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Modulating unpolarized current in quantum spintronics: Visibility of spin-interference effects
in multichannel Aharonov-Casher mesoscopic rings
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The conventional unpolarized current injected intquentum-cohererdemiconductor ring attached to two
non-magnetic external leads can be modulated from perfect conductor to perfect insulator limit via electrically
tunable Rashba spin-orl§i8O) coupling, thereby avoiding the usage of any ferromagnetic elements or external
magnetic fields. This requires that ballistic propagation of electrons, whose spin precession is induced by the
topological Aharonov-Casher phase accumulated by the spin wave function during a cyclic evolution, takes
place through a single conducting channel ensuring that electronic quantum state remains a pure separable one
in the course of transport. We study the fate of such spin-sensitive quantum interference effects as more than
one orbital conducting channel becomes available for quantum transport. Although the conductance of multi-
channel rings, in general, does not go all the way to zero at any value of the SO coupling, some degree of
current modulation survives. We analyze possible scenarios that can lead to reduced visibilityesftthetive
spin interference effects that are responsible for the zero conductance at particular values of the Rashba
interaction:(i) the transmitted spin states remain fully coherent, but conditions for destructive interference are
different in different channelgji) the transmitted spins end up partially coherentguantum state arising from
entanglemento the environment composed of orbital degrees of freedom of the same particle to which the spin

is attached.
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[. INTRODUCTION tors in the shape of multiply-connected geometries have been

an essential playground since the dawn of mesoscopic

Recent attempts in spintronicéo harness electron spin physic§*! to explore how quantum interference effects, in-
for classical and quantum information processing have envolving topological quantum phasésacquired by a particle
countered two major challenges: Efficient room temperaturenoving in the presence of electromagnetic potentials, leave
spin injectior} into a semiconductor and quantum-coherentsignatures on the measurable transport properties. The typi-
control of spin stateFor example, a paradigmatic semicon- cal example is a metallic ring in the magnetic field where
ductor spintronic device, the Datta-Das spin-field-effecttransported electron encircling magnetic flux acquires
transistof (spin-FET) where current passing through a two- Aharonov-Bohm topological phase which induces conduc-
dimensional electron ga@DEG) in semiconductor hetero- tance oscillationd! The electromagnetic duality entails an
structure is modulated by changing the strength of Rashbanalogous effect—a neutral magnetic moment going around
SO interaction via gate electro@eequires both problems to a charged line acquires Aharonov-CasliaC) phase that
be surmounted. The usage of the Rashba SO cou@lihigh  can be manifested in a multitude of ways in mesoscopic
arises due to inversion asymmetry of the confining electridransport quantities*16
potential for 2DEG to control spin via electrical means has  In recently proposed spintronic ring deviéecontaining
become one of the most influential concepts in semicondudghe Rashba SO coupling, the difference between AC phases
tor spintronics’ The injected current can be modulated in theof opposite spin states traveling clockwise and counterclock-
spin-FET scheme only if it is fully polarized, while precess- wise around the ring generates spin interference effects that
ing spin has to remain quantum coherent during propagationan be observed in its transport properties. Since the ring
between the two ferromagnetic electrodes. Although spin ineonductance directly depends on this differehc¥, such
jection into bulk semiconductors has been demonstrated aesoscopic quantum interference effects can be exploited to
low temperature8 creating and detecting spin-polarized cur- modulate the conductance of unpolarized charge transport
rents in high-mobility 2DEG has turned out to be a muchthrough a one-dimensionglD) ring (attached to two 1D
more demanding taskin addition, the 2DEG region of spin- lead$ between 0 andé/h by changing the Rashba electric
FET would be very sensitive to the stray fields induced byfield via gate electrode covering the structtir€he attrac-
the ferromagnetic electrodé@s. tiveness of suclall-electrical and all-semiconductoidevice

For devices pushed into the mesoscopic reatfif be-  comes from the fact that it evades usage of any ferromag-
comes possible to modulate even unpolarized currents byetic elements or magnetic fields. However, its envisaged
exploiting spin-dependent quantum interference effects iroperation necessitates that quantum transport takes place
phase-coherent transport. This is due to the fact that at lowhroughonly a single Landauer conducting chanHeThe
temperatured <1 K and at nanoscales full electron quan- theoretical analysis thus far has been confined to strictly 1D
tum state|¥) e H,® H, remains pure in the tensor product rings}’'°or two-dimensiona{2D) rings where only the low-
of orbital and spin Hilbert spaces, respectively. The conducest transverse propagating mode is open for quantum
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coupling by studying how the pattern of conductance oscil-
lations changes as one opens conducting channels, one-by-
one, for quantum transport. The paper is organized as fol-
lows. In Sec. Il we discuss the issue of suitable Hamiltonian
description of the ring with SO interactions. Then we intro-
duce a model for the multichannel ring which makes it pos-
sible to efficiently implement realspin space Green func-
tion technique in order to obtain both the spin and the charge
properties ofcoupled spin-chargeranspor£® Section |lI
studies the conductance modulation in strictly 1D rings as a
function of the Fermi energyer of the zero-temperature

shaped conductor modeled by a concentric tight-binding lattice iflu@ntum transport. We also establish in this section the con-
order to study multichannel quantum transport of spin and chargd!€ction between the orientation of spin polarization vector
In this graphical depiction of the corresponding Hamiltonian Eq.@nd Spin precession induced by the Rashba SO interaction,
(4), the parameters! andN are chosen to be 3 and 16, respectively, POINting out at spin-switch device properties of the AC rings
In the actual calculations, we ubé=1-3 andN=200. HereEr.qpa ~ WHEN injected current is fully polarized. In Sec. IV we dis-
is the confining electric field for 2DE@vhich induces the Rashba Cuss conductance modulation in 2D rings with two and three
SO interactiof and Bgrashpék) is the corresponding effective open conducting channels. Although we find that the ring
(momentum-dependenmagnetic field. conductance, in general, is not diminished to zero in the
18 ) multichannel transport at any strength of the SO coupling, it
transport.“In both'of these cases of single-channel transporty;), displays oscillations as we tune the strength of the
(including the device where the single-channel leads are Corg 554 interaction. In order to relate such “incomplete” con-
nected to the multichannel ring with small aspect ratio, asy;tance modulation to spin interference effects of states

suggested in Ref. 38imilar pattern of complete conduc- which are not : ; .
X ) purébut are instead described by the density
tance modulation between 0 anef2h is found, even though patrices, we analyze in Sec. IV B transport through 2D

higher unoccupied modes in 2D rings can affect the IoWesrlngs within the picture of transmission eigenchanr@IBhis

open channel®?! . . . ; .
On the other hand, despite advances in nanofabricatioWakeS it possible to view the multichannel transport as if

technology, it is quite challenging to fabricate single channePCCUrTing through a set of “independent” 1D rings whose
quantum wires. When unpolarized current, consisting of bottfhannels, however, can have complicated spin coherence
spin-} and spinj electrons is injected through more than oneProperties. We conclude in Sec. V.

propagating modes, defined by the transverse quantization in

the leads of a realistic multichannel ring device, each channel

will carry its own phase. Moreover, during quantum trans- Il. HAMILTONIAN MODELS FOR RING WITH RASHBA

port involving more than one conducting channel, any spin- SPIN-ORBIT INTERACTION

independent scattering of char(g interfaces or boundaries In the absence of external magnetic field, the ballistic

:gatgetoczslig gfcéiigrsef‘ctz'il;bsje%:"d 0 tS o cct>utpl|3g W,:” thsemiconductor ring structure subjected to the Rashba SO
. . pin quanium state due o ceoupling is described by the following effective mass single-

possibility to entangle spin and orbital degrees of freedom ticle Hamiltonian
(i.e., within the entangled state, spin subsystem cannot pRarticie
described by a pure state spindt The multichannel nature - P2 o . .
of quantum transport in realistic rings employed in experi- Hop = om %(O'X P)z+ Veondr), (1)
ments is also part of the controversy surrounding recent fun-
damental pursuité?2 of the observable effect of spin Berry where & is the vector of the Pauli spin operatofs,is the
phaset® The analysis of spin-dependent features in conducmomentum operator in 2D space, amds the strength of the
tance oscillations as a function of the magnetic field in dis-Rashba SO coupling. The last tetvh,{r) represents the
ordered rings is not as transparent as in the case of strictlyotential which confines electrons to a finite ring region
1D systemg? The AC phase acquired by electrons propagatwithin 2DEG. The analytical expressions for the ring con-
ing through the 1D ring, subjected to the Rashba electriductance as a function af have been obtained only for a
field orthogonal to the ring plan€Fig. 1), was showt to  strictly 1D ring geometry—in this limit one can find the
consist of a dynamical Rashba phasdich depends on the eigenstates of a closed ring and then compute the transmis-
cycle duration and the geometrical Aharonov-Anandan sion coefficients by opening the ring to the attached leads
(AA) phase(which depends only on the path traced in theand matching the eigenfunctions obtained in the different
parameter spagecharacterizing any nonadiabatic cyclic domains of such structufé:'® However, a search for the
evolution!? In the adiabatic limit, when spin becomes correct 1D ring Hamiltonian, which includes the Rashba in-
aligned with the effective momentum-dependent Rashbgeraction, has turned out to be an ambiguous task yielding
magnetic fieldBgasnpbk) (Fig. 1),18 the AA phase becomes several apparent solutions. For example, some of the recent
the spin-orbit Berry phase introduced in Ref. 15. studies have employed non-Hermitian Hamiltoni&h¥. It

Here we address the problem of unpolarized currentvas pointed out in Ref. 24 that performing the limit from 2D
modulation in clean mesoscopic 2D rings with Rashba SQo 1D carefully, by taking into account the radial wave func-

BRashba

FIG. 1. (Color online Two-dimensional mesoscopic ring-
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tions in the presence of narrow confinement, leads to a _ N M
unique Hermitian single-particle Hamiltonian in cylindrical Hring:E E E snméﬁm(,énm(,

coordinates L el oe.
N M
B E 2 [tn’ml’m;malét ; 6n+1,m; , + H.C-]
~ - ﬁz J 2 ia 9 e N ¢ nmo o
H = ——=—— — —(cos ¢a, + sin ¢paoy,)—
1D(¢) 2m R2(9¢2 R( ¢ X ¢ y)(?qﬁ N M-1 ) 3
mm+1n;0,0" A ~
i - 2 E [tf 77 ChmoCnmetior T H.c].
- EQ(COS by = sin ¢ay). 2) N

(4)

Heren=1,2,...N and m=1,2,... M are the lattice site

Here R is the radius of the 1D ring, ang is the angular indices along the azimuth&y) and the radialr) directions,
coordinate. The last term in E(R), which disappears if we respectively. The operat@f,,,, (élm) annihilateqcreatesa
simply take the radial coordinate=R in the cylindrical co- spin o electron at the sitén,m) of the ring. In our notation
ordinate representation of the 2D Hamiltonian, is actuallym=1 corresponds to the innermost ring chain, while M
indispensable for this Hamiltonian to be a usual Hermitianstands for the outermost ring chain to which the external
operator corresponding to quantum-mechanical observableleads are attached. The operabQ m., (€11 m0) iS identi-

While the 1D Hamiltonian Eq(2) provides a simplest fied with & ., (€] .,) due to the periodic boundary condi-
starting point to study quantum transport through the ringion. In Eq.(3) &,y is the on-site potential, Whi@“‘flym?mo'
within the Landauer-Biitikker transmission formali€nfior and t:n,m+l,n;a',o’ are the nearest neighbor hopping energies

efficient andnumerically exactireatment of multichannel ajong the azimuthal and the radial directions, respectively.
transport through finite width 2D rings attached to the leadsrhese hopping energies have been generalized to include the
it is advantageous to switch to a local orbital basis represerso coupling terms, which are given in thex2 matrix form
tation that makes it possible to employ reapin space gas

Green function techniqu&. Therefore, we introduce here a

concentric tight-binding lattice Hamiltonian, composed of el m_ 1
M=1,2,... concentrically connected tight-binding ring ¢ T (r/a)?A¢?
chains, as sketched in Fig. 1. The two ideal semi-infinite +si )

leads with @=0, of the same width as the ring itself, are SIN $nn+10y).

attached symmetrically to the ring thereby breaking the rota- .

tional invariance of the closed ring problem. The=1 case f{“’m"l'”:tols+ itso(COS 0y — SiN h0y). (5)
corresponding to a single ring chain, which represent a lat-

tice version of the correct 1D Hamiltonian in E@), has ~ Here ¢n=2m(n=1)/N, ¢y ni1=(dn+ dpe1)/2, Ap=27/N,
frequently been employed to study the Aharonov-Bohm ef!m="1*(m=1)a, toy=%2/2ma’ with a being the lattice spac-
fect in mesoscopic ring-shaped conductr§he M=2 case Ing along the radial directiorts,= a/2a is the SO hopping
has appeared in the studies of the influence of finite ring@rameter witha being the SO coupling strength of the
width on the Aharonov-Bohm  oscillations of original Hamiltonian Eq(1), andlg is the 2x 2 identity ma-
magneto-conductan@é.Here we introduce the Rashba SO trix. We further assume that the lattice spacing along the
interaction into the concentric tight-binding lattice with arbi- azimuthal direction in the outermost ring chaim=M) is
trary numberM of ring chains. One of the advantages of ourthe same as that of the radial direction, such that
model over the conventional square lattice discretization of yA@(=27r),/N)=a. In order to avoid the negative value of
the finite width ring$®27is that the width of the ring can be r, (the radius of the innermost chajrihe value of has to
controlled precisely by varying the number of the ring chainssatisfy the conditioiV <N/27+1.

one-by-one. This makes it possible to study the effects of In Eq.(3), the second term is the Hamiltonian for the left
multichannel transport systematically. The maximum numbefead
of open channels in a structure consistindvfing chains is

tOIS - |

(COS ¢ 410

tSO
(rfa)Ae

equal toM. The Hamiltonian corresponding to the setup de- N cM PO
picted in Fig. 1 contains five terms HL =t =] H[bL,i,j;(rbL,m,j,a
1= J: o=T,
+ bz,i,j;abL,i,j+1,o+ H.c], (6)

H = Hying + HL + Hr + Vi ting + VR ring 3 . . o
fing = 7L TR T Tlring T TR ring &) wherei and j are the lattice indices along the (current
flowing) and they (transversgdirections, respectively. The

The first term, which describes electrons in an isolated, ~ OPeratorsy i o (o ;) annihilate(creatg spin o electron at
closed to the environmenting that are subjected to the the Slte(l,]) in the left lead. The Hamiltonian of the right
Rashba SO coupling, is given by leadHg has the same form as E@). Finally, the coupling
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between the leads and ring is described by the following While the conductance formula E¢Q) requires to evalu-

Hamiltonians ate only the amplitude of the complex transmission matrix
M elementt,, ,/,, the evaluation of the spin-polarization vec-
Y Lt oA + tor P requires not only the amplitude but also the phase of
Vi sing tLCEEL[bLLK?UCk'M?” H.c], ) the transmission matrix elements. Suppose that we inject
' 100% spine polarized current from the left lead. Then the
M density matrix of the spin degree of freedom for the outgoing
\A/R,ring: _tRCE 2 [Ba,lk;rré(N/2)+k,M;(r+ H.cl]. (8) current is given b§P
k=1o=1,] 2 *
. . ne e’/h [tpp,tol tptolyrp o
Heret, r)c is the coupling strength between the léiight) p = Glo+Glo > ¢ ¢ it 2 .
lead and the ring. It is assumed that the left and the right lead pp'=L \P'Plotprpte PPl
are attached to the ring symmetrically, where we neglect the (12

finite curvature of the outermost ring at the interface betwee
the ring and the leadghis is justified when the condition
N> M is satisfieql.

Once the Hamiltonian Eq3) is given, one can evaluate
the matrix of spin-resolved conductances by using th
Landauer-Bittiker formula generalized to include the spin- P =Tr{p’c], (13)
degree of freedom

“he measurement of any observable quantity on the spin
subsystem in the right lead is evaluated using such spin den-
sity matrix. An example is theurrent spin polarization vec-
éor, which is obtained as the expectation value

where Tg is the trace in the spin Hilbert space. For example,

(G” G”) 2 M <|tp,pyﬁ|2 |tp,p“|2> . if the injected current is spim- polarized along the

Gl el h x-direction, the spin polarization vectdt'=(P;,P},P]) in

|tp’p,H|2 |tp’p,11|2

p.p'=1 the right lead is given by
wheret,, ., iS @ transmission matrix element determining ' G -gl
the probability amplitude that electron injected in orbital PXZ—GTHG”, (14)

channel|p) with spin o in the left lead would end up in a

conducting channdp’) of the right lead with spins’ (the M

indexp=1,2,...labels the quantized transverse propagating p 2¢?/h S Rdt,, t ] (15)
modes in the leads, while=1,| describes the spin state = PRIl

T —
e e .
The transmission matrix is calculated using the ®esin

space Green function technigtfe.Note that the spin- o2 M
quantization axis can be chosen arbitrarily. For example, for l=—— 7 D |m[tprpmt*, . (16
the spin-quantization axis chosen along #hdirection, G'! G'+G op=1 PP

can be interpreted as the conductance for a two-probe set-up " it . .
where the electrodes are half-metallic ferromagnets—Where G'' and G'' are the spin conserved and the spin

magnetization of the left lead is parallel while the magneti-fllPPed conductance matrix elements. Thaxis is chosen
zation of the right lead is antiparallel to theaxis. Thetotal ~ &rbitrarily as the spin-quantization axis,|1)=+|1) and
conductance characterizing conventional unpolarized charg®)==I1). so that Pauli spin algebra has the following

transport representation
1 0 01 0 i
-l +gll+all+al! n - .
Gel=Gl"+G+G'T+G (10 O'X—(O _1), 0'y—<1 0), 0'Z—<_i O)' 7

is independent of the arbitrarily chosen spin-quantization
axis for the calculation of spin-resolved transport propertiesWhich specifies the particular form for the expectation values
If a quantum system is fully coherent, its state is de-Of P. One can obtain analogous expressions(Ry, Py, P,)
scribed by gure statedensity matrixp?=p. The decrease of When injected current is polarized along other directions, as
the degree of quantum coherence due to entanglement well as for the injection of partially polarized currefitThus,
environment (decoherence or other dephasing processes studyingP, in addition to the ring conductance, will allow us
(such as classical noisean be quantified by the purf§2®  to understand spin orientation and degree of spin coherence
,=Tr p% Since in the case of the spin-1/2 partiddg=(1  that corresponds to modulation of the charge current.
+|P[9)/2 depends solely on the modulus of the spin- As an example of quantum transport properties of our

polarization(Bloch) vector P model Hamiltonian Eq(3), Fig. 2 plots the total conductance
of the finite width ring(M,N)=(3, 200 as a function oE.
~ (P Py fs+ P.o The strength of the Rash_ba SO coupling is fixed)at=6,
- P Pl - 2 ' (11) where we introduce the dimensionless Rashba SO parameter

Qr=2mary/h?=(ts/ty)N/7 with r\, as the radius of the

|P| can be used to measure the degree of coherence retainedtermost ring. Furthermore, we assume that the system is
in spin states in the course of their transport through complifree from impuritiese,,,=0, and that coupling energies be-
cated semiconductor environmefit. tween the conductor and the leads are set to be the same as
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FIG. 2. (Color onling Fermi energy dependence of the total
conductanceG'=G'T+G!T+G +G!! of a finite width AC ring FIG. 3. The total conductand®®(Qg,Eg) of a strictly 1D ring
(M,N)=(3, 200, for a chosen Rashba SO coupling stren@h (M,N)=(1, 200, attached to two 1D semi-infinite ideal leads, as a
=6 [Qr=t;N/tgm]. The red line shows the number of opéor- function of dimensionless Rashba SO coupl@g=tsJ\N/tym, for
bital) conducting channelly,cnat Eg. The vertical arrows label the  three different values of the Fermi energy as a parameter. The ver-
values of the Fermi energy selected for FigiSgc. Ill) and Fig. 6 tical dotted lines denote the position of the conductance minima
(Sec. V). G°t=0, which do not depend 0B at which the zero-temperature

guantum transport takes place.

the hopping energy in the leadig =trc=l. The calculated spaced quasi-periodicalfyin a way which does not depend

conductances™(Qz=6,E) exhibits rapid oscillations with on Er. Thus, the zeros of the conductance in Fig. 3 agree
peaks occurring at eigenenergies of the corresponding Clos%vell with those predicted by Eq18), i.e., their position is

2D ring. While the conductance oscillates regularly in theinsensitive 1o the lead-rina back scattering effects

single-channel regime, the oscillation pattern in the multi- In order to understan% the oriain ofgthe coﬁductance

channel regime is rather intricate since the occupation of the Co ) gin o

higher radial modes gives rise to new conductance peaks i odulation in more detail, we plot the spin-resolved conduc-

addition to the ones originating from the lowest radial mode.tances f(_)r a given Fermi enerdy=-0.1, in Fig. 4. H.efe .
we consider the conductances corresponding to the injection

of current which is fully spint polarized along th&-axis. As
Ill. SPIN-INTERFERENCE EFFECTS

IN SINGLE-CHANNEL QUANTUM TRANSPORT L5
THROUGH AC RINGS

In this section we study ho@"' can be modulated as we
change the strength of the Rashba SO coupfagin both
strictly 1D rings and single open channel of 2D rings. The
transport through phase-coherent 1D rings, described by the
correct Hamiltoniaff Eq. (2) has been analyzed recentfy,
in terms of the expressions f@" of the ring of radiusk
that does not involve dependence on the Fermi energy

G'=e?h{1 + cogm(VQ:+1 -1} (18) .

Here Q,=2maR/#? has the meaning of the spin precession
angle over the circumference of 1D ring. However, such sim-
plified expression neglects the back scattering at the interface
between the ring and the leads. A more involved treatment
that takes into account such effects has been undertaken in
Ref. 19. Nevertheless, no analytical expression has been ob-
tained for single-channel transport in 2D rings.

=
(=]
T

Conductance (ez/h)
o

e
=)

o
[
E
oo
5

[® 7 do0 T —m

Spin polarization vector P
(=]

We confirnt® in Fig. 3 that the exact pattern of zero- b T — Y (S—
temperatureG™ versus Rashba SO coupling strength de- P P P,
pends on the Fermi energy of transported electrons. This is 0 2 " 6 3 10
due to the back scattering effects at the interfaces between Q

the ring and the leads, which can strongly affect the trans-

port. For example, we can see a sharp peak at ar@ynd FIG. 4. (Color onling The spin-resolved conductancga)
=9 whenEg=-1.5,, which is a result of the complicated Geo'(Qg,Er) and the outgoing current spin-polarization veatioy
scattering in the ring and at the boundary between the leads(Qg, Er) vs the Rashba SO interaction stren@ig=t N/tom for a
and the ring. Nevertheless, all of the calculated conductancsrictly 1D ring conductor withM,N)=(1, 200 and Fermi energy
curves have dipss''=0 at specific values oQg that are  E=-0.1t,. The spin-quantization axis is chosen to be xhaxis.
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2 [(2) ] s O M, =2
g1 /\ ﬁ, = J{ T’Ym/
2 <21 1
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S ML i
0 2 4 6 8 10 0 2 4 6 8 10
Q Q,

FIG. 5. The total conductand&™ vs the Rashba SO interaction
Qr=tsN/tgm of a finite-width ring conductor with(M,N)
=(83, 200 for three different values of the Fermi energ@) Er=
=3.0p, (b) Eg=-2.7,, and (c) Eg=-2.2,, which allow only one
channel to propagateee Fig. 2 The vertical dotted lines indicate
the minima of the conductan&®'=0, which do not depend o

Qg increasesG'! decays while the spin-flipped conductance
G!l'increases. That is, at the interface between the ring and
the left lead, the injected spih{along thex-axis) finds itself
to be parallel or antiparallel to the effectidedependent
Rashba magnetic fielBlr.snpik) (See Fig. 1 In the presence
of large enough Rashba SO coupling, the injected $pin- Q
polarized current will change its spin polarization by follow-
ing the direction oBr,snpik) adiabatically. The correspond-
ing outgoing current will appear in the right lead as spin- M.N)=(3. 200 at two different values of the Fermi energy)
polarized current. The summation of those two tcomponent F;_l &O’and (€) Er=—1.0t, at which the number of open con-
ﬁT::TgGg is equal to half of the total conductan@¥" plotted ducting channels i qpe=2. In the lower panel the selected Fermi
The spin polarization vectdP=(P,,P,,P,) of the trans- zesneeerg;?rso,a)s IIEnF '—:ig(?-)gﬁo and (g) Er=-0.T. determineMgpe;=3
mitted current in Fig. 4 further clarifies this insight. We see
that with increasing SO coupling, in the right lead rotates

W W\

Conductance G (e2/h)
S N b OO N b O

(=]
[\
N
ok
oo
=

FIG. 6. The total conductand® vs the Rashba SO coupling
Qr=t;N/tgm (upper panel for a finite-width ring conductor

energies(see also Fig. P Also, the conductance oscillation

fprim(_lj:g i”(j;‘:;l:t(ééoég agrﬁgar?c:i%r:gs (e(lgsy)map;]tgtlgc((\sal)ue patterns are rather irregular compared with the strictly 1D
T 9ELR- XIRR Z <R case, especially in the larg@s regime.

are, however, not monotonous since there are abrupt changes
of their directions at specific values dDg for which
G"™(Qg)=0. Thus, one can also exploit the AC ring in  IV. VISIBILITY OF SPIN-INTERFERENCE EFFECTS

schemes where the spin-polarization of fully polarized in- IN MULTICHANNEL QUANTUM TRANSPORT
jected current is switched to the opposite direction via exter- THROUGH AC RINGS
nal electric field applied through a gate electrode covering

A. Injecting current through spin-polarized

inA30
the ring: conducting channels

Furthermore, our framework makes it possible to study
single-channel transport through 2D ring, as shown in Fig. 5 In Fig. 6 we show the conductance of the finite width ring
which plots theQg-dependence o' for the finite-width M =3 for various Fermi energies which are indicated by ver-
rings (M,N)=(3, 200 and at different Fermi energies se- tical arrows in Figs. @)-2(g). More than one transverse
lected by the vertical arrow@—(c) in Fig. 2. At these values propagating mode in the leads exist at these Fermi energies.
Er, only one conducting channel is available for quantumTherefore, one can view the injected current as being com-
transport. We emphasize that the single-channel transport iprised of electrons prepared in all of different quantum state
finite width conductorsvl =2 is not equivalent to the trans- [p)®|o) (p<M). For nonmagnetic leads, bofp) ®|1) and
port in strictly 1D ringd’~19 since the presence of unoccu- |p)®||) electrons are injected into the ring. The number of
pied modegevanescent modgsan influence the transport the conducting channeld,,.<M is denoted in the figure.
through the open channel in a way which depends on thélthough conductance continues to display oscillating be-
confinement potential and the geometry of the cond#étdr.  havior as a function oRg even in the multichannel trans-
While Fig. 5 shows that the calculated conductance still export, its pattern is rather different from the single channel
hibits zeros at approximately the same valueQgfas in the  case due to absence G°(Qg) =0 points. Furthermore, the
strictly 1D casé? it should be pointed out that such zeros conductance oscillation pattern is significantly more sensi-
can be washed out for transport occurring at specific Fermtive to the Fermi energy than in the single channel case.
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FIG. 7. (Color online@ The spin-resolved conductancéa) FIG. 8. (Color online@ The spin-resolved conductancgs)

G""'(QR,EF) and the outgoing current spin polarization vedtoy G""'(QR,EF) and the outgoing current spin polarization vectoy
P(Qr,Er) vs the Rashba SO interacti@r=t;JN/ty7 for a finite- P(Qg,Ep) vs the Rashba SO interacti@pr=t;N/ty7 for a finite-
width conductor with (M,N)=(3,200 and Fermi energyEgr= width conductor with (M,N)=(3,200 and Fermi energyEg=
-0.1ty. The spin-quantization axis is chosen to be xkexis. -0.1ty. The spin-quantization axis is chosen to be yhexis.

The spin-resolved conductances in Fig. 7 for a given, - . . :
Fermi energyEx=~0.1t, (at whichM = 3) provide a more tion of the injected spin, as demonstrated by comparing Figs.

detailed information about such “incomplete” conductance/ @nd 8, where we change the direction of polarization of

modulation. Here we consider the conductances correspon#liécted spint current to lie along the-axis. In this case,
ing to the injection of spirf- polarized current. Similarly to Poth the spin conserved conductar@e and the spin flipped

the case of strictly 1D ring, the spin-conserved conductanceonductances'! oscillate and contribute to the total conduc-
G'T decays while the spin-flipped conductar@€ increases tance on any interval d@g. This is because the polarization
as increasin@r. Their sumG''+G!! is just half of the total ~ of injected current in this case is orthogonal to the direction
conductancés™® plotted in Fig. 6. Despite the fact that mul- of Braghpik) field at the interface between the left lead and
tichannel AC rings are not able to moduldiee., G°(Qg)  the ring(see Fig. 1 Thus, the injected spin will be trans-
# 0 at anyQgr] unpolarized current to the extent found in 1D ported through the ring as a superpositionfoénd | spin
rings [whereG'*(Qg) =0 at specific values d@g], the prop-  states along the radial direction which causes the oscillations
erties of current spin-polarization vector in Fig. 7 suggestof G!' andG'". When they-polarized current is injected,
that they can serve as, even better than 1D ffigimin-  andP, characterizing the spin current are close to zero, while
switch devices. That is, at larg®g such device flips the p exhibits quasi-periodic oscillatioote that, according to
spin-| of an incoming electron in the left lead into spiref  Eq. (13) oscillations inP, are in one-to-one correspondence
the outgoing electron in the right lead. with oscillations ofG!" andG']. SinceP,, P,=0, the purity

The most prominent distinction between the single ancyf the transported spin state is approximately given|Rly
the multichannel cases is that the modulus of the spin polar= Py/.

ization |P| can drop below one—the spin state injected into
the multichannel ring loses its purity f@g # 0. This is very
contrastive to the single channel transport case wiiere
=1 is exactly satisfied at an@g. Such a reduction oP| is In strictly 1D rings(or transport through a single open
attributed to the fact that finite Rashba SO coupling can inchannel of a 2D ringthe conductance goes to ze&f'=0
duce entanglement, in the course of multichannel quanturor G*°'=0, see Fig. 9 in the regimMg,e=1) at specific
transport, between the spin state of transported electron anglues of the Rashba SO coupling due to destructive inter-
its orbital state? leaving a spin in a mixed quantum state ference effects in coherent superpositiahs)+b| | ), as dis-
Z)ﬁaﬁﬁs. cussed in Sec. lll. When current is injected also through
The spin-resolved conductances and spin polarizatiohigher propagating transverse modes, the analysis of the ring
vector behave rather differently depending on the polarizatransport properties becomes much more involved. Neverthe-

B. Injecting current through eigenchannels
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less, one can envisage unfolding of three plausible scenarios: e " ) 15
(1) The difference in AC phases acquired by spin states in

the upper and lower branches of the ring is independent of 0.8} I l

the wave vector of transverse modes, so that electron remains 2 it e i 12

in a separable quantum stafell,c|p)) @ (al1)+b[ 1)) (i.e., E 0.6¢ w | \ w gz

the transmission matrix can be decoupled into a tensor prod- g 0.4} 8

uct of spin-dependent part and a spatial scatteringair '_ _\ 1!

this case the conditions for destructive interference remain 02p N

the same as in single-channel quantum transgort; 0.0 . . . 0
(2) the transmitted spins through different channels, each -4 -2 0 2 4

of which has its own orbital phase, pick up different AC Fermi Energy

E%ases S0 tg]at anglt:jong folr a deStrluci[lve I:ntirferga:b FIG. 9. (Color onling The visibility of spin-interference effects,
=0 cannot be satisfied simultaneously in all chanriets, defined by Eq.(19) , for a finite width ring conducto(M,N)

this type of “dephasing® of spin quantum interference ef- - (3 209. The number of the open orbital channélg,ye, is indi-
fects arises due to ensemble averaging over pure spin statgsed on the righy-axis of the plot.

that evolve in slightly different fashign
(3) the transmitted spins lose their coherence due to cou-

Gt (Ep) - G (Ef)

pling to environment, i.e., the off-diagonal elements of the V(Ep) = o (19
spin density matrix are decaying in the course of transfort; G EF)

if they do not diminish all the way to zero, the transported

spin will end up in apartially coherentquantum staté!32 Here GI%, and Gl are the maximum and the minimum

In both the first and the second scenario, each individuabalues of the total conductance found in the first period of
spin is described by a pure quantum state in the course dhe conductance oscillations @, for a given Fermi energy
transport. Although the secondpin “dephasingf’ and the and corresponding number of open chaniélg.,<M. The
third (spin decoherengecenario lead to the same observablevisibility introduced here is a phenomenological measure
consequences—the ring conductance never reaches zdf@t quantifies diminishing of spin quantum interference ef-
since visibility?! of the spin-interference effects is reduced fects and corresponding conductance modulation induced by
below one—they are fundamentally differéiin the second them. The descrease of the visibilyEr) below one can be
scenario, spin states remain fully coherent, while in the thirccaused by either spin decoherence or spin “dephasing,” or, in
one transmitted spins are partially coherent due to couplingeneral, by both mechanisms acting together. .
to the environment. Even when all othefusually The visibility V(Eg) in _2D rings allov_vmg for a maximum
many-body?) decoherence mechanisms are suppresse@,f three open che_mnels is plotted in Fig. 9, VthCh. shows that
single spin of an electron can still be entangled to the envi¥(Er) = 1 in the single-channel transport regime, i.e., the un-
ronment composed of its orbital channels, i.e., it is formallyPolarized charge transport can be fully modulated by chang-

described by the entangled state ing the strength of the Rashba SO interactjercept at par-
M ticular Fermi energies However, as soon as the second
> CoolP)®|0) channel starts contributing to the transpoitEg) decreases
p=10=1,] below one.

in the right lead. This mechanism becomes operable in the To differentiate between different scenarios listed above
clean ring when spin-independent charge scattering ofthat can be realized in the transport through multichannel
boundaries and interfaces occurs in the presence of S@ngs, itis advantageous to invoke as much as possible trans-
coupling?® parent picture of spin-interference effects in 1D rifAgs?

The partially coherent states, as an outcome of entangléFhus, to be able to consider the transport through multichan-
ment of spin of transmitted electron with the spin in a quan-nel ring as if taking place through a system of independent
tum dot, were also found in recent experiments onsingle-channel rings, we switch to the representation of
Aharonov-Bohm ring interferometers where quantum dot iseigenchannels. In general, the basis of eigenchannels, in
embedded in one ring arm&Here we explore possibility of whichtt' is a diagonal matrix, offers a simple intuitive pic-
the same partially coherent outgoing spin state to appear iture of the transport in a mesoscopic conductor that can be
the AC ring, where physical mechanism of entanglement izviewed as a parallel circuit of independent channels charac-
different and single-particle in natuf®.Such realization of terized by channel-dependent transmission probabilies
the third scenario would make investigation of ring transportThe computation off,, (as eigenvalues dt") in the case of
properties in terms of the AC phases acquired by circulatinggonventional unpolarized charge transport allows one to ob-
spins(applicable in strictly one-dimensional ring structyres tain a plethora of transport quantities beyond just the con-
rather difficult since one has to extract geometric phase of aductance through simple expressidhddowever, the rota-
open spin quantum system described by the density matrition to the diagonait™ matrix is inapplicablé in spintronics

rather than by a pure state. where usually the spin density matrix of injected electrons is
It is insightful to define thevisibility of quantum interfer- non-trivial in the incoming channels of the leads. Neverthe-
ence effects in the AC ring less, when both spifi-and spini are injected into the ring in
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equal proportion, the basis of eigenchannels allows us to . ‘F

“deconstruct” 2D ring intdVl ¢, Single-channel rings. More- Nf ;

over, in systems with SO interaction, which are time-reversal ;’ ) (MN)=(2,200)
invariant in the absence of external magnetic field, all trans- I S e el
mission eigenvalues are double degenerate due to the Kram- T (TR
ers degenerady.In the case of single-channel rings of Sec. e N N
[l this corresponds to both spih-and spin} electrons giv- i | Y <300
ing identical contribution toG'°, The observable transport 0.0 [yttt
properties of a multichannel ring cannot differentiate be- Lo

tween injection of unpolarized current through spin- & o5l

polarized channels defined by the leads as a boundary con-

dition (which were utilized in Sec. IV Aor through the T
eigenchannels. Q.

The spin properties of eigenstatesttf can be described

by assigning the density matrix to each eigenchanngl
=250 0P @|0)
= > egygeg/va/|p><p/| ® o) a'|, (20) @
! ! (b
pp oo

and then taking the partial trace over the orbital degrees of = osp =§§ 2, i f 1
freedom to get the reduced density matrix for the spin sub- 0.0
system of an eigenchannel 1.0 (°), R R v

i \ , & 0.5}¢ MAN)=(2,200)

pi=> fg,ofg,a'|0><‘7 l. (21) W S E~02t, (M, =2

poa’ 0 2 4_6 8 10

This allows us to extract the purit?,| of the spin subsystem

of an eigenchannel frofR,=Tr{pa]. FIG. 10. (Color onling The total conductance) G*°{(Qg,Ef),
Figure 10 shows the total conductance, the eigenchanneb) transmission eigenvaluég,(Qg, Er), and(c) modulus of spin-

transmissions, and the spin purif§| of an eigenchannel of polarization vector|P|(Qg,Er) corresponding to the first eigen-

the two-channe(M,N)=(2, 200 ring conductor at two dif- channel of awo-channefing conductor with(M,N)=(2, 200 and

ferent values of the Fermi energy ensuring that both conduc#t the Fermi energieSz=-0.1t, (upper panelor Ex=-0.2, (lower

ing channels in the leads are open for transport. Here we pldiane). Note that due to Kramers degeneratythe presence of SO

only the spin purityP,| corresponding to the first eigenchan- ?nte_raction, but a_bsen_ce of magnetic fields, ring Hamiltonian(Eyq.

nel (spin purity of other eigenchannels display similar behav-S time-reversal invariantthere are only two differenT,, at each

ior). Since the eigen-channel transmissivities are twofold deQr:

generate, one can observe only two different values, it

eachQg in Fig. 10. WhenE-=-0.1t,, the total conductance expect destructive interference effects of pure spin states in

shows incomplete modulationi= 0.5 since the conductance single-channel rings or system of such independent rings.

never reaches zero value. It is possible to recognize in Fig. Figure 11 plots the same eigenchannel physical quantities

10 that the eigenchannel transmissions form two distinctivdor the transport through a three-channel ritiyl,N)

curves as a function oBg. Furthermore, each of them ex- =(3, 200, whereEr=-0.1, is set to allow all three chan-

hibits full-modulation characterized by,=0 at particular nels to be opened. The total conductance in this case also

values of Qgr. However, these two oscillating patterns aredisplays incomplete modulatiow=0.3. However, in this

shifted with respect to each other, thereby preventing totatase only onel,(Qg) curve can be isolated that oscillates

conductance G*(Qg)=2€*/h[T1(Qgr)+To(Qr)]>0 from  between 0 and 1, while the other two never reach zero val-

reaching zero value at any strength of the SO interactionues. Moreover, these three patternsTqfQg) are shifted

This can be explained as a realization of the second scenanigith respect to each other. This observation within the pic-

introduced above. On the other handEat—-0.2, the total  ture of three independent single channels explains why the

conductance shows almost complete modulatibnl be-  oscillations of the total conductance end up having a rather

cause(i) The individual eigenchannel transmissions are akinsmall amplitudeG'%, ~ Gt .

to the ones found in single-channel rings; afig they al-

most complet.ely ovgrlap with each other. This case, glbelt V. CONCLUSION

found rarely in multichannel AC rings, represents quite a

good example of the first scenario mechanism. Interestingly In conclusion, we have investigated how the conductance

enough,|P;| drops below ongmeaning that an electron is of unpolarized electron transport through two-dimensional

“injected” into the conductor in an entangled state of spinrings changes as we increase the strength of the Rashba SO

and orbital channe)sat those values dDr where one would coupling. Moreover, we connect the properties of the charge
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_ 4 AN N some extent even in the multichannel transport through me-
,,’f: 3M soscopic ring-shaped conductors. However, the oscillation
; % (MN)=(3,200) patterns are rather different from both the single-channel
© @ E=0.1, (M,.73) case and from the naively anticipated oscillations in multi-
LR o ™ channel rings where spin-interference effects would be
[_=0‘5 LA AV!& ] » equwalent_ln all channels and simply add up. The CQﬂdUC-
\-f i 'i/\l.'. i tance of single-channel transport through the ring displays
0.0 7-/\1 S & full  modulation, where G{(Qg)=0 appears quasi-
1.0{9—v—1——»r\,m periodically as a function of the Rashba SO coupling. This
& osl effect is explained in simple terffs'%as a result otlestruc-
’ tive spin-interference effects between opposite spin states cir-
0.00 e 00 culating in the clockwise and counterclockwise direction

Q, around the ring, where they acquire Aharonov-Casher phase
in the presence of the Rashba electric field. On the other
FIG. 11. The total conductand@) G'°(Qg,Eg), (b) transmis- hand, quantum transport in most of the cases occurring in
sion eigenvalued,(Qg,Er), and(c) modulus of spin-polarization Multichannel rings does not lead to zero conductance at any
vector |P;|(Qr,Er) corresponding to the first eigenchannel of a Rashba coupling. Using the picture of quantum transport
three-channeting conductor(M,N)=(3, 200 at the Fermi energy through independent eigenchannels, we identify different
Er=-0.1t,. Due to the Kramers degeneracy there are only threescenarios washing ouG'(Qg)=0 feature of the single-
distinctive points plotted at eadQg. channel transport, which involve either pure or mixed trans-
) ) ) ] ) . ported spin states. As the number of conducting channels
transport to the orientation of spin of incoming and outgoingjncreases, it becomes more likely to generate partially coher-
glectrons as well as its cohere.nc':e prppertles. In'order to takent transported spiwhich is described by the density ma-
into account the effect of the finite width of the ring and the iy rather than the pure state vectdue to entanglement of

leads systematically, we model the ring using concentriGiectron spin to its orbital degrees of freedd.
tight-binding lattice Hamiltonian as the starting point for the

calculation of charge.an.d spin transport properties ba_sed on ACKNOWLEDGMENTS
the Landauer transmission matrix for a two-probe device.
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