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We develop a theory of electron transport through quantum dots that are weakly coupled to ferromagnetic
leads. The theory covers both the linear and nonlinear transport regimes, takes noncollinear magnetization of
the leads into account, and allows for an externally applied magnetic field. We derive generalized rate equa-
tions for the dot’s occupation and accumulated spin and discuss the influence of the dot’s spin on the trans-
mission. A negative differential conductance and a nontrivial dependence of the conductance on the angle
between the lead magnetizations are predicted.
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I. INTRODUCTION

The study of spin-dependent transport phenomena has re-
cently attracted much interest and led to new device func-
tionalities based on the manipulation of the spin degree of
freedom.1,2 A prominent example, which has already proven
technological relevance, is the spin valve based on either the
giant magnetoresistance effect3 in magnetic multilayers or
the tunnel magnetoresistance4 in magnetic tunnel junctions.
In the latter case, the tunneling current between two ferro-
magnets depends on the relative orientation of the leads’
magnetizations. The maximal and minimal transmission is
achieved for the parallel and antiparallel configurations, re-
spectively. At intermediate anglesf of the relative magneti-
zation direction, the transmission is interpolated by a cosine
law. This angular dependence, which has been beautifully
demonstrated experimentally,5 can be easily understood
within a noninteracting-electron picture.6 It simply reflects
the f-dependent overlap of the spinor part of the majority-
spin-electron wave functions in the source and drain elec-
trodes.

On the other hand, tunneling transport through nanostruc-
tures, such as semiconductor quantum dots or metallic
single-electron transistors, is strongly affected by Coulomb
interaction, and a noninteracting-electron picture is no longer
applicable. Recent works on spin-dependent tunneling
through these devices include studies on metallic islands,7,8

granular systems,9 and carbon nanotubes10 coupled to ferro-
magnetic leads as well as spin-polarized transport from fer-
romagnets through quantum dots.11–19 The focus of this pa-
per is on quantum-dot spin valves, i.e., quantum dots
attached to ferromagnetic leads, with noncollinear magneti-
zations; see Fig. 1.

The much richer transport behavior of quantum-dot spin
valves, as compared to single magnetic tunnel junctions, re-
lies on the possibility to generate a nonequilibrium spin ac-
cumulation on the quantum dot, depending on system param-
eters such as gate and bias voltages, charging energy,
asymmetry of the tunnel couplings, and external magnetic
field. This opens the potential of a controlled manipulation of
the quantum-dot spin, detectable in transport. To some de-
gree, there is a relation between the system under consider-

ation and a single magnetic-atom spin on a scanning tunnel-
ing microscope(STM) tip. For the latter, precession of the
single spin in an external magnetic field has been detected in
the power spectrum of the tunneling current.20,21

In a recent paper by two of us,11 we predicted that the
interplay of spin-dependent tunneling and Coulomb interac-
tion in quantum-dot spin valves gives rise to an interaction-
driven spin precession, describable in terms of an exchange
field and detectable in a nontrivialf dependence of the lin-
ear conductance. The aim of the present paper is to extend
this discussion to a complete theory of transport through
quantum-dot spin valves in the limit of weak dot-lead
coupling.22 The theory covers both the regimes of linear and
nonlinear responses, and is easily generalized to include an
external magnetic field and/or spin relaxation processes
within the quantum dot. The quantities of central interest are
the magnitude and direction of the spin accumulated on the
quantum dot. They can be determined by generalized kinetic
equations within a diagrammatic real-time transport theory
for the dot’s density matrix. To obtain a more intuitive and
easily accessible framework for the dynamics of the dot’s
occupation and spin, however, we transform the kinetic
equations into rate equations that exhibit similarities to
Bloch equations of a spin in a magnetic field. The derivation
of these Bloch-like rate equations is the first central result of
this paper, presented in Sec. III after defining the model in

FIG. 1. Quantum-dot spin valve: a quantum dot is weakly
coupled to ferromagnetic leads. The magnetization directions of the
leads enclose an anglef.
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Sec. II. They provide a convenient starting point for the dis-
cussion of how the dot state depends on the system param-
eters. The second major achievement of this paper is to relate
the current through the device to the dot’s occupation and
average spin, which is done in Sec. IV.

An analysis of the obtained results is presented in Sec. V.
We find that the quantum-dot spin, and thus the current, be-
haves quite differently in the linear- and nonlinear-response
regimes. In linear response, the above-mentioned effective
exchange field rotates the quantum-dot spin such that the
spin-valve effect is reduced. This contrasts with the
nonlinear-response regime, in which the dot spin tends to
align antiparallel to the drain electrode, leading to a spin
blockade. Together with the effective exchange field this
leads to a very pronounced negative differential conductance.

We, then, conclude by generalizing our theory to include
an external magnetic field(Sec. VI) or internal spin relax-
ation in the dot(Sec. VII) and by interpreting the effective
exchange field within the recently introduced23 language of
the spin-mixing conductance(Sec. VIII).

II. MODEL

We consider a quantum dot with a level spacing exceed-
ing thermal broadening, intrinsic linewidth, and charging en-
ergy, i.e., only a single level with energy«, measured relative
to the Fermi energy of the leads, contributes to transport. The
quantum dot is tunnel-coupled to ferromagnetic leads. We
model this system with the Hamiltonian

H = Hdot + HL + HR + HT,L + HT,R. s2.1d

The first partHdot=os«cs
†cs+Un↑n↓ describes an atomiclike

spin-degenerate energy level on the dot plus the charging
energyU for double occupancy. The left and right ferromag-
netic leads,r =L, R, are treated as a reservoir of itinerant
electrons,Hr =oks«ksarks

† arks, where s=+ labels majority
ands=− minority-spin electrons. Here, the quantization axis
for the electron spins in reservoirr is chosen along its mag-
netization directionn̂r. In the spirit of a Stoner model of
ferromagnetism, we assume a strong spin asymmetry in the
density of statesrr,±svd for majority (1) and minority (2)
spins. (To be more precise, without loss of generality we
assume the direction of magnetization to be parallel to the
direction of majority spins.) In the following, the densities of
states are approximated to be energy independentrr,±svd
=rr,±. (Real ferromagnets have a structured density of states.
This will modify details of our results but not change the
general physical picture.) The asymmetry in the density of
states is characterized by the degree of spin polarizationpr
=srr+−rr−d / srr++rr−d with 0øpr ø1, where pr =0 corre-
sponds to a nonmagnetic lead andpr =1 describes a half-
metallic lead, carrying majority spins only. The magnetiza-
tion directions of the leads can differ from each other,
enclosing an anglef=\sn̂L ,n̂Rd. An applied bias voltage is
accounted for in different electrochemical potentials for the
left and right leads.

Tunneling between leads and dot is described by tunnel
HamiltoniansHT,L andHT,R. Their explicit form depends on
the choice of the spin quantization axis for the dot states. We

find it convenient to choose neithern̂L nor n̂R but instead to
quantize the dot spins= ↑ ,↓ along thez direction of the
coordinate system in which the basis vectorsêx, êy, and êz
are alongn̂L + n̂R, n̂L − n̂R, andn̂R3 n̂L, respectively(see also
Fig. 2). The tunnel Hamiltonian for the left tunneling barrier
then reads

HT,L =
tL
Î2

o
k

aLk+
† seif/4c↑ + e−if/4c↓d

+ aLk−
† s− e+if/4c↑ + e−if/4c↓d + H.c. s2.2d

and for the right barrier,HT,R, the same with the replace-
ments L→R and f→−f. Here, tL and tR are the tunnel
matrix elements. The tunneling rate for electrons from leadr
with spin (6) is then Gr,± /"=2putru2rr,± /". Therefore the
electronic states in the quantum dot with spin(↑↓) acquire a
finite linewidth Gr =os=±2putr /Î2u2rr,s=os=±Gr,s /2.

We note that while individual parts of the tunnel Hamil-
tonians do not conserve spin separately, the sum of all parts
strictly does. Due to the special choice of the quantization
axis, the lead electrons are coupled equally strong to up- and
down-spin states in the quantum dot. There are, however,
phase factors involved, similar to Aharonov-Bohm phases in
multiply connected geometries. The formal similarity of the
quantum-dot spin valve to a two-dot Aharonov-Bohm
interferometer24 is visualized in Fig. 3.

FIG. 2. (a) Scheme of the quantum-dot energy scales. The dif-
ference of the electrochemical potentials of the left and right leads
describes a symmetrically applied bias voltage.(b) The coordinate
system we choose. The magnetization directionsn̂L andn̂R enclose
an anglef.

FIG. 3. Graphical representation of the phase factors in the tun-
nel Hamiltonian, Eq.(2.2). In this representation, the quantum-dot
spin valve bears similarities to an Aharonov-Bohm setup, with the
different arms modeling the two different spin channels↑ and ↓,
and the Aharonov-Bohm flux corresponding to the relative angle of
the leads’ magnetizations.
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III. OCCUPATION AND SPIN OF THE DOT

In this section we derive rate equations governing the
state of the dot, i.e., its occupation as well as the magnitude
and direction of an accumulated spin. For this, we make use
of a diagrammatic real-time approach25 to describe the time
evolution of the reduced density matrix for the dot degree of
freedoms, which is obtained after integrating out the lead
electrons. The resulting equations for the density matrix ele-
ments can be reformulated into a more intuitive language of
rate equations for the dot’s occupation and spin.

A. Reduced density matrix for the quantum dot

The dynamics of the system can be described by the time
evolution of the total density matrix, which accounts for all
degrees of freedom in the dot and the leads. While the leads
are treated as reservoirs of noninteracting electrons, it is the
dynamics of the dot degrees of freedom that determine the
transport behavior. This motivates the idea to integrate out
the leads and arrive at a reduced density matrix for the dot
degrees of freedom only. Details about the procedure of in-
tegrating out the leads are given in Ref. 25.

The basis of the Hilbert space is given by the statesx
=0 (empty dot), ↑ (dot occupied with one spin-up electron),
↓ (the same with a spin-down electron), andd (double occu-
pancy of the dot). Therefore, the reduced density matrixrdot
is a 434 matrix with matrix elementsPx2

x1;srdotdx1x2
. We

get

rdot =1
P0 0 0 0

0 P↑ P↓
↑ 0

0 P↑
↓ P↓ 0

0 0 0 Pd

2 . s3.1d

The diagonal, real entriesPx; Px
x are nothing but the prob-

abilities to find the dot in the corresponding statex
=0,↑ , ↓ ,d. The zeros in Eq.(3.1) in the off diagonals are a
consequence of the total-particle-number conservation. The
nonvanishing complex off-diagonal elementsP↓

↑=sP↑
↓d* re-

flect the fact that an accumulated dot spin is not restricted to
the z direction but can also have a finitex component andy
component. The density matrix has, thus, six real parameters
(four diagonal elements and the real and imaginary parts of
P↑

↓). Due to the normalization condition trrdot=1, only five
of them are independent.

The time evolution of the reduced density matrix is given
by a generalized master equation in Liouville space,25

d

dt
Px2

x1std = −
i

"
sEx1

− Ex2
dPx2

x1std

+E
−`

t

dt8 o
x18x28

P
x28
x18st8dS

x28x2

x18x1st8,td. s3.2d

Here, Exi
are the energies of the decoupled system(in our

case E0=0, E↑=E↓=«, and Ed=2«+U). The kernels

S
x28x2

x18x1st8 ,td act as generalized transition rates in Liouville

space. They are defined as irreducible self-energy parts of the
dot propagator on a Keldysh contour(see first part of the
Appendix), and can be expanded in powers of the dot-lead
coupling strengthG. In the limit of interest for this paper,
i.e., weak dot-lead coupling, only the terms linear inG are
retained.

The Markovian approximation is established by replacing

P
x28
x18st8d in Eq. (3.2) with P

x28
x18std. In this case, the time

integral can be comprised in the definitionS
x28x2

x18x1

= i"e−`
0 dt8Sx28x2

x18x1st8 ,0d. We will only discuss results for the

steady-state limit, i.e., all matrix elements are time indepen-
dent and the above-mentioned replacement is not an approxi-
mation but valid in general. In order to emphasize the physi-
cal origin of the rate equations, however, we will keep all
time derivatives although their numerical value is zero for
our discussion.

B. Master and Bloch-like equations

For a more intuitive access to the average dot state, we
connect the matrix elements of the reduced density matrix to
the vector of the average spin"S with S=sSx ,Sy ,Szd by

Sx =
P↓

↑ + P↑
↓

2
; Sy = i

P↓
↑ − P↑

↓

2
; Sz =

P↑ − P↓
2

. s3.3d

We emphasize thatS describes a quantum-statistical average
rather than the coherent state of a single spin. As a conse-
quence, the magnitudeuSu can adopt any number between 0
and 1/2. The average charge occupation of the dot is deter-
mined by the probabilitiesP0, P1, and Pd, where P1=P↑
+P↓. The dot state is, thus, characterized by the set of pa-
rameterssP0,P1,Pd,Sx ,Sy ,Szd, in which only five of them
are independent, since the normalization of the probabilities
requiresP0+P1+Pd=1.

We evaluate the irreducible self-energies appearing in Eq.
(3.2) up to first order inG (see the Appendix) to get a set of
six master equations, three for the occupation probabilities
and three for the average spin. The first three are given by

d

dt1P0

P1

Pd
2 = o

r=L,R

Gr

" 1− 2f r
+s«d f r

−s«d 0

2f r
+s«d − f r

−s«d − f r
+s« + Ud 2f r

−s« + Ud
0 f r

+s« + Ud − 2f r
−s« + Ud

21P0

P1

Pd
2 + o

r=L,R

2prGr

" 1 f r
−s«d

− f r
−s«d + f r

+s« + Ud
− f r

+s« + Ud
2S · n̂r . s3.4d
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Here, we have used the following definitions. The probability
to find an electronic state at energyv in the left (right) lead
occupied is given by the Fermi functionfLsRd

+ svd and by
fLsRd
− svd=1−fLsRd

+ svd to find it empty.
In the case of nonmagnetic leads,pr =0, only the first term

in Eq. (3.4) survives, and we recover the usual master equa-
tions for sequential tunneling through a single level.26 For
spin-polarized leads, however, tunneling into or out of the
dot becomes spin dependent. As a consequence, the charge
occupation, in general, depends on the spinS accumulated
on the dot, as indicated by the second term of Eq.(3.4). The
three remaining master equations describe the time evolution
of the average spin,

dS

dt
= SdS

dt
D

acc
+ SdS

dt
D

rel
+ SdS

dt
D

rot
s3.5d

with

SdS

dt
D

acc
= o

r=L,R

prGr

"
F f r

+s«dP0 +
− f r

−s«d + f r
+s« + Ud

2
P1

− f r
−s« + UdPdGn̂r , s3.6d

SdS

dt
D

rel
= − o

r=L,R

Gr

"
ff r

−s«d + f r
+s« + UdgS, s3.7d

SdS

dt
D

rot
= S3 o

r=L,R
Br , s3.8d

where we used the definition

Br = pr
Grn̂r

p"
E8

dvS f r
+svd

v − « − U
+

f r
−svd

v − «
D s3.9d

for r =L ,R, and the prime at the integral symbolizes
Cauchy’s principal value. We see that three different contri-
butions lead to a change of the average dot spin. The first
one, Eq.(3.6), depends on the occupation probabilities only
and describes nonequilibrium spin accumulation via tunnel-
ing to and from spin-polarized leads. This is the source term,
which is responsible for building up a spin polarization in the
quantum dot. The second term(proportional toS) has the
opposite effect. It accounts for the decay of the dot spin by
tunneling out of the electron with given spin or by tunneling
in of a second electron with opposite spin forming a spin
singlet on the dot. These tunneling mechanisms yield an in-
trinsic spin relaxation rate 1/tc=or=L,RsGr /"dff r

−s«d+ f r
+s«

+Udg. From Eq.(3.5) we can derive the magnitude of the
spin on the dot via

duSu
dt

=
S

uSu
·SdS

dt
D

acc
−

uSu
tc

. s3.10d

The two contributions, Eqs.(3.6) and (3.7), capture the
spin dynamics due to spin-dependent tunneling processes
transferring electrons into and out of the quantum dot. But
above equation is also sensitive to the direction ofS, which
depends directly on the third contribution, Eq.(3.8), of the

Bloch-like equation. This term leads to a precession of the
dot spin aboutBL +BR, wheresBL +BRd /g can be viewed as
a fictitious magnetic field, withg=−gmB being the gyromag-
netic ratio. This fictitious field vanishes in the absence of
Coulomb interaction,U=0, i.e., its origin is a many-body
interaction effect. Its nature can be conceived as an exchange
field due to virtual particle exchange with the spin-polarized
leads. Note that these virtual exchange processes do not
change the charge of the dot, in contrast to the spin-
dependent tunneling events responsible for the first two con-
tributions to Eq.(3.5). Nevertheless, this contribution is also
linear inG and has to be kept to be consistent. We emphasize
that the use of a simple rate-equation picture, which neglects
this exchange field and takes into account spin-dependent
tunneling only, would be fundamentally insufficient.

The type of exchange interaction that emerges in our
theory has been discussed in the literature in the context of
Kondo physics for magnetic impurities in(normal) metals.27

With the help of a Schrieffer-Wolff transformation, the
Anderson Hamiltonian describing the magnetic impurity can
be transformed to ans-d model, in which the spin of the
magnetic impurity is coupled to the conduction-band-
electron spins of the metal. Since the metal is spin symmet-
ric, there is no net exchange field, though. This contrasts
with our model, which includes a finite spin polarization of
the leads. By integrating out the lead electrons of the trans-
formed Hamiltonian in the subspace of single dot occupancy,
we recover the precise mathematical form of the exchange
field as given in Eq.(3.9).

The generalization of our theory to the case of real ferro-
magnets with nonuniform density of states is straightfor-
ward. The only modification is to keep the energy depen-
dence of prsvd;frr+svd−rr−svdg / frr+svd+rr−svdg and
Grsvd in all formulas. In particular, these quantities have to
be included in the energy integral for the exchange field in
Eq. (3.9).28,29

We remark that the effective exchange field is not only
responsible for the torque on an accumulated spin as dis-
cussed above, but it also generates a spin splitting of the dot
level.30 Since this Zeeman-like splitting is proportional toG,
it cannot be resolved in any transport signal in the weak-
coupling regime considered in the present paper. This split-
ting gives rise to a correction of higher order in the coupling
that has to be dropped in a consistent first-order-transport
calculation. This contrasts with the limit of strong lead-dot
coupling, in which any spin splitting modifies the emerging
Kondo physics in a crucial manner.15

IV. ELECTRIC CURRENT

The current through the device can be expressed in terms
of Keldysh Green’s functions of electrons, as shown, e.g., in
Refs. 24 and 31. The starting point of our discussion is the
relation for the currentIr coming from reservoirr,

Ir =
is− ed

h
E dv trhGr f r

+svdG.svd + Gr f r
−svdG,svdj.

s4.1d

Here, the bold face indicates a 232 matrix structure for the
spin degree of freedom. The lesser and greater Green’s func-
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tions G,svd=s G↑↑, svd G↑↓, svd

G↓↑, svd G↓↓, svd d and G.svd are defined as the

Fourier transforms ofGss8
, std= ikcs8

† s0dcsstdl and Gss8
. std

=−ikcsstdcs8
† s0dl, respectively. The coupling matrices are de-

fined asGL =GLs 1 pLe−if/2

pLe+if/2 1
d, and the same forGR but with the

substitutions L→R and f→−f. The diagonal matrix ele-
ments describe tunneling of spins along thez direction and
are, therefore, independent of the leads’ spin polarizationpr
since the magnetizations of the leads lie in thex-y plane.
This contrasts with the off-diagonal matrix elements taking
into account tunneling of spins in thex-y plane.

In the weak-coupling limit, the current is dominated by
the contributions of first order in the couplingG. BecauseG
already explicitly appears in Eq.(4.1), the Green’s functions
have to be calculated to zeroth order inG.32 The final result
for the current can be written as a sum over two contribu-
tions,

Ir = Ir
P + Ir

S, s4.2d

which explicitly contain either the occupation probabilities
P0, P1, Pd or the accumulated spinS, respectively,

Ir
P = Gr

2s− ed
"

F f r
+s«dP0 +

f r
+s« + Ud − f r

−s«d
2

P1

− f r
−s« + UdPdG , s4.3d

Ir
S = − prGr

2s− ed
"

ff r
−s«d + f r

+s« + UdgS · n̂r . s4.4d

For nonmagnetic leads, only the termIr
P contributes. At finite

spin polarization in the leads, the additional termIr
S appears,

but also the first contributionIr
P is affected via the modifica-

tion of the occupation probabilities as given in Eq.(3.4).
In steady state the two currentsIL andIR are connected by

the conservation of charge on the dot, so the homogeneous
current flowing through the system can be defined asI = IR
=−IL.

V. RESULTS

In the following we discuss results for the spin accumu-
lation and its impact on transport for both the linear and
nonlinear regimes. To be specific, we choose symmetric cou-
pling GL =GR=G /2, equal spin polarizationspL =pR=p, and a
symmetrically applied biasVR=−VL =V/2.

A. Linear response

In equilibrium, i.e., without any applied bias voltage,V
=0, no current flows and the stationary solution of the rate
equations for the occupation probabilities(3.4) is given by
the Boltzmann distribution,Px,exps−Ex /kBTd, and since in
this casesdS/dtdacc=0, no spin accumulation occurs in the
quantum dot,S=0.33

At nonzero bias voltage, a current flows through the sys-
tem and spin is accumulated on the dot. To describe the dot
state in the linear-response regime,eV!kBT, we expand the

steady-state solution of Eqs.(3.4) and(3.5) up to linear order
in V. We find that(due to symmetric coupling) the dot occu-
pation probabilitiessP0,P1,Pdd have no corrections linear in
V and are, thus, unchanged, independent of the size and di-
rection of the leads’ magnetization. In contrast to the occu-
pation probabilities, the source term for the spin accumula-
tion has a nonzero contribution linear inV,

SdS

dt
D

acc
= F f8s«dSP0 +

P1

2
D + f8s« + UdSP1

2
+ PdDG

3
pG

"

− eV

2kBT
sn̂L − n̂Rd, s5.1d

generating a finite spin polarization alongn̂L − n̂R, i.e., along
the y axis. This is consistent with the notion of angular mo-
mentum conservation when magnetic moments polarized
alongn̂L enter from the left than those alongn̂R leave the dot
to the right.

The damping term,sdS/dtdrel=−sG /"dff−s«d+ f+s«+UdgS,
limits the magnitude of spin accumulation, but it does not
affect its direction. The third term, however,sdS/dtdrot=S
3 sBL +BRd with Br = n̂rpG / s2p"de8dvf1/sv−«−Ud−1/sv
−«dgfsvd and BL +BR;B0 cossf /2dêx, yields a precession
of the spin with an angle

a = − arctanSB0tc cos
f

2
D s5.2d

about n̂L + n̂R, i.e., thex axis. As a result, the accumulated
spin acquires bothy andz components as seen in Fig. 4. This
precession acts back on the magnitude of the accumulated
spin. The stationary solution of Eq.(3.10) yields uSu
=tcusdS/dtdaccucosa, from which we infer that the precession
is accompanied with a decrease of the spin accumulation.

The rotation anglea is plotted in Fig. 5(b) as a function of
the level position«. We see thata changes sign at«
=−U /2, which reflects a sign change of the exchange field at
this point. The point«=−U /2 is special, as in this case the
system bears particle-hole symmetry. The fast variation ofa
in this region gives rise to a rather sharp feature in the mag-
nitude of accumulated spin as a function of«; see Fig. 5(c).
The width of the emerging peak scales(for kBT,U /2) with
pUff−s«d+ f+s«+Udg / fp cossf /2dg, which can be even

FIG. 4. Spin dynamics in the linear-response regime. Spin ac-
cumulates along they direction. The spin precesses due to the ex-
change field that is along thex direction. Therefore, the stationary
solution of the average spin on the dot is tilted away from they axis
by an anglea, plotted in Fig. 5(b).
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smaller than temperature since the factor with the Fermi
functions involved can become numerically small.

As pointed out above, in the regime under consideration
the occupation probabilities do not depend on the spin polar-
ization of the leads. In particular, they are independent of the
relative anglef of the leads’ magnetization. This means that
the f dependence of the conductance will be completely
determined by the productS·n̂L =−S·n̂R, as can be seen
from Eqs.(4.3) and(4.4). It is the relative orientation of the
accumulated spin and the drain(or source) that produces the
f dependence of the current, rather than the productn̂L ·n̂R,
as in the case of a single magnetic tunnel junction. In this
way, thef dependent linear conductanceGlin = us]I /]VduV=0

directly reflects the accumulated spin. The effect of the ex-
change fieldB is seen from the analytic expression

Glinsfd
Glins0d

= 1 − p2 sin2sf/2d
1 + sB0tcd2cos2sf/2d

, s5.3d

which is plotted in Fig. 6 for different values of the level
position«.

For «.0, the quantum dot is predominantly empty, and
for «+U,0 doubly occupied with a spin singlet. This is
reflected by a small lifetimetc of a dot spin. Due to the short
dwell time of a single spin-polarized electron in the dot, the
rotation angle is small and the normalized conductance as a
function of the relative anglef of the lead magnetizations
shows a harmonic behavior; see, e.g., the curve for«
=5kBT in Fig. 6.

For −U,«,0, however, the dwell time is increased and
the exchange field becomes important. It causes the above
described spin precession, which decreases the productS·n̂L
since the relative angle\sn̂L ,Sd is increased and the mag-
nitude ofS is reduced. According to Eq.(4.4), the spin pre-
cession, thus, makes the spin-valve effect less pronounced,
leading to a value of the conductance that exceeds the expec-
tations made by Slonczewski6 for a single magnetic tunnel
junction.

For parallel and antiparallel aligned lead magnetizations,
f=0 andf=p, the accumulated spin and the exchange field
also get aligned. As a result, there is no spin precession, even
though the exchange field is still present. For these cases, the
f-dependent conductance is not affected by the exchange
field; see Fig. 6.

B. Nonlinear response

We now turn to the discussion of the nonlinear response
regime,eV.kBT. In Fig. 7(a) we show the currentI as a
function of the bias voltageV for an antiparallel configura-
tion of the leads’ magnetizations and different values of the
leads’ spin polarizationp. As it is well known from transport
through quantum dots with nonmagnetic leads, the current
increases in a steplike manner. At low bias voltage, the dot is
always empty and transport is blocked. With increasing bias
voltage, first single and then double occupancy of the dot is
possible, which opens first one and then two transport chan-
nels. A finite spin polarizationp leads to spin accumulation
and, thus, to a reduction of transport. A reduction of transport
with increasingp is also seen for noncollinear magnetization.
There is a qualitative difference, though. As can be seen in
Fig. 7(b), a very pronounced negative differential conduc-
tance evolves out of the middle plateau as the spin polariza-
tion p is increased.

Before explaining the origin of this negative differential
conductance, we address the height of the plateau at large
bias voltages first. Away from the steps, all appearing Fermi
functions are either 0 or 1. From Eq.(4.2) we get I
=seG /2"df1−pS·sn̂L − n̂Rdg. When the exchange field is ig-
nored, which can be done here since the spin dwell time is
shortened by the possibility of forming spin singlets, then the
accumulated spin isS=psn̂L − n̂Rd /4 from which we get

FIG. 5. (a) Linear conductance normalized byG /kBT as a func-
tion of the level position« for different anglesf. (b) Angle a
enclosed by the accumulated spin and they axis as defined in Fig.
4. (c) Derivative of the magnitude of the accumulated spin on the
dot with respect to the source-drain voltageV. Further parameters
arep=0.9 andU=10kBT.

FIG. 6. Normalized conductance as a function of the anglef
enclosed by the lead magnetization for different level positions and
the parametersU=10kBT andp=0.9.
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I =
eG

2"
S1 − p2 sin2 f

2
D . s5.4d

The suppression of transport due to the spin polarizationp of
the leads is comparable with the case of a single-tunnel junc-
tions, when charging effects are of no importance.

At intermediate bias voltages, the dot can be empty or
singly occupied, but double occupation is forbidden. To un-
derstand the negative differential conductance we first ne-
glect the exchange field and then, in a second step, analyze
how the exchange field modifies the picture. Since double
occupation of the dot is prohibited, all electrons entering the
dot through the left barrier find an empty dot. This is consis-
tent with the fact that the currentI =seG /"dP0 explicitly de-
pends only on the probability to find the dot empty. The spin
accumulation affects the current only indirectly via modify-
ing P0. In the absence of the exchange field the relation
between them is

S= pFGL

GR
P0n̂L −

1 − P0

2
n̂RG s5.5d

with

P0 =
1

1 + 2GL/GR
F1 +

4

GR/GL + 2

p2

1 − p2 sin2 f

2
G−1

.

s5.6d

(At this point we explicitly allow for different tunneling
strengths.) As a consequence, with increasingf and p the
probability P0 decreases, i.e., the dot is most of the time

occupied with one electron, and the accumulated spin tends
to align along −n̂R, antiparallel to the drain electrode. The
electron is, thus, trapped in the dot since tunneling out to the
drain electrode is suppressed by a low density of states for
the given spin direction. No second electron can enter the dot
because of the Coulomb interaction, and transport is, thus,
blocked. So this mechanism is a type of spin blockade but
with a different physical origin compared to the systems de-
scribed in literature.34,35

The suppression factor coming from Eq.(5.6) defines the
local minimum of the current in Fig. 7(b). At this point, the
relevant exchange field component generated by the coupling
to the left lead vanishes, so that spin precession becomes
insignificant; see Fig. 9(a). Away from this point spin preces-
sion sets in as illustrated in Fig. 8. The spin rotates aboutn̂L
and the electron can now more easily leave the dot via the
drain electrode.

Similar to the linear-response regime, the rotation caused
by the exchange field weakens the spin-valve effect. The two
mechanisms, the spin blockade, and the spin precession have
opposite effect on the spin-valve behavior. Together with the
fact that the strength of the exchange field varies as a func-
tion of the level position relative to the Fermi level, we now
fully understand the origin of the nonlinear conductance. To
illustrate this further, we plot in Fig. 9(b) the current which
we obtain when we drop the contribution, Eq.(3.8), of the
exchange field to the spin dynamics by hand and compare it
with the full result. In the absence of the exchange field, a
wide plateau is recovered, whose height is governed by Eq.
(5.6). The peak at the left end of the plateau indicates that
once the dot level is close to the Fermi level of the source
electrode, the spin blockade is relaxed since the dot electrons
have the possibility to leave to the left side.

We now estimate under which circumstances the negative
differential conductance will be visible. Since the spin-
blockade mechanism is crucial for the negative differential
conductance to form, the relevant criterion can be obtained
from Eq. (5.6) as

4

GR/GL + 2

p2

1 − p2 sin2 f

2
, 1, s5.7d

i.e., for a typical valuef<p /2 and symmetric coupling
GL =GR we need at least a spin polarizationp<0.77, in
agreement with Fig. 7. An asymmetry in the coupling

FIG. 7. Current-voltage characteristics for antiparallel(a) and
perpendicular aligned(b) lead magnetizations. Further parameters
areGL =GR=G /2, pL =pR=p, «=10kBT, andU=30kBT.

FIG. 8. For electrons polarized antiparallel to the drain lead, the
influence of the effective field generated by the source lead is domi-
nating. By rotating the spins, the spin blockade is lifted and there-
fore the conductance recovers.
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strengthGL .GR helps us to somewhat reduce the number of
the required spin polarization.

The effect of the spin blockade on thef-dependent cur-
rent is depicted in Fig. 10. We choose the bias voltage ac-
cording toeV/2=«+U /2, such that the influence of the ex-
change field is absent. Forp=0.5 still a sin2sf /2d
dependence can be recognized. For higher polarizations the
conductivity drops faster and stays nearly constant at its
minimal value due to spin blockade. This is just the opposite
behavior than predicted for the linear-response regime as
seen in Fig. 6.

We close this section with the remark that while we plot-
ted only results for the case«.0, in the opposite case«,0

the current-voltage characteristics is qualitatively the same.

VI. EXTERNAL MAGNETIC FIELD

As we discussed in the preceding section, the transport
properties through the quantum dot crucially depend on the
magnitude and direction of the average spin in the dot, which
is determined by the interplay of spin-dependent tunneling
and the effective exchange field. The application of an addi-
tional, external magnetic fieldBext opens the possibility to
manipulate the dot spin and, thus, the transport behavior in a
direct way. Since the external magnetic field is independent
of all the system parameters considered so far, the parameter
space for experiments is enlarged by another dimension.
Magnetic fields have been used either to split the energy
levels for the different spin components18 or to rotate an
accumulated spin.36 A combination of both, a static field
splitting the energy levels plus an oscillating field to rotate
the spin, defines an electron spin resonance scheme that al-
lows for the study of single-spin dynamics in quantum dots
in the absence of ferromagnetic leads, as proposed in Ref.
37.

The way a static external magnetic field affects the dot
qualitatively depends on the ratio of the induced Zeeman
energy and the intrinsic linewidthG of the dot energy levels.

A. Large Fields

At large magnetic fields,Bext@G (to keep the formulas
transparent, we include the gyromagnetic factor in the defi-
nition of Bext), all the complex spin dynamics discussed so
far is absent. It is natural in this case to quantize the dot spin
along the direction ofBext. The Zeeman splitting termBext
=«↑−«↓ in the Liouville equation(3.2) ensures that for weak
coupling, the density matrix always remains diagonal, as can
be seen from expanding Eq.(3.2) to lowest order inG to
obtain 0=s«↑−«↓dP↑

↓. As a consequence, the average spin on
the dot is always polarized along the direction of the external
magnetic field, and the exchange field does not play any role.
In a physical picture, the spin components perpendicular to
Bext are averaged out due to a fast precession movement.
Transport effectively takes place through two energetically
separated levels, where the coupling strength to the left and
right leads depends on the anglesur =\sBext,n̂rd between the
lead magnetizations and the external field via the relations
Gr↑=Grs1+pr cosurd and Gr↓=Grs1−pr cosurd. Thereby we
assumed that the applied magnetic field is not strong enough
to tilt the lead magnetization direction. It is worth to point
out that the spin polarization and the trigonometric function
of the relative angleur appear always as a product, so that
this system is equivalent to the collinear cases12,18 with de-
creased magnetization of the leads.

B. Small Fields

The situation becomes more interesting in the limit of
small fields,Bext&G. To describe this case, we perform the
same perturbation expansion inG as before, but countBext as
being first order inG. This introduces in Eq.(3.2) the (first-
order) term s«↑−«↓dP↑

↓, while the kernelsS are then not af-

FIG. 9. Panel(a): The absolute value of the effective exchange
field contributions from the left and right leads. Panel(b): the cur-
rent voltage dependence, with and without the influence of the ex-
change field. For both plots the parametersf=p /2, GL=GR=G /2,
«=10kBT, U=30kBT, andp=0.95 were chosen.

FIG. 10. Angular dependence of the conductance with an ap-
plied voltage ofV=«+U /2, i.e., the voltage generating the smallest
influence of the exchange field. Further plot parameters areGL

=GR=G /2, pL =pR=p, «=10kBT, andU=30kBT.
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fected by the external magnetic field, because they are al-
ready of first order in the coupling strengthG.

It turns out that, in the considered limit, the only change
introduced by the external magnetic field is an additional
term S3Bext in the Bloch-like equation

dS

dt
= SdS

dt
D

acc
+ SdS

dt
D

rel
+ S3 B s6.1d

with B=BL +BR+Bext. With the external magnetic field as a
new parameter all the effects of spin blockade and the pre-
cession discussed so far can be enhanced or suppressed and
made independent of the lead alignment.

An external field applied alongêx=sn̂L + n̂Rd / un̂L + n̂Ru
leads to a suppression of the spin-valve effect in the linear-
response regime similarly as due to exchange field. In fact,
according to Eq.(6.1) the magnitude of the relevant field is
just the sum of the exchange and the external fields. The
linear conductance as a function ofBext is displayed in Fig.
11. In the absence of the effective exchange field the conduc-
tance would be symmetric aroundBext=0, and any value of
the field would increase the conductance as discussed in Sec.
V A. The exchange field yields a shift of the position of the
minimum. This opens the possibility to determine the ex-
change field experimentally by changing the external mag-
netic field and keeping all other parameters fixed. From to
generalization of Eq.(5.3) to the present case it becomes
apparent that the width of the minimum is given by the in-
verse of the dwell timetc in the dot, since during this time
the dot spin is influenced by the fields.

We remark that the effect of external-field components
perpendicular to thex direction is somewhat more compli-
cated, even in the linear-response regime. The reason is that
the induced precession will generate some finite spin accu-
mulation along thex direction, which introduces a linear cor-
rection in V of the charge occupation probabilities via Eq.
(3.4). This, in turn, acts back on the accumulated spin due to
Eq. (3.6).

VII. INCLUSION OF SPIN RELAXATION

We emphasize that the only source of spin relaxation con-
sidered in our analysis is the tunnel coupling of the dot states
to the left and right leads, i.e., we require that the spin-flip
relaxation time due to other mechnisms such as coupling to

nuclear spins,38 or spin-orbit coupling,39 is large enough not
to destroy spin accumulation. If we assume a spin relaxation
rate T2 equal to the ensemble spin dephasing timeT2

!

<100 ns forn-doped GaAs bulk material40 as lower bound-
ary, it is still justifiable to neglect spin relaxation effects for
interface resistances of the order of 1 MV.41 But recent mea-
surements with semiconducting quantum dots indicate even
much longer spin relaxation times.42

Nevertheless,(extrinsic) spin relaxation can be the most
limiting factor for various spin-accumulation experiments in
systems of larger size.36,43 To include extrinsic spin relax-
ation in a simplified phenomenological way, we add an iso-
tropic relaxation term −S/text in Eq. (3.7), which leads to

SdS

dt
D

rel
= −

1

ts
S= − S 1

tc
+

1

text
DS. s7.1d

Now, two characteristic time scales have to be distinguished:
the average time an electron stays in the dot,tc, and the
mean lifetime of a dot spin,ts=s1/tc+1/textd−1.

By solving the system of master equations for the linear-
response regime, we see that we have to replace the factortc
with ts everywhere in the previous discussions, which
matches the intuition thatts is the relevant time scale for
spin related effects. From Eq.(3.10) we see that the extrinsic
relaxation processes reduce the magnitude of the spin accu-
mulation by a factorts/tc. The observation that the accumu-
lated spin on the dot and, therefore, all spin related effects in
transport vanish linearly withts/tc (and not exponentially)
implies that magnetoresistance effects can still be measured,
even if the mean dwell time of the electrons in the dot ex-
ceeds the spin lifetime significantly, which was experimen-
tally confirmed by Ref. 36. The reason for the linear depen-
dence is the following. Even when the spins relax much
faster than the mean dwell time, a fraction of the spins leaves
the dot already before being relaxed. The probability of de-
tecting a spin with the original alignment in a transport mea-
surement is given by the time integralPspin=e0

`dt
3exps−t /tsd /tc=ts/tc, which is linear despite the exponen-
tial decay of the accumulated spin on the dot.

VIII. RELATION TO SPIN-MIXING CONDUCTANCE

Transport through multiterminal devices with noncol-
linear lead magnetizations has been discussed recently by
using the language of a complex spin-mixing conductance
G↑↓ within a circuit theory.23 The mixing conductanceG↑↓
contains the information about the transport of spins oriented
perpendicular to the magnetization of the ferromagnetic
leads. Using this approach, the conductance of a two-
terminal device with noncollinear magnetization of the leads
can be described in linear response by the general relation

Gsfd =
G

2
S1 − p2 tan2sf/2d

tan2sf/2d + uhu2/Reh
D , s8.1d

whereh;2G↑↓ /G is the complex spin-mixing conductance
normalized to the sumG of the spin-up and spin-down con-
ductance of a single contact. This formula, Eq.(8.1), is quite
general but requires the knowledge ofh. Hybrid systems of

FIG. 11. Linear conductance as a function of an applied external
magnetic field inx direction. The parameters areGL =GR=G /2, pL

=pR=p, «=0, U=10kBT, andf=p /2.
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ferromagnets with normal metals in diffusive and ballistic
regime23 or even Luttinger liquids44,45 have been described.
For system with tunnel contacts Reh=1 and Eq.(5.3) can be
transformed into the form Eq.(8.1) by identifying

Im h ;
2Im G↑↓

G
= B0tc. s8.2d

Our approach, thus, provides a theory for the interaction ef-
fects on the spin-mixing conductance in the linear-response
regime. The imaginary part Imh is proportional to the local
effective field experienced by the dot spins, because this field
is responsible for the spin precession which yields a coherent
mixing of the two spin channels.

IX. CONCLUSIONS

In the presented work the influence of charging interac-
tion effects on the tunnel magnetoresistance for systems with
noncollinearly magnetized leads has been discussed. We ex-
amined a single-level quantum connected to ferromagnetic
leads as a model system and found that charge- and spin-
related properties do not just coexist but their interplay gives
rise to important effects detectable in transport measure-
ments.

The most important effects discussed in this paper are
related to the existence of an effective exchange magnetic
field BL +BR, which leads to a precession movement of the
accumulated spin on the dot. This precession weakens the
spin-valve effect by reducing the amount of accumulated
spin and changing its orientation relative to the leads. As a
result, the current flowing through the system is increased
due to the exchange field. Also the functional form of the
angular-dependent linear conductance is affected, and the cos
dependence valid for a single magnetic tunnel junction is
modified due to the precession of the accumulated spin.

In nonlinear response, the accumulated spin on the dot
tends to align antiparallel to the drain lead magnetization.
Such a spin blockade causes a suppression of transport for
the bias-voltage regime in which the dot can be empty or
singly occupied. The spin precession due to the coupling to
ferromagnetic leads countersteers the spin blockade by tilting
the spin accumulation direction. Since the strength of the
exchange field is a nonmonotonic function of the applied
voltage, a regime with negative differential conductance ex-
ists.

Attaching ferromagnetic leads to quantum dots is quite
challenging. One promising approach is to contact an ultras-
mall aluminum nanoparticle, which serves as a quantum dot,
to ferromagnetic metallic electrodes. In this way, quantum
dots with one magnetic and one nonmagnetic electrode have
already been fabricated.18 An alternative idea is to use carbon
nanotubes as quantum dots and to place them on ferromag-
netic contacts.10 But also other systems are conceivable, such
as self-assembled InAs quantum dots in GaAs light emitting
diodes with (Ga,Mn)As as ferromagnetic electrode,17 or
STM setups with a natural or artificial impurity on a ferro-
magnetic substrate contacted by a ferromagnetic STM tip.46
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APPENDIX: DIAGRAMMATIC TECHNIQUE

In this appendix we present some technical details of the
derivation of the master equations and the transport current.
The approach is based on the diagrammatic technique devel-
oped in Ref. 25, designed for the application in quantum dot
systems. The actual calculation is to some degree similar to
transport through Aharonov-Bohm interferometers with
quantum dots.24

Transition rates S

In the Liouville equation(3.2) the transition rates appear

as irreducible self-energiesS
x28x2

x18x1. These self-energy parts are

represented as block diagrams enclosed by a Keldysh con-
tour. Examples of first-order diagrams are shown in Fig. 12.
The real-time axis runs horizontally from the left to the right
while the upper(lower) line represents the forward(back-
ward) propagator of the dot on a Keldysh time contour. The
rules to calculate theo are the following.25

(1) Draw all topologically different diagrams with tunnel-
ing lines connecting vertices on either the same or opposite
propagators. Assign to the four corners and all propagators
the statesx=0,↑ , ↓ ,d and the corresponding energies«x, as
well as an energyv to each tunneling line.

(2) For each time interval on the real axis confined by two
neighboring vertices, assign the resolvent 1/sDE+ i0+d,
where DE is the energy difference between left and right
going tunnel lines and propagators.

(3) For each vertex connecting a double-occupied stated
to the up state↑, the diagram acquires a factors−1d.

(4) Assign to each tunneling line the factorgss8
+ svd

fgss8
− svdg when the tunneling line is going backward(for-

FIG. 12. Examples for the diagrams representing the generalized
transition rateso.
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ward) with respect to the Keldysh contour. Its form is

gss
± svd =

1

2p
o

r,x=±

Grx

2
f r
±svd, sA1d

g↑↓
± svd =

1

4p
sGL+ fL

±eif/2 + GR+fR
±e−if/2 − GL− fL

±eif/2

− GR−fR
±e−if/2d = g↓↑

±!svd. sA2d

Here,s ands8 are the spins of the electron that leaves and
enters the vertices connected by the line. The factorsg±svd
come from the contraction of two lead operators in the tunnel
Hamiltonian and resemble the transition rates predicted by
Fermis golden rule, including a sum over all intermediate
lead statessr =R/L ,s= + /−d. Dependent on the time order-
ing, the transition rate is proportional to the electronf+ or the
hole distribution functionf−=1−f+, while the relative phases
can be extracted from Fig. 3.

(5) The diagram gets a prefactor ofs−1dbs−1dc, whereb is
number of internal vertices on the backward propagator and
c the number of crossings of tunnel lines.

(6) Integrate over all energies of the tunneling lines.
In the sequential-tunneling regime, only one tunnel line

per diagram is involved. Therefore, only one frequency inte-
gral appears which can be calculated trivially by using
Cauchy’s formula.

Green’s functions

For the calculation of the transport current, we need the
Fourier transform of the Keldysh Green’s functions,

Gss8
. std = − ikcsstdcs8

† s0dl, sA3d

Gss8
, std = + ikcs8

† s0dcsstdl. sA4d

The Green’s function is an average of one creation and one
annihilation operator. These operators appear as external ver-
tices(open circles) in the diagrams. They can be constructed
following the rules.

(1) Draw the bare contour, the external vertices, and the
virtual tunnel line in the proper orientation as seen in Fig. 13.
The indices of the Green’s function indicate the spin of the

created and annihilated electrons at the external vertices. If
higher-order contributions inG are to be calculated, add in-
ternal vertices according to the desired order and connect
them by tunnel lines. Multiply the diagram with the matrix
element of the density matrix corresponding to the initial
state. Assign to each propagator with statex the correspond-
ing energy«x and to each tunnel line and the virtual line an
energyv.

(2) Apply the same rule as no.(2) for calculatingS.
(3) Apply the same rule as no.(3) for calculatingS.
(4) Assign each tunneling line the factors−1dvgss8

+ svd,
wherev is the number of external vertices on the Keldysh
contour enclosed by the end points of the tunnel line. The
line connecting the external vertices does not contribute.

(5) Apply the same rule as no.(5) for calculatingS.
(6) Integrate over all energies except the energy assigned

to the virtual tunnel line.
For the lesser functionGss8

, , the direction of the external
tunnel lines is reversed, and an additional global minus sign
is involved in the definition.

In this paper we assume weak dot-lead coupling, i.e.,
we need only the zeroth-order Green’s functions. In this
limit, we get Gss

. svd=−2piPs̄dsv−«−Ud−2piP0dsv−«d,
Gss

, svd= +2piPsdsv−«d+2piPddsv−«−Ud and for sÞ s̄
we find Gss̄

. svd=2piPs̄
sdsv−«−Ud, Gss̄

, svd=2piPs̄
sd

3sv−«d.
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