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Theory of transport through quantum-dot spin valves in the weak-coupling regime
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We develop a theory of electron transport through quantum dots that are weakly coupled to ferromagnetic
leads. The theory covers both the linear and nonlinear transport regimes, takes noncollinear magnetization of
the leads into account, and allows for an externally applied magnetic field. We derive generalized rate equa-
tions for the dot’s occupation and accumulated spin and discuss the influence of the dot's spin on the trans-
mission. A negative differential conductance and a nontrivial dependence of the conductance on the angle
between the lead magnetizations are predicted.
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I. INTRODUCTION ation and a single magnetic-atom spin on a scanning tunnel-
Ing microscope(STM) tip. For the latter, precession of the

The study of spin-dependent transport phenomena has re: O . .
cently attracted much interest and led to new device funcSingle spin in an external magnetic field has been detected in
the power spectrum of the tunneling curréht!

tionalities based on the manipulation of the spin degree o :
! " ipura bl 9 In a recent paper by two of U3,we predicted that the

freedom®2 A prominent example, which has already proven. | ¢ spi i | .
technological relevance, is the spin valve based on either tHterplay of spin-dependent tunneling and Coulomb interac-

giant magnetoresistance efféén magnetic multilayers or tion in qu_antum-dot_spin valves give_s rise to an interaction-
the tunnel magnetoresistafide magnetic tunnel junctions. driven spin precession, describable in terms of an exchange

In the latter case, the tunneling current between two ferrofi€ld and detectable in a nontrivigi dependence of the lin-
magnets depends on the relative orientation of the lead$@ conductance. The aim of the present paper is to extend
magnetizations. The maximal and minimal transmission ¢S discussion to a complete theory of transport through
achieved for the parallel and antiparallel configurations, reguant_umz—zdot spin valves in the limit of weak dot-lead
spectively. At intermediate angles of the relative magneti- COUPIing=* The theory covers both the regimes of linear and
zation direction, the transmission is interpolated by a cosin@onlinear responses, and is easily generalized to include an
law. This angular dependence, which has been beautifull xternal magnetic field and/or spin relaxation processes

demonstrated experimentaflycan be easily understood ithin the quantum dot. The quantities of central interest are
within a noninteracting-electron pictufelt simply reflects e magnitude and direction of the spin accumulated on the

the ¢-dependent overlap of the spinor part of the majority-duantum dot. They can be determined by generalized kinetic
spin-electron wave functions in the source and drain elec€duations within a diagrammatic real-time transport theory
trodes. for the dot’s density matrix. To obtain a more intuitive and

On the other hand, tunneling transport through nanostrucg@Sily accessible framework for the dynamics of the dot's
tures, such as semiconductor quantum dots or metalliccupation and spin, however, we transform the kinetic

single-electron transistors, is strongly affected by Coulomi£auations into rate equations that exhibit similarities to

interaction, and a noninteracting-electron picture is no longeP!0Ch equations of a spin in a magnetic field. The derivation
applicable. Recent works on spin-dependent tunnelin f these Bloch-like rate equations is the first central result of

through these devices include studies on metallic isl&fds, (IS Paper, presented in Sec. Ill after defining the model in

granular system$and carbon nanotub¥scoupled to ferro-

magnetic leads as well as spin-polarized transport from fer-

romagnets through quantum déts!® The focus of this pa-

per is on quantum-dot spin valves, i.e., quantum dots

attached to ferromagnetic leads, with noncollinear magneti- M,

zations; see Fig. 1.

The much richer transport behavior of quantum-dot spin — \éaw
valves, as compared to single magnetic tunnel junctions, re-
lies on the possibility to generate a nonequilibrium spin ac- |I |I
cumulation on the quantum dot, depending on system param- || ||
eters such as gate and bias voltages, charging energy, VL — \{1

asymmetry of the tunnel couplings, and external magnetic

field. This opens the potential of a controlled manipulation of FIG. 1. Quantum-dot spin valve: a quantum dot is weakly
the quantum-dot spin, detectable in transport. To some deoupled to ferromagnetic leads. The magnetization directions of the
gree, there is a relation between the system under considdeads enclose an angte
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Sec. Il. They provide a convenient starting point for the dis- (a)
cussion of how the dot state depends on the system paran e+u
eters. The second major achievement of this paper is to relat evV/2 x
the current through the device to the dot's occupation and e
average spin, which is done in Sec. IV. 0

An analysis of the obtained results is presented in Sec. V.
We find that the quantum-dot spin, and thus the current, be-
haves quite differently in the linear- and nonlinear-response T, R
regimes. In linear response, the above-mentioned effective
exchange field rotates the quantum-dot spin such that the
spin-valve effect is reduced. This contrasts with the FIG. 2. (&) Scheme of the quantum-dot energy scales. The dif-
nonlinear-response regime, in which the dot spin tends t(fpren(;e of the electrqchemlcal ‘poter.ltlals of the left and rlght leads
align antiparallel to the drain electrode, leading to a spindescribes a symmetrically applied bias voltagp.The coordinate
blockade. Together with the effective exchange field thisSYStém we choose. The magnetization directignandng enclose
leads to a very pronounced negative differential conductancé” 2"9/e#-

We, then, conclude by generalizing our theory to include
an external magnetic fieldSec. V) or internal spin relax- find it convenient to choose neithgr nor ik but instead to
ation in the dot(Sec. VII) and by interpreting the effective quantize the dot spim=1,| along thez direction of the
exchange field within the recently introdu@danguage of coordinate system in which the basis vectegse,, ande,

Energy (®)

the spin-mixing conductang&ec. VIII). are alongf, +fg, N —Ng, andig X A, respectivelysee also
Fig. 2. The tunnel Hamiltonian for the left tunneling barrier
Il. MODEL then reads
We consider a quantum dot with a level spacing exceed- _h T idlh —ibla
. . Lo . ; Hr o =—+ e?c,+e’?c
ing thermal broadening, intrinsic linewidth, and charging en- Ty zk“ B f )
ergy, i.e., only a single level with energy measured relative " sigia igia
to the Fermi energy of the leads, contributes to transport. The ta (-e"?c +e e ) +He (2.2

(rqnuoa:jnetlutmhisdg;;?emlwittekll—?ﬁ:p;z?nmol;ﬁ;rr?magnetlc leads. W%nd for the right barrierHy g, the same with the replace-

ments L—R and ¢— —¢. Here,t_ andtgy are the tunnel
H=Hgo+ H. +Hgr+ Hy |+ Hr g (2.1 matrix elements. The tunneling rate for electrons from lead
. B i ) _with spin () is then T, ./fi=2mlt,|?p, +/#. Therefore the
The first partH =2 ,e¢,C,+Unn| describes an atomiclike ~gjectronic states in the quantum dot with spii) acquire a
spin-degenerate energy level on the dot plus the chargingmite linewidth r=s —+27T|tr/\‘E|2pr = T, 2.
energyU for double occupancy. The left and right ferromag- e note that while individual pgrts of the tunnel Hamil-
netic leadsr=L, R, are treated as a reservoir of itinerant yynians do not conserve spin separately, the sum of all parts
electrons,H =21, 8,8 Where o=+ labels majority  gyrictly does. Due to the special choice of the quantization
ando=- minority-spin electrons. Here, the quantization axis,yis, the lead electrons are coupled equally strong to up- and
for the electron spins in reservairis chosen along its mag-  gown-spin states in the quantum dot. There are, however,
netization directionn;. In the spirit of a Stoner model of Hhase factors involved, similar to Aharonov-Bohm phases in
ferromagnetism, we assume a strong spin asymmetry in thetiply connected geometries. The formal similarity of the
density of stateg .(w) for majority (+) and minority(~)  guantum-dot spin valve to a two-dot Aharonov-Bohm
spins. (To be more precise, without loss of generality we jnerferometet is visualized in Fig. 3.
assume the direction of magnetization to be parallel to the
direction of majority sping.In the following, the densities of
states are approximated to be energy indepengerfiw)
=p; .. (Real ferromagnets have a structured density of states.
This will modify details of our results but not change the
general physical pictureThe asymmetry in the density of
states is characterized by the degree of spin polarization
=(prs—pr) ! (prs+p,~) with 0<p,<1, wherep,=0 corre-
sponds to a nonmagnetic lead apd=1 describes a half-
metallic lead, carrying majority spins only. The magnetiza-
tion directions of the leads can differ from each other,
enclosing an angleé=<(n,,Nr). An applied bias voltage is FIG. 3. Graphical representation of the phase factors in the tun-
accounted for in different electrochemical potentials for thene| Hamiltonian, Eq(2.2). In this representation, the quantum-dot
left and right leads. spin valve bears similarities to an Aharonov-Bohm setup, with the
Tunneling between leads and dot is described by tunnelifferent arms modeling the two different spin channgland |,
HamiltoniansHy | andH+ g. Their explicit form depends on and the Aharonov-Bohm flux corresponding to the relative angle of
the choice of the spin quantization axis for the dot states. Wehe leads’ magnetizations.
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[Il. OCCUPATION AND SPIN OF THE DOT d i
P = (E

dt X Ao XL B EXz) Pﬁ(t)
In this section we derive rate equations governing the
state of the dot, i.e., its occupation as well as the magnitude t
and direction of an accumulated spin. For this, we make use , X151y XIX1 (47
. ; . ! . + [ dt PRIt )2 (). 3.2
of a diagrammatic real-time appro&elio describe the time 2 ()30 (3-2
evolution of the reduced density matrix for the dot degree of - XX

freedoms, which is obtained after integrating out the leadygre, E, are the energies of the decoupled sysi@mour
electrons. The resulting equations for the density matrix eleCase Eo 0, E;=E;=¢, and E4=2:+U). The kernels
ments can be reformulated into a more intuitive language of,:,, ,
rate equations for the dot's occupation and spin. 2 (t ,t) act as generalized transition rates in Liouville
space They are defined as irreducible self-energy parts of the
_ _ dot propagator on a Keldysh conto(see first part of the

A. Reduced density matrix for the quantum dot Appendi®, and can be expanded in powers of the dot-lead
gouphng strengthl”. In the limit of interest for this paper,

The dynamics of the system can be described by the tim Fe.. weak dot-lead coupling, only the terms linearlirare

evolution of the total density matrix, which accounts for all
degrees of freedom in the dot and the leads. While the Ieacfgta'ned
are treated as reservoirs of noninteracting electrons, it is the The Markovian approximation is established by replacing
dynamics of the dot degrees of freedom that determine thpxl(t ) in Eg. (3.2) with le(t) In this case, the time
transport behavior. This motivates the idea to integrate out*2
the leads and arrive at a reduced density matrix for the dontegral can be comprlsed in the def|n|t|0IiX1X1
?eeg%;eﬁlzo;uftreﬁg?;gsn I;/reD;tfgIs I?]bgé:c tzg procedure of in_ =if [0, dt’ E“Xl(t’ 0). We will only discuss results for the
The basis of the Hilbert space is given by the stgtes steady- state I|m|t i.e., all matrix elements are time indepen-
=0 (empty doj, T (dot occupied with one spin-up electipn den_t and the a'bo.ve ment|oned replacement is not an approxl—
| (the same with a spin-down electjomndd (double occu- Mation but valid in general. In order to emphasize the physi-
pancy of the dot Therefore, the reduced density matpiy, cal origin of the rate equations, however, we will keep all

is a 4X 4 matrix with matrix e|ement§’X1E(Pdor)X . We time Qerlvatlves although their numerical value is zero for
X2 2 our discussion.

get

B. Master and Bloch-like equations

Po O 0 O For a more intuitive access to the average dot state, we

o pP. Pl 0O connect the matrix elements of the reduced density matrix to

paoc=| Pl 5 o (3.1)  the vector of the average spms with S=(S,,S,,S,) by
Tl

PT + Pi - P! P,-P

0 0 0 Py = = log=-1—4 (33

The diagonal, real entrieB, = PY are nothing but the prob- We emphasize th&8 describes a quantum-statistical average
abilities to find the dot in the corresponding staje rather than the coherent state of a single spin. As a conse-
=0,7,],d. The zeros in Eq(3.1) in the off diagonals are a quence, the magnitud&| can adopt any number between 0
consequence of the total-particle-number conservation. Thand 1/2. The average charge occupation of the dot is deter-
nonvanishing complex off-diagonal eIemerR%—(Pl)* re-  mined by the probabilitie®,, P;, and Py, where P,=P,

flect the fact that an accumulated dot spin is not restricted te-P,. The dot state is, thus, characterized by the set of pa-
the z direction but can also have a finikecomponent any  rameters(Py,P1,Pq,S;,S;,S,), in which only five of them
component. The density matrix has, thus, six real parametegre independent, since the normalization of the probabilities
(four diagonal elements and the real and imaginary parts afequiresPy+P;+Py=1.

Pi) Due to the normalization condition gg,=1, only five We evaluate the irreducible self-energies appearing in Eq.
of them are independent. (3.2) up to first order inl” (see the Appendixto get a set of
The time evolution of the reduced density matrix is givensix master equations, three for the occupation probabilities
by a generalized master equation in Liouville sp&ce, and three for the average spin. The first three are given by
|
Po - 2f7(e) fi(e) 0 Po fi(e)
d 1_‘r + - + - 2prl-‘r - + N
al Pl > 2| 2 —fe)-fe+U) 2f(e+U) || Py [+ > = |~ f@+HE+U) |SA. (34
Py) R 0 f*e +U) ~2f7(e+U) ) \Py) R ~ (e +U)
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Here, we have used the following definitions. The probabilityBloch-like equation. This term leads to a precession of the
to find an electronic state at energyin the left(right) lead  dot spin abouB, +Bg, where(B_+Bg)/y can be viewed as
occupied is given by the Fermi functiofi(R)(w) and by afiptitiou_s magne;ic_f!eld, witl@z:—g;_LB beir}g the gyromag-
f =1—f* to find it empty. netic ratio. This fictitious field vanishes in the absence of
LR (@) Lir () Py Coulomb interactionU=0, i.e., its origin is a many-body

in Eq. (3 ) d h | interaction effect. Its nature can be conceived as an exchange
in Eq. (3.4) survives, and we recover the usual master equage|q que to virtual particle exchange with the spin-polarized

tions for sequential tunneling through a single lefeFor o345 Note that these virtual exchange processes do not
spin-polarized leads, however, tunneling into or out of thechange the charge of the dot, in contrast to the spin-
dot becomes spin dependent. As a consequence, the chaiggyendent tunneling events responsible for the first two con-
occupation, in general, depends on the spiaccumulated  tributions to Eq(3.5). Nevertheless, this contribution is also
on the dot, as indicated by the second term of Bgd). The linear inT" and has to be kept to be consistent. We emphasize
three remaining master equations describe the time evolutiothat the use of a simple rate-equation picture, which neglects

In the case of nonmagnetic leags=0, only the first term

of the average spin, this exchange field and takes into account spin-dependent
ds /ds s 4s tunneling only, would be fundamen_tally insufficient. _
—:(—> <_> +<_) (3.5 The type of exchange interaction that emerges in our
dt  \dt/aee \dt/ \dt/ g theory has been discussed in the literature in the context of
with Kondo physics for magnetic impurities (norma) metals?’
With the help of a Schrieffer-Wolff transformation, the
(d_S) - ple £ (6)Po + —f(e)+f(e+ U)P Anderson Hamiltonian describing the magnetic impurity can
dt)ace 1ok B LT &)Fo 2 1 be transformed to as-d model, in which the spin of the

magnetic impurity is coupled to the conduction-band-
electron spins of the metal. Since the metal is spin symmet-
ric, there is no net exchange field, though. This contrasts
with our model, which includes a finite spin polarization of
ds r the leads. By integrating out the lead electrons of the trans-
— ] == [f(e) + (e +V)]IS, (3.7 formed Hamiltonian in the subspace of single dot occupancy,
(S~ 2 7o i Subspac
rel  r=LR we recover the precise mathematical form of the exchange
field as given in Eq(3.9).
(d_S> —sx S B (3.9 The generalization of our theory to the case of real ferro-
dt mt" r : magnets with nonuniform density of states is straightfor-
ward. The only modification is to keep the energy depen-
where we used the definition dence of p(w)=[p;(w)=p,_(w)]/[pr+(w)+p,_(w)] and
ra [ () () I'i(w) in all formulas. In particular, these quantities have to
L dw( L + L ) (3.9 be included in the energy integral for the exchange field in
wh Eq.(3.9).282°
for r=L,R, and the prime at the integral symbolizes We rgmark that the effective exchange field is not only
Cauchy’s principal value. We see that three different contri"€SPonsible for the torque on an accumulated spin as dis-
butions lead to a change of the average dot spin. The fir§gussed above, but it also generates a spin splitting of the dot
one, Eq.(3.6), depends on the occupation probabilities only!evel™” Since this Zeeman-like splitting is proportionallfo
and describes nonequilibrium spin accumulation via tunnelit cannot be resolved in any transport signal in the weak-
ing to and from spin-polarized leads. This is the source termCOUPling regime considered in the present paper. This split-
which is responsible for building up a spin polarization in theting gives rise to a correction of higher order in the coupling
quantum dot. The second terproportional toS) has the that ha; to be_ dropped in a conS|s_te|jt first-order-transport
opposite effect. It accounts for the decay of the dot spin byf@lculation. This contrasts with the limit of strong lead-dot
tunneling out of the electron with given spin or by tunneling €0UPling, in which any spin splitting modifies the emerging
in of a second electron with opposite spin forming a spinKondo physics in a crucial manner.
si'ngl_et on the dot. These tunneling mechanisrr_1$ yielg an in- IV. ELECTRIC CURRENT
trinsic spin relaxation rate /=3, r(I'//A)[f (e)+f (e ) )
+U)]. From Eq.(3.5 we can derive the magnitude of the  The current through the device can be expressed in terms
spin on the dot via of Keldysh Green’s functions of electrons, as shown, e.g., in
Refs. 24 and 31. The starting point of our discussion is the
@ _S _ (d_S) _ @ relation for the current, coming from reservoir,
dt  [S \dt/

The two contributions, Eqg3.6) and (3.7), capture the
spin dynamics due to spin-dependent tunneling processes @.1)
transferring electrons into and out of the quantum dot. But '
above equation is also sensitive to the directiorspoivhich  Here, the bold face indicates ax2 matrix structure for the
depends directly on the third contribution, §§.8), of the  spin degree of freedom. The lesser and greater Green'’s func-

~f (e + U)Pd}ﬁ,, (3.6)

r=L,R

B, =
r=Pr w—-e—-U w-¢

- (3.10

I, = % f do t{If; (0)G™ () + T (0) G~ ()}
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. GHi(w) Gjj(w) .
tions G<(w):(G%(Z) G%(Z)) and G”(w) are defined as the

Fourier transforms ofG. ,(t)=i(c’,(0)c,(t)) and G__(t)

o

:—i(cg(t)c:rr,(O)), respectively. The coupling matrices are de-

fined asI‘L=FL(,1JLZi?¢Z/i), and the same foFg but with the
substitutions =R and ¢——¢. The diagonal matrix ele-
ments describe tunneling of spins along thdirection and
are, therefore, independent of the leads’ spin polarizgtion
since the magnetizations of the leads lie in thg plane.
This contrasts with the off-diagonal matrix elements taking
into account tunneling of spins in they plane. FIG. 4. Spin dynamics in the linear-response regime. Spin ac-
In the weak-coupling limit, the current is dominated by cumulate_s along t_hgz direction. _The_spin precesses due to_the ex-
the contributions of first order in the couplify Becausd change field that is along_thedlrectlon._ Therefore, the statlor_wary
already explicitly appears in E¢4.1), the Green’s functions solution of the average spin on the dot is tilted away fromytlais
have to be calculated to zeroth orderlif? The final result  PY @ anglea, plotted in Fig. $b).
for the current can be written as a sum over two contribu-

tions, steady-state solution of Eq8.4) and(3.5) up to linear order
b s in V. We find that(due to symmetric couplinghe dot occu-
=1 +17, (4.2)  pation probabilitiesPy, P;, P4) have no corrections linear in
which explicitly contain either the occupation probabilities ¥ @nd are, thus, un,changed! independent of the size and di-
Po, P, P, or the accumulated spi§, respectively, rection of the leads’ magnetization. In contrast to the occu-
pation probabilities, the source term for the spin accumula-
2(-e| ., file+U) -1 (e) tion has a nonzero contribution linear
Irp:Fr [ﬂ(@%*‘%ﬂ ds 5 5
(a) = f’(s)<P0+ j) +f'(e + U)(El + Pd)
-f(e+ U)Pd} , (4.3 ace
pl'-eVv .
———=(N_—nNR), 51
o i Tt e (5.2
IP=-pT, P [fi(e)+f(e+U)IS-A. (44  generating a finite spin polarization aloAg-fig, i.e., along

they axis. This is consistent with the notion of angular mo-
For nonmagnetic leads, only the tetfncontributes. At finite: mentum conservation when magnetic moments polarized
spin polarization in the leads, the additional teffrappears, —alongf, enter from the left than those alofig leave the dot
but also the first contributioff is affected via the modifica- to the right.
tion of the occupation probabilities as given in Eg.4). The damping term(dS/dt),o=—(I"/#)[f~(g) +f* (e +U)]S,

In steady state the two curreritsandlg are connected by limits the magnitude of spin accumulation, but it does not
the conservation of charge on the dot, so the homogeneousifect its direction. The third term, howevedS/dt),,=S
current flowing through the system can be definedaly X (B, +Bg) with B,=A,pI'/(27%) [ dw[1/(w-e-U)-1/(w
==l -¢)]f(w) and B, +Br=B,coq¢/2)g,, yields a precession

of the spin with an angle
V. RESULTS

a=- arctar( Bo7e cosé) (5.2

In the following we discuss results for the spin accumu- 2

lation and its impact on transport for both the linear and o _

nonlinear regimes. To be specific, we choose symmetric col@boutn +0g, i.e., thex axis. As a result, the accumulated
pling T =T'r=T"/2, equal spin polarizations;, =pz=p, and a  SPIN acquires botly andz components as seen in Fig. 4. This
symmetrically applied bia¥gr=-V, =V/2. precession acts back on the magnitude of the accumulated
spin. The stationary solution of Eq3.10 yields |S|
=17/(dS/dt) ,cdcOsa, from which we infer that the precession

A. Linear response . X . . .
P is accompanied with a decrease of the spin accumulation.

In equilibrium, i.e., without any applied bias voltagé, The rotation anglex is plotted in Fig. §b) as a function of
=0, no current flows and the stationary solution of the ratehe level positione. We see thata changes sign ak
equations for the occupation probabiliti€s4) is given by  =-U/2, which reflects a sign change of the exchange field at

the Boltzmann distribution?, ~exp(—E,/kgT), and since in  this point. The poin=-U/2 is special, as in this case the

this case(dS/dt),..=0, no spin accumulation occurs in the system bears particle-hole symmetry. The fast variatioa of

quantum dotS=0233 in this region gives rise to a rather sharp feature in the mag-
At nonzero bias voltage, a current flows through the sysnitude of accumulated spin as a functionspfsee Fig. £c).

tem and spin is accumulated on the dot. To describe the ddthe width of the emerging peak scaldsr kg T<U/2) with

state in the linear-response regin®/<kgsT, we expand the #U[f (e)+f"(e+U)]/[pcog4/2)], which can be even
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FIG. 6. Normalized conductance as a function of the angle
enclosed by the lead magnetization for different level positions and

-2 | | the parametert)=10kgT andp=0.9.
(C) PR N "
= 02r % " N E
& SN T For U <& <0, however, the dwell time is increased and
S /! ’ ,'.‘. ' Y 1 the exchange field becomes important. It causes the above
> 0.1F / n \\ . described spin precession, which decreases the pr&diict
) PN, i\ TN | since the relative anglé((A,S) is increased and the mag-
o . T it . Ny nitude of S is reduced. According to Eq4.4), the spin pre-
HE -10 -5 0 5 cession, thus, makes the spin-valve effect less pronounced,
e/kgT leading to a value of the conductance that exceeds the expec-

) _ tations made by Slonczew$kior a single magnetic tunnel
FIG. 5. (a) Linear conductance normalized by kgT as a func- junction.
tion of the level positions for different angles¢. (b) Angle a For parallel and antiparallel aligned lead magnetizations,

enclosed by the accumulated spin and yrexis as defined in Fig. ;0 and$=1, the accumulated spin and the exchange field
4. (c) _Denvatlve of the magnitude pf the accumulated spin on thealso get aligned. As a result, there is no spin precession, even
dot with respect to the source-drain voltageFurther parameters

arep=0.9 andU=10kgT though the exchange field is. still present. For these cases, the
' B ¢-dependent conductance is not affected by the exchange

field; see Fig. 6.

smaller than temperature since the factor with the Fermi

functions involved can become numerically small.

As pointed out above, in the regime under consideration B. Nonlinear response
the occupation probabilities do not depend on the spin polar-
ization of the leads. In particular, they are independent of the We now turn to the discussion of the nonlinear response
relative angleg of the leads’ magnetization. This means thatregime,eV>kgT. In Fig. 7@ we show the current as a
the ¢ dependence of the conductance will be completelyfunction of the bias voltag® for an antiparallel configura-
determined by the produc®-n =-S-fig, as can be seen tion of the leads’ magnetizations and different values of the
from Eqgs.(4.3) and(4.4). It is the relative orientation of the |eads’ spin polarizatiop. As it is well known from transport
accumulated spin and the drdior sourcg that produces the through quantum dots with nonmagnetic leads, the current
¢ dependence of the current, rather than the produelz,  increases in a steplike manner. At low bias voltage, the dot is
as in the case of a single magnetic tunnel junction. In thisalways empty and transport is blocked. With increasing bias
way, the ¢ dependent linear conductan@"= (dl/dV)|y=o  voltage, first single and then double occupancy of the dot is
directly reflects the accumulated spin. The effect of the expossible, which opens first one and then two transport chan-
change fieldB is seen from the analytic expression nels. A finite spin polarizatiop leads to spin accumulation
and, thus, to a reduction of transport. A reduction of transport
with increasingp is also seen for noncollinear magnetization.
There is a qualitative difference, though. As can be seen in
Fig. 7(b), a very pronounced negative differential conduc-
which is plotted in Fig. 6 for different values of the level tance evolves out of the middle plateau as the spin polariza-
positione. tion p is increased.

For £>0, the quantum dot is predominantly empty, and Before explaining the origin of this negative differential
for e+U <0 doubly occupied with a spin singlet. This is conductance, we address the height of the plateau at large
reflected by a small lifetime, of a dot spin. Due to the short bias voltages first. Away from the steps, all appearing Fermi
dwell time of a single spin-polarized electron in the dot, thefunctions are either 0 or 1. From Ed4.2) we get |
rotation angle is small and the normalized conductance as a(el'/2#)[1-pS-(A_ —fAg)]. When the exchange field is ig-
function of the relative angleb of the lead magnetizations nored, which can be done here since the spin dwell time is
shows a harmonic behavior; see, e.g., the curve gor shortened by the possibility of forming spin singlets, then the
=5kgT in Fig. 6. accumulated spin iS=p(f, —hgr)/4 from which we get

G'"(¢) 12 Sir?(¢/2)

Gno) ~ P 1+ (Boro)%cog(¢l2)’

(5.3
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0.5 — T T T 1
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FIG. 8. For electrons polarized antiparallel to the drain lead, the
influence of the effective field generated by the source lead is domi-
nating. By rotating the spins, the spin blockade is lifted and there-
fore the conductance recovers.

occupied with one electron, and the accumulated spin tends
to align along fig, antiparallel to the drain electrode. The
electron is, thus, trapped in the dot since tunneling out to the
drain electrode is suppressed by a low density of states for
the given spin direction. No second electron can enter the dot
because of the Coulomb interaction, and transport is, thus,
blocked. So this mechanism is a type of spin blockade but
with a different physical origin compared to the systems de-
scribed in literaturé# 3%

The suppression factor coming from E§.6) defines the
local minimum of the current in Fig.(B). At this point, the
relevant exchange field component generated by the coupling
to the left lead vanishes, so that spin precession becomes
insignificant; see Fig.(®). Away from this point spin preces-
| = g(l _p?sir? g) (5.4 sion sets in as illustrated in Fig. 8. The spin rotates abput

FIG. 7. Current-voltage characteristics for antiparafel and
perpendicular alignedb) lead magnetizations. Further parameters
arel’ =I'gr=I"/2, p_=pr=p, e¢=10kgT, andU=30kgT.

T o and the electron can now more easily leave the dot via the
drain electrode.
The suppression of transport due to the spin polarizatioh Similar to the linear-response regime, the rotation caused
the leads is comparable with the case of a single-tunnel jungyy the exchange field weakens the spin-valve effect. The two
tions, when charging effects are of no importance. mechanisms, the spin blockade, and the spin precession have

At intermediate bias voltages, the dot can be empty oppposite effect on the spin-valve behavior. Together with the
singly occupied, but double occupation is forbidden. To unfact that the strength of the exchange field varies as a func-
derstand the negative differential conductance we first netion of the level position relative to the Fermi level, we now
glect the exchange field and then, in a second step, analyzglly understand the origin of the nonlinear conductance. To
how the exchange field modifies the picture. Since doublgystrate this further, we plot in Fig.(®) the current which
occupation of the dot is prohibited, all electrons entering theye obtain when we drop the contribution, E&.8), of the
dot through the left barrier find an empty dot. This is ConSiS'exchange field to the Spin dynamics by hand and compare it
tent with the fact that the current(el'/7)P, explicitly de-  with the full result. In the absence of the exchange field, a
pends only on the probability to find the dot empty. The spinwide plateau is recovered, whose height is governed by Eq.
accumulation affects the current only indirectly via modify- (5.6). The peak at the left end of the plateau indicates that
ing Po. In the absence of the exchange field the relatioronce the dot level is close to the Fermi level of the source

between them is electrode, the spin blockade is relaxed since the dot electrons
r 1-p have the possibility to leave to the left side.
S=p| =*P.A, - —2 55 We now estimate under which circumstances the negative
p onL Ng (5.9 . ) : o ) .
I'g 2 differential conductance will be visible. Since the spin-

blockade mechanism is crucial for the negative differential

with conductance to form, the relevant criterion can be obtained
1 4 2 -1 from Eq.(5.6) as
Po= {1+ P 2sinﬁb} :
1+2F|_/FR FR/FL+21_p 2 4 p2 nz('b 1 5
— ——sinr - ~1, .
(5.6) IR +21-p 2 .7

(At this point we explicitly allow for different tunneling i.e., for a typical value¢= /2 and symmetric coupling
strengths. As a consequence, with increasiggand p the  I',=I'r we need at least a spin polarizatigr=0.77, in
probability P, decreases, i.e., the dot is most of the timeagreement with Fig. 7. An asymmetry in the coupling
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the current-voltage characteristics is qualitatively the same.

VI. EXTERNAL MAGNETIC FIELD

As we discussed in the preceding section, the transport
properties through the quantum dot crucially depend on the
magnitude and direction of the average spin in the dot, which
is determined by the interplay of spin-dependent tunneling
and the effective exchange field. The application of an addi-
tional, external magnetic fiel®,,; opens the possibility to
manipulate the dot spin and, thus, the transport behavior in a
direct way. Since the external magnetic field is independent
of all the system parameters considered so far, the parameter
space for experiments is enlarged by another dimension.
Magnetic fields have been used either to split the energy
levels for the different spin componettsor to rotate an
accumulated spiff A combination of both, a static field
splitting the energy levels plus an oscillating field to rotate
the spin, defines an electron spin resonance scheme that al-
lows for the study of single-spin dynamics in quantum dots
in the absence of ferromagnetic leads, as proposed in Ref.
37.

The way a static external magnetic field affects the dot

FIG. 9. Panela): The absolute value of the effective exchange qualitatively depends on the ratio of the induced Zeeman

field contributions from the left and right leads. Pat®t the cur- AR .
rent voltage dependence, with and without the influence of the exENergy and the intrinsic linewidth of the dot energy levels.

change field. For both plots the parametérsw/2, I' =I'gr=I"/2,

£=10kgT, U=30kgT, andp=0.95 were chosen. A. Large Fields

At large magnetic fieldsBe>1" (to keep the formulas
strengthl’, >T'g helps us to somewhat reduce the number ofyansparent, we include the gyromagnetic factor in the defi-

the required spin polarization. nition of Beyy), all the complex spin dynamics discussed so
The effect of the spin blockade on thedependent cur- 5y js absent. It is natural in this case to quantize the dot spin
rent is depicted in Fig. 10. We choosg the bias voltage aC3long the direction 0B, The Zeeman splitting termBqy
cording to_eV/2;g+U/2, such that the mfluence _of the ex- = ¢ in the Liouville equation(3.2) ensures that for weak
change field is absent. Fop=0.5 stil a sif(¢/2) coupling, the density matrix always remains diagonal, as can
dependence can be recognized. For higher polarizations thg seen from expanding E¢3.2) to lowest order inl’ to
conductivity drops faster and stays nearly constant at itgptain 0<(¢, - ¢ )PL. As a consequence, the average spin on
minimal value due to spin blockade. This is just the oppositgpe dot is always polarized along the direction of the external
behavior than predicted for the linear-response regime ag;agnetic field, and the exchange field does not play any role.
seen in Fig. 6. o _ In a physical picture, the spin components perpendicular to
We close this section with the remark that while we plot-g_ are averaged out due to a fast precession movement.
ted only results for the case>0, in the opposite case<0  Transport effectively takes place through two energetically
separated levels, where the coupling strength to the left and
right leads depends on the angles < (B, Ai;) between the
lead magnetizations and the external field via the relations
Iy =I'(1+p, cosé) andI', =I',(1-p, cosé,). Thereby we
assumed that the applied magnetic field is not strong enough
to tilt the lead magnetization direction. It is worth to point

TN T . T T T s

0.5 ‘-, AN ad ,'l =

1(¢) / 1(0)

out that the spin polarization and the trigonometric function
of the relative angled, appear always as a product, so that
this system is equivalent to the collinear ca$é$with de-
creased magnetization of the leads.

R p=095 .7
0 1 | 1 -_..I_”-. 1 | .
0 /2 . 3n/2 on B. Small Fields
o

The situation becomes more interesting in the limit of

FIG. 10. Angular dependence of the conductance with an apsmall fields,Be,=1I". To describe this case, we perform the
plied voltage ofV=g+U/2, i.e., the voltage generating the smallest Same perturbation expansionlinas before, but cour,,; as

influence of the exchange field. Further plot parameterslare

=T'r=T/2, pL=pr=p, 6=10kgT, andU=30kgT.

being first order inl". This introduces in Eq.3.2) the (first-
orden term (ST_sl)Plv while the kernel, are then not af-
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' ' T ; nuclear spins® or spin-orbit coupling? is large enough not
= 1.2F T 1 to destroy spin accumulation. If we assume a spin relaxation
JECR S R —— g rate T, equal to the ensemble spin dephasing tifig
N e T o A ol i ~100 ns forn-doped GaAs bulk materflas lower bound-
eﬁ Yoo — 0. ary, it is still justifiable to neglect spin relaxation effects for
= : --- p=03 interface resistances of the order of IM! But recent mea-
0.8 o Pfg'; surements with semiconducting quantum dots indicate even
i 5 L 4 L much longer spin relaxation timés.
1 Nevertheless(extrinsig spin relaxation can be the most

ext ¢

limiting factor for various spin-accumulation experiments in
FIG. 11. Linear conductance as a function of an applied externapystems of larger siz€:** To include extrinsic spin relax-
magnetic field inx direction. The parameters atg =I'zr=I'/2, p.  ation in a simplified phenomenological way, we add an iso-

=pr=p, €=0, U=10kgT, and p=/2. tropic relaxation term S/ 7., in Eq. (3.7), which leads to
- ds 1 1 1

fected by the external magnetic field, because they are al- —] ==—S=-(—+—|S. (7.1

ready of first order in the coupling strengih dt/re 7 Te  Text

~ Itturns out that, in the considered limit, the only changeNow, two characteristic time scales have to be distinguished:
introduced by the external magnetic field is an additionakne average time an electron stays in the dgt,and the

term SX Bey in the Bloch-like equation mean lifetime of a dot spings=(1/7.+1/7e) ™.
By solving the system of master equations for the linear-
ds (ds ds .
—=|— — ] +SXB (6.1 response regime, we see that we have to replace the factor
dt dt/acc \ At/ el with 75 everywhere in the previous discussions, which

with B=B, +Bg+Be,. With the external magnetic field as a Mmatches the intuition that; is the relevant time scale for
new parameter all the effects of spin blockade and the presPin related effects. From E¢(B.10 we see that the extrinsic

cession discussed so far can be enhanced or suppressed &pi@xation processes reduce the magnitude of the spin accu-
made independent of the lead alignment_ mulation by a faCtOer/ Te- The observation that the accumu-

An external field applied along, =(A, +Ag)/|A_+Ag| lated spin on .the QOt and, therefore, all spin related effects in
leads to a suppression of the spin-valve effect in the linearfransport vanish linearly with/ 7. (and not exponentially
response regime similarly as due to exchange field. In facimplies that magnetoresistance effects can still be measured,
according to Eq(6.1) the magnitude of the relevant field is €ven if the mean dwell time of the electrons in the dot ex-
just the sum of the exchange and the external fields. Theeeds the spin lifetime significantly, which was experimen-
linear conductance as a function Bf,, is displayed in Fig. tally conflrmed by Ref. 36. The reason for the linear depen-
11. In the absence of the effective exchange field the conduélénce is the following. Even when the spins relax much
tance would be symmetric arourB},=0, and any value of faster than the mean dwel! time, a fraction of the spins leaves
the field would increase the conductance as discussed in Séb€ dot already before being relaxed. The probability of de-
V A. The exchange field yields a shift of the position of the {€Cting a spin with the original alignment in a transport mea-
minimum. This opens the possibility to determine the ex-Surement is given by the time integraPgy,=[odt
change field experimentally by changing the external mag>€XP(~t/ 79/ 7.=174/ 7., which is linear despite the exponen-
netic field and keeping all other parameters fixed. From tdial decay of the accumulated spin on the dot.
generalization of Eq(5.3) to the present case it becomes
apparent that the width of the minimum is given by the in-
verse of the dwell timer; in the dot, since during this time
the dot spin is influenced by the fields. Transport through multiterminal devices with noncol-

We remark that the effect of external-field componentslinear lead magnetizations has been discussed recently by
perpendicular to the direction is somewhat more compli- using the language of a complex spin-mixing conductance
cated, even in the linear-response regime. The reason is th@t, within a circuit theory?® The mixing conductancé;
the induced precession will generate some finite spin accuontains the information about the transport of spins oriented
mulation along the direction, which introduces a linear cor- perpendicular to the magnetization of the ferromagnetic
rection inV of the charge occupation probabilities via Eq. leads. Using this approach, the conductance of a two-
(8.4). This, in turn, acts back on the accumulated spin due tderminal device with noncollinear magnetization of the leads
Eq. (3.6). can be described in linear response by the general relation

_G(, tarf(¢/2)
clr=75 (1 P tar(4/2) + | n2Re 7

We emphasize that the only source of spin relaxation conwhere 7= 2G; /G is the complex spin-mixing conductance
sidered in our analysis is the tunnel coupling of the dot stateaormalized to the sur® of the spin-up and spin-down con-
to the left and right leads, i.e., we require that the spin-flipductance of a single contact. This formula, E8}1), is quite
relaxation time due to other mechnisms such as coupling tgeneral but requires the knowledge mf Hybrid systems of

VIIl. RELATION TO SPIN-MIXING CONDUCTANCE

, 8.1
VII. INCLUSION OF SPIN RELAXATION > @1
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ferromagnets with normal metals in diffusive and ballistic 0 T O T
regimé® or even Luttinger liquid¥-*® have been described. ESI = LT+ TN W
For system with tunnel contacts Re=1 and Eq(5.3) can be 0= L0 = |
transformed into the form E@8.1) by identifying
de—"——d d d
2mG;, ndd = Z{ e }
my= =By, (8.2 o Ud d  de —d
f—2— —]
Our approach, thus, provides a theory for the interaction ef- EH = ot + or=a-t
fects on the spin-mixing conductance in the linear-response T T

regime. The imaginary part Im is proportional to the local

effective field experienced by the dot spins, because this field FIG. 12. Examples for the diagrams representing the generalized
is responsible for the spin precession which yields a cohereritansition ratess.

mixing of the two spin channels.
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The most important effects discussed in this paper are APPENDIX: DIAGRAMMATIC TECHNIQUE

related to the existence of an effective exchange magnetic ) ) . .
field B, +Bg, which leads to a precession movement of the In this appendix we present some technical details of the

accumulated spin on the dot. This precession weakens trderivation of the master equations and the transport current.
spin-valve effect by reducing the amount of accumulated! N€ @Pproach is based on the diagrammatic technique devel-
spin and changing its orientation relative to the leads. As £P€d in Ref. 25, designed for the application in quantum dot

result, the current flowing through the system is increasedYStéms. The actual calculation is to some degree similar to
due to the exchange field. Also the functional form of thelfansport through Aharonov-Bohm interferometers with

angular-dependent linear conductance is affected, and the cg§antum dots?
dependence valid for a single magnetic tunnel junction is
modified due to the precession of the accumulated spin.

In nonlinear response, the accumulated spin on the dot In the Liouville equation(3.2) the transition rates appear

tends to align antiparallel to the drain lead magnetizationgg irreducible self-energié‘s’(é’“. These self-energy parts are
Such a spin blockade causes a suppression of transport for XX

. Kok
the bias-voltage regime in which the dot can be empty OIrepresented as block diagrams enclosed by a Keldysh con-

singly occupied. The spin precession due to the coupling t&U- Examples of first-order diagrams are shown in Fig. 12.
gy b pin p ping he real-time axis runs horizontally from the left to the right

ferromagnetic leads countersteers the spin blockade by tilting " )
g P y hile the upper(lower) line represents the forwargback-

the spin accumulation direction. Since the strength of th f the d dvsh ti h
exchange field is a nonmonotonic function of the appliedVa'® Propagator of the dot on a Kel ysh time contour. The
rules to calculate th& are the following?

voltage, a regime with negative differential conductance ex- ; . < .
g g g (1) Draw all topologically different diagrams with tunnel-

ists. . X . . .
dng lines connecting vertices on either the same or opposite

Attaching ferromagnetic leads to quantum dots is quit . he f q all
challenging. One promising approach is to contact an ultrag?fOPagators. Assign to the four corners and all propagators

mall aluminum nanoparticle, which serves as a quantum dof'€ Statex=0,1, | ,d and the corresponding energies as

to ferromagnetic metallic electrodes. In this way, quantumVell @ an energ to each tunneling line.

dots with one magnetic and one nonmagnetic electrode have _(2) FOT each time mterval_ on the real axis confme(_j E)y two
already been fabricatdd An alternative idea is to use carbon N€ighboring vertices, assign the resolvent(AZ+i0"),
nanotubes as quantum dots and to place them on ferromaly’€re AE is the energy difference between left and right
netic contactd? But also other systems are conceivable, suctf0ing tunnel lines and propagators. _

as self-assembled InAs quantum dots in GaAs light emittin% (3) For each vertex connecting a double-occupied slate
diodes with (Ga,MnAs as ferromagnetic electrod®,or  t© the up state, the diagram acquires a factorl). .

STM setups with a natural or artificial impurity on a ferro- ~ (4) Assign to each tunneling line the factoy, ()
magnetic substrate contacted by a ferromagnetic STNPtip. [v_ ,(w)] when the tunneling line is going backwagtbr-

oo

Transition rates
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ward) with respect to the Keldysh contour. Its form is T T
Gz, = Pl u)"'v-...> +P (1)
. 1 | A Tl ll ( V)
Yool @)= 5= 2 ZXfH(w), (A1) a
2 2

rx=

ﬁl(w) = ZT(FLerIWZ + [‘R+fi';e—|¢/2 _ FL_ffeuﬁ/z

~ T fie#?) = y}* (w). (A2) GZ,= Pp @7 P (0)_“-7.52
Here,o and ¢’ are the spins of the electron that leaves and g - g
enters the vertices connected by the line. The factéts) 1Py (;;"-w.&_)_ Py, @D
come from the contraction of two lead operators in the tunnel 0 0 —omiz=z Va

Hamiltonian and resemble the transition rates predicted by
Fermis golden rule, including a sum over all intermediate FIG. 13. Examples for the diagrams representing Green’s
lead stategr=R/L,o=+/-). Dependent on the time order- functions.
ing, the transition rate is proportional to the electféror the
hole distribution functiorf~=1-f*, while the relative phases
can be extracted from Fig. 3.

(5) The diagram gets a prefactor @f1)°(-1)¢, whereb is
number of internal vertices on the backward propagator an

¢ the number of crossings of tunnel lines. . d . O
(6) Integrate over all energies of the tunneling lines. element o_f the density matrix cor_respondlng to the initial
In the sequential-tunneling regime, only one tunnel lineState- Assign to each prc;]pagatolr lywth st,atdsr]]e cqrreslﬂpnd-

per diagram is involved. Therefore, only one frequency inte /N9 ENErgys, and to each tunnel line and the virtual line an

s . . energyw.
%raalgjci)p/ze%rrs;ml\;\llglch can be calculated trivially by using (2) Apply the same rule as ne2) for calculatings.

(3) Apply the same rule as n@3) for calculating..
(4) Assign each tunneling line the fact()ﬂ)”yzg,(w),
wherewv is the number of external vertices on the Keldysh
For the calculation of the transport current, we need theontour enclosed by the end points of the tunnel line. The
Fourier transform of the Keldysh Green’s functions, line connecting the external vertices does not contribute.
> . + 5) Apply the same rule as ng5) for calculatingX.
Gy (1) = =G, (1)C, (0)), (A3) EG; Ingggyrate over all energie§sQ5 éxcept the ene?gy assigned
to the virtual tunnel line.
G, ()= + i<c:;,(0)c(,(t)>. (A4) For the lesser functio®__,, the direction of the external

The G 's function i f f q tunnel lines is reversed, and an additional global minus sign
e Green'’s function is an average of one creation and ong ;- o\ ed in the definition.

?nnlhllatlon (_)p?ra'yorﬁ;l'hg_se operat_?Ls appeatr)as ext?rnatl \:jer- In this paper we assume weak dot-lead coupling, i.e.,
ices(open circlelin the diagrams. They can be constructe we need only the zeroth-order Green’s functions. In this

following the rules. limit, we get G, (w)=—2miP=8(w-&-U)—2miPydlw—¢),
(1) Draw the bare contour, the external vertices, and th@jg(w)F+Zﬂifaf?(w‘8)_+27TiPd5(w‘8‘U)<and foro# o
virtual tunnel line in the proper orientation as seen in Fig. 13we  find G {w)=27iP7d(w-e-U), G {w)=2miP7o

The indices of the Green’s function indicate the spin of theX(w-¢).

created and annihilated electrons at the external vertices. If

higher-order contributions il' are to be calculated, add in-

%ﬁrnal vertices according to the desired order and connect
em by tunnel lines. Multiply the diagram with the matrix
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