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Currents in a few-electron parabolic quantum dot placed into a perpendicular magnetic field are considered.
We show that traditional ways of investigating the Wigner crystallization by studying the charge density
correlation function can be supplemented by the examination of the density-current correlator. However, care
must be exercised when constructing the correct projection of the multidimensional wave function space. The
interplay between the magnetic field and Euler-liquid-like behavior of the electron liquid gives rise to persistent
and local currents in quantum dots. We demonstrate these phenomena by collating a quasiclassical theory valid
in high magnetic fields and an exact numerical solution of the many-body problem.
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I. INTRODUCTION

The problem of the electronic structure1–3 of few-electron
quantum dots4 still remains in the center of attention of solid-
state research. Although recently substantial achievements
have been made by relying on the exact numerical
solution5–7 of the complicated quantum-mechanical problem,
simplified approaches8 and simple analytical models are also
of great interest and even become increasingly more
popular.9–14 Besides their relative simplicity, these models
are attractive due to the provided physical insight and trans-
parent visualization of the relevant phenomena.

The successful development of the approximation based
on the picture of a rotating electron molecule12,13encouraged
us to look at the rotation in quantum dots more closely.
Namely, we investigated the distribution of currents in the
simplest quantum dot—the rotating electron ring formed in a
few-electron system in a parabolic confinement and a per-
pendicular magnetic field.

Bedanov and Peeters15 predicted the crystallization of a
system of classical two-dimensional(2D) particles in an ex-
ternal parabolic confinement into a set of concentric rings. In
quantum dots containing up to five electrons only one ring is
formed. An accurate quantum-mechanical solution based,
e.g., on the exact numerical diagonalization of the many-
electron Hamiltonian provides a circularly symmetric distri-
bution of the charge density. The formation of the Wigner
crystal can be seen in the density-density correlation
function16,17 obtained by considering the conditional prob-
ability to find an electron at a pointr given that there is an
electron at another pointr 0.

Recently, the analysis of various electron structures was
further stimulated by employing a description based on
mean-field approaches, such as the density-functional
theory.3 In this method, the electron-electron correlation is
taken into account as an effective single-particle potential,
and the correlation function is not easily accessible. Thus,
the rotational symmetry of the dot has to be broken in some
artificial way, and the electron crystallization at high mag-
netic fields is made visible directly in the electron density.
Consideration of the currents18 also portrays the presence of
a crystal—currents are circulating around the charge density
lumps.

In the present paper, we study the local currents appearing
in the vicinity of the electron lumps in a rotating Wigner
molecule from the point of view of the density-current cor-
relation function. This function describes the distribution of
conditional currents in the system given that there is an elec-
tron at a certain point and indeed shows the electron crystal-
lization. However, a certain care must be exercised when
constructing 2D projections of the multidimensional space of
many-body currents.

The magnetic field tries to rotate the electron system as a
rigid body—i.e., with a constant vorticity. As the
Schrödinger equation has no dissipation the “quantum elec-
tron liquid” is akin to the Euler liquid in hydrodynamics and
tries to rotate itself with a fixed angular momentum—that is,
with vorticity equal to zero everywhere except at the origin.
This contradiction leads to two interesting phenomena: local
currents and persistent currents. Both of them are caused and
controlled by the electron-electron interaction. We demon-
strate these phenomena by constructing a simple quasiclassi-
cal theory employing a rotating frame in the limiting case of
high magnetic fields and illustrate the obtained results by
comparing them to the exact numerical solution of the con-
sidered problem.

The outline of the paper is as follows. Section II describes
the model used in our calculations. The next two sections are
devoted to the analytical solution: in Sec. III we derive the
Hamiltonian in the rotating frame, and Sec. IV describes its
quantization. The results concerning the persistent and local
currents are presented in Secs. V and VI, respectively. We
conclude with a summarizing section VII.

II. MODEL

We consider a 2D parabolic quantum dot containingN
=2–5electrons placed into a perpendicular magnetic fieldB.
This system is known to form a single electron ring. The
magnetic field is described in terms of its symmetric-gauge
vector potential A = 1

2fB3 r g; then, using the standard
procedure5 of switching to dimensionless variables, we ob-
tain the Hamiltonian
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Here, the energy is measured in units"v0 with v0 being the
characteristic frequency of the confinement potential. The
coordinates are measured in unitsl0=Î" /m* v0 (the oscilla-
tor lengths) and the magnetic field in unitsF0/pl0

2 sF0

=p"c/ed. The dimensionless Coulomb coupling constantl
= l0/aB

* is expressed as the ratio of the parabolic confinement
length l0 to the effective Bohr radiusaB

* =«"2/m* e2. One
way to find the eigenstates of the above Hamiltonian is to
perform the “exact” numerical diagonalizations in the trun-
cated Hilbert space of all possible electron configurations as
described in, e.g., Ref. 5. Such calculations are feasible for
few-electron quantum dots. Concentrating on the orbital ef-
fects we neglect the Zeeman energy but do take the degen-
eracy due to the spin states into account when constructing
the basis of many-body states. This approach is supple-
mented by an approximate analytical scheme valid at high
magnetic fields and employing a quasiclassical expansion in
powers ofB−1 whose development is the subject of the fol-
lowing sections.

III. ROTATING FRAME

Since we are looking for the ground-state wave function,
the strong magnetic field term in the parentheses of Eq.(1)
must be compensated by a large angular momentumM that
appears in the first term of the same parentheses when the
gradient operator acts on the rotating electron ring wave
function. The easiest way to take this cancellation of terms
into account is to use the Eckardt frame19 which is the main
instrument employed in the analysis of the rotation-vibration
spectra of molecules and was recently adapted to quantum
dots.16

The idea of the rotating Eckardt frame is to decouple the
two degrees of freedom related to the center-of-mass motion
as well as one more degree of freedom of the rotational mo-
tion of the system as a whole around its center of mass. The
angular velocity of the rotating frame is chosen so that the
system in the Eckardt frame has zero total angular momen-
tum. As we are going to apply the expansion inB−1 powers
and are interested only in the lowest-order harmonic approxi-
mation for the vibrations of the Wigner crystal, the above
technique can be simplified using a frame rotating about the
center of the quantum dot rather than the center of mass.

In order to derive the Hamiltonian written in the rotating
frame we follow the suggestion of Ref. 16 and start from the
classical Lagrangian

L = Lmag− V, s2ad

Lmag=
1

2o
n=1

N

hṙ n
2 − fB 3 r ngṙ nj, s2bd

V =
1

2o
n=1

N

r n
2 + o

n,m=1

n.m

N
l

ur n − r nu
, s2cd

whereLmag is the sum of free-electron Lagrangians in a mag-
netic field andV stands for the confinement and interaction
potentials.

In order to transform the above expressions into the rotat-
ing frame we follow Ref. 20 and introduce the local coordi-
nates(as shown in Fig. 1 for the case of three electrons). We
denote the classical equilibrium radius of the ring bya. The
azimuthal angles an=asn−1d with a=2p /N and n
=1, . . . ,N indicate the equidistant locations of electrons on
the ring. We choose the local axesxn to be parallel to the
equilibrium location vectorsan of the respective electrons,
andyn axes are directed along the ring in the positive(coun-
terclockwise) direction. We assume that the whole frame
shown in Fig. 1 is rotating in the positive direction with a
constant angular velocityẋ. Thus, the position of the vector
an is given by the angle

anstd = an + xstd, xstd = ẋt. s3d

We represent the electron coordinatesr =hx,yj by a complex
numberz=x+ iy and introduce the above-described local co-
ordinates by means of the transformation

zn → expsifan + xgdsa + znd. s4d

This enables us to present the magnetic part of the Lagrang-
ian (2b) as

Lmag=
1

2o
n=1

N

hżn
2 + sv2 − B2/4dua + znu2 + 2v Imsżnzn

*dj, s5d

with v= ẋ−B/2. This function is constrained by the condi-
tion

Im o
n=1

N

sa + zndżn
* < a Im o

n=1

N

żn
* = 0, s6d

which expresses the equality of the total angular momentum
of the electron system to zero. Integrating the above con-
straint we rewrite it as

FIG. 1. Local coordinates for three electrons on a ring.
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which can serve as the definition of the rotating frame.
In order to obtain the corresponding Hamiltonian we in-

troduce the normal modes taking into account the fact that
the electron ring is invariant with respect to rotations by a
multiple of a. Thus, the above normal modes are just the
Fourier transformswk=uk+ ivk:

zn =
1

ÎN
o
k=0

N−1

eiaksn−1dwk, wk =
1

ÎN
o
n=1

N

e−iaksn−1dzn. s8d

Note that the indexk numbering the normal modes runs from
0 to N−1. Inserting these expressions into Eq.(5) we obtain
the final Lagrangian

Lmag=
1

2
hu̇0

2 + sv2 − B2/4dsÎNa+ u0d2j

+
1

2o
k=1

N−1

huẇku2 + sv2 − B2/4duwku2 + 2v Imsẇkwk
*dj.

s9d

The main advantage of this expression is that the condition
(7) is taken into account automatically by excluding thev0
mode which is now replaced by the rotation anglex. Next,
we introduce the canonical momenta

M =
]

]ẋ
Lmag=

]

]v
Lmag= vI + o

k=1

N−1

Imsẇkwk
*d, s10ad

U0 =
]

]u̇0

Lmag= u̇0, s10bd

Uk =
]

]u̇k

Lmag= u̇k − vvk, s10cd

Vk =
]

]v̇k

Lmag= v̇k + vuk, s10dd

where

I = I0 + 2ÎNau0 + u0
2 + o

k=1

N−1

uwku2, I0 = Na2, s11d

is the moment of inertia of the electron ring. In order to
obtain the standard form of the magnetic part of the Hamil-
tonian

Hmag= Mẋ + U0u̇0 + o
k=1

N−1

sUku̇k + Vkv̇kd − Lmag, s12d

we have to solve Eqs.(10) for velocities. However, aiming to
arrive at the Hamiltonian in the harmonic approximation we
are entitled to make some approximations in the solution.
Namely, in Eqs.(10c) and(10d) we replace the frequency by
its approximate valuev<M /I0, solve them for velocitiesu̇k

and v̇k, and inserting the obtained values into Eq.(10a) we
obtain the following approximate expression for the angular
velocity:

ẋ <
B

2
+

M

I −
1

I0
o
k=1

N−1

sVkuk − Ukvkd +
M

I0
2 o

k=1

N−1

uwku2. s13d

Inserting these expressions of velocities together with the
Lagrangian(9) into Eq.(12) we arrive at the final expression
for the magnetic part of the classical Hamiltonian:

Hmag=
1

2ISM +
BI
2
D2

+
1

2
u0

2 +
1

2o
k=1

N−1HSUk +
Mvk

I0
D2

+ SVk −
Muk

I0
D2J . s14d

The total Hamiltonian is obtained by adding the potential
(2c) consisting of two terms that are small in theB→` limit.

IV. QUANTIZATION

The quantization of the ring rotation is trivial because the
rotation anglex is a cyclic variable. Thus, the orbital mo-
mentumM is a constant of motion, and quantizing we simply
replace this momentum by an integer eigenvalue of the cor-
responding angular momentum operator. The rotational part
of the wave function is given byCrot=expsiMxd.

Before proceeding to the quantization of the remaining
vibrational modes we have to fix the radius of the ringa. It is
convenient to define this parameter by minimizing the poten-
tial energy which consists of the first term of the magnetic
Hamiltonian (14) and the weak potential(2c). Introducing
the deviationD=I−I0 and replacing the electron coordi-
nates in the second term of the weak potential by their equi-
librium values, we present the potential as

V = V0 −
1

2I0
2SM2 −

B2I0
2

4
DD +

M2

2I0
3D2, s15d

where the equilibrium potential is

V0 =
1

2I0
SM +

BI0

2
D2

+ NS1

2
a2 +

l

2a
fND s16d

and the factorfN= 1
2on=1

N−1usinsan/2du−1 is the Coulomb energy
per electron in a ring of unit radius. Minimization of the
equilibrium potential(16) defines the equilibrium radius of
the electron ring. As the first term in Eq.(16) is large and the
second one is small, it is easier to obtain the estimate of the
radius in two steps. First, we equate the derivative of the first
term of the potential(16) to zero and find

− M = uMu =
1

2
BI0 =

1

2
NBa0

2. s17d

This expression gives us a relation between the magnetic
field strength and the angular momentum in the ground state,
and confirms the already mentioned fact that the angular mo-
mentum of the system grows in absolute value with increas-
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ing magnetic field. Then, the radius of the ringa0 itself is
obtained by minimizing the second(small) contribution to
the potential(16):

d

da
S1

2
a2 +

l

2a
fND = a −

l

2a2 fN = 0, s18d

with the result

a0 = slfN/2d1/3. s19d

Now the construction of the Hamiltonian in the harmonic
approximation can be completed. Taking into account that
the fulfillment of the condition(17) zeros the second term of
the expansion (15), and using the approximationD
<2a0

ÎNu0 in the third term of Eq.(15), we obtain the vi-
brational part of the Hamiltonian:

Hvib =
1

2
sU0

2 + B2u0
2d +

1

2o
k=1

N−1HSUk +
Bvk

2
D2

+ SVk −
Buk

2
D2J .

s20d

The first term of this Hamiltonian(corresponding to the
breathing mode) is just the Hamiltonian of a harmonic oscil-
lator, and its ground-state eigenfunction is exps−Bu0

2/2d. The
other part of the Hamiltonian represents a collection of non-
interacting two-component modes whose Hamiltonian re-
sembles the Hamiltonian of a 2D electron in a perpendicular
magnetic field. Thus, the corresponding ground-state eigen-
function is exps−Bok=1

N−1uwku2/4d.
Collecting all parts of the wave function together and per-

forming the inverse Fourier transformation we obtain the
electron ring ground-state wave function

C = eiMxe−BK/4, s21ad

K = o
n=1

N

sxn
2 + yn

2d +
son=1

N
xnd2

N
−

son=1

N
ynd2

N
. s21bd

V. PERSISTENT CURRENTS

Let us proceed to the examination of the current flow in
quantum dots. In Fig. 2, the distributions of the charge and
current density obtained from the exact diagonalizations are
plotted. Since these distributions are circularly symmetric,
only the radial dependences need to be shown, and moreover,
the current possesses only the azimuthal componentjw. Fig-
ure 2 is obtained for a three-electron quantum dot with the
interaction constantl=4. The angular momentum is
M =−18 and the dimensionless magnetic field is set toB
=6.78—i.e., the midpoint of the magnetic field range where
the considered state is the ground state.

We see that at these parameter values the electron ring is
already well defined; the electron density at the origin drops
almost to zero and peaks close to the classical value of the
radiusa0=s4/Î3d1/3<1.322. It is interesting to observe that
the currents flow in the opposite direction on the inner and
the outer circumferences of the ring and vanish on the clas-
sical radius.

Also, it can be noted already from Fig. 2 that the radial
dependence of the current density is nearly antisymmetric
with respect to the classical radius, and thus, the two currents
flowing in the opposite directions nearly cancel each other.
That is, there is almost no global current running along the
electron ring. In order to investigate this phenomenon in
more detail we numerically calculate the magnetic field de-
pendence of the net current crossing the dot radius,

I =E
0

`

jwsrddr, s22d

in the ground state. The results are shown in Fig. 3. We
consider angular momenta up touMu=20 and use the value
l=4 for two- and three-electron dots while in the case of
four electrons in the dot we setl=2.

We see that these dependences display a sawtoothlike be-
havior. The net currentI increases continuously with the
magnetic field in each ground state of a given angular mo-
mentum and drops abruptly at each angular momentum tran-
sition resembling persistent currents in a ring.21 These cur-
rents are responsible for the dot magnetization which
demonstrates a similar behavior.22 Note that in two- and
four-electron quantum dots where the ground state at low
magnetic field has the angular momentum5 M =0 there is no
net current at zero magnetic field. In contrast, theB=0
ground-state angular momentum in three-electron quantum
dots7 is uMu=1 and we observe a large current at low fields.

For the sake of reference, we denote the absolute magni-
tude of the current jumps byDI and the average value of the

current at the jump byĪ. In general, bothDI and Ī decrease
monotonically towards zero with increasing magnetic field
with a few notable exceptions occurring at very low values
of the magnetic field. That is, the current oscillations tend to
decrease in magnitude with increasingB and the oscillatory

sawtooth pattern becomes centered aroundĪ =0. The case of

FIG. 2. The radial distribution of the densitysrd and azimuthal
current densitys jwd for three electrons in a quantum dot withl=4
for angular momentumM =−18. The formation of a ring structure is
apparent. Note that the currents flow in opposite directions on the
inner and outer edges of the ring. The peak ofr and zero ofjw are
close to the classical electron ring radiusa0<1.322 marked by the
dot.

ANISIMOVAS, MATULIS, AND PEETERS PHYSICAL REVIEW B70, 195334(2004)

195334-4



two electrons is rather regular and thus easy to analyze. Here,

Ī reaches values very close to zero already at angular mo-
menta arounduMu<10 while the behavior of three- and four-
electron dots is more complicated. There are conspicuous
irregularities associated with more stable states at the magic
values of angular momentum, and moreover, the oscillations

do not center aroundĪ =0 up to higher magnetic fields. For

three-electron dotsĪ approaches zero only at highest values
uMu<20 while in four-electron dot the current oscillations do
not center around zero in the considered parameter range at
all.

We find that the dependence ofĪ on the magnetic field is
approximately exponential which indicates its essentially
quantum-mechanical nature. Therefore, this aspect of current
oscillations cannot be captured by our simple quasiclassical

model whose prediction isĪ ;0. But in contrast, the behavior
of DI can be analyzed and understood from a classical point
of view.

For this purpose, it is sufficient to approximate the angle
x as

x <
1

N
o
n=1

N

wn, s23d

and the density of the electron current along the ring can be
calculated asN times the average of the one-electron velocity
operator. Its sole azimuthal component reads

jwsr d = SM

r
+

1

2
BNrDrsr d, s24d

and the total current can be estimated as

I =E
0

`

drSM

r
+

1

2
BNrDrsr dYE d2rrsr d

< SM

a
+

1

2
BNaDE

0

`

drrsr dYE d2rrsr d

<
1

2pa2SM

a
+

1

2
BNaD . s25d

Thus, the current is proportional to the largest factor in the
potential(16) term which was assumed to be zero when de-
fining the approximate ring radiusa0. It means that for the
calculation of the persistent current the radius of the ring has
to be defined with a greater precision. So let us equate the
derivative of Eq.(16) to zero:

d

da
V0 = −

1

Na3SM2 −
B2N2a4

4
D + NSa −

NlfN

2a2 D = 0.

s26d

Using this expression together with Eq.(17) we present the
current(25) as

I =
N2a

2p
SM −

1

2
BNa2D−1Sa −

NlfN

2a2 D
= −

N

2pB
H1 −

lfN

2
S NB

2uMuD
3/2J . s27d

We observe that the magnetic field cannot be compensated
exactly by a discrete value of the orbital momentum. Thus,
we define the critical values of the magnetic fieldBM that
correspond to the exact compensation as

FIG. 3. The net current crossing the radius of quantum dots containing two, three, and four electrons calculated by exact diagonalization.
The angular momenta up touMu=20 are included. We observe a sawtoothlike behavior reminiscent of persistent currents in quantum rings.
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BM =
2uMu
Na0

2 =
2uMu

N
slfN/2d−2/3. s28d

Then, introducing the magnetic field deviationB=BM +DB
we rewrite the expression for the current(27) as

I = −
N

2pBM
H1 −SBM + DB

BM
D3/2J <

3NDB

4pBM
2 . s29d

Finally, estimating the value of the current jump at the angu-
lar momentum transitions we substituteDBsmaxd=2/Na0

2 into
Eq. (29) and find

DI =
AN

l2/3BM
2 , AN =

3

2psfN/2d2/3. s30d

Thus, our theory predicts a power-law dependence of the
current jumps on the magnetic fieldDI ,B−2. In order to test
this prediction against the results of the numerical calcula-
tions, in Fig. 4 we plotDI as a function ofB for quantum
dots containing two and three electrons. The symbols depict
the numerical results from our exact diagonalizations while
the straight lines describe the quasiclassical limit. One sees
that at high magnetic fields the numerical results for two-
and three-electron dots indeed cross into a linear regime in a
full agreement with Eq.(30).

The distribution of currents in quantum dots shown in Fig.
2 and the appearance of sawtoothlike oscillations can be ex-
plained on the basis of the following simple considerations.
The physical current consists of two components: the so-
called paramagnetic current proportional to the gradient of
the phase of the wave function and the contribution due to
the vector potential. The former component resembles the
irrotational flow of the Euler liquid known in hydrodynam-
ics. This current behaves asjw~m/ r wherem is the electron
orbital momentum, and therefore, its vorticity(curl) is zero

everywhere except at the origin. On the other hand, the
vector-potential part introduces a rigid-body-like rotation
with jw~ r, and the vorticity of this component is the same at
every point. As any physical system tries to minimize its
energy and tends to have as small currents as possible, the
two components are required to cancel each other. However,
due to the very differentr dependences such a cancellation is
possible only at the classical radius of the quantum dot.

The net integrated current crossing the radius of the quan-
tum dot is also, in general, nonzero. According to Eq.(17),
an exact cancellation of the net current can be realized only
for a specific value(close to the classical value) of the elec-
tron ring radius. The Coulomb repulsion between the elec-
trons precludes the adjustment of the radius, thereby causing
the appearance of the uncompensated persistent current. This
many-electron effect is essentially different from the single-
electron models10 where persistent currents appear due to
fixation of the electron ring radius by the confinement poten-
tial or system boundaries.

VI. LOCAL CURRENTS

In order to obtain a better understanding of the competing
currents flowing in the opposite directions on the inner and
outer edges of the electron ring, we will now consider the
density-current correlation functions which could also be
called conditional currents. In close similarity to the more
familiar density-density correlators(conditional densities),
these functions are obtained by pinning one of the electrons
at a certain point and inspecting the distribution of currents
created by the other electrons in the dot. In our calculations,
we place the pinned electron at the distance equal to the
classical radiusa0 from the dot center. The remaining elec-
trons will tend to localize close to their crystallization points,
distributed equidistantly along the circumference of the ring.
In the quasiclassical wave function(21) the electrons are
distinguishable and the motion of each of them is restricted
to the vicinity of its own crystallization point. Therefore,
when evaluating the quasiclassical correlation function close
to these points we may dispose with the summation over the
electrons and take into account only the nearest one.

When considering the correlation functions, the rotating
frame coordinatessxn,ynd are not the most convenient ones
due to the presence of the constraint(7). Thus, having a
pinned electron does not imply fixed values of its coordi-
nates. In order to get rid of this nuisance we switch to a new
set of coordinatessjn,hnd which measure, respectively, the
radial and angular deviations of the electrons from their crys-
tallization positions in the laboratory frame. In the consid-
ered complex representation(4) both coordinate sets are re-
lated as

expsifan + xgdsa + xn + iynd = expsiandsa + jn + ihnd.

s31d

Separating the real and imaginary parts we are immediately
led to the following two equations of the coordinate transfor-
mation:

FIG. 4. Double-logarithm plot of the current jumpsDI versus
the dimensionless magnetic fieldB. The symbols(solid lines) de-
note the numerical exact diagonalization(quasiclassical) results.
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xn + a = sjn + adcosx + hn sinx, s32ad

yn = hn cosx − sjn + adsinx. s32bd

Performing the summation over all electrons in Eq.(32b)
and fulfilling the constraint(7) we define the rotation angle
x:

tanx =
on=1

N
hn

Na0 + on=1

N
jn

. s33d

Now, inserting this expression into Eqs.(32) we solve them
for sxn,ynd. Further inserting the solutions into Eq.(21) we
obtain the quasiclassical wave function in the laboratory
frame. Taking into account the fact that the quasiclassical
wave function was derived in the quadratic approximation
and correspondingly retaining only the necessary terms

x =
on=1

N
hn

Na0

F1 −
on=1

N
jn

Na0

G , s34ad

xn = jn, s34bd

yn = hn −
1

N
o
n=1

N

hn, s34cd

we obtain the wave function in the laboratory frame as

C = eiMxe−BK̃/4. s35d

Here, the functionK̃ is defined by the same expression as Eq.
(21b) with the variablessxn,ynd replaced by the laboratory-
frame coordinatessjn,hnd, and the anglex is now given by
Eq. (34a).

We begin by investigating the shape of the electron den-
sity lumps formed in the vicinity of their crystallization
points as these results will turn out handy when discussing
the currents. Straightforward integration of theN-particle
density

rN = uCu2 = e−BK̃/2, s36d

over the coordinates ofN−2 electrons with theNth electron
fixed (i.e., jN=hN=0) and the first electron coordinates re-
named asj ,h, gives

rsj,hd =E dj2dh2 ¯ djN−1dhN−1rN

= expF−
B

4
S2N − 1

N − 1
j2 + h2DG . s37d

That is, the electron lump has the form of a Gaussian elon-
gated in the azimuthal direction. The contour lines connect-
ing the constant-density points are ellipses with the ratio of
semiaxes:

pN =Î2N − 1

N − 1
= Î3,Î5/2,Î7/3 for N = 2,3,4. s38d

We calculate the current-density correlation function in
two steps. First, we consider the total current in the
N-particle space and write out its component due to the first
electron:

j 1,N = hM¹1x + AjrN

=HF−
Mon=1

N
hn

sNa0d2 −
B

2
h1Gêj

+F M

Na0
−

Mon=1

N
jn

sNa0d2 +
B

2
sa0 + j1dGêhJrN

= j 1,N
spd + j 1,N

sld . s39d

Here, the symbolsêj and êh denote the unit coordinate vec-
tors. The term independent ofj andh,

j 1,N
spd = S M

Na0
+

Ba0

2
DêhrN, s40d

leads to the persistent current which was already discussed
above. Due to the integer-valued quantization ofM, this cur-
rent vanishes only at the special values of the magnetic field
strengthBM given by Eq.(28). Using Eq.(17) the term linear
in j andh describing the local currents can be rewritten as

j 1,N
sld =

B

2H− Fh1 −
1

N
o
n=1

N

hnGêj + Fj1 +
1

N
o
n=1

N

jnGêhJrN

= −
1

2
fez 3 ¹1grN, s41d

whereez is the unit vector along the direction of the mag-
netic field. Note that this relation has the same form as that
previously obtained for single-electron densities and
currents.23

Now we are ready to perform the second step and calcu-
late the correlator of the local currents by integrating the
obtained expression(41) over the coordinates ofN−2 elec-
trons and pinning theNth electron as it was done in obtaining
Eq. (37). This procedure amounts to the replacement of the
N-particle densityrN by the density correlator(37) because
the integration does not involve the coordinates of the re-
maining first electron. Thus, dropping the indices and denot-
ing the first electron coordinates bysj ,hd we arrive at the
final expression for the current-density correlation function:

j sj,hd = −
1

2
fez 3 ¹ grsj,hd. s42d

The obtained simple expression leads to important conse-
quences. The current lines are perpendicular to the gradient
of the density and
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div j sj,hd = −
1

2
¹ fez 3 ¹ grsj,hd = 0. s43d

That is, in the considered quasiclassical approximation the
local currents circulating around the localized electrons are
conserved. Therefore, they are physically well defined even
though there is no general conservation theorem for the con-
ditional currents(see the Appendix).

This circulatory motion of electrons is similar to the cy-
clotron rotation present in any single-electron model(see,
e.g., Ref. 9). However, due to the electron correlation and
according to Eq.(42), the electrons rotate not along Larmor
circles but along elliptic density contour lines. The standard
quantity describing such rotational motion is the vorticity
(curl) of the current field. In our case it reads

curl j sj,hd = −
1

2
f¹ 3 fez 3 ¹ ggrsj,hd = −

1

2
¹2rsj,hd

=
B

4
hpN

2 + 1 −BspN
4j2 + h2djrsj,hd. s44d

It is worth pointing out that the vorticity is positive(i.e., it
has the same sign as the vorticity of the current component

due to the vector potential) at the electron crystallization
points and becomes negative at a certain distance away from
them. The constant-vorticity contours are more elongated in
the azimuthal direction than the density contour lines; in par-
ticular, the contour corresponding to the zero vorticity has an
elliptic shape with the ratio of semiaxes equal topn

2 rather
thanpn.

We illustrate the above conclusions with numerical re-
sults. The divergence of the density-current correlation func-
tion calculated for a two-electron dot is plotted in Fig. 5. We
choose the valuel=4 so that the classical quantum dot ra-
dius (indicated by a dotted line in the plots) is a0=1 and
place the pinned electron ats−1,0d. Dark (light) areas corre-
spond to the positive(negative) divergence—i.e., generation
(extinction) of the current. The three panels of Fig. 5 show
the same ground state withuMu=18, however, at slightly dif-
ferent magnetic fields. The plot in panel(a) is obtained for
the lowest possible magnetic field at which this state is the
ground statesB=17.75d, panel(b) corresponds to the middle
of this interval of magnetic fieldssB=18.25d, and panel(c) is
obtained at the higher limit of this rangesB=18.75d. In all
three plots nonconserved currents are visible. Panels(a) and
(c) show a dipolelike structure corresponding to the azi-
muthal persistent current(40). At low magnetic fields[panel

FIG. 5. The divergence of the density-current correlator in a two-electron quantum dot. The angular momentum isM =−18. Panel(a)
corresponds to the the lower end(i.e.,B=17.75) of the magnetic field interval where this state is the ground state, panel(b) is plotted for the
medium valuesB=18.25d, and panel(c) is obtained at the higher endsB=18.75d of this interval. Uncompensated global currents are visible.
Dark (light) areas correspond to generation(extinction) of the current. The dotted curve denotes the classical radius of the quantum dot.
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(a)] there is a net current running in the clockwise direction
and at high magnetic fields we observe a net counterclock-
wise current, in accordance with Eq.(40) and the sawtooth-
like behavior of Fig. 3(a). The data in panel(b) are obtained
at the middle of the allowed interval of the magnetic fields.
Here, B=BM and there is no global current. However, the
divergence assumes a quadrupolelike checkerboard pattern
still indicating the presence of a certain current nonconser-
vation. This is a small higher-order effect not captured by the
above quasiclassical treatment.

Figure 6(a) shows the curl(vorticity) of a two-electron
quantum dot. We find that the absolute values of the curl are
3 orders of magnitude larger than the divergence, so the cur-
rent nonconservation is small indeed and can be safely ne-
glected. Here, only one plot corresponding to the middle of
the allowed energy range[as in Fig. 5(b)] is shown since
these plots are rather insensitive to small variations of the
magnetic field. The first electron is pinned at the point
s−1,0d on the classical radius(the dotted line), and the sec-
ond electron is crystallized in the vicinity of the opposite
point (1, 0) and performs a cyclotron-resonance-like motion.
Dark (light) areas correspond to the positive(negative) vor-
ticity, and the solid black line separates the areas correspond-
ing to different signs of the curl. According to the theory

predictions, this line is an elongated ellipsis and is marked by
a white line. We see that the numerical results indicate a
certain spreading and deformation of this area as the quasi-
classical regime is not truly reached.

For three and four electrons we also obtain a dipolelike
structure in the divergence plots since at the considered mag-
netic fields and angular momenta the global rotation of the
electron molecule is not fully stopped; i.e., the oscillations of
the current[see Figs. 3(a)3(b)] are not centered around zero
value. In these cases, the maximum absolute values of the
divergence are around 25 times smaller than the correspond-
ing magnitudes of the curl. The plots of the curl are shown in
Figs. 6(b)6(c) for three and four electrons, respectively. We
again consider the states with the angular momentumM =
−18 and set the magnetic field strength to the midpoint value
of the field range corresponding to the considered ground
state. One electron is pinned on the negative part of thex
axis at a distance equal to the classical radius(marked by the
dotted line) from the center. For three electrons withl=4
this radius isa0=1.322, and for the four-electron dot with
l=2 we havea0=1.242. The plots in Figs. 6(b)6(c) again
show the remaining electrons localizing close to their crys-
tallization positions and performing cyclotronlike motion
along trajectories elongated in the azimuthal direction. The

FIG. 6. The curl of the density-current correlation function for quantum dots containing two, three, and four electrons. The ring of the
classical radius is marked by the dotted line, and one electron is pinned at the intersection of this ring with the negative part of thex axis
(indicated by the dot). The ground state ofM =−18 is shown. Dark(light) areas correspond to positive(negative) vorticity, and the solid
black line denotes the separating zero-vorticity contour. The quasiclassical prediction for this contour is marked by the white line.
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numerically calculated zero-vorticity contours are expanded
and distorted with respect to the ones predicted by the qua-
siclassical approximation. In the case of four electrons in a
dot the regions of positive vorticity even overlap.

VII. CONCLUSION

In conclusion, we developed a quasiclassical theory based
on a transformation to a rotating frame that is capable of
describing the currents in quantum dots at high magnetic
fields. The results show that due to the competition between
the paramagnetic and vector-potential components, there
arise global persistent currents running along the electron
ring. At the same time, each electron may be visualized as
performing individual cyclotronlike motion along elliptic tra-
jectories elongated in the azimuthal direction. This motion is
well described by the density-current correlation functions.
We introduced these functions as a refinement of the sugges-
tion to demonstrate the Wigner crystallization by calculating
ordinary currents in the broken-symmetry situation and
showed that in the quasiclassical limit they are conserved
and, thus, physically well defined.
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APPENDIX: TWO ELECTRONS ON A 1D RING

In this appendix, we present a simple solvable model that,
by means of a geometrical interpretation, illustrates the prob-
lems arising with the single-electron functions and correla-
tors when discussing Wigner crystallization.

We consider two electrons moving on a 1D ring of radius
r =1 in a perpendicular magnetic field whose behavior is de-
scribed by the Hamiltonian

H = −
1

2
HS ]

]w1
+ igD2

+ S ]

]w2
+ igD2J + l cossw1 − w2d.

sA1d

Here, the positions of the electrons on the ring are given by
the anglesw1,2, the symbolg=eBr2/2c" stands for the di-
mensionless vector potential, and the electron-electron inter-
action is modeled by the cosine function which ensures
Wigner crystallization of the electrons on the opposite ends
of the diameter in the strong interactionsl→`d limit.

After the transformation

F =
1

2
sw1 + w2d, w = w1 − w2 + p, sA2d

the variables separate, and we rewrite the Hamiltonian(A1)
in the l→` limit as

H = −
1

4
S ]

]F
+ 2igD2

−
]2

]w2 +
l

2
w2, sA3d

whose ground-state eigenfunction is

Csw1,w2d = eiM sw1+w2d/2e−sw1 − w2 + pd2Îl/8. sA4d

Here, the symbolM stands for the total angular momentum.
In the ground state, its value equals to the integer closest to
−2g. The corresponding many-electron density

rsw1,w2d = e−sw1 − w2 + pd2Îl/2 sA5d

is shown in Fig. 7 by the dark stripes in the 2D many-
electron space. In this space, the current has two components
related to both electrons. Its first component is given by the
expectation value of the first electron velocity operator
s−i] /]w1+gd

j1 = sM/2 + gdrsw1,w2d. sA6d

The same result is obtained for the second component of the
total currentj2. Thus, the current flows along the dark stripes
as indicated by arrows in Fig. 7.

Equations(A5) and (A6) and Fig. 7 contain all available
information about the system. However, usually it is too dif-
ficult to consider many-electron spaces, and one resorts to
simpler single-electron functions such as the density and the
current obtained by integrating of Eqs.(A5) and (A6) over
the coordinates of the second electron:

rswd =E
0

2p

dw8rsw,w8d = const, sA7ad

jswd = sM/2 + gdE
0

2p

dw8rsw,w8d ~ M/2 + g. sA7bd

The current expression gives the persistent current flowing
along the ring. From the geometrical point of view, the above
expressions are projections of the 2D many-electron density
onto the abscissa axis. Naturally, they lead to a homogeneous
single-electron density which provides no information about
the Wigner crystal. Thus, one has to consider more sophisti-

FIG. 7. Many-electron density.
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cated correlation functions. In our case, the density-density
correlation function is given by Eq.(A5) and the density-
current correlation function by Eq.(A6). In both cases, they
are treated as functions of the first electron coordinate with
the second electron coordinate fixed at the pointw2=w8.
Geometrically this actually means taking the cross section of
the plot shown in Fig. 7 along the dotted linew8=const. The
density-density correlation function is shown by a dashed
line, and we see a lump at the pointw1=w=w8+p which
serves as a good indication of the formation of a Wigner
crystal.

The current-density correlation function is not so fortu-
nate because of the nonzero divergence

d

dw
j1sw,w8d = − Îl/2sM/2 + gdsw − w8 + pdrsw,w8d Þ 0,

sA8d

indicating the absence of the charge conservation. It is evi-
dent from Fig. 7 that the global current does not flow along
the chosen cross section and the currents are escaping into
other dimensions.
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