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We present a theory of the low-temperature mobility of holes in strained SiGe layers of Si/SiGep-channel
heterostructures. Our theory must not be based on the unclear concept of interface impurity charges assumed
in the previous calculations, but takes adequate account of the random deformation potential and random
piezoelectric field. These appear as effects arising from both lattice mismatch and interface roughness. It is
proved that deformation potential scattering may be predominant over the well-known scattering mechanisms
such as background doping, alloy disorder, and surface roughness for a Ge contentx*0.2, while piezoelectric
scattering is comparable thereto forx*0.4. Our theory turns out to be successful in providing a good quan-
titative explanation of recent experimental findings not only about the low value of the hole mobility but also
its dependence on carrier density as well as its decrease with Ge content.
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I. INTRODUCTION

Recently, there has been considerable interest in the incor-
poration of a strained SiGe layer intop-channel metal-oxide-
semiconductor structures, to give increases in hole mobility
and high-field drift velocity.1–3 However, low-temperature
measurements reveal the following striking phenomena.
First, the hole mobilities are significantly less than the elec-
tron ones. For the two-dimensional electron gas(2DEG) in a
Si n-channel, peak low-temperature mobilities were reported
to be ,43105 cm2/V s,3 while for the two-dimensional
hole gas(2DHG) in a strained SiGep-channel, the best mo-
bilities reported not exceeding,23104 cm2/V s.4–6 Sec-
ond, the hole mobility is degraded when increasing the Ge
content despite a reduction in effective hole mass.3,7–9

It has been shown9–13 that all so-far known scattering
mechanisms such as impurity doping, alloy disorder, and sur-
face roughness are unable to account for the earlier experi-
mental data. Therefore, several authors had to invoke the
concept of interface charges as a key scattering source at low
temperatures. This enables a somewhat satisfactory descrip-
tion of the 2DHG mobility in different strained Si/SiGe het-
erostructures with a suitable choice of the interface charge
density as a fitting parameter.

Nevertheless, there are several drawbacks in the previous
theories. First, it was indicated3,9,10 that the nature of inter-
face charges has been, to date, quite unclear. It was supposed
that they can originate from impurity contamination of epi-
taxial layers during and after growth. The areal impurity den-
sity for such an unintentional doping has to be claimed
high,9–13 up to ,1011 cm−2. The mechanisms for trapping
and charging impurities at the heterointerface Si/SiGe are
also not clarified.

Second, the decrease observed3,8 in the low-temperature
2DHG mobility of strained SiGe layers when increasing the
Ge content is also still unclear, since alloy disorder was
demonstrated1,7,9–13 likely not to be a dominant scattering
source at a low carrier density, e.g., of,1011 cm−2. Plews

and co-workers14 have obtained strong experimental evi-
dence that for Si/SiGe/Si systems screening of any scatter-
ing potential, whatever its nature, is important, especially, at
low values of temperature, carrier density, and Ge content.
As a result, with screening included, one cannot fit the ob-
served data simply on the basis of alloy disorder scattering
alone, even by taking an unjustifiably large value of the alloy
potential.1,9,13

Third, it was proved15–19 that interface roughness gives
rise to random variations in all components of the strain field
in actual lattice-mismatched heterostructures. As a result,
Feenstra and Lutz16 found that for ann-channel Si/SiGe sys-
tem these fluctuations cause a random nonuniform shift of
the conduction band edge. This implies a random deforma-
tion potential acting on electrons as a source of scattering,
which yields much better agreement with experimental data
about the 2DEG mobility20 than surface roughness scattering
does. The existing calculations9,11,12of the 2DHG mobility in
a p-channel Si/SiGe system have been carried out with an
extension of the idea of Feenstra and Lutz to the valence
band edge, based on the assumption that the deformation
potential for holes is almost identical to that for electrons. As
seen later, this is in fact invalid.

Finally, in the last years some experimental evidences for
piezoelectricity of strained SiGe layers in Si/SiGe systems
have been found.21–24 Further, interface roughness was
shown17–19 to induce a fluctuating density of piezoelectric
charges. Scattering by them is to be included in a full treat-
ment of the hole mobility.

Thus, the goal of this paper is to present a theory of the
low-temperature 2DHG mobility in strained SiGe layers of
Si/SiGep-channel heterostructures. Our theory is to be de-
veloped for explaining the experimental data recently re-
ported in Refs. 3, 8, 11, and 12. Moreover, the theory must
not be based on the unclear concept of interface impurity
charges, but adequately include the possible sources of scat-
tering: alloy disorder, surface roughness, deformation poten-
tial, and piezoelectric charges. In particular, the deformation
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potential for holes must be rigorously derived.
The paper is organized as follows. In Sec. II, we formu-

late our model and basic equations used to calculate the
disorder-limited 2DHG mobility, taking explicitly into ac-
count the finiteness of the potential barrier height. In Sec. III,
the autocorrelation functions for diverse scattering mecha-
nisms are derived. Section IV is devoted to numerical results
and comparison with experiment. Finally, a summary in Sec.
V concludes the paper.

II. BASIC FORMULATION

A. Finitely deep triangular quantum well

We are dealing with a 2DHG in a strained SiGe layer as
the conduction channel in a Si/SiGe/Si sandwich configura-
tion. This may be the 2DHG located near the upper interface
of the strained alloy layer in a gated oxide Si/SiGe
heterostructure,9–11,13or near its backinterface in ap-channel
field-effect structure.12

It is well known25 that scattering by a random field is
specified by its autocorrelation function in wave vector space
kuUsqdu2l. Hereafter, the angular brackets stand for an en-
semble average.Usqd is a 2D Fourier transform of the ran-
dom potential averaged with the envelope wave function of a
2D subband

Usqd =E
−`

+`

dzuzszdu2Usq,zd. s1d

As usual,9–13 for the holes confined in the SiGe layer, we
assume a triangular quantum well(QW) located along the
growth direction, e.g.,[001] chosen as thez axis, wherez
=0 defines the Si/SiGe interface plane.

The band structure for holes in a strained SiGe layer
grown pseudomorphically on a relaxed(001) Si substrate is
calculated in Refs. 26–28, including both the strain and
quantum confinement effects. It is found1,26–28 that the top
valence band edge is formed by the lowest heavy-hole(HH1)
subband, and its energy separation from the first excited sub-
band is large compared to the Fermi level at a rather low hole
density. At very low temperatures, the carriers are then as-
sumed to primarily occupy the lowest heavy-hole subband.

It was indicated29–34 that the potential barrier height in
semiconductor heterostructures may play an important role
in certain phenomena. For Si/SiGe triangular QWs which
we will be dealing with, the barrier height is rather small(a
few 0.1 eV). Further, Poisson-Schrödinger simulations
showed11 that the envelope wave function has significant am-
plitude in the Si barrier layer. Therefore, we must, in general,
adopt the realistic model of finitely deep wells.

It has been pointed out29–31 that for a finitely deep trian-
gular QW, the lowest subband may be very well described by
a modified Fang-Howard wave function, proposed by Ando29

zszd = HAk1/2 expskz/2d for z, 0,

Bk1/2skz+ cdexps− kz/2d for z. 0,
J s2d

in which A, B, c, k, andk are variational parameters to be
determined. Herek andk are half the wave numbers in the

well and the barrier, respectively.A, B, andc are dimension-
less parameters given in terms ofk andk through boundary
conditions at the interface planez=0 and the normalization.
These read as30,31

Ak1/2 = Bk1/2c,

Ak3/2/2 = Bk3/2s1 − c/2d,

A2 + B2sc2 + 2c + 2d = 1. s3d

The energy of the ground-state subband is calculated as a
function of the wave numbersk and k. This involves as
parameters the potential barrier heightV0, depletion charge
densityNd, and sheet hole densityps such that30,31

E0sk,kd = −
"2

8mz
fB2k2sc2 − 2c − 2d + A2k2g + V0A

2

+
4pe2Nd

«L
FB2

k
sc2 + 4c + 6d −

A2

k
G

+
4pe2ps

«L
FB4

4k
s2c4 + 12c3 + 34c2 + 50c + 33d

+
A4

2k
−

A2

k
G , s4d

where mz=0.28me means the effective heavy-hole mass in
the growth direction, and«L is the dielectric constant of the
SiGe layer. The effects of image charges are neglected since
they are small for carriers in the SiGe channel.9,13 The wave
numbersk andk in turn are fixed so as to minimize the total
energy per electronEsk,kd numerically.29–31

In the limiting case ofV0→`, we haveA=0, B=1/Î2,
c=0, and k→`, so that Eq.(4) reproduces the lowest-
subband energy for an infinitely deep well described by the
standard Fang-Howard wave function.25

B. Low-temperature hole mobility in a single-subband model

As mentioned earlier, in this paper we are to focus our
attention on the explanation of the experimental data com-
piled in Refs. 3, 8, 11, and 12, where the transport was mea-
sured for 2DHGs at very low temperature and rather low
carrier density. For the purposes of examining the contribu-
tions from various scattering mechanisms and find which are
dominant, we will adopt a somewhat simplified model, but
one that is accurate enough to capture the features of interest.
It has been shown1,9–13,28,35that for the case in question it is
a good approximation to take into consideration merely in-
trasubband scattering within the lowest heavy-hole subband
HH1, ignoring intersubband scattering. Further, it is found28

that this subband is isotropic and parabolic over a relatively
large range of the 2D wave vector.

As a result, the zero-temperature mobility is determined
via the momentum relaxation time

m = et/m* , s5d

with m* as an effective in-plane mass.
In what follows, we will, for simplicity, ignore the mul-

tiple scattering effects.35,36Within the linear transport theory,
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the inverse relaxation time for zero temperature is expressed
in terms of the autocorrelation function for disorder28,37,38

1

t
=

1

s2pd2"EF
E

0

2kF

dqE
0

2p

du
q2

s4kF
2 − q2d1/2

kuUsqdu2l
«2sqd

,

s6d

whereq=sq,ud denotes a 2D wave vector in thex-y plane
given in polar coordinates,EF="2kF

2 /2m* is the Fermi en-
ergy, andkF the Fermi wave number fixed by the hole den-
sity: kF=Î2pps. The angle integral appears in Eq.(6) since
the autocorrelation function of a random field may have a
directional dependence as seen in Eqs.(27) and (30) later.

The dielectric function«sqd in Eq. (6) allows for the
screening of a scattering potential by the 2DHG, which is, as
quoted before, an important effect in the system under con-
sideration. Within the random phase approximation, this is
given at zero temperature by25

«sqd = 1 +
qTF

q
FSsq/kdf1 − Gsqdg for q ø 2kF, s7d

with qTF=2m* e2/«L"2 the inverse 2D Thomas-Fermi
screening length.

The screening form factorFSsq/kd in Eq. (7) accounts for
the extension of hole states along the growth direction, de-
fined by

FSsq/kd =E
−`

+`

dzE
−`

+`

dz8uzszdu2uzsz8du2e−quz−z8u. s8d

By means of Eq.(2) for the lowest-subband wave func-
tion, this is expressed as a function of the dimensionless
wave numbers in the 2DHG planet=q/k and the barrier
layer a=k /k by31

FSstd =
A4a

t + a
+ 2A2B2a

2 + 2cst + 1d + c2st + 1d2

st + adst + 1d3

+
B4

2st + 1d3f2sc4 + 4c3 + 8c2 + 8c + 4d + ts4c4 + 12c3

+ 18c2 + 18c + 9d + t2s2c4 + 4c3 + 6c2 + 6c + 3dg. s9d

For V0→`, Eq. (9) reproduces the well-known formula
for the screening form factor.25

Finally, the functionGsqd appears in Eq.(7) to allows for
the local field corrections associated with the many-body in-
teraction in the 2DHG. Within Hubbard’s approximation, in
which merely the exchange effect is included, it holds39

Gsqd =
q

2sq2 + kF
2d1/2. s10d

At very low (zero) temperatures the holes in a strained
SiGe layer are expected to experience the following possible
scattering mechanisms:(i) alloy disorder due to random fluc-
tuations in the constituent,(ii ) surface roughness due to ran-
dom fluctuations in the position of the potential barrier,(iii )
deformation potential, and(iv) piezoelectric charges. The lat-
ter two are random effects arising from combination of lat-
tice mismatch and interface roughness(not confused with

relevant scatterings due to acoustic waves).17–19 The total
relaxation time is then determined by

1

ttot
=

1

tAD
+

1

tSR
+

1

tDP
+

1

tPE
. s11d

III. AUTOCORRELATION FUNCTIONS
FOR SCATTERING MECHANISMS

A. Alloy disorder

As evidently seen from Eq.(6), in our calculation of the
disorder-limited mobility the autocorrelation function in
wave vector spacekuUsqdu2l takes a key role. Thus, we ought
to specify it for the earlier-mentioned sources of scattering.

For the 2DHG located on the side of a SiGe layer, the
autocorrelation function for alloy disorder scattering is sup-
plied in the form29,30

kuUADsqdu2l = xs1 − xdual
2 V0E

0

L

dzz4szd, s12d

wherex denotes the Ge content,ual is the alloy potential,L
the SiGe layer thickness. The volume occupied by one alloy
atom is given byV0=aal

3 sxd /8, with aalsxd the lattice constant
of the alloy.

By means of Eq.(2) for the lowest-subband wave func-
tion, this is rewritten in terms of the dimensionless wave
number in the wellb=kL as follows:

kuUADsqdu2l = xs1 − xdual
2 V0

B4b2

L
fc4p0s2bd + 4c3p1s2bd

+ 6c2p2s2bd + 4cp3s2bd + p4s2bdg. s13d

Hereafter, we have introduced auxiliary functionsplsvd sl
=0−4d of the variablesv andb, defined by

plsvd =
bl

vl+1S1 − e−vo
j=0

l
v j

j !
D , s14d

with l an integer.
In the limiting case of infinitely deep QWssB=1/Î2, c

=0d in which the SiGe thickness is so large that the hole state
is localized essentially within the SiGe layersb.1d, Eq.(13)
reproduces the autocorrelation function for alloy disorder
employed previously.9,12 In the opposite case of a thin SiGe
layer sb,1d, the hole state overlaps merely in part with the
alloy, so that the probability of alloy disorder scattering be-
comes smaller.

B. Surface roughness

We are now treating scattering of confined charge carriers
from a rough potential barrier of a finite heightV0. The scat-
tering potential is due to fluctuations in the position of the
barrier. The average scattering potential in wave vector space
is fixed by the value of the envelope wave function at the
barrier planesz=0d according to25

USRsqd = V0uzs0du2Dq, s15d

whereDq is a Fourier transform of the interface profile.
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To estimate the average potential for surface scattering
specified by Eq.(15) with the use of a variational wave func-
tion, we are to adopt the following relation:

V0uzs0du2 =E
0

`

dzuzszdu2
]V

]z
. s16d

Here,Vszd means the Hartree potential induced by the deple-
tion charge density and the hole density distribution, given
by (Ref. 29):

Vszd =
4pe2

«L
Ndz+

4pe2

«L
psE

0

z

dz8E
z8

`

dz9uzsz9du2. s17d

It should be remarked that Eq.(16) is similar to the rela-
tion due to Matsumoto and Uemura.25 However, the former
involves, on the left-hand side, the wave function at the bar-
rier planezs0d, whereas the latter its derivativedzs0d /dz.
Accordingly, the former is exact and applicable for any value
of V0, whereas the latter is approximate and applicable
merely for large enoughV0.

Upon inserting the lowest-subband wave function from
Eq. (2) into Eqs.(16) and (17), we have

V0uzs0du2 =
4pe2

«L
B2FNdsc2 + 2c + 2d

+
ps

2
B2sc4 + 4c3 + 8c2 + 8c + 4dG . s18d

With the help of Eqs.(15) and(18), we are able to obtain
the autocorrelation function for surface roughness scattering
in finitely deep triangular QWs in the form

kuUSRsqdu2l = S4pe2

«L
D2

B4FNdsc2 + 2c + 2d +
ps

2
B2sc4 + 4c3

+ 8c2 + 8c + 4dG2

kuDqu2l. s19d

For V0→`, this reproduces the probability for surface
roughness scattering in an infinitely deep well.12,13,25

Thus, the obtained autocorrelation function depends on
the spectral distribution of the interface profile. For simplic-
ity, this has usually been chosen in a Gaussian form.25 How-
ever, no real justification has been provided for this assump-
tion. For the case of Si/SiGe heterostructures, Feenstra and
co-workers20 measured the surface morphology by means of
atomic force microscopy and indicated that the Fourier spec-
trum for the surface roughness contains three distinct com-
ponents, each described better by a power-law distribution

kuDqu2l =
pD2L2

s1 + q2L2/4ndn+1 . s20d

HereD is the roughness amplitude,L is a correlation length,
andn is an exponent specifying the falloff of the distribution
at large wave numbers.

C. Deformation potential

Next, we turn to the study of scattering mechanisms
which appear as a result of combination of the lattice mis-

match and surface roughness effects. In what follows, we are
concerned with a SiGe layer grown pseudomorphically on a
(001) Si substrate.

It is well known40,41 that if the Si/SiGe interface is ideal,
i.e., absolutely flat, the strain field in the SiGe layer is uni-
form and has vanishing off-diagonal components. Its in-
plane component is defined in terms of the lattice constants
of the Si and alloy layers by

eisxd =
aSi − aalsxd

aalsxd
, s21d

where the Ge contentx dependence is explicitly indicated.
The strain in the alloy is demonstrated to bring about a shift
of the band edges of its conduction and valence bands.42–46

As mentioned before, because of interface roughness the
strain field in the SiGe layer is subjected to random varia-
tions and its off-diagonal components become nonzero.15–19

These fluctuations in turn give rise to a random nonuniform
shift of the band edges. This means that the electrons in the
conduction band and the holes in the valence one must ex-
perience a random deformation potential. In the existing cal-
culations of the 2DHG mobility it has been assumed9,11,12

that the perturbating potential for holes in the SiGe layer is
almost identical to that for electrons, having one and the
same shape described by Eq.(22) later, only with a different
value of the coupling constantJu.

Nevertheless, this assumption is invalid. Indeed, with the
use of the strain Hamiltonian for a semiconductor crystal of
cubic symmetry, it has been proved(see, e.g., Refs. 42–46)
that the impacts of the strain field on electrons and on holes
are quite different. This field is calculated within a simple
approach to cubic symmetry,18 in which the deviation from
isotropy is taken into account in terms of an anisotropy
ratio.47 The volume dilation is then found unaffected by
strain fluctuations, being uniform in space. As a result, the
deformation potential for electrons in the conduction band is
fixed by a single diagonal component of the strain
field16,42–44

UDP
scd = Juezz, s22d

while that for holes in the valence band is fixed by all its
components43–46

fUDP
svdg2 =

bs
2

2
fsexx − eyyd2 + seyy − ezzd2 + sezz− exxd2g

+ ds
2fexy

2 + eyz
2 + ezx

2 g, s23d

with bs andds as shear deformation potential constants. Here
ei j denote the roughness-induced variations in the strain field
components. Therefore, in our calculation of the 2DHG mo-
bility limited by deformation potential scattering, we will
adopt Eq.(23) rather than Eq.(22) assumed previously.9,11,12

Upon putting the strain fluctuationsei j derived in Refs. 17
and 18 into Eq.(23), we readily get a 2D Fourier transform
for the perturbating potential for holes in the SiGe layer as
follows:
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UDP
svdsq,zd =

aei

2
qDqe−qzF3

2
fbssK + 1dg2s1 + sin4 u + cos4 ud

+ S dsG

4c44
D2

s1 + sin2 u cos2 udG1/2

, s24d

for 0øzøL and is zero elsewhere, withL the SiGe layer
thickness, andq=sq,ud a 2D wave vector in polar coordi-
nates. Herea is the anisotropy ratio of the alloy

a = 2
c44

c11 − c12
; s25d

K andG are its elastic constants

K = 2
c12

c11
, G = 2sK + 1dsc11 − c12d, s26d

with c11, c12, andc44 as its elastic stiffness constants.
Upon averaging Eq.(24) by means of the lowest-subband

wave function from Eq.(2), we may represent the autocor-
relation function for deformation potential scattering of holes
in terms of the dimensionless variablest=q/k andb=kL by

kuUDP
svdsqdu2l = SB2b2aei

2L
D2

t2fc2p0sb + btd + 2cp1sb + btd

+ p2sb + btdg2F3

2
fbssK + 1dg2s1 + sin4 u

+ cos4 ud + S dsG

4c44
D2

s1 + sin2 u cos2 udGkuDqu2l,

s27d

in which plsvd sl =0−2d are functions given by Eq.(14) with
the variablev=b+bt.

D. Piezoelectric charges

As already mentioned in Sec. I, some experimental evi-
dences for piezoelectricity of the strained SiGe layer in a
Si/SiGe heterostructure have been found.21–24 However, if
the Si/SiGe interface is ideal, the strain field in the alloy has
vanishing off-diagonal components, so that the SiGe layer
exhibits neither a piezoelectric polarization nor any piezo-
electric field.

In fact, because of surface roughness the off-diagonal
components of the strain field in the SiGe layer of an actual
Si/SiGe system become nonzero and randomly
fluctuating.15–19Therefore, they induce a piezoelectric polar-
ization and a corresponding fluctuating density of piezoelec-
tric charges, which are bulklike distributed in a rather narrow
region inside of the alloy and near the Si/SiGe interface.17–19

These charges in turn create a random piezoelectric field.
The potential energy for a hole of chargee in this field is
described by a 2D Fourier transform as follows:17,18

UPEsq,zd =
3pee14Gaei

4«Lc44
qDqFPEsq,z;Ldsin 2u, s28d

wheree14 is the piezoelectric constant of the strained SiGe
layer. The form factor for the piezoelectric potential in Eq.
(28) is supplied by18

FPEsq,z;Ld

=
1

2q5
eqzs1 − e−2qLd for z, 0,

e−qzs1 + 2qzd − e−qs2L−zd, for 0 ø zø L,

2qLe−qz for z. L.
6
s29d

Upon averaging Eqs.(28) and (29) by means of the
lowest-subband wave function from Eq.(2), we arrive at the
autocorrelation function for piezoelectric scattering in the
form

kuUPEsqdu2l = S3pee14Gaei

8«Lc44
D2

FPE
2 sq/kdsin2 2ukuDqu2l.

s30d

Here the weighted piezoelectric form factor is defined as a
function of t=q/k by

FPEstd =
A2a

t + a
s1 − e−2btd + B2bH 2c2t

t + 1
+

4ct

st + 1d2 +
4t

st + 1d3

+ c2s1 − 2btdp0sb + btd + 2cs1 + ct − 2btdp1sb + btd

+ s1 + 4ct − 2btdp2sb + btd + 2tp3sb + btd

− e−2btfc2p0sb − btd + 2cp1sb − btd + p2sb − btdgJ ,

s31d

where as beforea=k /k, andplsvd sl =0−3d are given by Eq.
(14) with the variablesv=b±bt.

Thus, within the realistic model of finitely deep triangular
QWs described by the modified Fang-Howard wave function
(2), we may rigorously derive the autocorrelation functions
in an analytic form for the scattering mechanisms of interest.
These are supplied by Eqs.(13), (19), (27), and(30) for alloy
disorder, surface roughness, deformation potential, and pi-
ezoelectric charges, respectively. It is to be noted that the
latter two show up in a dependence not only on the magni-
tude of the wave vector but its polar angle as well.

IV. RESULTS AND DISCUSSIONS

A. Choice of input parameters

In this section, we are trying to apply the foregoing theory
to explain the experimental data3,8,11,12 about the low-
temperature transport of holes located near an interface of
the strained SiGe layer as the conduction channel in a
Si/SiGe/Si sandwich configuration.

For numerical results, we have to specify parameters ap-
pearing in the theory as input. As always with mobility cal-
culations, one has many adjustable fitting parameters. In or-
der that the justification of our theory is so independent as
possible of the choice of fitting parameters, these are to be
deduced from measurements of other physical properties
than the hole mobility.

The lattice constants, elastic stiffness constants, dielectric
constants, and shear deformation potentials for Si and Ge are
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taken from Refs. 44 and 48 and listed in Table I. The corre-
sponding constants for the alloy are estimated according to
the virtual crystal approximation49 except the lattice constant
given by an empirical rule, Eq.(32) later. The potential bar-
rier height of triangular QWs for holes is the valence band
offset between the Si and SiGe layers, which increases nearly
linearly with the Ge contentx asV0=0.74x eV.1

For the x dependence of the lattice constant of a SiGe
alloy, we use the experimental data, approximated analyti-
cally by50,51

aalsxd = aSis1 − xd + aGex − gxs1 − xd, s32d

with a parameterg=1.88310−2 Å.
It is to be noted1 that the built-in biaxial compressive

strain in a SiGe layer produces a reduction in its in-plane
heavy-hole mass, thus leading to an increase of the 2DHG
mobilities. Thex dependence of the mass is given by a linear
interpolation to fit to the experimental data52–54

m* sxd/me = 0.44 − 0.42x. s33d

We are now concerned with choosing the coupling con-
stants of interest. The alloy potential was taken as equal to
ual=0.6 eV.12,13,52 The value of the piezoelectric constant
e14=1.6310−2 C/m2 was extracted from power loss
measurement21 for a SiGe alloy with a Ge contentx=0.2.
Furthermore, in view of the fact that piezoelectricity of the
SiGe alloy in a lattice-mismatched structure is induced by
strain, for a crude estimate we scale the relevant coupling
constant by the strain ratio. Then, for thex dependence of the
piezoelectric constant it holds

e14sxd = 1.63 10−2 eisxd
eis0.2d

sC/m2d. s34d

It should be kept in mind that all scattering mechanisms
under consideration depend, in general, strongly on the Ge
content because not only the effective mass but, as seen ear-
lier, the lattice mismatch and the piezoelectric constant de-
pend on it.

Next, we turn to the characteristics of the interface profile.
It has recently been shown16,20 that for a Si/SiGe hetero-
structure, the most important component of the surface
roughness is connected with elastic strain relaxation in the
channel layer. Moreover, the experimental data about the
electron mobility in Si/SiGen-channel heterostructures
suggested16,20that the correlation length of this component is
L&300 Å, its roughness amplitudeD=5–15 Å, and its ex-
ponent of the power-law distributionn&4, varying remark-
ably from device to device. For our numerical calculations,
we take L=290 Å, D=15.5 Å, andn=4. The somewhat
large value of the roughness amplitude may be explained in

terms of the segregation and clustering effects, which are
indicated55,56 to be the main reasons for roughening of the
interfaces in a strained layer.

It should be noted that our choice of the interface profile
characteristics satisfies the condition

D/L ! 1. s35d

This is claimed16 in order that the theory of roughness-
induced fluctuations in strain15–19 and, hence, that of defor-
mation potential and piezoelectric scatterings presented in
Sec. III, are justified.

B. Numerical results and comparison with experiment

By means of Eqs.(5) and (6), we have calculated the
low-temperature 2DHG mobilities limited by different scat-
tering mechanisms: alloy disordermAD, surface roughness
mSR, deformation potentialmDP, piezoelectric chargesmPE,
and overall mobilitymtot; employing Eqs.(13), (19), (27),
(30), and (11), respectively. For device applications, one is
interested in their variation with hole densityps and Ge con-
tentx. The theoretical results are to be compared with recent
experimental data.3,8,11,12

As a first illustration, we are dealing with the Si/SiGe
sample studied in Ref. 12 This is specified by a fixed Ge
contentx=0.2 and a depletion charge10 Nd,531011 cm−2,
while the hole densityps is varying.

We need to estimate the effect due to the finiteness of the
potential barrier height on the hole mobilities. This is to be
measured by the ratio between the values of a partial mobil-
ity calculated with a finite and an infinite barrier

Q = mfin/minfin . s36d

The mobility ratios for the various scattering sources are de-
picted in Fig. 1 versus sheet hole density ranging fromps
=131011–5.531011 cm−2 for a SiGe layer thicknessL
=200 Å.

The partial 2DHG mobilities of the sample under study
are plotted versus hole density fromps=1.531011–5.5
31011 cm−2 in Fig. 2, where the 4 K experimental data re-
ported in Ref. 12 is reproduced for a comparison. In addition,
these are plotted in Fig. 3 versus alloy layer thickness from
L=20–90 Å for a hole densityps=231011 cm−2.

From the lines thus obtained we may draw the following
conclusions.

(i) Figure 1 reveals that the model of infinitely deep tri-
angular QWs overestimates surface roughness and piezoelec-
tric scatterings:QSR, QPE.1, while this underestimates alloy
disorder and deformation potential scatterings:QAD, QDP,1.
The finite-barrier effect is found to be small compared with

TABLE I. Material parameters used:a as the lattice constant(Å), cij as the elastic stiffness constants
s1010 Pad, «L as the dielectric constant, andbs andds as the shear deformation potential constants(eV).

Material a c11 c12 c44 «L bs ds

Si 5.430 16.6 6.39 7.96 11.7 −2.35 −5.32

Ge 5.658 12.85 4.83 6.80 15.8 −2.55 −5.50
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the one in the case of square QWs,18 where the mobility
ratios may become very large, e.g.,QSR*10 for a narrow
square well of a thickness&100 Å. The overestimation of
surface scattering is distinct from the earlier statement29 con-
cerning GaAs/AlGaAs triangular QWs that surface scatter-
ing is independent of their barrier height because the over-
lapping of the envelope wave function with the barrier was
neglected.

(ii ) It is clearly seen from Fig. 2 that the calculated overall
mobility mtotspsd almost coincides with the 2DHG mobility
obtained experimentally12 in the region of carrier densities

used. This exhibits a significant increase when raising the
hole density fromps=1.531011–5.531011 cm−2. The func-
tions mSRspsd, mDPspsd, and mPEspsd are found to increase
with a rise of ps, whereasmADspsd to decrease. The sharp
contrast between the variation tendencies withps of the ex-
perimental datamexptspsd andmADspsd implies that in terms of
alloy disorder alone one cannot explain the hole density de-
pendence of the measured mobility. Moreover, it has been
pointed out that in terms of alloy disorder one cannot under-
stand even qualitatively its dependence on growth
temperature1,2,7 and Si cap thickness.2

It is worthy to recall9–13 that with screening included all
the so far-known scattering mechanisms(impurity doping,
alloy disorder, and surface roughness) are unable to explain
the observed data about the 2DHG mobility in strained SiGe
alloys. Therefore, the existing theories had to invoke the un-
clear concept of interface charged impurities with a high fit-
ting density, up to,1011 cm−2, which is equivalent to an
intentional doping at an intermediate level.

Moreover, in several cases the interface had to be as-
sumed to be quite rough with a small exponent of the power-
law distribution, a large ratio between the roughness ampli-
tude and correlation length and a small value of the latter,
e.g., n,2, D /L,1, L,7 Å (Ref. 11), and n,1, D /L
,0.5, L,19 Å (Ref. 12). With these large values ofD /L
the theory of deformation potential scattering adopted in the
earlier calculations9,11,12may fail to be valid. In addition, in
the case of short correlation lengths, the functionsmSRspsd
and mDPspsd were found to decrease with a rise ofps,

1,9

which is in opposite to our result. However, such surface
morphologies seem to be suspect.3

(iii ) An examination of the different lines in Fig. 2 indi-
cates that for low carrier densitiesps,431011 cm−2, surface
roughness and deformation potential scatterings are domi-
nant mechanisms, whereas alloy disorder one is less relevant,
which is in accordance with the previous theories.1,7,9,10,13

For higher densitiesps*431011 cm−2 the latter is compa-
rable with the former two. Furthermore, piezoelectric scatter-
ing is found to be negligibly weak at a rather low Ge content
sx=0.2d.

FIG. 1. RatioQ=mfin /minfin between the 2DHG mobilities, cal-
culated with a finite and an infinite potential barrier, vs sheet hole
densityps for various scattering mechanisms: alloy disorderQAD,
surface roughnessQSR, deformation potentialQDP, and piezoelec-
tric chargesQPE. The triangular QW is made from Si/Si0.8Ge0.2

with a barrier heightV0=0.148 eV and a SiGe layer thicknessL
=200 Å.

FIG. 2. Different 2DHG mobilities of the Si/Si0.8Ge0.2 QW in
Fig. 1 vs hole densityps. The solid lines show the calculated mo-
bilities limited by: alloy disordermAD, surface roughnessmSR, de-
formation potentialmDP, piezoelectric chargesmPE, and overallmtot.
The 4 K experimental data reported in Ref. 12 are marked by
squares.

FIG. 3. Different 2DHG mobilities of the Si/Si0.8Ge0.2 QW in
Fig. 1 vs SiGe thicknessL. The interpretation is the same as in Fig.
2.
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(iv) It follows from Fig. 3 that the hole mobilities depend
weakly on the SiGe layer thickness. ForL*60 Å, they are
almost independent thereof.

Next, we turn to treating the Ge content dependence of
the partial 2DHG mobilities in a Si/Si1−xGex triangular QW.
These are plotted versus Ge content varying fromx=0.05 to
0.5 for a fixed carrier densityps=231011 cm−2 and a deple-
tion charge10 Nd,531010 cm−2 in Fig. 4, where the 4 K
experimental data3,8,11 are reproduced for a comparison.
There is also presented the hole mobility reported in Ref. 3,
which was calculated simply on the basis of alloy disorder
scattering alone by neglecting screening and taking a larger
value of the alloy potential:ual=0.74 eV. As quoted earlier,
the SiGe layer thickness is of minor importance, so we may
chose some value, sayL=200 Å.

From the solid lines obtained in Fig. 4 we may draw the
following conclusions.

(i) The calculated overall mobilitymtotsxd offers a good
quantitative description of the pronounced monotonic de-
crease of the experimentally observed 2DHG mobility when
raising Ge content.3,7,9 It is to be noted that most earlier
theoretical studies27,57 predicted, in contrast, an increase of
the hole mobility with higherx, based on the strain-induced
reduction in the effective hole mass.

(ii ) The functionsmDPsxd and mPEsxd show up in a fast
monotonic decrease, whereasmADsxd and mSRsxd in a mini-
mum. It is seen from Eqs.(27), (30), and(34) that the prob-
abilities for deformation potential and piezoelectric scatter-
ings depend quadratically on the lattice mismatcheisxd, and
the latter also depends quadratically on the piezoelectric con-
stante14sxd. Sinceeisxd and e14sxd increase when raisingx,
the fast increase in the scattering probabilities overwhelms
the reduction in the effective hole mass with higherx, thus

leading to an overall decrease ofmDPsxd and mPEsxd. In ad-
dition, the distinction between the variation tendencies withx
of the experimental datamexptsxd andmADsxd implies that in
terms of alloy disorder alone one cannot explain the Ge con-
tent dependence of the measured mobility.

(iii ) Surface roughness scattering is found to be most im-
portant at a very low Ge contentx,0.05, while the defor-
mation potential scattering to dominate the overall hole mo-
bility mtotsxd for x.0.1, leading to its decrease with higherx.
As mentioned earlier, the effect due to piezoelectric charges
increases very rapidly with a rise ofx. So, this is negligibly
small for x&0.3, however, this becomes comparable with
alloy disorder and surface roughness scatterings forx*0.4,
and with the deformation potential one at a higherx,0.5.

It is worth mentioning that the roughness amplitude is
expected55 to be increased with strain and, hence, with Ge
contentx. Therefore, with an increase ofx the roughness
amplitude-dependent scattering mechanisms such as surface
roughness, deformation potential and piezoelectric charges
become more important compared to alloy disorder one.

(iv) An inspection of the dashed line in Fig. 4 indicates
that the 2DHG mobility calculation in Ref. 3, based on alloy
disorder scattering alone, results in a shallow minimum at
x,0.4 and, hence, is unable to supply a satisfactory descrip-
tion of the observed data. In particular, forx=0.5 this calcu-
lation even without screening and with a large alloy potential
sual=0.74 eVd gives: mAD

unscr=6.73103 cm2/V s, which is
found too large to explain the 4 K experimental data reported
in Ref. 11, which our theory may give:mtot,mexpt=1.2
3103 cm2/V s. The situation becomes much worse when
screening included:mAD

scr =3.53104 cm2/V s.

C. Validity of the single-subband model

To end this section, we verify the validity of the assump-
tions made in our hole mobility calculation.

First, it should be emphasized that our theory of hole
transport is to be developed for 2DHGs studied experimen-
tally in Refs. 3, 8, 11, and 12; namely at very low tempera-
ture s&4 Kd and rather low carrier densitys&5
31011 cm−2d, which correspond to small values of the ener-
gies of interest:kBT&0.3 meV andEF&4 meV. At the so
low temperatures phonon scattering is obviously negligibly
weak.11,13,28

As quoted before, it follows from the band structure
calculation1,26–28for a strained SiGe layer grown on relaxed
(001) Si that the ground-state subband is the lowest heavy-
hole HH1. In addition, Laikhtman and Kiehl28 have shown
that the heavy-hole–light-hole band splitting HH1–LH1 and
the subband splitting HH1–HH2 due to the strain and quan-
tum confinement effects are both larger than 70 meV. These
splittings turn out to be at least one order of magnitude
greater than the thermal and Fermi energies. Therefore, the
assumption of intraband scattering within the lowest heavy-
hole subband HH1 is firmly confirmed.1,9–13,28,35 Further,
Leadley and co-workers11 indicate that the single-subband
model is still a reasonable approximation for strained
Si0.5Ge0.5 at higher temperatures300 Kd and higher carrier
densitys331012 cm−2d.

FIG. 4. Different 2DHG mobilities of the Si/Si1−xGex triangular
QW vs Ge contentx under a SiGe layer thicknessL=200 Å and a
hole densityps=231011 cm−2. The interpretation is the same as in
Fig. 2. The dashed line refers to the calculation based on alloy
disorder alone without screening and with an alloy potentialual

=0.74 eV. The 4 K experimental data reported in Refs. 3 and 8 are
marked by filled squares, and in Ref. 11 by open one.[Note the
ordinate axis scale is distinct from that in Figs. 2 and 3.]
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It should be remarked that the earlier scattering model is
to be distinguished from the one employed in the
calculation58–60 of the hole mobility in a strained Si layer at
high temperatures,300 Kd and high carrier densitys,5
31012 cm−2d. In this case, phonon scattering is important.
The band structure calculation due to Fischetti and
co-workers60 reveals that the ground-state subband is the
lowest heavy-hole HH1 or light-hole LH1 for compressive or
tensile stress, respectively. Moreover, the subband splittings
are found to be of the order of the thermal and Fermi ener-
gies. Therefore, a multisubband model is mandatory.

Further, the existing band structure calculation28 also
shows that for a strained SiGe layer on relaxed(001) Si, the
subbands are strongly nonparabolic and anisotropic except
for the lowest heavy-hole one. The subband HH1 is isotropic
and parabolic over a relatively large range of the 2D wave
vector, which corresponds to a large range of the carrier den-
sity, up to 1013 cm−2.

At last, based on the assumption of intraband scattering
within the isotropic parabolic subband HH1, we have been
successful in the quantitative explanation of the observed
dependences of the hole mobility on Ge content3,8,11 as well
as carrier density.12 This success provides a real justification
for the adopted model.

V. SUMMARY

In this paper we have presented a theory of the low-
temperature mobility of holes in strained SiGe layers of
Si/SiGep-channel heterostructures, getting rid of the unclear
concept of interface impurity charges. Instead, we took ad-
equate account of the random deformation potential and ran-
dom piezoelectric field in actual strained SiGe layers.

We have proved that the 2DHG transport in an undoped
systems is, in general, governed by the following scattering

mechanisms: alloy disorder, surface roughness, deformation
potential, and piezoelectric charges. The latter two arise as a
combined effect from lattice mismatch and interface rough-
ness.

Scatterings by deformation potential and piezoelectric
charges rapidly increase when raising the Ge contentx. Thus,
the former may become dominant forx*0.2, whereas the
latter may be one of the principal processes limiting the hole
mobility for x*0.4.

In the regions of hole density and Ge content in use, sur-
face roughness and deformation potential scatterings are
found to be most important. In combination with the other
sources of scattering, these enable a good quantitative expla-
nation of the recent experimental findings both about the
dependence of the low-temperature 2DHG mobility on hole
density and its decrease with Ge content as well.

It is worth mentioning the counteracting strain effects in
Si/SiGe p-channel heterostructures. The strain leads to the
lifting of the degeneracy of the valence band of SiGe and,
hence, to a suppression of intersubband scattering and a re-
duction of the effective mass, so enhancing the hole mobility.
On the other hand, the roughness-induced strain fluctuations
give rise to new scattering sources, viz. deformation poten-
tial and piezoelectric charges, so reducing the mobility.
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