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In order to establish whether or not there is conductance quantization in amorphous silicon switches, as has
been accepted for thirteen years now, we have measured the current-voltage characteristics of these devices.
The experiments were carried out in the temperature range from 4.2 K to room temperature. Although we have
observed discontinuities in the characteristics, as reported by other authors, our statistical data analysis shows
no evidence for conductance quantization with the quanta proposed in the literature, or with any other quantum
one may come to suggest. Furthermore, it is shown that the data analysis presented in the literature is inap-
propriate to establish whether conductance quantization takes place in amorphous silicon. The statistical meth-
ods introduced here may be useful in other controversial problems to establish whether or not quantization
occurs and also to determine the appropriate value for the related quantum.
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It has been known for almost fifty years1 that many semi-
conductors, including silicon and some glass films have
current-voltage characteristicsIsVd exhibiting a threshold
voltage beyond which an attempt to change voltage further
causes the current to jump steeply to a different value. This
phenomenon has been called “switching” and its long history
can be traced back to Tyler in 1954.2 It is consensual that
switching stems from the formation of a highly conductive
filament. For a comprehensive review of the studies in this
field see Barnett.1 More recently Hajtoet al.3,4 have pub-
lished results onp-type amorphous silicon films sandwiched
between metallic contacts showingIsVd curves with multiple
current jumps. The authors suggested that the conductance
G= I /V at the top(higher current part) and/or at the bottom
(lower current part) of these jumps was quantized in a man-
ner reminiscent of the quantization observed in quantum
point contacts,5,6 that is,G=s2e2/hdN, whereN is an integer.
The phenomenon was first observed at temperatures up to
190 K. Later it was found to take place even above room
temperature.7,8 Furthermore the application of a magnetic
field of 0.2 T, oriented at 30° with the current filament join-
ing the metallic contacts, would split the current jumps pro-
ducing additional jumps corresponding to conductance quan-
tization in units of e2/h. It was also suggested that the
conductance at the jumps should, even in the absence of a
magnetic field, be an “integer or a half integer multiple” of
2e2/h. This is equivalent to accept a conductance quantum
with half the original value. These observations have been
confirmed independently by other groups7,9 and extended to
other material systems.10 It was once proposed that the con-
ductance quantum should effectively be a quarter of the
value established originally and also that the measured resis-
tance at the jumps should be corrected for a series resistance
in order to observe conductance quantization.11 These latter
results seem to have been long surpassed since all subse-
quent publications on amorphous silicon, including those
from the same authors, refer only to the quantum 2e2/h or
e2/h and do not mention any correction to the experimental
data.9,12–15

Conductance quantization in amorphous silicon would un-

doubtedly be a remarkable phenomenon. Despite the theoret-
ical effort to understand it,4,9,12–14the phenomenon remains
to be clearly explained. The model proposed is based on the
assumption that there is ballistic transport of charge in the
silicon layer. However it is difficult to understand how it
could happen above room temperature and out of the linear
regime. At any rate, this paper is not concerned with theory.
It intends to establish from the experimental facts whether or
not conductance quantization actually occurs in amorphous
silicon devices. The statistical methods employed here are
reminiscent of earlier attempts in this direction that have not
reached the mainstream of science.11,16

In this paper we study amorphous silicon switches exactly
like those described above. Although our data contain dis-
continuities in theIsVd characteristics as seen before, a care-
ful statistical analysis shows no evidence for quantization
with any quantum above the experimental precision, at any
temperature from 4.2 K to room temperature, with or with-
out correction for a parasitic series or parallel resistance.

The samples employed in this work consist of a 1000 Å
thick layer of amorphous silicon sandwiched between two
metal contacts—one made of chromium and the other of
vanadium. The active part of the device is ana-Si cylinder
with 10 mm diameter and 1000 Å height. The devices were
prepared and electrically conditioned as described in the
literature.3,4 The semiconductor film was grown by rf-glow
discharge decomposition of SiH4 containing 104 ppm of
B2H6.

Figure 1 presents theIsVd characteristics of one of the
samples at 4.2 K, with no magnetic field applied. The curve
was obtained by measuring the current through the device
while sweeping the voltage up and down. Although the over-
all features of theIsVd characteristics are the same for all
devices which exhibit current jumps, the number of jumps,
their size, and the voltage at which they occur vary consid-
erably from device to device. The data from a single device
are normally stable and reproducible over periods of a few
hours, or even a few days, although occasionally sudden
changes occur which result in a completely different set of
IsVd characteristics. These changes appear to be more fre-
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quent in a noisy electrical environment. We have observed
that devices which haveIsVd curves with only a single, large
s,0.3 mAd current jump are particularly stable and may re-
main unchanged for longer periods. Note that in the curve
shown in Fig. 1, the number of steps and their position de-
pends on whether the voltage is swept up or down. This
hysteresis has been observed in all samples which show
steps. The aforementioned quantization is supposed to hap-
pen preferentially in down sweeps.3,7

Here we assess the claim that the conductance at current
jumps is quantized in units of 2e2/h, e2/h, or e2/ s2hd, that is
to say,G=s2e2/hdN, G=se2/hdN, or G=e2/ s2hdN, whereN
is an integer. It is important to construct a strict and objective
criterion for quantization. Hajtoet al.3,4 considered the con-
ductance to be quantized as long as the measured resistance
was within a few percent off a quantized value(6% for
N,7). This is not a restrictive criterion. For example, any
jump occurring between the quantized values 5s2e2/hd
=s2581Vd−1 and 6s2e2/hd=s2151Vd−1 has its resistance at
most 215V off a quantized resistance value. This means
only 8% off. Hence, any resistance measured betweenN=5
andN=6 will be from 0 to 8%, on average 4%, off a quan-
tized value, irrespectively of the underlying physical phe-
nomenon. Similarly, any resistance measured betweenN=4
and N=5, betweenN=3 andN=4, and betweenN=2 and
N=3, will be on average 5, 7, and 9% off a quantized value.
Therefore, it is not surprising that most of the measured re-
sistance values lie within a few percent off some quantized
value. If one is prepared to accept a smaller conductance
quantum(e.g.,e2/h), any set of measurements will be even
closer to quantized values.

In order to provide a fairer test to the claims of quantiza-
tion, we have carried out a statistical analysis of the conduc-
tance at the high(top) and low(bottom) current points of the
jumps seen in theIsVd curves of several samples in the tem-
perature range from 4.2 K to room temperature. The data
consist of 120 jumps obtained with 29 devices. The conduc-
tanceG= I /V at the top and bottom of each jump was ex-
pressed as a dimensionless conductance defined byg
=G/ s2e2/hd. If G were actually quantized in units of 2e2/h,
one would expect the data points to gather around integer
values ofg. Figure 2 shows histograms of the deviationDg

of the dimensionless conductance to the closest integer, both
for the tops[Fig. 2(a)] and bottoms[Fig. 2(b)] of current
jumps. The vertical coordinate(counts) related to each of the
16 regions in which the horizontal axis was divided in rep-
resents the number of data points withDg in that region. For
example, a jump whose measured conductance was
s2500Vd−1 would correspond tog=5.16 and would contrib-
ute with one count in the region which contains the point
Dg=0.16. The value of the dimensionless conductanceg in
the data set varies from 0.1 to 24. If quantization actually
took place, one would expect a distribution ofDg with a
peak atDg=0. However, the distribution obtained from the
experimental results(Fig. 2) resembles a uniform distribu-
tion, which is consistent with randomly distributed conduc-
tance values. In order to do a quantitative test for conduc-
tance quantization, theDg axis was split into two equal-
length regions; one extends from −1

4 to + 1
4 (indicated by

the arrows in Fig. 2) and the other comprises the rest of the
Dg axis. Let us name the former region the “quantized re-
gion” and the latter the “nonquantized region.” If quantiza-
tion occurred, one would expect that more experimental
points would lie within the quantized region than out of it.
The experimental data show that only 56 tops(47% of the
total) and 62 bottoms(52%) lie within the quantized region.
This distribution indicates that there is no evidence for quan-
tization in units ofs2e2/hd. Similar analyses for conductance
quantization in units ofe2/h and e2/ s2hd were carried out
defining, in one case,g=G/ se2/hd and g=G/ fse2/hd /2g in
the other. In the former case it is found that 61(51%) tops
and also 61(51%) bottoms lie in the central region. In the
other case 59(49%) of the tops and 61(51%) of the bottoms
are in the quantized region. These results are consistent with
the 50% in the quantized region expected for a random dis-
tribution. We conclude, therefore, that there is no experimen-
tal evidence for conductance quantization in units ofs2e2/hd,
se2/hd, or e2/ s2hd. It is important to point out that there is no
data selection here. In fact, we have included in this statisti-
cal analysis all reproducible jumps of all samples in both up
and down voltage sweeps. If conduction quantization actu-
ally happens in a meaningful set of devices, it should show
up, even if the phenomenon does not take place in some
other devices, jumps or sweeps.

As mentioned before, the current jumps were first sup-
posed to occur at conductance values ofs2e2/hdN, with in-
tegerN. Then half integer values were also allowed, meaning
quantization with half the original quantum. Of course, any
set of data will be as close as wanted to quantized values, if
one is allowed to make the quantum sufficiently small. The

FIG. 1. IsVd characteristics obtained at 4.2 K, in the absence of
magnetic field. The arrows indicate the direction of the voltage
sweep.

FIG. 2. Histograms of the deviation of the dimensionless con-
ductanceg=G/ s2e2/hd from the closest integer. Part(a) refers to
the tops of current jumps and part(b) to the bottoms.
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statistical method used above does not allow this freedom,
since the quantized and nonquantized regions have the same
length, whatever the proposed quantum. It seems relevant to
wonder whether the conductance at jumps is quantized with
some other quantum one may propose. A way to address this
question can be set forth considering the problem of charge
quantization and the data from Millikan’s oil drop experi-
ment. Here are the charges(in units of 10−19 C) of nine oil
drops taken from a textbook: 6.563, 8.204, 11.50, 13.13,
16.48, 18.08, 19.71, 22.89, and 26.13. If we step into Robert
Millikan’s shoes, our problem is the following. All these
measured charges(qi, i from 1 to 9) are approximately an
integer multiple of a certain unknown quantum “e.” What is
the value ofe? A computational approach is to define a func-
tion sFd that qualifies a guesssqattemptd for the quantum and
then try all acceptable guesses. We want the function
Fsqattemptd to have a small value ifqattempt is a good guess,
that is, if all the drop’s chargessqid divided by qattempt are
close to an integer. The function below, wherep is the num-
ber of charges measured andRsxd is the integer closest tox,
is the quadratic deviation ofqi /qattempt to the closest integer.
It is easy to see thatF has lower values for better guesses. If
there were no experimental errors, a perfect guess,qattempt
=e, would renderF=0. Due to the normalization factor 4/p,
the maximum possible value forF is 1:

Fsqattemptd =
4

p
o
i=1

p F qi

qattempt
− RS qi

qattempt
DG2

.

Of course, the value ofe can be at most equal to the
charge of the drop with the lowest measured charge(6.563).
Figure 3 shows a plot ofF for qattempt ranging from the
experimental precision(0.001) to 7. The function oscillates
wildly and drops down almost to 0 atqattempt=1.6, the actual
electron charge. Of course there are other minima at 1.6/N,
whereN is an integer. With some thought, one can convince
himself that the value ofe has to be the highestqattemptvalue
that minimizesF, that is, 1.6. This method was applied to
the conductance measured at the current jumps. Figure 4
shows a plot ofF for the top of the jumps as a function of
the guess for the conductance quantumsQattemptd in units of
2e2/h. The function has no clear global minimum and never
comes below 0.2, which is the minimum value forF one

obtains with a set of data generated randomly. The corre-
sponding plot for the bottom of the jump has the same fea-
tures. This shows that conductance quantization is not
present in our data, with any quantum.

As mentioned before, it was once proposed that the resis-
tance measured at jumps should be corrected for a series
resistance in order to reveal the quantized values.11 Conduc-
tance quantization in amorphous silicon was established
without this correction3 and it has not been used in the lit-
erature, except for the aforementioned publication. Neverthe-
less this proposal is discussed here for completeness. For
each silicon switch, the authors tried several values for the
series resistance and chose the one which brought the mea-
sured jump resistances closer to the quantized values. This
fitted resistance was then subtracted from the measured val-
ues. The procedure resulted in aDg distribution which, un-
like the authors’ uncorrected data and our own measurements
(Fig. 2), has a Gaussian shape with a peak atDg=0. The
peak at this position was regarded as a proof of conductance
quantization. This is not necessarily the case. The data pro-
cessing described here is a parameter fitting, not the duly
correction for a well-known series resistance. Therefore, this
procedure obviously has to take the measured conductances
closer to the quantized values, or to any other target values
one may choose. The key point is to determine whether the
series resistance correction brings the measured jump con-
ductances closer to the quantized value than it would bring a
set of random numbers.

Of course, it is conceivable that the devices may have a
considerable nonquantized resistance in series with the pro-
posed quantized conductance channel. Considering the exis-
tence of a current filament surrounded by a less conductive
region, which underlies switching,1 it is even more plausible
to have some “parasitic” resistance in parallel with the sup-
posedly quantized channel. The following procedure was
carried out to investigated whether a correction of our data
for a voltage-independent series or parallel resistance would
uncover the proposed quantized conductance. First, for each
of the 29 devices employed, a series resistance was fitted to
bring the corrected jump resistances(measured values minus
fitted series resistance) as close as possible to the quantized
values. This parameter fitting was accomplished trying all
series resistances, from zero up to the lowest jump resistance
measured for the device, in 5V steps. For each of these trial

FIG. 3. Dependence ofF on the guess for the charge quantum.
The inset shows in greater detail the global minimum around
qattempt=1.6.

FIG. 4. Dependence ofF for the top of the jumps on the guess
for the conductance quantum in units of 2e2/h.
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resistances, we corrected the conductance at the jumps and
used these corrected values to calculate the corresponding
dimensionless conductance(as before, g=Gcorrected/
Gquantum, whereGquantum=2e2/h). Then, we calculated theF
function based on the definition above, where theqi are sub-
stituted by the correctedg values of the device andqattemptis
replaced withGquantum. The series resistance fitted for a de-
vice is the one which gives the lowest value forF. Figure
5(a) shows theDg distribution obtained with the corrected
conductance at the bottom of the 120 jumps in our data. In
contrast with the uniform distribution related to the uncor-
rected data(Fig. 2), this distribution resembles a Gaussian
peaked atDg=0, whose width at half height is 0.27. This
peak is not necessarily evidence for conductance quantiza-
tion. After all, 29 parameters(one series resistance for each
switch) were fitted, aiming to peak the distribution at this
point. The width of this distribution is a measure of how
close the corrected measured conductances are from the
quantized values. In order to decide whether the silicon
switches have a quantized conductance channel in series with
some other resistance, we have generated 29 sets of random
numbers. Each random set mimics the results from one de-
vice, in the sense that it contains one number for each jump
observed in theIsVd curve of the device and this number was
randomly picked in the range from the minimum to maxi-
mum jump conductance measured with that device. Correct-
ing each random set for a fitted series resistance and calcu-
lating g, the way described above, one obtains a Gaussian-
like distribution peaked atDg=0. One hundred collections of
29 random sets were generated and processed as described.
All of the 100 distributions had a width close to the one
obtained with the corrected experimental data. In fact, sum-
ming up these distributions and dividing by 100, one obtains
the averageDg distribution of random numbers corrected for
series resistances which is shown in Fig. 5(b). It is a Gauss-
ian and its half-height widths0.24±0.03d is essentially the
same as that of the distribution obtained with the corrected
experimental data(0.27) shown in Fig. 5(a). The tolerance
mentioned(0.03) is the average absolute deviation of the
width of the random collections to their average width,
which turns out to be the width of the averageDg distribu-
tion. In other words, the series resistance correction brings
the experimental jump conductances closer to the quantized
values, but similar sets of random numbers are brought just
as close. Naturally, there is no ground to claim there is a
quantized conductance channel concealed by some series re-
sistance, unless the distribution corresponding to the cor-

rected experimental data is considerably narrower than the
one associated with randomly generated numbers. Therefore,
our data show the conductance at the bottom of the jumps is
not quantized in units of 2e2/h, even if a series resistance
correction is applied. The same procedure was carried out
with the conductance measured at the top of the jumps. The
width of Dg distribution related to the corrected experimental
values is 0.22, also giving no support for the claim of con-
ductance quantization.

We have also examined whether our data corrected for a
series resistance would support conductance quantization
with the other quantum values proposed so far, i.e.,e2/h and
se2/hd /2. This was carried out as described above, but re-
casting the dimensionless conductance asg=Gcorrected/
Gquantum, with Gquantum=e2/h, and laterGquantum=se2/hd /2.
For the former tentative quantumse2/hd, the width of theDg
distribution for the corrected experimental data is 0.22 for
the bottoms of the jumps and 0.20 for the tops. The width of
the corresponding average distribution of corrected random
numbers is 0.23±0.03. Using the latter tentative quantum,
the distribution widths were 0.24, 0.22, and 0.23±0.02 for
the bottom of the jumps, for the tops, and for the corrected
random numbers, respectively. Once again, there is clearly
no support for the claim of conductance quantization.

On the same lines described above, we have corrected our
data to account for a possible resistance in parallel with a
quantized conductance channel. A parallel resistance was fit-
ted to each device. This was carried out trying all values
from the highest measured jump resistance up to 300kV, in
100 V steps. Trying a lower resistance would not make
sense, since the parallel resistance ought to be higher than
the measured value. On the other hand, trying higher values
would be irrelevant, since the correction becomes rather
small, if the parallel resistance is much higher than the mea-
sured jump resistance, which is typically in the 103 V range.
As before, the fitted resistance for a device is the one which
gives the lowest value forF, that is, the one which brings the
corrected conductances closer to the quantized values. For
the bottom of the jumps, using the tentativeGquantumin turns
equal to 2e2/h, e2/h, and se2/hd /2, we obtained Gaussian-
like distributions peaked atDg=0, whose width at half
height were 0.57, 0.60, and 0.49, respectively. For the tops,
usingGquantum2e2/h, e2/h, andse2/hd /2, the width of theDg
distributions were 0.59, 0.55, and 0.58, respectively. After
the parallel resistance correction, the aforementioned random
collections gave rise toDg distributions whose width were
0.55±0.04, 0.54±0.04, and 0.55±0.03, for tentative conduc-
tance quantums equal to 2e2/h, e2/h, and se2/hd /2, respec-
tively. Once more, one cannot credibly propose the conduc-
tance at jumps is quantized.

It is noticeable that the width of theDg distribution re-
lated to the corrected experimental data is roughly the same,
whichever is the tentative quantum. This scale invariance is
consistent with randomly distributedg values. It is also im-
portant to emphasize that we have only tried corrections for
voltage-independent parasitic resistances. Therefore one
could argue that the parasitic resistance may depend on the
voltage bias applied to the device. Nevertheless, we feel that
without a supporting theory, the proposition that quantization

FIG. 5. Histograms of the deviation of the series resistance cor-
rected dimensionless conductanceg=G/ s2e2/hd from the closest
integer. Part(a) refers to the bottom of current jumps and part(b) to
the collections of random numbers.
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actually takes place, but is concealed by a resistance with an
unknown dependence on voltage, would be a matter of faith.

We have studied silicon switches like those supposed to
exhibit conductance quantization. Although the samples dis-
played current jumps in theIsVd curves as those presented in
the literature, a careful statistical analysis of the data showed
no evidence for conductance quantization with any quantum
above the experimental precision. It is also shown that the
data analysis previously used in the literature is inappropriate
to establish whether conductance quantization occurs in

amorphous silicon. We believe the subject could be further
enlightened, if other authors analyzed their data using the
statistical methods proposed here. The method employed to
prove that conductance is not quantized with any quantum
can be useful in other problems to look for a possible quan-
tum for the measured quantity.
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