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The conventional unpolarized current injected into aquantum-coherentsemiconductor ring attached to two
non-magnetic external leads can be modulated from perfect conductor to perfect insulator limit via electrically
tunable Rashba spin-orbit(SO) coupling, thereby avoiding the usage of any ferromagnetic elements or external
magnetic fields. This requires that ballistic propagation of electrons, whose spin precession is induced by the
topological Aharonov-Casher phase accumulated by the spin wave function during a cyclic evolution, takes
place through a single conducting channel ensuring that electronic quantum state remains a pure separable one
in the course of transport. We study the fate of such spin-sensitive quantum interference effects as more than
one orbital conducting channel becomes available for quantum transport. Although the conductance of multi-
channel rings, in general, does not go all the way to zero at any value of the SO coupling, some degree of
current modulation survives. We analyze possible scenarios that can lead to reduced visibility of thedestructive
spin interference effects that are responsible for the zero conductance at particular values of the Rashba
interaction:(i) the transmitted spin states remain fully coherent, but conditions for destructive interference are
different in different channels;(ii ) the transmitted spins end up inpartially coherentquantum state arising from
entanglementto the environment composed of orbital degrees of freedom of the same particle to which the spin
is attached.
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I. INTRODUCTION

Recent attempts in spintronics1 to harness electron spin
for classical and quantum information processing have en-
countered two major challenges: Efficient room temperature
spin injection2 into a semiconductor and quantum-coherent
control of spin states.3 For example, a paradigmatic semicon-
ductor spintronic device, the Datta-Das spin-field-effect
transistor4 (spin-FET) where current passing through a two-
dimensional electron gas(2DEG) in semiconductor hetero-
structure is modulated by changing the strength of Rashba
SO interaction via gate electrode,5 requires both problems to
be surmounted. The usage of the Rashba SO coupling(which
arises due to inversion asymmetry of the confining electric
potential for 2DEG) to control spin via electrical means has
become one of the most influential concepts in semiconduc-
tor spintronics.2 The injected current can be modulated in the
spin-FET scheme only if it is fully polarized, while precess-
ing spin has to remain quantum coherent during propagation
between the two ferromagnetic electrodes. Although spin in-
jection into bulk semiconductors has been demonstrated at
low temperatures,6 creating and detecting spin-polarized cur-
rents in high-mobility 2DEG has turned out to be a much
more demanding task.7 In addition, the 2DEG region of spin-
FET would be very sensitive to the stray fields induced by
the ferromagnetic electrodes.8

For devices pushed into the mesoscopic realm,9,10 it be-
comes possible to modulate even unpolarized currents by
exploiting spin-dependent quantum interference effects in
phase-coherent transport. This is due to the fact that at low
temperaturesT!1 K and at nanoscales full electron quan-
tum stateuClPHo ^ Hs remains pure in the tensor product
of orbital and spin Hilbert spaces, respectively. The conduc-

tors in the shape of multiply-connected geometries have been
an essential playground since the dawn of mesoscopic
physics9,11 to explore how quantum interference effects, in-
volving topological quantum phases12 acquired by a particle
moving in the presence of electromagnetic potentials, leave
signatures on the measurable transport properties. The typi-
cal example is a metallic ring in the magnetic field where
transported electron encircling magnetic flux acquires
Aharonov-Bohm topological phase which induces conduc-
tance oscillations.11 The electromagnetic duality entails an
analogous effect—a neutral magnetic moment going around
a charged line acquires Aharonov-Casher(AC) phase that
can be manifested in a multitude of ways in mesoscopic
transport quantities.13–16

In recently proposed spintronic ring device17 containing
the Rashba SO coupling, the difference between AC phases
of opposite spin states traveling clockwise and counterclock-
wise around the ring generates spin interference effects that
can be observed in its transport properties. Since the ring
conductance directly depends on this difference,17,18 such
mesoscopic quantum interference effects can be exploited to
modulate the conductance of unpolarized charge transport
through a one-dimensional(1D) ring (attached to two 1D
leads) between 0 and 2e2/h by changing the Rashba electric
field via gate electrode covering the structure.5 The attrac-
tiveness of suchall-electrical and all-semiconductordevice
comes from the fact that it evades usage of any ferromag-
netic elements or magnetic fields. However, its envisaged
operation necessitates that quantum transport takes place
through only a single Landauer conducting channel.10 The
theoretical analysis thus far has been confined to strictly 1D
rings,17,19or two-dimensional(2D) rings where only the low-
est transverse propagating mode is open for quantum
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transport.18 In both of these cases of single-channel transport
(including the device where the single-channel leads are con-
nected to the multichannel ring with small aspect ratio, as
suggested in Ref. 18) similar pattern of complete conduc-
tance modulation between 0 and 2e2/h is found, even though
higher unoccupied modes in 2D rings can affect the lowest
open channel.20,21

On the other hand, despite advances in nanofabrication
technology, it is quite challenging to fabricate single channel
quantum wires. When unpolarized current, consisting of both
spin-↑ and spin-↓ electrons is injected through more than one
propagating modes, defined by the transverse quantization in
the leads of a realistic multichannel ring device, each channel
will carry its own phase. Moreover, during quantum trans-
port involving more than one conducting channel, any spin-
independent scattering of charge(at interfaces or boundaries
in the case of a clean system) subjected to SO coupling will
lead to a loss of coherence of spin quantum state due to the
possibility to entangle spin and orbital degrees of freedom
(i.e., within the entangled state, spin subsystem cannot be
described by a pure state spinor).20 The multichannel nature
of quantum transport in realistic rings employed in experi-
ments is also part of the controversy surrounding recent fun-
damental pursuits22,23 of the observable effect of spin Berry
phase.15 The analysis of spin-dependent features in conduc-
tance oscillations as a function of the magnetic field in dis-
ordered rings is not as transparent as in the case of strictly
1D systems.23 The AC phase acquired by electrons propagat-
ing through the 1D ring, subjected to the Rashba electric
field orthogonal to the ring plane(Fig. 1), was shown16 to
consist of a dynamical Rashba phase(which depends on the
cycle duration) and the geometrical Aharonov-Anandan
(AA ) phase(which depends only on the path traced in the
parameter space) characterizing any nonadiabatic cyclic
evolution.12 In the adiabatic limit, when spin becomes
aligned with the effective momentum-dependent Rashba
magnetic fieldBRashbaskd (Fig. 1),18 the AA phase becomes
the spin-orbit Berry phase introduced in Ref. 15.

Here we address the problem of unpolarized current
modulation in clean mesoscopic 2D rings with Rashba SO

coupling by studying how the pattern of conductance oscil-
lations changes as one opens conducting channels, one-by-
one, for quantum transport. The paper is organized as fol-
lows. In Sec. II we discuss the issue of suitable Hamiltonian
description of the ring with SO interactions. Then we intro-
duce a model for the multichannel ring which makes it pos-
sible to efficiently implement real̂spin space Green func-
tion technique in order to obtain both the spin and the charge
properties ofcoupled spin-chargetransport.20 Section III
studies the conductance modulation in strictly 1D rings as a
function of the Fermi energyEF of the zero-temperature
quantum transport. We also establish in this section the con-
nection between the orientation of spin polarization vector
and spin precession induced by the Rashba SO interaction,
pointing out at spin-switch device properties of the AC rings
when injected current is fully polarized. In Sec. IV we dis-
cuss conductance modulation in 2D rings with two and three
open conducting channels. Although we find that the ring
conductance, in general, is not diminished to zero in the
multichannel transport at any strength of the SO coupling, it
still displays oscillations as we tune the strength of the
Rashba interaction. In order to relate such “incomplete” con-
ductance modulation to spin interference effects of states
which are not pure(but are instead described by the density
matrices), we analyze in Sec. IV B transport through 2D
rings within the picture of transmission eigenchannels.10 This
makes it possible to view the multichannel transport as if
occurring through a set of “independent” 1D rings whose
channels, however, can have complicated spin coherence
properties. We conclude in Sec. V.

II. HAMILTONIAN MODELS FOR RING WITH RASHBA
SPIN-ORBIT INTERACTION

In the absence of external magnetic field, the ballistic
semiconductor ring structure subjected to the Rashba SO
coupling is described by the following effective mass single-
particle Hamiltonian

Ĥ2D =
p̂2

2m* +
a

"
sŝ 3 p̂dz + Vconfsrd, s1d

where ŝ is the vector of the Pauli spin operators,p̂ is the
momentum operator in 2D space, anda is the strength of the
Rashba SO coupling. The last termVconfsrd represents the
potential which confines electrons to a finite ring region
within 2DEG. The analytical expressions for the ring con-
ductance as a function ofa have been obtained only for a
strictly 1D ring geometry—in this limit one can find the
eigenstates of a closed ring and then compute the transmis-
sion coefficients by opening the ring to the attached leads
and matching the eigenfunctions obtained in the different
domains of such structure.17–19 However, a search for the
correct 1D ring Hamiltonian, which includes the Rashba in-
teraction, has turned out to be an ambiguous task yielding
several apparent solutions. For example, some of the recent
studies have employed non-Hermitian Hamiltonians.15,17 It
was pointed out in Ref. 24 that performing the limit from 2D
to 1D carefully, by taking into account the radial wave func-

FIG. 1. (Color online) Two-dimensional mesoscopic ring-
shaped conductor modeled by a concentric tight-binding lattice in
order to study multichannel quantum transport of spin and charge.
In this graphical depiction of the corresponding Hamiltonian Eq.
(4), the parametersM andN are chosen to be 3 and 16, respectively.
In the actual calculations, we useM =1–3 andN=200. HereERashba

is the confining electric field for 2DEG(which induces the Rashba
SO interaction) and BRashbaskd is the corresponding effective
(momentum-dependent) magnetic field.
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tions in the presence of narrow confinement, leads to a
unique Hermitian single-particle Hamiltonian in cylindrical
coordinates

Ĥ1Dsfd =
− "2

2m*R2

] 2

] f2 −
ia

R
scosfŝx + sin fŝyd

]

] f

−
ia

2R
scosfŝy − sin fŝxd. s2d

Here R is the radius of the 1D ring, andf is the angular
coordinate. The last term in Eq.(2), which disappears if we
simply take the radial coordinater =R in the cylindrical co-
ordinate representation of the 2D Hamiltonian, is actually
indispensable for this Hamiltonian to be a usual Hermitian
operator corresponding to quantum-mechanical observable.

While the 1D Hamiltonian Eq.(2) provides a simplest
starting point to study quantum transport through the ring
within the Landauer-Bütikker transmission formalism,9 for
efficient andnumerically exacttreatment of multichannel
transport through finite width 2D rings attached to the leads
it is advantageous to switch to a local orbital basis represen-
tation that makes it possible to employ real^spin space
Green function technique.20 Therefore, we introduce here a
concentric tight-binding lattice Hamiltonian, composed of
M =1,2, . . . concentrically connected tight-binding ring
chains, as sketched in Fig. 1. The two ideal semi-infinite
leads witha=0, of the same width as the ring itself, are
attached symmetrically to the ring thereby breaking the rota-
tional invariance of the closed ring problem. TheM =1 case
corresponding to a single ring chain, which represent a lat-
tice version of the correct 1D Hamiltonian in Eq.(2), has
frequently been employed to study the Aharonov-Bohm ef-
fect in mesoscopic ring-shaped conductors.25 The M =2 case
has appeared in the studies of the influence of finite ring
width on the Aharonov-Bohm oscillations of
magneto-conductance.26 Here we introduce the Rashba SO
interaction into the concentric tight-binding lattice with arbi-
trary numberM of ring chains. One of the advantages of our
model over the conventional square lattice discretization of
the finite width rings18,27 is that the width of the ring can be
controlled precisely by varying the number of the ring chains
one-by-one. This makes it possible to study the effects of
multichannel transport systematically. The maximum number
of open channels in a structure consisting ofM ring chains is
equal toM. The Hamiltonian corresponding to the setup de-
picted in Fig. 1 contains five terms

Ĥ = Ĥring + ĤL + ĤR + V̂L,ring + V̂R,ring. s3d

The first term, which describes electrons in an isolated(i.e.,
closed to the environment) ring that are subjected to the
Rashba SO coupling, is given by

Ĥring = o
n=1

N

o
m=1

M

o
s=↑,↓

«nmĉnm;s
† ĉnm;s

− o
n=1

N

o
m=1

M

o
s,s8=↑,↓

ftf
n,n+1,m;s,s8ĉnm;s

† ĉn+1,m;s8 + H.c.g

− o
n=1

N

o
m=1

M−1

o
s,s8=↑,↓

ftr
m,m+1,n;s,s8ĉnm;s

† ĉn,m+1;s8 + H.c.g.

s4d

Here n=1,2, . . . ,N and m=1,2, . . . ,M are the lattice site
indices along the azimuthalsfd and the radialsrd directions,
respectively. The operatorĉnm;s sĉnm;s

† d annihilates(creates) a
spin s electron at the sitesn,md of the ring. In our notation
m=1 corresponds to the innermost ring chain, whilem=M
stands for the outermost ring chain to which the external
leads are attached. The operatorĉN+1,m;s sĉN+1,m;s

† d is identi-
fied with ĉ1,m;s sĉ1,m;s

† d due to the periodic boundary condi-

tion. In Eq.(3) «nm is the on-site potential, whiletf
n,n+1,m;s,s8

and tr
m,m+1,n;s,s8 are the nearest neighbor hopping energies

along the azimuthal and the radial directions, respectively.
These hopping energies have been generalized to include the
SO coupling terms, which are given in the 232 matrix form
as

t̂f
n,n+1,m =

1

srm/ad2Df2t0Î s − i
tso

srm/adDf
scosfn,n+1ŝx

+ sin fn,n+1syd,

t̂r
m,m+1,n = t0Î s + itsoscosfnŝy − sin fnŝxd. s5d

Here fn;2psn−1d /N, fn,n+1;sfn+fn+1d /2, Df;2p /N,
rm; r1+sm−1da, t0;"2/2ma2 with a being the lattice spac-
ing along the radial direction,tso;a /2a is the SO hopping
parameter witha being the SO coupling strength of the

original Hamiltonian Eq.(1), and Î s is the 232 identity ma-
trix. We further assume that the lattice spacing along the
azimuthal direction in the outermost ring chainsm=Md is
the same as that of the radial direction, such that
rMDfs=2prM /Nd;a. In order to avoid the negative value of
r1 (the radius of the innermost chain), the value ofM has to
satisfy the conditionM ,N/2p+1.

In Eq. (3), the second term is the Hamiltonian for the left
lead

ĤL = − t0o
i=1

`

o
j=1

M−1

o
s=↑,↓

fb̂L,i,j ;s
† b̂L,i+1,j ,s

+ b̂L,i,j ;s
† b̂L,i,j+1,s + H.c.g, s6d

where i and j are the lattice indices along thex (current
flowing) and they (transverse) directions, respectively. The

operatorsb̂L,i,j ,s sb̂L,i,j ,s
† d annihilate(create) spins electron at

the sitesi , jd in the left lead. The Hamiltonian of the right

lead ĤR has the same form as Eq.(6). Finally, the coupling
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between the leads and ring is described by the following
Hamiltonians

V̂L,ring = − tLCo
k=1

M

o
s=↑,↓

fb̂L,1,k;s
† ĉk,M;s + H.c.g, s7d

V̂R,ring= − tRCo
k=1

M

o
s=↑,↓

fb̂R,1,k;s
† ĉsN/2d+k,M;s + H.c.g. s8d

Here tLsRdC is the coupling strength between the left(right)
lead and the ring. It is assumed that the left and the right lead
are attached to the ring symmetrically, where we neglect the
finite curvature of the outermost ring at the interface between
the ring and the leads(this is justified when the condition
N@M is satisfied).

Once the Hamiltonian Eq.(3) is given, one can evaluate
the matrix of spin-resolved conductances by using the
Landauer-Büttiker formula generalized to include the spin-
degree of freedom

G = SG↑↑ G↑↓

G↓↑ G↓↓ D =
e2

h
o

p,p8=1

M Sutp8p,↑↑u2 utp8p,↑↓u2

utp8p,↓↑u2 utp8p,↓↓u2
D , s9d

where tp8p,s8s is a transmission matrix element determining
the probability amplitude that electron injected in orbital
channelupl with spin s in the left lead would end up in a
conducting channelup8l of the right lead with spins8 (the
index p=1,2, . . .labels the quantized transverse propagating
modes in the leads, whiles= ↑ ,↓ describes the spin state).
The transmission matrix is calculated using the real^spin
space Green function technique.20 Note that the spin-
quantization axis can be chosen arbitrarily. For example, for
the spin-quantization axis chosen along thex-direction,G↓↑
can be interpreted as the conductance for a two-probe set-up
where the electrodes are half-metallic ferromagnets—
magnetization of the left lead is parallel while the magneti-
zation of the right lead is antiparallel to thex-axis. Thetotal
conductance characterizing conventional unpolarized charge
transport

Gtot = G↑↑ + G↑↓ + G↓↑ + G↓↓ s10d

is independent of the arbitrarily chosen spin-quantization
axis for the calculation of spin-resolved transport properties.

If a quantum system is fully coherent, its state is de-
scribed by apure statedensity matrixr̂2= r̂. The decrease of
the degree of quantum coherence due to entanglement to
environment (decoherence) or other dephasing processes
(such as classical noise) can be quantified by the purity28,29

z=Tr r̂2. Since in the case of the spin-1/2 particlezs=s1
+ uPu2d /2 depends solely on the modulus of the spin-
polarization(Bloch) vectorP

r̂s = Sr↑↑ r↑↓
r↓↑ r↓↓

D =
Î s + P · ŝ

2
, s11d

uPu can be used to measure the degree of coherence retained
in spin states in the course of their transport through compli-
cated semiconductor environment.20

While the conductance formula Eq.(9) requires to evalu-
ate only the amplitude of the complex transmission matrix
elementtp8p,s8s, the evaluation of the spin-polarization vec-
tor P requires not only the amplitude but also the phase of
the transmission matrix elements. Suppose that we inject
100% spin-s polarized current from the left lead. Then the
density matrix of the spin degree of freedom for the outgoing
current is given by20

r̂s =
e2/h

G↑s + G↓s o
p,p8=1

M S utp8p,↑su2 tp8p,↑stp8p,↓s
*

tp8p,↓stp8p,↑s
* utp8p,↓su2

D .

s12d

The measurement of any observable quantity on the spin
subsystem in the right lead is evaluated using such spin den-
sity matrix. An example is thecurrent spin polarization vec-
tor, which is obtained as the expectation value

Ps = Trsfr̂sŝg, s13d

where Trs is the trace in the spin Hilbert space. For example,
if the injected current is spin-↑ polarized along the
x-direction, the spin polarization vectorP↑=sPx

↑ ,Py
↑ ,Pz

↑d in
the right lead is given by

Px
↑ =

G↑↑ − G↓↑

G↑↑ + G↓↑ , s14d

Py
↑ =

2e2/h

G↑↑ + G↓↑ o
p=1

M

Reftp8p,↑↑tp8p,↓↑
* g, s15d

Pz
↑ =

2e2/h

G↑↑ + G↓↑ o
p8p=1

M

Imftp8p,↑↑tp8p,↓↑
* g, s16d

where G↑↑ and G↓↑ are the spin conserved and the spin
flipped conductance matrix elements. Thex-axis is chosen
arbitrarily as the spin-quantization axis,ŝxu↑ l= + u↑ l and
ŝxu↓ l=−u↓ l, so that Pauli spin algebra has the following
representation

ŝx = S1 0

0 − 1
D, ŝy = S0 1

1 0
D, ŝz = S 0 i

− i 0
D , s17d

which specifies the particular form for the expectation values
of P. One can obtain analogous expressions forsPx,Py,Pzd
when injected current is polarized along other directions, as
well as for the injection of partially polarized current.20 Thus,
studyingP, in addition to the ring conductance, will allow us
to understand spin orientation and degree of spin coherence
that corresponds to modulation of the charge current.

As an example of quantum transport properties of our
model Hamiltonian Eq.(3), Fig. 2 plots the total conductance
of the finite width ringsM ,Nd=s3, 200d as a function ofEF.
The strength of the Rashba SO coupling is fixed atQR=6,
where we introduce the dimensionless Rashba SO parameter
QR;2marM /"2=stso/ t0dN/p with rM as the radius of the
outermost ring. Furthermore, we assume that the system is
free from impurities«nm=0, and that coupling energies be-
tween the conductor and the leads are set to be the same as
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the hopping energy in the leadstLC= tRC= t0. The calculated
conductanceGtotsQR=6,EFd exhibits rapid oscillations with
peaks occurring at eigenenergies of the corresponding closed
2D ring. While the conductance oscillates regularly in the
single-channel regime, the oscillation pattern in the multi-
channel regime is rather intricate since the occupation of the
higher radial modes gives rise to new conductance peaks in
addition to the ones originating from the lowest radial mode.

III. SPIN-INTERFERENCE EFFECTS
IN SINGLE-CHANNEL QUANTUM TRANSPORT

THROUGH AC RINGS

In this section we study howGtot can be modulated as we
change the strength of the Rashba SO couplingQR in both
strictly 1D rings and single open channel of 2D rings. The
transport through phase-coherent 1D rings, described by the
correct Hamiltonian24 Eq. (2) has been analyzed recently,18

in terms of the expressions forGtot of the ring of radiusR
that does not involve dependence on the Fermi energy

Gtot = e2/hh1 + cosfpsÎQa
2 + 1 − 1dgj. s18d

HereQa=2maR/"2 has the meaning of the spin precession
angle over the circumference of 1D ring. However, such sim-
plified expression neglects the back scattering at the interface
between the ring and the leads. A more involved treatment
that takes into account such effects has been undertaken in
Ref. 19. Nevertheless, no analytical expression has been ob-
tained for single-channel transport in 2D rings.

We confirm19 in Fig. 3 that the exact pattern of zero-
temperatureGtot versus Rashba SO coupling strength de-
pends on the Fermi energy of transported electrons. This is
due to the back scattering effects at the interfaces between
the ring and the leads, which can strongly affect the trans-
port. For example, we can see a sharp peak at aroundQR
=9 whenEF=−1.5t0, which is a result of the complicated
scattering in the ring and at the boundary between the leads
and the ring. Nevertheless, all of the calculated conductance
curves have dipsGtot=0 at specific values ofQR that are

spaced quasi-periodically18 in a way which does not depend
on EF. Thus, the zeros of the conductance in Fig. 3 agree
well with those predicted by Eq.(18), i.e., their position is
insensitive to the lead-ring back scattering effects.

In order to understand the origin of the conductance
modulation in more detail, we plot the spin-resolved conduc-
tances for a given Fermi energyEF=−0.1t0 in Fig. 4. Here
we consider the conductances corresponding to the injection
of current which is fully spin-↑ polarized along thex-axis. As

FIG. 2. (Color online) Fermi energy dependence of the total
conductanceGtot=G↑↑+G↓↑+G↑↓+G↓↓ of a finite width AC ring
sM ,Nd=s3, 200d, for a chosen Rashba SO coupling strengthQR

=6 fQR; tsoN/ t0pg. The red line shows the number of open(or-
bital) conducting channelsMopenatEF. The vertical arrows label the
values of the Fermi energy selected for Fig. 5(Sec. III) and Fig. 6
(Sec. IV).

FIG. 3. The total conductanceGtotsQR,EFd of a strictly 1D ring
sM ,Nd=s1, 200d, attached to two 1D semi-infinite ideal leads, as a
function of dimensionless Rashba SO couplingQR= tsoN/ t0p, for
three different values of the Fermi energy as a parameter. The ver-
tical dotted lines denote the position of the conductance minima
Gtot.0, which do not depend onEF at which the zero-temperature
quantum transport takes place.

FIG. 4. (Color online) The spin-resolved conductances(a)
Gss8sQR,EFd and the outgoing current spin-polarization vector(b)
PsQR,EFd vs the Rashba SO interaction strengthQR= tsoN/ t0p for a
strictly 1D ring conductor withsM ,Nd=s1, 200d and Fermi energy
EF=−0.1t0. The spin-quantization axis is chosen to be thex-axis.
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QR increases,G↑↑ decays while the spin-flipped conductance
G↓↑ increases. That is, at the interface between the ring and
the left lead, the injected spin-↑ (along thex-axis) finds itself
to be parallel or antiparallel to the effectivek-dependent
Rashba magnetic fieldBRashbaskd (see Fig. 1). In the presence
of large enough Rashba SO coupling, the injected spin-↑
polarized current will change its spin polarization by follow-
ing the direction ofBRashbaskd adiabatically. The correspond-
ing outgoing current will appear in the right lead as spin-↓
polarized current. The summation of those two components
G↑↑+G↓↑ is equal to half of the total conductanceGtot plotted
in Fig. 3.

The spin polarization vectorP=sPx,Py,Pzd of the trans-
mitted current in Fig. 4 further clarifies this insight. We see
that with increasing SO coupling,P in the right lead rotates
from P=Pinject=s1,0,0d at QR→0 to the asymptotic value
P<s−1,0,0d at largeQR. The functionsPxsQRd andPzsQRd
are, however, not monotonous since there are abrupt changes
of their directions at specific values ofQR for which
GtotsQRd=0. Thus, one can also exploit the AC ring in
schemes where the spin-polarization of fully polarized in-
jected current is switched to the opposite direction via exter-
nal electric field applied through a gate electrode covering
the ring.30

Furthermore, our framework makes it possible to study
single-channel transport through 2D ring, as shown in Fig. 5
which plots theQR-dependence ofGtot for the finite-width
rings sM ,Nd=s3, 200d and at different Fermi energies se-
lected by the vertical arrows(a)–(c) in Fig. 2. At these values
EF, only one conducting channel is available for quantum
transport. We emphasize that the single-channel transport in
finite width conductorsM ù2 is not equivalent to the trans-
port in strictly 1D rings17–19 since the presence of unoccu-
pied modes(evanescent modes) can influence the transport
through the open channel in a way which depends on the
confinement potential and the geometry of the conductor.20,21

While Fig. 5 shows that the calculated conductance still ex-
hibits zeros at approximately the same values ofQR as in the
strictly 1D case,18 it should be pointed out that such zeros
can be washed out for transport occurring at specific Fermi

energies(see also Fig. 9). Also, the conductance oscillation
patterns are rather irregular compared with the strictly 1D
case, especially in the largeQR regime.

IV. VISIBILITY OF SPIN-INTERFERENCE EFFECTS
IN MULTICHANNEL QUANTUM TRANSPORT

THROUGH AC RINGS

A. Injecting current through spin-polarized
conducting channels

In Fig. 6 we show the conductance of the finite width ring
M =3 for various Fermi energies which are indicated by ver-
tical arrows in Figs. 2(d)–2(g). More than one transverse
propagating mode in the leads exist at these Fermi energies.
Therefore, one can view the injected current as being com-
prised of electrons prepared in all of different quantum state
upl ^ usl spøMd. For nonmagnetic leads, bothupl ^ u↑ l and
upl ^ u↓ l electrons are injected into the ring. The number of
the conducting channelsMopenøM is denoted in the figure.
Although conductance continues to display oscillating be-
havior as a function ofQR even in the multichannel trans-
port, its pattern is rather different from the single channel
case due to absence ofGtotsQRd.0 points. Furthermore, the
conductance oscillation pattern is significantly more sensi-
tive to the Fermi energy than in the single channel case.

FIG. 5. The total conductanceGtot vs the Rashba SO interaction
QR= tsoN/ t0p of a finite-width ring conductor with sM ,Nd
=s3, 200d for three different values of the Fermi energy:(a) EF=
−3.0t0, (b) EF=−2.7t0, and (c) EF=−2.2t0, which allow only one
channel to propagate(see Fig. 2). The vertical dotted lines indicate
the minima of the conductanceGtot.0, which do not depend onEF.

FIG. 6. The total conductanceGtot vs the Rashba SO coupling
QR= tsoN/ t0p (upper panel) for a finite-width ring conductor
sM ,Nd=s3, 200d at two different values of the Fermi energy:(d)
EF=−1.8t0 and (e) EF=−1.0t0 at which the number of open con-
ducting channels isMopen=2. In the lower panel the selected Fermi
energies,(f) EF=−0.35t0 and (g) EF=−0.1t0, determineMopen=3
(see arrows in Fig. 2).
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The spin-resolved conductances in Fig. 7 for a given
Fermi energyEF=−0.1t0 (at whichMopen=3) provide a more
detailed information about such “incomplete” conductance
modulation. Here we consider the conductances correspond-
ing to the injection of spin-↑ polarized current. Similarly to
the case of strictly 1D ring, the spin-conserved conductance
G↑↑ decays while the spin-flipped conductanceG↓↑ increases
as increasingQR. Their sumG↑↑+G↓↑ is just half of the total
conductanceGtot plotted in Fig. 6. Despite the fact that mul-
tichannel AC rings are not able to modulate[i.e., GtotsQRd
Þ0 at anyQR] unpolarized current to the extent found in 1D
rings [whereGtotsQRd=0 at specific values ofQR], the prop-
erties of current spin-polarization vector in Fig. 7 suggest
that they can serve as, even better than 1D rings,30 spin-
switch devices. That is, at largeQR such device flips the
spin-↑ of an incoming electron in the left lead into spin-↓ of
the outgoing electron in the right lead.

The most prominent distinction between the single and
the multichannel cases is that the modulus of the spin polar-
ization uPu can drop below one—the spin state injected into
the multichannel ring loses its purity forQRÞ0. This is very
contrastive to the single channel transport case whereuPu
=1 is exactly satisfied at anyQR. Such a reduction ofuPu is
attributed to the fact that finite Rashba SO coupling can in-
duce entanglement, in the course of multichannel quantum
transport, between the spin state of transported electron and
its orbital state,20 leaving a spin in a mixed quantum state
r̂s

2Þ r̂s.
The spin-resolved conductances and spin polarization

vector behave rather differently depending on the polariza-

tion of the injected spin, as demonstrated by comparing Figs.
7 and 8, where we change the direction of polarization of
injected spin-↑ current to lie along they-axis. In this case,
both the spin conserved conductanceG↑↑ and the spin flipped
conductanceG↓↑ oscillate and contribute to the total conduc-
tance on any interval ofQR. This is because the polarization
of injected current in this case is orthogonal to the direction
of BRashbaskd field at the interface between the left lead and
the ring (see Fig. 1). Thus, the injected spin will be trans-
ported through the ring as a superposition of↑ and ↓ spin
states along the radial direction which causes the oscillations
of G↓↑ andG↑↑. When they-polarized current is injected,Px
andPz characterizing the spin current are close to zero, while
Py exhibits quasi-periodic oscillation[note that, according to
Eq. (13) oscillations inPy are in one-to-one correspondence
with oscillations ofG↓↑ andG↑↑]. SincePx,Pz.0, the purity
of the transported spin state is approximately given byuPu
<uPyu.

B. Injecting current through eigenchannels

In strictly 1D rings (or transport through a single open
channel of a 2D ring) the conductance goes to zeroGtot=0
(or Gtot.0, see Fig. 9 in the regimeMopen=1) at specific
values of the Rashba SO coupling due to destructive inter-
ference effects in coherent superpositionsau↑ l+bu↓ l, as dis-
cussed in Sec. III. When current is injected also through
higher propagating transverse modes, the analysis of the ring
transport properties becomes much more involved. Neverthe-

FIG. 7. (Color online) The spin-resolved conductances(a)
Gss8sQR,EFd and the outgoing current spin polarization vector(b)
PsQR,EFd vs the Rashba SO interactionQR= tsoN/ t0p for a finite-
width conductor with sM ,Nd=s3, 200d and Fermi energyEF=
−0.1t0. The spin-quantization axis is chosen to be thex-axis.

FIG. 8. (Color online) The spin-resolved conductances(a)
Gss8sQR,EFd and the outgoing current spin polarization vector(b)
PsQR,EFd vs the Rashba SO interactionQR= tsoN/ t0p for a finite-
width conductor with sM ,Nd=s3, 200d and Fermi energyEF=
−0.1t0. The spin-quantization axis is chosen to be they-axis.
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less, one can envisage unfolding of three plausible scenarios:
(1) The difference in AC phases acquired by spin states in

the upper and lower branches of the ring is independent of
the wave vector of transverse modes, so that electron remains
in a separable quantum statesop=1

M cpupld ^ sau↑ l+bu↓ ld (i.e.,
the transmission matrix can be decoupled into a tensor prod-
uct of spin-dependent part and a spatial scattering part13); in
this case the conditions for destructive interference remain
the same as in single-channel quantum transport;17

(2) the transmitted spins through different channels, each
of which has its own orbital phase, pick up different AC
phases so that conditions for a destructive interferenceGtot

=0 cannot be satisfied simultaneously in all channels(i.e.,
this type of “dephasing”28 of spin quantum interference ef-
fects arises due to ensemble averaging over pure spin states
that evolve in slightly different fashion);

(3) the transmitted spins lose their coherence due to cou-
pling to environment, i.e., the off-diagonal elements of the
spin density matrix are decaying in the course of transport;20

if they do not diminish all the way to zero, the transported
spin will end up in apartially coherentquantum state.31,32

In both the first and the second scenario, each individual
spin is described by a pure quantum state in the course of
transport. Although the second(spin “dephasing”) and the
third (spin decoherence) scenario lead to the same observable
consequences—the ring conductance never reaches zero
since visibility31 of the spin-interference effects is reduced
below one—they are fundamentally different.28 In the second
scenario, spin states remain fully coherent, while in the third
one transmitted spins are partially coherent due to coupling
to the environment. Even when all other(usually
many-body32) decoherence mechanisms are suppressed,
single spin of an electron can still be entangled to the envi-
ronment composed of its orbital channels, i.e., it is formally
described by the entangled state

o
p=1

M

o
s=↑,↓

cp,supl^usl

in the right lead. This mechanism becomes operable in the
clean ring when spin-independent charge scattering off
boundaries and interfaces occurs in the presence of SO
coupling.20

The partially coherent states, as an outcome of entangle-
ment of spin of transmitted electron with the spin in a quan-
tum dot, were also found in recent experiments on
Aharonov-Bohm ring interferometers where quantum dot is
embedded in one ring arms.32 Here we explore possibility of
the same partially coherent outgoing spin state to appear in
the AC ring, where physical mechanism of entanglement is
different and single-particle in nature.20 Such realization of
the third scenario would make investigation of ring transport
properties in terms of the AC phases acquired by circulating
spins(applicable in strictly one-dimensional ring structures)
rather difficult since one has to extract geometric phase of an
open spin quantum system described by the density matrix
rather than by a pure state.33

It is insightful to define thevisibility of quantum interfer-
ence effects in the AC ring

VsEFd =
Gmax

tot sEFd − Gmin
tot sEFd

Gmax
tot sEFd

. s19d

Here Gmax
tot and Gmin

tot are the maximum and the minimum
values of the total conductance found in the first period of
the conductance oscillations vsQR, for a given Fermi energy
and corresponding number of open channelsMopen,M. The
visibility introduced here is a phenomenological measure
that quantifies diminishing of spin quantum interference ef-
fects and corresponding conductance modulation induced by
them. The descrease of the visibilityVsEFd below one can be
caused by either spin decoherence or spin “dephasing,” or, in
general, by both mechanisms acting together.

The visibility VsEFd in 2D rings allowing for a maximum
of three open channels is plotted in Fig. 9, which shows that
VsEFd<1 in the single-channel transport regime, i.e., the un-
polarized charge transport can be fully modulated by chang-
ing the strength of the Rashba SO interaction(except at par-
ticular Fermi energies). However, as soon as the second
channel starts contributing to the transport,VsEFd decreases
below one.

To differentiate between different scenarios listed above
that can be realized in the transport through multichannel
rings, it is advantageous to invoke as much as possible trans-
parent picture of spin-interference effects in 1D rings.17–19

Thus, to be able to consider the transport through multichan-
nel ring as if taking place through a system of independent
single-channel rings, we switch to the representation of
eigenchannels. In general, the basis of eigenchannels, in
which tt † is a diagonal matrix, offers a simple intuitive pic-
ture of the transport in a mesoscopic conductor that can be
viewed as a parallel circuit of independent channels charac-
terized by channel-dependent transmission probabilitiesTn.
The computation ofTn (as eigenvalues oftt †) in the case of
conventional unpolarized charge transport allows one to ob-
tain a plethora of transport quantities beyond just the con-
ductance through simple expressions.10 However, the rota-
tion to the diagonaltt † matrix is inapplicable20 in spintronics
where usually the spin density matrix of injected electrons is
non-trivial in the incoming channels of the leads. Neverthe-
less, when both spin-↑ and spin-↓ are injected into the ring in

FIG. 9. (Color online) The visibility of spin-interference effects,
defined by Eq.(19) , for a finite width ring conductorsM ,Nd
=s3, 200d. The number of the open orbital channelsMopen is indi-
cated on the righty-axis of the plot.
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equal proportion, the basis of eigenchannels allows us to
“deconstruct” 2D ring intoMopensingle-channel rings. More-
over, in systems with SO interaction, which are time-reversal
invariant in the absence of external magnetic field, all trans-
mission eigenvalues are double degenerate due to the Kram-
ers degeneracy.10 In the case of single-channel rings of Sec.
III this corresponds to both spin-↑ and spin-↓ electrons giv-
ing identical contribution toGtot. The observable transport
properties of a multichannel ring cannot differentiate be-
tween injection of unpolarized current through spin-
polarized channels defined by the leads as a boundary con-
dition (which were utilized in Sec. IV A) or through the
eigenchannels.

The spin properties of eigenstates oftt † can be described
by assigning the density matrix to each eigenchannelunl
=op,s ep,s

n upl ^ usl

r̂n = o
pp8ss8

ep,s
n ep8,s8

n*
uplkp8u ^ uslks8u, s20d

and then taking the partial trace over the orbital degrees of
freedom to get the reduced density matrix for the spin sub-
system of an eigenchannel

r̂s
n = o

pss8

ep,s
n ep,s8

n*
uslks8u. s21d

This allows us to extract the purityuPnu of the spin subsystem
of an eigenchannel fromPn=Trfr̂s

nŝg.
Figure 10 shows the total conductance, the eigenchannel

transmissions, and the spin purityuPu of an eigenchannel of
the two-channelsM ,Nd=s2, 200d ring conductor at two dif-
ferent values of the Fermi energy ensuring that both conduct-
ing channels in the leads are open for transport. Here we plot
only the spin purityuP1u corresponding to the first eigenchan-
nel (spin purity of other eigenchannels display similar behav-
ior). Since the eigen-channel transmissivities are twofold de-
generate, one can observe only two different values ofTn at
eachQR in Fig. 10. WhenEF=−0.1t0, the total conductance
shows incomplete modulationV.0.5 since the conductance
never reaches zero value. It is possible to recognize in Fig.
10 that the eigenchannel transmissions form two distinctive
curves as a function ofQR. Furthermore, each of them ex-
hibits full-modulation characterized byTn=0 at particular
values ofQR. However, these two oscillating patterns are
shifted with respect to each other, thereby preventing total
conductance GtotsQRd=2e2/hfT1sQRd+T2sQRdg.0 from
reaching zero value at any strength of the SO interaction.
This can be explained as a realization of the second scenario
introduced above. On the other hand, atEF=−0.2t0 the total
conductance shows almost complete modulationV.1 be-
cause:(i) The individual eigenchannel transmissions are akin
to the ones found in single-channel rings; and(ii ) they al-
most completely overlap with each other. This case, albeit
found rarely in multichannel AC rings, represents quite a
good example of the first scenario mechanism. Interestingly
enough,uP1u drops below one(meaning that an electron is
“injected” into the conductor in an entangled state of spin
and orbital channels) at those values ofQR where one would

expect destructive interference effects of pure spin states in
single-channel rings or system of such independent rings.

Figure 11 plots the same eigenchannel physical quantities
for the transport through a three-channel ringsM ,Nd
=s3, 200d, whereEF=−0.1t0 is set to allow all three chan-
nels to be opened. The total conductance in this case also
displays incomplete modulationV.0.3. However, in this
case only oneTnsQRd curve can be isolated that oscillates
between 0 and 1, while the other two never reach zero val-
ues. Moreover, these three patterns ofTnsQRd are shifted
with respect to each other. This observation within the pic-
ture of three independent single channels explains why the
oscillations of the total conductance end up having a rather
small amplitudeGmax

tot −Gmin
tot .

V. CONCLUSION

In conclusion, we have investigated how the conductance
of unpolarized electron transport through two-dimensional
rings changes as we increase the strength of the Rashba SO
coupling. Moreover, we connect the properties of the charge

FIG. 10. (Color online) The total conductance(a) GtotsQR,EFd,
(b) transmission eigenvaluesTnsQR,EFd, and (c) modulus of spin-
polarization vectoruP1usQR,EFd corresponding to the first eigen-
channel of atwo-channelring conductor withsM ,Nd=s2, 200d and
at the Fermi energiesEF=−0.1t0 (upper panel) or EF=−0.2t0 (lower
panel). Note that due to Kramers degeneracy(in the presence of SO
interaction, but absence of magnetic fields, ring Hamiltonian Eq.(2)
is time-reversal invariant) there are only two differentTn at each
QR.
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transport to the orientation of spin of incoming and outgoing
electrons as well as its coherence properties. In order to take
into account the effect of the finite width of the ring and the
leads systematically, we model the ring using concentric
tight-binding lattice Hamiltonian as the starting point for the
calculation of charge and spin transport properties based on
the Landauer transmission matrix for a two-probe device.

Our analysis suggests that conductance oscillations, in-
duced by changing the Rashba SO coupling, will persist to

some extent even in the multichannel transport through me-
soscopic ring-shaped conductors. However, the oscillation
patterns are rather different from both the single-channel
case and from the naïvely anticipated oscillations in multi-
channel rings where spin-interference effects would be
equivalent in all channels and simply add up. The conduc-
tance of single-channel transport through the ring displays
full modulation, where GtotsQRd=0 appears quasi-
periodically as a function of the Rashba SO coupling. This
effect is explained in simple terms17–19as a result ofdestruc-
tive spin-interference effects between opposite spin states cir-
culating in the clockwise and counterclockwise direction
around the ring, where they acquire Aharonov-Casher phase
in the presence of the Rashba electric field. On the other
hand, quantum transport in most of the cases occurring in
multichannel rings does not lead to zero conductance at any
Rashba coupling. Using the picture of quantum transport
through independent eigenchannels, we identify different
scenarios washing outGtotsQRd=0 feature of the single-
channel transport, which involve either pure or mixed trans-
ported spin states. As the number of conducting channels
increases, it becomes more likely to generate partially coher-
ent transported spin(which is described by the density ma-
trix rather than the pure state vector) due to entanglement of
electron spin to its orbital degrees of freedom.20
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