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Currents in a many-particle parabolic quantum dot under a strong magnetic field
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Currents in a few-electron parabolic quantum dot placed into a perpendicular magnetic field are considered.
We show that traditional ways of investigating the Wigner crystallization by studying the charge density
correlation function can be supplemented by the examination of the density-current correlator. However, care
must be exercised when constructing the correct projection of the multidimensional wave function space. The
interplay between the magnetic field and Euler-liquid-like behavior of the electron liquid gives rise to persistent
and local currents in quantum dots. We demonstrate these phenomena by collating a quasiclassical theory valid
in high magnetic fields and an exact numerical solution of the many-body problem.
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I. INTRODUCTION In the present paper, we study the local currents appearing

The problem of the electronic structéréof few-electron N the vicinity of the electron lumps in a rotating Wigner
quantum dotéstill remains in the center of attention of solid- Molecule from the point of view of the density-current cor-
state research. A|though recent|y substantial achievemenfglatlon function. This function describes the distribution of
have been made by relying on the exact numericafonditional currents in the system given that there is an elec-
solutior?~’ of the complicated quantum-mechanical problem,tron at a certain point and indeed shows the electron crystal-
simplified approachésand simple analytical models are also lization. However, a certain care must be exercised when
of great interest and even become increasingly moreonstructing 2D projections of the multidimensional space of
popular’14 Besides their relative simplicity, these models many-body currents.
are attractive due to the provided physical insight and trans- The magnetic field tries to rotate the electron system as a
parent visualization of the relevant phenomena. rigid body—i.e., with a constant vorticity. As the

The successful development of the approximation basegchrodinger equation has no dissipation the “quantum elec-
on the picture of a rotating electron molec#l&encouraged tron liquid” is akin to the Euler liquid in hydrodynamics and
us to look at the rotation in quantum dots more closelytries to rotate itself with a fixed angular momentum—that is,
Namely, we investigated the distribution of currents in theyith vorticity equal to zero everywhere except at the origin.
simplest quantum dot—the rotating electron ring formed in arps contradiction leads to two interesting phenomena: local
few-electron system in a parabolic confinement and a pefgrents and persistent currents. Both of them are caused and
pendlgular mag(;1et|c f'g;g' dicted th lization of a CONtrolled by the electron-electron interaction. We demon-
syth)gmagg\c/I:snsicZIet(\a/\tlo- d?rrr:aer:gtig r(zitlDi g;):'ﬁtc?ejszziir?grr; gx_a strate these phenpmena by _constructing a sir_nplg quasiclassi-
ternal parabolic confinement into a set of concentric rings. | C‘.”ll theory e”.‘p'o.y'”g a rota_ltlng frame in the I!mltlng case of

igh magnetic fields and illustrate the obtained results by

quantum dots containing up to five electrons only one ring i i . .
formed. An accurate quantum-mechanical solution based0MpParnng them to the exact numerical solution of the con-

e.g., on the exact numerical diagonalization of the manySidered problem. _ _ ,
electron Hamiltonian provides a circularly symmetric distri- 1 he outline of the paper is as follows. Section Il describes
bution of the charge density. The formation of the Wignerthe model used in our calculations. The next two sections are

Crystal can be seen in the density-density Correlatiordevoted to the analytical Solution: in Sec. Il we derive the

functiont®:1” obtained by Considering the conditional prob- Hamiltonian in the rotating frame, and Sec. IV describes its

ability to find an electron at a point given that there is an quantization. The results concerning the persistent and local

electron at another poimt,. currents are presented in Secs. V and VI, respectively. We
Recently, the analysis of various electron structures wagonclude with a summarizing section VII.

further stimulated by employing a description based on

mean-field approaches, such as the density-functional

theory? In this method, the electron-electron correlation is Il. MODEL

taken into account as an effective single-particle potential,

and the correlation function is not easily accessible. Thus, We consider a 2D parabolic quantum dot containhig

the rotational symmetry of the dot has to be broken in somé& 2—5electrons placed into a perpendicular magnetic fild

artificial way, and the electron crystallization at high mag-This system is known to form a single electron ring. The

netic fields is made visible directly in the electron density.magnetic field is described in terms of its symmetric-gauge

Consideration of the curreffsalso portrays the presence of vector potential A=%[B Xr]; then, using the standard

a crystal—currents are circulating around the charge densitgroceduré of switching to dimensionless variables, we ob-

lumps. tain the Hamiltonian
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Here, the energy is measured in urfitg, with wy being the
characteristic frequency of the confinement potential. The
coordinates are measured in ungs v/ m* wq (the oscilla-

tor lengthg and the magnetic field in unit@olwlﬁ(dbo
=mhcle). The dimensionless Coulomb coupling constant
=ly/ag is expressed as the ratio of the parabolic confinement
length |, to the effective Bohr radiusg=eh?/m* €. One X3
way to find the eigenstates of the above Hamiltonian is to
perform the “exact” numerical diagonalizations in the trun-
cated Hilbert space of all possible electron configurations as

FIG. 1. Local coordinates for three electrons on a ring.

described in, e.g., Ref. 5. Such calculations are feasible for 1N N A

few-electron quantum dots. Concentrating on the orbital ef- V= —E rﬁ+ E , (20
fects we neglect the Zeeman energy but do take the degen- 2n=1 nmet [Fo =Tl

eracy due to the spin states into account when constructing n>m

the basis of many-body states. This approach is S”pF"Q/i/hereLma@,is the sum of free-electron Lagrangians in a mag-

mented by an approximate analytical scheme valid at highetic field andv stands for the confinement and interaction
magnetic fields and employing a quasiclassical expansion iBotentials.

powers ofB™* whose development is the subject of the fol- "' order to transform the above expressions into the rotat-
lowing sections. ing frame we follow Ref. 20 and introduce the local coordi-
nates(as shown in Fig. 1 for the case of three electjokide
denote the classical equilibrium radius of the ringebyThe
azimuthal angles a,=a(n—-1) with a=27/N and n
Since we are looking for the ground-state wave function=1, ... N indicate the equidistant locations of electrons on
the strong magnetic field term in the parentheses of(Eq. the ring. We choose the local axgs to be parallel to the
must be compensated by a large angular momer¥uthat  equilibrium location vectors,, of the respective electrons,
appears in the first term of the same parentheses when tlaady, axes are directed along the ring in the positigeun-
gradient operator acts on the rotating electron ring wavderclockwisg direction. We assume that the whole frame
function. The easiest way to take this cancellation of termshown in Fig. 1 is rotating in the positive direction with a
into account is to use the Eckardt frathavhich is the main  constant angular velocity. Thus, the position of the vector
instrument employed in the analysis of the rotation-vibrationa,, is given by the angle
spectra of molecules and was recently adapted to quantum .
dots?6 an(t) = an + x(1), x(1) =xt. )
The idea of the rotating Eckardt frame is to decouple tthe represent the electron coordinatesx,y} by a complex
two degrees of freedom related to the center-of-mass motio, mperz=x+iy and introduce the above-described local co-
as well as one more degree of freedom of the rotational mog,§inates by means of the transformation
tion of the system as a whole around its center of mass. The

IIl. ROTATING FRAME

angular velocity of the rotating frame is chosen so that the z,— exfi[ap+ x])(a+1z,). (4)
system in the Eckardt frame has zero total angular momen-, . .
This enables us to present the magnetic part of the Lagrang-

tum. As we are going to apply the expansionBi* powers
and are interested only in the lowest-order harmonic approxi'—"’m (2b) as
mation for the vibrations of the Wigner crystal, the above 1 N
technique can be simplified using a frame rotating about the Lmag= = {'zﬁ+ (w?-BY4)|a+z,>+ 2w |m(?n2:1)}, (5)
center of the quantum dot rather than the center of mass. 250

In order to derive the Hamiltonian written in the rotating . . _ L . .
frame we follow the suggestion of Ref. 16 and start from theV.VIth w=x~B/2. This function is constrained by the condi-
classical Lagrangian tion

N N
L=LagV, (2a) Im > (a+2z)z,~alm > 7,=0, (6)
n=1 n=1
1N which expresses the equality of the total angular momentum
Limag= = {fﬁ—[B X 1]k, (2b) of the electron_ sy_stem to zero. Integrating the above con-
2051 straint we rewrite it as
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N andv,, and inserting the obtained values into E#0a we
> ya=0, (7) obtain the following approximate expression for the angular
n=1 velocity:

which can serve as the definition of the rotating frame. B M 1V? M

In order to obtain the corresponding Hamiltonian we in- y=—+—-—> V-Uo) + = w2 (13)
ing i 2 I Ty T3 c
troduce the normal modes taking into account the fact that 0k=1 0k=1
the electron ring is invariant with respect to rotations by a
multiple of «. Thus, the above normal modes are just the

Fourier transformsv,=u,+iv,:

Inserting these expressions of velocities together with the
Lagrangian(9) into Eqg.(12) we arrive at the final expression
for the magnetic part of the classical Hamiltonian:

N-1 N
Z= =3 KUy, w=—3 ek (g) 1 ( BI) 1,1 ( ka>
IN= Hnae= =|{M+— | +—-ug+ = Ug+—
VN k=0 VNn=1 mag= o7 2 2 0 zg k Ty
Note that the indek numbering the normal modes runs from M\ 2
0 to N-1. Inserting these expressions into [Es). we obtain + (Vk - —“) (14
the final Lagrangian Iy
1, — The total Hamiltonian is obtained by adding the potential
Lmag= E{Uo +(w? - B4)(VNa+ up)?} (2¢) consisting of two terms that are small in tBe- o limit.
N-1
+ 52 {{Wil? + (? = BH4) W2 + 20 Im(Ww, )} IV. QUANTIZATION
k=1

9) The quantization of the ring rotation is trivial because the
rotation angley is a cyclic variable. Thus, the orbital mo-
The main advantage of this expression is that the conditiomentumM is a constant of motion, and quantizing we simply
(7) is taken into account automatically by excluding the replace this momentum by an integer eigenvalue of the cor-
mode which is now replaced by the rotation angleNext,  responding angular momentum operator. The rotational part

we introduce the canonical momenta of the wave function is given bW, ;=exp(iM y).
N-1 Before proceeding to the quantization of the remaining
J J S Imw 105  Vibrational modes we have to fix the radius of the rindt is
M =—Las= T Lmag= @Z + m(w,w, . . . L
ax ™0 g M9 @ = (W), € convenient to define this parameter by minimizing the poten-

tial energy which consists of the first term of the magnetic
P Hamiltonian (14) and the weak potentigl2c). Introducing
Uo=~Lmag= Uo, (10b) the deviationA=7-7, and replacing the electron coordi-
dUg nates in the second term of the weak potential by their equi-
librium values, we present the potential as
J

U=~ Lmag= U~ @vy, (100 1 B%73 M2
e O V=Vo- 5| M2— =2 A+ A2, (15)
Vie= —Linag= 0+ 0y, (10d) where the equilibrium potential is
v 2
1 BZ, 1, X\
where Vo= _ZIO M + Ty +N > + Z\fN (16)

N-1
T=Ty+ 2\Nawp+W2+ S [wl2, To=N&, (11 and the factonf_N:%2_#;11|sin(an_/2)|‘1_is the Coulomb energy
k=1 per electron in a ring of unit radius. Minimization of the
equilibrium potential(16) defines the equilibrium radius of

is the moment of inertia of the electron ring. In order 10 the glectron ring. As the first term in E¢L6) is large and the
obtain the standard form of the magnetic part of the Hamil-gecong one is small, it is easier to obtain the estimate of the

tonian radius in two steps. First, we equate the derivative of the first
N-1 term of the potentia{16) to zero and find
Himag=MX + Ul + 2 (Uil + Vid) ~Linag ~ (12) 1 1
P —M:|M|:§BIOZENBEB€. 17

we have to solve Eq$10) for velocities. However, aiming to

arrive at the Hamiltonian in the harmonic approximation weThis expression gives us a relation between the magnetic
are entitled to make some approximations in the solutionfield strength and the angular momentum in the ground state,
Namely, in Eqs(10c) and(10d) we replace the frequency by and confirms the already mentioned fact that the angular mo-
its approximate valua =~ M/Z,, solve them for velocities, mentum of the system grows in absolute value with increas-
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ing magnetic field. Then, the radius of the riag itself is oal T T T 0 7 U 7]
obtained by minimizing the secon@mall) contribution to i
the potential16): p
02} _

d(1, A ) A

—|za+ —fy|=a-—=fy=0, 18

da<2 2a " 2a% N 18 — 00

r

with the result
ay=(\f/2)13. (19) 02t i i

Now the construction of the Hamiltonian in the harmonic
approximation can be completed. Taking into account that 04r y

the fulfillment of the condition(17) zeros the second term of 0.0 05 10 15 2.0 25 3.0
the expansion(15), and using the approximatiom r
~2ayNu, in the third term of Eq(15), we obtain the vi-
brational part of the Hamiltonian: FIG. 2. The radial distribution of the densify) and azimuthal
No1 current density(j,,) for three electrons in a quantum dot wit+4
1, oo ] Buy \? Buy\? for angular momenturivi=-18. The formation of a ring structure is
Hyip = E(Uo"' Bup) + Ekgl Ui+ 7 +{ Vi 7 . apparent. Note that the currents flow in opposite directions on the

inner and outer edges of the ring. The pealp@ind zero ofj, are
(20 close to the classical electron ring radays=1.322 marked by the

. . . . . dot
The first term of this Hamiltonian(corresponding to the ©

breathing modgis just the Hamiltonian of a harmonic oscil-
lator, and its ground-state eigenfunction is @®u3/2). The
other part of the Hamiltonian represents a collection of non

Also, it can be noted already from Fig. 2 that the radial
dependence of the current density is nearly antisymmetric
with respect to the classical radius, and thus, the two currents

interacting two-component modes whose Hamiltonian re oo oo
sembles the Hamiltonian of a 2D electron in a perpendiculaﬂov‘”n.g in the opposite directions nearly cancgl each other.
That is, there is almost no global current running along the

magnetic field. Thus, the corresponding ground-state eigen . . . X ;
function is expﬁ—BE,’z'_'ll|wk|2/4). electron ring. In order to investigate this phenomenon in

Collecting all parts of the wave function together and per—more detail we numerically calculz_ate the magnet_ic field de-
forming the inverse Fourier transformation we obtain thependence of the net current crossing the dot radius,

electron ring ground-state wave function w
= eiM)(e—BK/4, (213) I= JO J(p(r)dry (22)
N (ZN X,)2 (EN yi)? in the ground state. The results are shown in Fig. 3. We
K= 6C+y2) + n=1"" _“n=1’h (21p  consider angular momenta up ted|=20 and use the value
vl N N A=4 for two- and three-electron dots while in the case of

four electrons in the dot we sat=2.
We see that these dependences display a sawtoothlike be-
V. PERSISTENT CURRENTS havior. The net current increases continuously with the

Let us proceed to the examination of the current flow inmagnetic field in each ground state of a given angular mo-
quantum dots. In Fig. 2, the distributions of the charge andnentum and drops abruptly at each angular momentum tran-

current density obtained from the exact diagonalizations aré't'?n resembling p_ek:]sstfent (t:kl]Jrregtst ina rﬁ’l?l_?het_se cur;]_ h
plotted. Since these distributions are circularly symmetric,renS aré responsible or theé dot magnetizaion whic
monstrates a similar behavférNote that in two- and

only the radial dependences need to be shown, and moreove,
y P our-electron quantum dots where the ground state at low

the current possesses only the azimuthal compoperfig- o _ )

ure 2 is obtained for a three-electron quantum dot with thdnagnetic field has the angula_lr mome”m—o there is no

interaction constant\=4. The angular momentum is net current at zero magnetic field. In contrast, #®e0

M=-18 and the dimensionless magnetic field is seBto ground-state angular momentum in three-electron quantum

=6.78—i.e., the midpoint of the magnetic field range Whered°t§ is [M[=1 and we observe a large current at low flelds..
' For the sake of reference, we denote the absolute magni-

the considered state is the ground state. de of th ‘i | and th | f1h
We see that at these parameter values the electron ring j4d€ Of the current jumps byl and the average value of the

already well defined; the electron density at the origin dropgurrent at the jump by. In general, bothAl and| decrease
almost to zero and peaks close to the classical value of th@onotonically towards zero with increasing magnetic field
radiusay=(4/43)Y3~1.322. It is interesting to observe that With a few notable exceptions occurring at very low values

the outer circumferences of the ring and vanish on the clasdécrease in magnitude with increasiBgand the oscillatory
sical radius. sawtooth pattern becomes centered aroun@d. The case of
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FIG. 3. The net current crossing the radius of quantum dots containing two, three, and four electrons calculated by exact diagonalization.
The angular momenta up t&|=20 are included. We observe a sawtoothlike behavior reminiscent of persistent currents in quantum rings.

two electrons is rather regular and thus easy to analyze. Here, o M 1
- I=| dr{ —+=BNr|p(r) d?rp(r)
| reaches values very close to zero already at angular mo- o ro2

menta aroundM|~ 10 while the behavior of three- and four-

electron dots is more complicated. There are conspicuous (M1 * 2
irregularities associated with more stable states at the magic “\a * EBNa 0 drp(r) drp(r)
values of angular momentum, and moreover, the oscillations

do not center arount=0 up to higher magnetic fields. For ~ 1 2<M + EBNa>. (25)
three-electron dots approaches zero only at highest values 2ma’\a 2

|M|~20 while in four-electron dot the current oscillations do Thys, the current is proportional to the largest factor in the

not center around zero in the considered parameter range Bbtential(16) term which was assumed to be zero when de-

all. _ fining the approximate ring radiug,. It means that for the
We find that the dependence lobn the magnetic field is calculation of the persistent current the radius of the ring has

approximately exponential which indicates its essentiallyto be defined with a greater precision. So let us equate the

guantum-mechanical nature. Therefore, this aspect of curreiterivative of Eq.(16) to zero:

oscillations cannot be captured by our simple quasiclassical

- . . 1 B?N2a* NAfy
model whose prediction is=0. But in contrast, the behavior —Vo=- —3<M2 - ) + N(a— > ) =0
of Al can be analyzed and understood from a classical point 2 Na 4 2&
of view. (26)
For this purpose, it is sufficient to approximate the angle = . . : .
y as Using this expression together with Hd.7) we present the
N current(25) as
1 2 -1
X~ Ng’l%' @3 I:M<M—EBNa2) (a— NMZN>
2 2 2a
and the density of the electron current along the ring can be N { My NB 3/2}
calculated a$\ times the average of the one-electron velocity =-—1- —(—) (27)
operator. Its sole azimuthal component reads 2mB 2 \2|m|
M 1 We observe that the magnetic field cannot be compensated
Jo(r)= <— + EBNr>p(f), (24)  exactly by a discrete value of the orbital momentum. Thus,
' we define the critical values of the magnetic fidg that
and the total current can be estimated as correspond to the exact compensation as
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-2

everywhere except at the origin. On the other hand, the
vector-potential part introduces a rigid-body-like rotation
with j,or, and the vorticity of this component is the same at
every point. As any physical system tries to minimize its
energy and tends to have as small currents as possible, the
two components are required to cancel each other. However,
due to the very different dependences such a cancellation is
possible only at the classical radius of the quantum dot.
The net integrated current crossing the radius of the quan-
tum dot is also, in general, nonzero. According to ELy),
an exact cancellation of the net current can be realized only
for a specific valudclose to the classical valyef the elec-
tron ring radius. The Coulomb repulsion between the elec-

3+

41

In(Al)

5|

-6 | A

05 00 05 10 15 20 25 30 trons precludes the adjustment of the radius, thereby causing
In(B) the appearance of the_ uncomp_ensat_ed persistent current. This
many-electron effect is essentially different from the single-
electron modefé where persistent currents appear due to
the dimensionless magnetic fiel The symbolgsolid lineg de-  fixation of the electron ring radius by the confinement poten-

note the numerical exact diagonalizatiguasiclassicalresults. tial or system boundaries.
2|M 2|M VI. LOCAL CURRENTS
B = 2M] 2' L |()\fN/2)‘2’3. (28)
Nag N

£7 1 . 1 s 1

FIG. 4. Double-logarithm plot of the current jumpd versus

In order to obtain a better understanding of the competing
currents flowing in the opposite directions on the inner and
Then, introducing the magnetic field deviati®@*By+AB  outer edges of the electron ring, we will now consider the

we rewrite the expression for the curré@f) as density-current correlation functions which could also be
called conditional currents. In close similarity to the more
N { B.. + AB\¥2 3NAB familiar density-density .correlator_et:qnditional densities
=— -( M ) ~ > (29) these functions are obtained by pinning one of the electrons
2By Bw 4mBy, at a certain point and inspecting the distribution of currents

created by the other electrons in the dot. In our calculations,

Finally, estimating the value of the current jump at the anguWe Place the pinned electron at the distance equal to the
lar momentum transitions we substitul&™a =2/Nag into classical radiusg, from the dot center. The remaining elec-
Eq. (29) and find trons will tend to localize close to their crystallization points,

distributed equidistantly along the circumference of the ring.

In the quasiclassical wave functiqi21) the electrons are
_ Ay A= 3 (30) distinguishable and the motion of each of them is restricted
B A2z’ NT 2m(fl2)23 to the vicinity of its own crystallization point. Therefore,

when evaluating the quasiclassical correlation function close

Thus, our theory predicts a power-law dependence of thgy these points we may dispose with the summation over the

current jumps on the magnetic field ~B™. In order to test  glectrons and take into account only the nearest one.
this prediction against the results of the numerical calcula- \when considering the correlation functions, the rotating
tions, in Fig. 4 we plotAl as a function of8 for quantum  frame coordinatesx,,y,) are not the most convenient ones
dots containing two and three electrons. The symbols depicjye to the presence of the constrajj. Thus, having a
the numerical results from our exact diagonalizations whilgsinned electron does not imply fixed values of its coordi-
the straight lines describe the quasiclassical limit. One se€gates. In order to get rid of this nuisance we switch to a new
that at high magnetic fields the numerical results for two-get of coordinatesé,, 7,) which measure, respectively, the
and three-electron dots indeed cross into a linear regime in @ ia| and angular deviations of the electrons from their crys-
full agreement with Eq(30). tallization positions in the laboratory frame. In the consid-

The distribution of currents in quantum dots shown in Fig.ereq complex representatied) both coordinate sets are re-
2 and the appearance of sawtoothlike oscillations can be eX5ted as

plained on the basis of the following simple considerations.
The physical current consists of two components: the so- . o . .
called paramagnetic current proportional to the gradient of explifan + xD(@+x, +iy,) = expliay)(@+ & +iny).

the phase of the wave function and the contribution due to (31

the vector potential. The former component resembles the

irrotational flow of the Euler liquid known in hydrodynam- Separating the real and imaginary parts we are immediately
ics. This current behaves gg<m/r wherem s the electron led to the following two equations of the coordinate transfor-

orbital momentum, and therefore, its vorticityurl) is zero  mation:

Al
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X, +a= (& +a)cosy + i, Siny, (329 2N-1 ~ —
" " X IEEX Py = mzv'3,\r’%,v’7/3 forN=2,3,4. (39
Yn= 7n COS) — (§n+a)5in)(- (32b)

We calculate the current-density correlation function in

Performing the summation over all electrons in Eg2b) WO steps. First, we consider the total current in the
and fulfilling the constraint7) we define the rotation angle N-particle space and write out its component due to the first

% electron:
2::1 7n Jin={MV1x +Alpy
tany=——— - (33 N
Nap+ 2>, & . {_Mzmﬂh_Q:L
i (Nag? 2™

Now, inserting this expression into Eq82) we solve them N

for (x,,y,). Further inserting the solutions into E@®1) we M Mznzl & B

obtain the quasiclassical wave function in the laboratory - ————+(@+ &) |&,[on
frame. Taking into account the fact that the quasiclassical Nao (Nao) 2
wave function was derived in the quadratic approximation =P +id (39)
and correspondingly retaining only the necessary terms

N N Here, the symbolg; andé&, denote the unit coordinate vec-
2 -1 n E _1 én tors. The term independent gfand »,
n=1 n=1
= 1- , 34
X Na Na (343
. M  Bay).
= (N—+7>enpm, (40)
Xn = gna (34b) a()
N leads to the persistent current which was already discussed
o 12 (340 above. Due to the integer-valued quantizatiotvpfthis cur-
Yn= N "I rent vanishes only at the special values of the magnetic field
strengthB,, given by Eq.(28). Using Eq.(17) the term linear
we obtain the wave function in the laboratory frame as in ¢ and 5 describing the local currents can be rewritten as
P = gMxgBKI4. (35)

B 1 13
- jg,)N:E _lﬂl‘ﬁz Wn]é§+|:§1+ﬁzt§n]én PN
Here, the functiorK is defined by the same expression as Eq. n=1 n=1
(21b) with the variableqx,,y,) replaced by the laboratory- 1
frame coordinatess,, 5,), and the angley is now given by =- E[ez X Vilpn, (41)
Eq. (34a.

We begin by investigating the shape of the electron den- . . L
sity lumps formed in the vicinity of their crystallization wheree, is the unit vector along the direction of the mag-

points as these results will turn out handy when discussingetic field. Note that this relation has the same form as that

the currents. Straightforward integration of tiNeparticle fe"'ous'g’ obtained for single-electron densities and
density currents?

Now we are ready to perform the second step and calcu-
late the correlator of the local currents by integrating the
obtained expressio(1) over the coordinates dfi-2 elec-
trons and pinning thaith electron as it was done in obtaining
Eq. (37). This procedure amounts to the replacement of the
N-particle densitypy by the density correlatof37) because
the integration does not involve the coordinates of the re-

maining first electron. Thus, dropping the indices and denot-
p(&m) = f déxdn, - - - dén-1d9n-1on ing the first electron coordinates k¢, 7) we arrive at the

final expression for the current-density correlation function:
B(2N-1 , 2)
z—exp - | ——§&+ . 3
p[ 4( NEE S

That is, the electron lump has the form of a Gaussian elon-

gated in the azimuthal direction. The contour lines connect- The obtained simple expression leads to important conse-
ing the constant-density points are ellipses with the ratio ofjuences. The current lines are perpendicular to the gradient
semiaxes: of the density and

o= W= o2, (36

over the coordinates dfi—2 electrons with théth electron
fixed (i.e., &=ny=0) and the first electron coordinates re-
named as, 7, gives

(6 == e x Vol n). (@2
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FIG. 5. The divergence of the density-current correlator in a two-electron quantum dot. The angular momevitaril& Panela)
corresponds to the the lower efice., B=17.75 of the magnetic field interval where this state is the ground state, gansiplotted for the
medium valugB=18.25, and pane(c) is obtained at the higher erf8=18.75 of this interval. Uncompensated global currents are visible.
Dark (light) areas correspond to generati@xtinction) of the current. The dotted curve denotes the classical radius of the quantum dot.

o 1 due to the vector potentialat the electron crystallization
divj(é§mn) =- > Ve, x V]p(¢&n) =0. (43)  points and becomes negative at a certain distance away from
them. The constant-vorticity contours are more elongated in
That is, in the considered quasiclassical approximation th&e azimuthal direction than the density contour lines; in par-
local currents circulating around the localized electrons ardicular, the contour corresponding to the zero vorticity has an
conserved. Therefore, they are physically well defined evef!lIPtic shape with the ratio of semiaxes equalgprather

though there is no general conservation theorem for the corih@n Pn. . . .
ditional currents(see the Appendix We illustrate the above conclusions with numerical re-

This circulatory motion of electrons is similar to the cy- sults. The divergence of the density-current correlation func-

clotron rotation present in any single-electron mogsse, gﬁgocsagcfdgtsglL%r_"’l‘ltv;g'aeaﬂﬁg ?:gslsigé?ttiirﬂui;gdgi \r/ZE_’
e.g., Ref. 9. However, due to the electron correlation and N 9

according to Eq(42), the electrons rotate not along Larmor dius (indicated by a dotted line in the plotss a,=1 and

circles but along elliptic density contour lines. The standarqz Ia:fr? dt?: t;;}lgn%i_?lect;or;?t L dO_).e?aél:“(:lgght_)eareaésn(:r);:%n
quantity describing such rotational motion is the vorticity pond t positivenegativg diverg —1.€., O !
(curl) of the current field. In our case it reads (extinction) of the current. The three panels of Fig. 5 show

the same ground state withl|=18, however, at slightly dif-
1 1 ferent magnetic fields. The plot in pang) is obtained for
curl j(&,m) =~ E[V X [e, X V]lp(&n) =~ EVzp(é 7) the lowest possible magnetic field at which this state is the
ground statéB=17.79, panel(b) corresponds to the middle
B of this interval of magnetic fieldeB=18.29, and pane(c) is
= Z{pﬁ +1-B(pR& + 7)pl& 7). (44 optained at the higher limit of this rand8=18.75. In all
three plots nonconserved currents are visible. Paiagland
It is worth pointing out that the vorticity is positiv@.e., it  (c) show a dipolelike structure corresponding to the azi-
has the same sign as the vorticity of the current componentuthal persistent currei0). At low magnetic fielddpanel
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FIG. 6. The curl of the density-current correlation function for quantum dots containing two, three, and four electrons. The ring of the
classical radius is marked by the dotted line, and one electron is pinned at the intersection of this ring with the negative pagxis the
(indicated by the dot The ground state df1=-18 is shown. Darklight) areas correspond to positiyeegative vorticity, and the solid
black line denotes the separating zero-vorticity contour. The quasiclassical prediction for this contour is marked by the white line.

(a)] there is a net current running in the clockwise directionpredictions, this line is an elongated ellipsis and is marked by
and at high magnetic fields we observe a net counterclocka white line. We see that the numerical results indicate a
wise current, in accordance with E@O) and the sawtooth- certain spreading and deformation of this area as the quasi-
like behavior of Fig. 83). The data in pandlb) are obtained classical regime is not truly reached.
at the middle of the allowed interval of the magnetic fields. For three and four electrons we also obtain a dipolelike
Here, B=B,, and there is no global current. However, the structure in the divergence plots since at the considered mag-
divergence assumes a quadrupolelike checkerboard pattenetic fields and angular momenta the global rotation of the
still indicating the presence of a certain current nonconserelectron molecule is not fully stopped; i.e., the oscillations of
vation. This is a small higher-order effect not captured by thahe currentsee Figs. @)3(b)] are not centered around zero
above quasiclassical treatment. value. In these cases, the maximum absolute values of the
Figure Ga) shows the curlvorticity) of a two-electron divergence are around 25 times smaller than the correspond-
quantum dot. We find that the absolute values of the curl areng magnitudes of the curl. The plots of the curl are shown in
3 orders of magnitude larger than the divergence, so the cufigs. @b)6(c) for three and four electrons, respectively. We
rent nonconservation is small indeed and can be safely negain consider the states with the angular momenklim
glected. Here, only one plot corresponding to the middle of~18 and set the magnetic field strength to the midpoint value
the allowed energy ranggs in Fig. 8b)] is shown since of the field range corresponding to the considered ground
these plots are rather insensitive to small variations of thatate. One electron is pinned on the negative part ofxthe
magnetic field. The first electron is pinned at the pointaxis at a distance equal to the classical ragimarked by the
(=1,0 on the classical radiughe dotted ling and the sec- dotted ling from the center. For three electrons witiF4
ond electron is crystallized in the vicinity of the opposite this radius isag=1.322, and for the four-electron dot with
point (1, 0) and performs a cyclotron-resonance-like motion.A=2 we havea,=1.242. The plots in Figs.(B)6(c) again
Dark (light) areas correspond to the positigreegativg vor- ~ show the remaining electrons localizing close to their crys-
ticity, and the solid black line separates the areas corresponthllization positions and performing cyclotronlike motion
ing to different signs of the curl. According to the theory along trajectories elongated in the azimuthal direction. The
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numerically calculated zero-vorticity contours are expanded
and distorted with respect to the ones predicted by the qua-
siclassical approximation. In the case of four electrons in a
dot the regions of positive vorticity even overlap.

VII. CONCLUSION

In conclusion, we developed a quasiclassical theory based
on a transformation to a rotating frame that is capable of
describing the currents in quantum dots at high magnetic
fields. The results show that due to the competition between
the paramagnetic and vector-potential components, there
arise global persistent currents running along the electron
ring. At the same time, each electron may be visualized as
performing individual cyclotronlike motion along elliptic tra-
jectories elongated in the azimuthal direction. This motion is
well described by the density-current correlation functions.
We introduced these functions as a refinement of the sugges- )
tion to demonstrate the Wigner crystallization by calculating H=- }<i + 9 7) _ ﬁ + §(P2 (A3)
ordinary currents in the broken-symmetry situation and 4\ 9o dg? 27

showed that in the quasiclassical limit they are conserved . L
and, thus, physically well defined. whose ground-state eigenfunction is

FIG. 7. Many-electron density.

W(y, p) = EMe1+02)12g7(01 = 92+ MANE, (A4)
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rie programme under Contract No. HPMF-CT-2001-01195. is shown in Fig. 7 _by the dark stripes in the 2D many-
electron space. In this space, the current has two components

related to both electrons. Its first component is given by the

expectation value of the first electron velocity operator

(=il 91 +7)
In this appendix, we present a simple solvable model that, .

by means gfpa geometrigal interpretatﬁ)on, illustrates the prob- j1= (MI2 + y)p(e1,@2). (A6)

lems arising with the single-electron functions and correla-The same result is obtained for the second component of the

tors when discussing Wigner crystallization. total currentj,. Thus, the current flows along the dark stripes
We consider two electrons moving on a 1D ring of radiusas indicated by arrows in Fig. 7.

r=1in a perpendicular magnetic field whose behavior is de- Equations(A5) and(A6) and Fig. 7 contain all available

APPENDIX: TWO ELECTRONS ON A 1D RING

scribed by the Hamiltonian information about the system. However, usually it is too dif-
1 3 2 3 P ficult to consider many-electron spaces, and one resorts to
H=- _{ (_ +i 7) + (_ +i 7) } +\ cod; — @). simpler single-electron functions such as the density and the
2(\dpy ) current obtained by integrating of Eq#5) and (A6) over

(A1) the coordinates of the second electron:

Here, the positions of the electrons on the ring are given by _ e , L

the anglese; ,, the symboly=eBrP/2c# stands for the di- ple)= fo de’p(e,¢") = const, (A78)
mensionless vector potential, and the electron-electron inter-

action is modeled by the cosine function which ensures om

Wigner crystallization of the electrons on the opposite ends i(e)=(M/2+ y)f de'p(e,@') = M2 +y. (ATb)
of the diameter in the strong interaction— o) limit. 0

After the transformation . : . .
The current expression gives the persistent current flowing

along the ring. From the geometrical point of view, the above
®= 5(901 t @), p=Q1 @t (A2) expressions are projections of the 2D many-electron density
onto the abscissa axis. Naturally, they lead to a homogeneous
the variables separate, and we rewrite the Hamiltogkdl)  single-electron density which provides no information about
in the A — o limit as the Wigner crystal. Thus, one has to consider more sophisti-
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cated correlation functions. In our case, the density-density The current-density correlation function is not so fortu-
correlation function is given by EqA5) and the density- nate because of the nonzero divergence

current correlation function by E@A6). In both cases, they q

are treated as functions of the first electron coordinate with Y : n—_JNm _ /

the second electron coordinate fixed at the paipt¢’. d@ll((P’(P )= NN2MIZ+ o= @'+ mplee') # 0,
Geometrically this actually means taking the cross section of (A8)

the plot shown in Fig. 7 along the dotted ligé=const. The

density-density correlation function is shown by a dashedndicating the absence of the charge conservation. It is evi-
line, and we see a lump at the poiai=¢=¢’'+7 which  dent from Fig. 7 that the global current does not flow along
serves as a good indication of the formation of a Wignerthe chosen cross section and the currents are escaping into

crystal. other dimensions.
*Electronic address: Francois.Peeters@ua.ac.be 1A, Matulis and F. M. Peeters, J. Phys.: Condens. Maer 751
1p. A. Maksym, H. Imamura, G. P. Mallon, and H. Aoki, J. Phys.: (1994).
, Condens. Matterl2, 299(2000. 12C. Yannouleas and U. Landman, Phys. Re\6® 1153152002.
L. P. Kouwenhoven, D. G. Austing, and S. Tarucha, Rep. Progi3c yannouleas and U. Landman, Phys. Re\6® 035326(2003.
BSPh'\XS'F?‘lf 701(200;)"\/' Manni Rev. Mod. Phvist 1283 14E. Anisimovas, A. Matulis, M. B. Tavernier, and F. M. Peeters,
. M. Reimann and M. Manninen, Rev. Mod. Phy#4, Phys. Rev. B69, 075305(2004.
(2002 y
- 15
41 Jacak, P. Hawrylak, and A. WéjQuantum Dots(Springer, 16V. M. Bedanov and F. M. Peeters, Phys. Rev4B 2667(1994).
Berlin, 1998 P. A. Maksym, Phys. Rev. 53, 10 871(1996.
5M. B. Tavernier, E. Anisimovas, F. M. Peeters, B. Szafran, 3.1'S. M. Reimann, M. Koskinen, and M. Manninen, Phys. Rev. B
Adamowski, and S. Bednarek, Phys. Rev6B, 205305(2003. 62, 8108(2000. . .
6S.-R. E. Yang and A. H. MacDonald, Phys. Rev.68, 041304 '°S. M. Reimann, M. Koskinen, M. Manninen, and B. R. Mottel-
(2002. son, Phys. Rev. Lett83, 3270(1999.
7S. A. Mikhailov, Phys. Rev. B65, 115312(2003). 19C. Eckardt, Phys. Rew7, 552(1935.

8G. Vasile, V. Gudmundsson, and A. ManolescuPinceedings of ~ 2°E. Anisimovas and A. Matulis, J. Phys.: Condens. Maft6r601
the 15th International Conference on High Magnetic Fields in ~ (1998.
Semiconductor Physicedited by A. R. Long and J. H. Davies 2'M. Biittiker, Y. Ymry, and R. Landauer, Phys. Le®6A, 365

(IOP, Bristol, 2003, p. A-11. (1983.
9C. S. Lent, Phys. Rev. B3, 4179(1991). 22p A, Maksym and T. Chakraborty, Phys. Rev4B, 1947(1992.
0W.-C. Tan and J. C. Inkson, Phys. Rev.@, 5626(1999. 23G. Vignale and P. Skudlarski, Phys. Rev.48, 10 232(1992.

195334-11



