contains
the transmission probability amplitudes between all modes of
the left and right leads, and to the conductance. The comput-
ing costs of this algorithm scale linearly with the size of the
scattering region.

It is shown that the use of a high-order finite-difference
approximation for the kinetic energy operator leads to a high
accuracy and efficiency. This is demonstrated for a model
potential by benchmarking the technique against analytical
and numerically “exact” solutions. The method is then ap-
plied to calculate the conductance in sodium atomic wires,
where the potential in the wire and in the bulk sodium leads
is obtained from self-consistent DFT calculations.

FIG. 9. (Color online) The effective potential for valence elec-
trons in thexy plane of the sodium atomic wire shown in Fig 8.
Most prominent are the strongly repulsive core regions and the
attractive valence regions of the atoms. The difference between the
maximum and minimum values of this potential is 32.4 eV. The
Fermi level is at 8.5 eV above the potential minimum.

FIG. 10. Top curve: ConductanceGsEFd at the Fermi level(in
units of e2/p") of a sodium atomic wire as a function of the num-
ber of atomsn in the wire. Bottom curve: Conductance of a sodium
atomic wire relative to vacuum tunneling conductance between two
electrodes without wire.
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APPENDIX A: COMPUTATIONAL DETAILS

1. H and B matrices

In this section the matricesH i andB, introduced in Sec.
II A, are presented explicitly. In order not to complicate the
notation the subscripti is dropped; all quantities refer to a
single cell. For a wire with a finite cross section in theyz
plane, the matrixH is real and symmetric and has the form

H =1
h1 − b1 . . . − bN 0 . . . 0 0

− b1 h2 . . . − bN−1 − bN . . . 0 0

] ] ] ] ] ] ] ]

0 0 . . . 0 0 . . . hL−1 − b1

0 0 . . . 0 0 . . . − b1 hL

2 .

sA1d

HereN is the order of the finite-difference formula used[see
Eq. (3)]. We assume that thex axis is in the direction of the
wire. L is the number of grid points in thex direction of the
unit cell defined by the periodic potential.

The submatriceshn and bn are of dimensionWy3Wz,
which is the number of grid points in the cross section of the
wire. Denoting sk, ld=k+sl −1dWy, k=1, . . . ,Wy, l
=1, . . . ,Wz, as the compound index covering the grid points
in the cross section, the nonzero elements of these matrices
are easily derived from Eq.(4):

sh jdsk,ld,sk,ld = Vj ,k,l − st0
x + t0

y + t0
zd,

sh jdsk,ld,sk+n,ld = − tn
y, n Þ 0,

sh jdsk,ld,sk,l+n8d = − tn8
z , n8 Þ 0,

sb jdsk,ld,sk,ld = tj
x, sA2d

where −Nøn,n8øN and 1øk,k+nøWy, 1ø l,l +n8øWz,
1ø j øN. Note that in writing down these matrices we have
assumed thatN,L, Wy, Wz. In practical calculations on re-
alistic systems this will always be the case.

The matrixB has the same dimension asH, but it is upper
triangular:

B =1
0 . . . 0 bN bN−1 . . . b1

0 . . . 0 0 bN . . . b2

] ] ] ] ] ] ]

0 . . . 0 0 0 . . . bN

] ] ] ] ] ] ]

0 . . . 0 0 0 . . . 0

2 . sA3d

For a wire that is periodic in theyz plane, the wave func-
tions in Eq. (4) must obey Bloch conditions. That is,
C j ,k+Wy,l

=eikyayC j ,k,l and C j ,k,l+Wz
=eikzazC j ,k,l, where ay, az

are the periods in they andz directions, andsky,kzd=k i is the
Bloch wave vector in theyzplane. These Bloch conditions in
theyzplane can be taken into account by defining the blocks

sh8 jdsk,ld,sk+Wy+n,ld = − tn
ye−ikyay, n = − N, . . . ,−k,

sh8 jdsk,ld,sk−Wy+n,ld = − tn
yeikyay, n = Wy − k, . . . ,N,

sh8 jdsk,ld,sk,l+Wz+n8d = − tn8
z e−ikzaz, n8 = − N, . . . ,−l ,

sh8 jdsk,ld,sk,l−Wz+n8d = − tn8
z eikzaz, n8 = Wz − l, . . . ,N.

sA4d

The matrix Hsk id, which is obtained by substitutingh j by
h j +h j8, j =1, . . . ,L, in Eq. (A1), describes a wire that is pe-
riodic in the yz plane with solutions corresponding to a
Bloch vectork i. This matrix is(complex) Hermitian.

2. Ideal wire

For an ideal wire, which has a periodic potential along the
wire, Eq.(7) has to be solved to find the propagating and the
evanescent waves. The precise form of the submatrices in
Eqs.(A1) and(A3) is not important in the following discus-
sion. For ease of notation we mention only the dimensionsL
(the number of grid points in thex direction) and N (the
order of the finite-difference expression) explicitly and treat
the wire as quasi-one-dimensional. To find the dimensions of
the matrices in the three-dimensional case, one simply has to
multiply the dimensions mentioned below byWy3Wz.

Equation(7) is a generalized eigenvalue problem of di-
mension 2L. Because the matrixB is singular it has a num-
ber of trivial solutionsl=0 andl=`. By using a partition-
ing technique we will eliminate these trivial solutions and
reduce the problem to the 2N nontrivial solutions. The key
point is to split the vectorsCi into two parts containing the
first L−N and lastN elements, respectively. The two parts
are denoted by the subscripts 1 and 2. Splitting the matrices
H andB in the same way one gets

Ci = SCi,1

Ci,2
D, H = SH11 H12

H21 H22
D, B = S0 B12

0 B22
D .

sA5d
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Note the special form of the matrixB.
This splitting allows Eq.(7) to be written in the form

1
EI 11 − H11 − H12 0 B12

− H21 + lB21
† EI 22 − H22 + lB22

† 0 B22

I 11 0 − lI 11 0

0 I 22 0 − lI 22

2
31

Ci,1

Ci,2

Ci−1,1

Ci−1,2

2 = 0. sA6d

From this expression it is clear that the componentCi−1,1
enters the problem only in a trivial way asCi−1,1=1/l
3Ci,1. It can be eliminated by deleting the third row and
column in Eq.(A6).

Furthermore, the first row of the matrix does not depend
upon the eigenvaluel. Writing out the multiplication for the
first row explicitly, one finds an expression forCi,1,

Ci,1 = sEI 11 − H11d−1sH12Ci,2 − B12Ci−1,2d. sA7d

This can be used to eliminateCi,1 from Eq.(A6) to arrive
at the equation

FSA11 A12

I 22 0
D − lSS11 S12

0 I 22
DGS Ci,2

Ci−1,2
D = 0, sA8d

with

A11 = EI 22 − H22 − H21sEI 11 − H11d−1H12,

A12 = − H21sEI 11 − H11d−1B12,

S11 = − B22
† − B21

† sEI 11 − H11d−1H12,

S12 = − B21
† sEI 11 − H11d−1B12. sA9d

Equation(A8) is a generalized eigenvalue problem of di-
mension 2N that can be solved using standard numerical
techniques.55 In general it gives 2N eigenvalueslm and
eigenvectorsum. As mentioned in the text, some of these
solutions are nonphysical;33,34others represent extremely fast
growing or decaying waves. Both of these classes of un-
wanted solutions are easily filtered out by demanding that
1/d, ulu,d, whered is some threshold value. We use this
criterion to select the physically relevant solutions, which are
then separated intoM right going andM left going solutions.
These are used to construct the matrices of Eqs.(8) and(11)
which contain all the information required to describe the
ideal wire.

The computational cost of solving Eq.(A8) scales as
s2Nd3, whereas the cost of computing the matrices of Eq.
(A9) basically scales assL−Nd3 (which is the cost of the
matrix inversion involved). Depending on the relative sizes
of L andN one of these two steps is dominant.

3. F matrices

In this section explicit expressions for the matricesF and

F̃ are given[see Eqs.(13) and (14)]. Following Eq.(8), we
denote the propagating and evanescent modes of the ideal
wire by um, m=1, . . . ,M, whereM ,Nrs and Nrs is the di-
mension of the vectors. For clarity of notation we omit the
labels6 for right and left going modes here. As in Eq.(8)
we form theNrs3M matrix

U = su1 ¯ uMd sA10d

=1 u11 . . . u1M

] ]

uNrs1 . . . uNrsM
2 . sA11d

The mode vectorsum are in general nonorthogonal and we
can form theM 3M (positive definite) overlap matrix with
elements

Smn= um
† un ; kumuunl. sA12d

This allows us to construct the dual basisũm, m=1, . . . ,M,

ũm = o
n=1

M

Smn
−1un, sA13d

with properties

kũmuunl = kumuũnl = dmn. sA14d

Now define theM 3Nrs matrix

Ũ = sũ1 ¯ ũMd† = 1 ũ11
* . . . ũNrs1

*

] ]

ũ1M
* . . . ũNrsM

* 2 . sA15d

Ũ is called the pseudoinverse ofU; note thatŨU= I M, where
I M is theM 3M identity matrix.55

Defining the matrix

F = ULŨ, sA16d

it is easy to show that it is a solution to Eq.(13). F is in fact
a matrix that projects onto the space spanned by the modes,
as is easily demonstrated by writing Eq.(A16) as

F = o
m=1

M

uumllmkũmu, sA17d

making use of Eqs.(11) and(A10)–(A15). In a similar way a
solution to Eq.(14) is formed by

P. A. KHOMYAKOV AND G. BROCKS PHYSICAL REVIEW B70, 195402(2004)

195402-10



F̃ = UL−1Ũ = o
m=1

M

uumllm
−1kũmu. sA18d

Note that F̃=F−1 only if M =Nrs, but since M øN3Wx
3Wy,Nrs (see the previous section) this will never be the
case.

4. Scattering problem

The scattering problem is described by Eq.(26). It is con-
veniently written in matrix form as

1
A0 B† 0 . . . 0

B A1 B† . . . 0

0 B A2 . . . 0

] ] ] ] ]

0 0 0 . . . AS+1

21
C0

C1

C2

]

CS+1

2 =1
D

0

0

]

0
2 ,

sA19d

with

A0 = EI − H̃0,

A i = EI − H i, i = 1, . . . ,S,

AS+1 = EI − H̃S+1,

C0 = ULs+ d + ULs− dR,

CS+1 = URs+ dT ,

D = QULs+ d. sA20d

All the blocks A –D are Nrs3Nrs matrices. Equation(A19)
represents a set of linear equations, which can be solved
directly using a standard algorithm. However, the dimension
of this problem isNtot=NrssS+2d, which can be rather large.
Since the computing cost scales asNtot

3 the direct route is not
very practical.

It is however quite straightforward to construct an algo-
rithm for which the computing cost scales asNrs

3S, i.e., only
linearly with the sizeS of the scattering region. One has to
make optimal use of the block tridiagonal form of the matrix
in Eq. (A19). The algorithm is a block form of Gaussian
elimination. The first(and most time consuming) step of this
algorithm is transforming the matrix into upper block trian-
gular form by iteration:

A80 = A0,D80 = D,

HA8i = A i − BA i−18−1B†,

D8i = − BA i−18−1D8i−1,
J i = 1, . . . ,S+ 1. sA21d

The inverse matricesA i−18−1 in this algorithm are actually not
needed explicitly. Instead at each step one solves the sets of
linear equations

A8i−1B̃i = B†, A8i−1D̃i = D8i−1, sA22d

by a standard algorithm, i.e.,LU decomposition ofA i−18 fol-

lowed by back substitution, to obtain the matricesB̃i and

D̃i.
55 This allows the steps in Eq.(A21) to be rewritten as

A8i = A i − BB̃i, D8i = − BD̃i . sA23d

The solution to Eq.(A19) can now be found by back
substitution

CS+1 = AS+18−1D8S+1,

Ci = D̃i+1 − B̃i+1Ci+1, i = S, . . . ,0. sA24d

Again one does not needAS+18−1 explicitly, but as in Eq.(A22)
one can solve the equivalent set of linear equations. The
reflection and transmission matricesR and T can be ex-
tracted using the special form of the matricesC0 and CS+1,
[see Eq.(A20)].

Very often one is interested only in the transmission ma-
trix. In that case one uses only the first step of the back
substitution, Eq.(A24), which can be written as

A8S+1URs+ dT = D8S+1. sA25d

This is a set of linear equations for the transmission prob-
ability amplitudesT, which can be solved using standard
numerical techniques.55

The time consuming steps consist of solving Eq.(A22),
the computing costs of which scale asNrs

3 .56 Using Eq.(A23)
in Eq. (A21) requires performingS+1 of such steps and
subsequently solving Eq.(A25) scales asNrs

3 . Note that the
full algorithm scales linearly with the sizeS of the scattering
region.

5. Velocities

In this section we give a short derivation of the expression
for the velocities, Eq.(28). It is straightforward to show that
the vectorsum of Eq. (8) are a solution of the quadratic
eigenvalue equation

lmsEI − Hdum + Bum + lm
2 B†um = 0. sA26d

This quadratic eigenvalue equation of dimensionNrs is com-
pletely equivalent to the linear problem of dimension 2Nrs of
Eq. (7). If um is a right eigenvector of Eq.(A26) belonging to
the eigenvaluelm, then by complex conjugation of this equa-
tion one shows thatum

† is a left eigenvector belonging to the
eigenvalue 1/lm

* . For a propagating state,ulmu=1, so lm
=1/lm

* , which means that these left and right eigenvectors
belong to the same eigenvalue.

We now start from

lmum
† sEI − Hdum + um

† Bum + lm
2 um

† B†um = 0, sA27d

and take the derivatived/dE of this expression. All the terms
with dum/dE anddum

† /dE drop out, becauseum andum
† obey

Eq. (A26) and its complex conjugate, respectively. The
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remaining terms can be collected and slightly rewritten using
Eq. (A26); the result is

dlm

dE
slm

−1um
† Bum − lmum

† B†umd + lmum
† um

= − 2i
dlm

dE
Imslmum

† B†umd + lm = 0, sA28d

where the last line is obtained by making use oflm
−1=lm

* and

the fact that the vectors are normalized,um
† um=1. Equation

(A28) yields an expression fordlm/dE. For propagating
stateslm=eikxax and thus

dkx

dE
=

1

iaxlm

dlm

dE
. sA29d

The usual definition of the Bloch velocityvn="−1dE/dkx and
the expression fordlm/dE extracted from Eq.(A28) then
give the expression for the velocity of Eq.(28).

*Corresponding author. Email address: g.brocks@tn.utwente.nl;
URL: http://www.tn.utwente.nl/cms
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