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Conductance quantization in amorphous silicon switches
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In order to establish whether or not there is conductance quantization in amorphous silicon switches, as has
been accepted for thirteen years now, we have measured the current-voltage characteristics of these devices.
The experiments were carried out in the temperature range from 4.2 K to room temperature. Although we have
observed discontinuities in the characteristics, as reported by other authors, our statistical data analysis shows
no evidence for conductance quantization with the quanta proposed in the literature, or with any other quantum
one may come to suggest. Furthermore, it is shown that the data analysis presented in the literature is inap-
propriate to establish whether conductance quantization takes place in amorphous silicon. The statistical meth-
ods introduced here may be useful in other controversial problems to establish whether or not quantization
occurs and also to determine the appropriate value for the related quantum.
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It has been known for almost fifty yedrhat many semi- doubtedly be a remarkable phenomenon. Despite the theoret-
conductors, including silicon and some glass films havecal effort to understand #212-4the phenomenon remains
current-voltage characteristidgV) exhibiting a threshold to be clearly explained. The model proposed is based on the
voltage beyond which an attempt to change voltage furtheassumption that there is ballistic transport of charge in the
causes the current to jump steeply to a different value. Thisilicon layer. However it is difficult to understand how it
phenomenon has been called “switching” and its long historycould happen above room temperature and out of the linear
can be traced back to Tyler in 1954t is consensual that regime. At any rate, this paper is not concerned with theory.
switching stems from the formation of a highly conductive It intends to establish from the experimental facts whether or
filament. For a comprehensive review of the studies in thisot conductance quantization actually occurs in amorphous
field see Barnett.More recently Hajtoet al®* have pub- silicon devices. The statistical methods employed here are
lished results omp-type amorphous silicon films sandwiched reminiscent of earlier attempts in this direction that have not
between metallic contacts showih@y) curves with multiple  reached the mainstream of sciefté®
current jumps. The authors suggested that the conductance In this paper we study amorphous silicon switches exactly
G=1/V at the top(higher current paytand/or at the bottom like those described above. Although our data contain dis-
(lower current paitof these jumps was quantized in a man- continuities in thd (V) characteristics as seen before, a care-
ner reminiscent of the quantization observed in quantunful statistical analysis shows no evidence for quantization
point contact$;® that is,G=(2€?/h)N, whereN is an integer.  with any quantum above the experimental precision, at any
The phenomenon was first observed at temperatures up temperature from 4.2 K to room temperature, with or with-
190 K. Later it was found to take place even above roomput correction for a parasitic series or parallel resistance.
temperaturé:8 Furthermore the application of a magnetic ~ The samples employed in this work consist of a 1000 A
field of 0.2 T, oriented at 30° with the current filament join- thick layer of amorphous silicon sandwiched between two
ing the metallic contacts, would split the current jumps pro-metal contacts—one made of chromium and the other of
ducing additional jumps corresponding to conductance quarvanadium. The active part of the device is @$i cylinder
tization in units of €?/h. It was also suggested that the with 10 um diameter and 1000 A height. The devices were
conductance at the jumps should, even in the absence ofpiepared and electrically conditioned as described in the
magnetic field, be an “integer or a half integer multiple” of literature®# The semiconductor film was grown by rf-glow
2e?/h. This is equivalent to accept a conductance quantunslischarge decomposition of SjHcontaining 16 ppm of
with half the original value. These observations have bee;Hs.
confirmed independently by other grotifand extended to Figure 1 presents thEV) characteristics of one of the
other material systen$.It was once proposed that the con- samples at 4.2 K, with no magnetic field applied. The curve
ductance quantum should effectively be a quarter of thevas obtained by measuring the current through the device
value established originally and also that the measured resig¢hile sweeping the voltage up and down. Although the over-
tance at the jumps should be corrected for a series resistane# features of thd(V) characteristics are the same for all
in order to observe conductance quantizalibhese latter devices which exhibit current jumps, the number of jumps,
results seem to have been long surpassed since all subghkeir size, and the voltage at which they occur vary consid-
quent publications on amorphous silicon, including thoseerably from device to device. The data from a single device
from the same authors, refer only to the quantug?/B or  are normally stable and reproducible over periods of a few
€?/h and do not mention any correction to the experimentahours, or even a few days, although occasionally sudden
datad12-15 changes occur which result in a completely different set of

Conductance quantization in amorphous silicon would uni(V) characteristics. These changes appear to be more fre-
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a0 the tops of current jumps and pah) to the bottoms.
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V (Voits) of the dimensionless conductance to the closest integer, both
for the tops[Fig. 2@)] and bottomg[Fig. 2b)] of current
FIG. 1. 1(V) characteristics obtained at 4.2 K, in the absence offumps. The vertical coordinateountg related to each of the
magnetic field. The arrows indicate the direction of the voltagel6 regions in which the horizontal axis was divided in rep-
sweep. resents the number of data points wib in that region. For
example, a jump whose measured conductance was
quent in a noisy electrical environment. We have observed2500()* would correspond tg=5.16 and would contrib-
that devices which havigV) curves with only a single, large ute with one count in the region which contains the point
(~0.3 mA) current jump are particularly stable and may re-Ag=0.16. The value of the dimensionless conductanae
main unchanged for longer periods. Note that in the curvéhe data set varies from 0.1 to 24. If quantization actually
shown in Fig. 1, the number of steps and their position detook place, one would expect a distribution &f with a
pends on whether the voltage is swept up or down. Thigpeak atAg=0. However, the distribution obtained from the
hysteresis has been observed in all samples which shoaxperimental result§Fig. 2) resembles a uniform distribu-
steps. The aforementioned quantization is supposed to hafien, which is consistent with randomly distributed conduc-
pen preferentially in down sweeps. tance values. In order to do a quantitative test for conduc-
Here we assess the claim that the conductance at curref@nce quantization, thdg axis was split into two equal-
jumps is quantized in units ofe2/h, €?/h, or €?/(2h), thatis  length regions; one extends frong 4o +; (indicated by
to say,G=(2€?/h)N, G=(e?/h)N, or G=€?/(2h)N, whereN  the arrows in Fig. 2and the other comprises the rest of the
is an integer. It is important to construct a strict and objectiveAg axis. Let us name the former region the “quantized re-
criterion for quantization. Hajtet al®* considered the con- gion” and the latter the “nonquantized region.” If quantiza-
ductance to be quantized as long as the measured resistariggh occurred, one would expect that more experimental
was within a few percent off a quantized valg@% for  points would lie within the quantized region than out of it.
N<7). This is not a restrictive criterion. For example, any The experimental data show that only 56 tq@¥% of the
jump occurring between the quantized value@eb/h)  total) and 62 bottom$52%) lie within the quantized region.
=(25810)7! and 62€%/h)=(21510)! has its resistance at This distribution indicates that there is no evidence for quan-
most 215Q off a quantized resistance value. This meansfization in units of(2€?/h). Similar analyses for conductance
only 8% off. Hence, any resistance measured betvWéeh quantization in units of?/h and e2/(2h) were carried out
andN=6 will be from 0 to 8%, on average 4%, off a quan- defining, in one casey=G/(e?*/h) and g=G/[(€*/h)/2] in
tized value, irrespectively of the underlying physical phe-the other. In the former case it is found that @lLl%) tops
nomenon. Similarly, any resistance measured betvi¢ed  and also 61(51%) bottoms lie in the central region. In the
and N=5, betweenN=3 andN=4, and betweeiN=2 and other case 5849%) of the tops and 6151%) of the bottoms
N=3, will be on average 5, 7, and 9% off a quantized valueare in the quantized region. These results are consistent with
Therefore, it is not surprising that most of the measured rethe 50% in the quantized region expected for a random dis-
sistance values lie within a few percent off some quantizedribution. We conclude, therefore, that there is no experimen-
value. If one is prepared to accept a smaller conductancel evidence for conductance quantization in unit¢2ef/h),
quantum(e.g.,€?/h), any set of measurements will be even (€?/h), or €/(2h). It is important to point out that there is no
closer to quantized values. data selection here. In fact, we have included in this statisti-
In order to provide a fairer test to the claims of quantiza-cal analysis all reproducible jumps of all samples in both up
tion, we have carried out a statistical analysis of the conducand down voltage sweeps. If conduction quantization actu-
tance at the higltop) and low(bottom) current points of the ally happens in a meaningful set of devices, it should show
jumps seen in th&V) curves of several samples in the tem- up, even if the phenomenon does not take place in some
perature range from 4.2 K to room temperature. The datather devices, jumps or sweeps.
consist of 120 jumps obtained with 29 devices. The conduc- As mentioned before, the current jumps were first sup-
tanceG=1/V at the top and bottom of each jump was ex- posed to occur at conductance valueg2#/h)N, with in-
pressed as a dimensionless conductance definedg by tegerN. Then half integer values were also allowed, meaning
=G/ (2€?/h). If G were actually quantized in units 0B2h,  quantization with half the original quantum. Of course, any
one would expect the data points to gather around integeset of data will be as close as wanted to quantized values, if
values ofg. Figure 2 shows histograms of the deviatidtg  one is allowed to make the quantum sufficiently small. The
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FIG. 3. Dependence b on the guess for the charge quantum.  FIG. 4. Dependence ab for the top of the jumps on the guess
The inset shows in greater detail the global minimum aroundfor the conductance quantum in units a?2h.

Oattempt=1.6.

obtains with a set of data generated randomly. The corre-
statistical method used above does not allow this freedonmsponding plot for the bottom of the jump has the same fea-
since the quantized and nonquantized regions have the samifes. This shows that conductance quantization is not
length, whatever the proposed quantum. It seems relevant {sresent in our data, with any quantum.
wonder whether the conductance at jumps is quantized with As mentioned before, it was once proposed that the resis-
some other quantum one may propose. A way to address thisnce measured at jumps should be corrected for a series
question can be set forth considering the problem of charggesistance in order to reveal the quantized valti&onduc-
quantization and the data from Millikan's oil drop experi- tance quantization in amorphous silicon was established
ment. Here are the chargés units of 10° C) of nine oil  without this correctiof and it has not been used in the lit-
drops taken from a textbook: 6.563, 8.204, 11.50, 13.13erature, except for the aforementioned publication. Neverthe-
16.48, 18.08, 19.71, 22.89, and 26.13. If we step into Robefless this proposal is discussed here for completeness. For
Millikan's shoes, our problem is the following. All these each silicon switch, the authors tried several values for the
measured chargegy;, i from 1 to 9 are approximately an series resistance and chose the one which brought the mea-
integer multiple of a certain unknown quantue™Whatis  sured jump resistances closer to the quantized values. This
the value ofe? A computational approach is to define a func-fitted resistance was then subtracted from the measured val-
tion (P) that qualifies a gues®l,qemp for the quantum and yes. The procedure resulted inAg distribution which, un-
then try all acceptable guesses. We want the functiomike the authors’ uncorrected data and our own measurements
D(aiempl t0 have a small value iflyemptiS @ good guess, (Fig. 2), has a Gaussian shape with a peakAgt=0. The
that is, if all the drop’s chargey) divided by guempr@re  peak at this position was regarded as a proof of conductance
close to an integer. The function below, wherés the num-  quantization. This is not necessarily the case. The data pro-
ber of charges measured aR(k) is the integer closest tg, cessing described here is a parameter fitting, not the duly
is the quadratic deviation afi/gaemptt0 the closest integer. correction for a well-known series resistance. Therefore, this
It is easy to see thab has lower values for better guesses. If procedure obviously has to take the measured conductances
there were no experimental errors, a perfect gugsgmp,  Closer to the quantized values, or to any other target values
=g, would rendexd=0. Due to the normalization factor g/  one may choose. The key point is to determine whether the

the maximum possible value f@b is 1: series resistance correction brings the measured jump con-
ductances closer to the quantized value than it would bring a

4l g a \|? set of random numbers.
P(Gattempt = B% qattempt_ R Qattempt | Of course, it is conceivable that the devices may have a

considerable nonquantized resistance in series with the pro-
Of course, the value oé can be at most equal to the posed quantized conductance channel. Considering the exis-
charge of the drop with the lowest measured ch&€y®863. tence of a current filament surrounded by a less conductive
Figure 3 shows a plot ofP for Qugemp: ranging from the  region, which underlies switchingit is even more plausible
experimental precisio0.00]) to 7. The function oscillates to have some “parasitic” resistance in parallel with the sup-
wildly and drops down almost to O &femp=1.6, the actual posedly quantized channel. The following procedure was
electron charge. Of course there are other minima atNl,.6/ carried out to investigated whether a correction of our data
whereN is an integer. With some thought, one can convincefor a voltage-independent series or parallel resistance would
himself that the value o has to be the highestempvalue  uncover the proposed quantized conductance. First, for each
that minimizes®, that is, 1.6. This method was applied to of the 29 devices employed, a series resistance was fitted to
the conductance measured at the current jumps. Figure Bring the corrected jump resistandeseasured values minus
shows a plot of® for the top of the jumps as a function of fitted series resistangas close as possible to the quantized
the guess for the conductance quant@emp in units of  values. This parameter fitting was accomplished trying all
2€?/h. The function has no clear global minimum and neverseries resistances, from zero up to the lowest jump resistance
comes below 0.2, which is the minimum value férone  measured for the device, in3 steps. For each of these trial
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30f(a) 30f(b) rected experimental data is considerably narrower than the
gg E§5 one associated with randomly generated numbers. Therefore,
3}3 g:o our data s_how Fhe c_onductance at thg bottom of thg jumps is
S’ s not quantized in units of &/h, even if a series resistance

correction is applied. The same procedure was carried out
with the conductance measured at the top of the jumps. The
width of Ag distribution related to the corrected experimental
FIG. 5. Histograms of the deviation of the series resistance corvalues is 0.22, also giving no support for the claim of con-
rected dimensionless conductangeG/(2e?/h) from the closest ductance quantization.
integer. Parta) refers to the bottom of current jumps and p@mtto We have also examined whether our data corrected for a
the collections of random numbers. series resistance would support conductance quantization
with the other quantum values proposed so far, &l and

resistances, we corrected the conductance at the jumps af@f/h)/2. This was carried out as described above, but re-
used these corrected values to calculate the correspondit@sting the dimensionless conductance @sGegrected
dimensionless  conductance(as before, g=Geomected  Cquantum With Gguantun=€?/h, and later G anwn= (€2/h)/2.
Gquantum WhereGguanun=26%/h). Then, we calculated thé@  For the former tentative quantufe’/h), the width of theAg
function based on the definition above, wheredhare sub-  distribution for the corrected experimental data is 0.22 for
stituted by the correcteg values of the device anglempids ~ the bottoms of the jumps and 0.20 for the tops. The width of
replaced withGgy,anum The series resistance fitted for a de-the corresponding average distribution of corrected random
vice is the one which gives the lowest value fbr Figure  numbers is 0.23+0.03. Using the latter tentative quantum,
5(a) shows theAg distribution obtained with the corrected the distribution widths were 0.24, 0.22, and 0.23+0.02 for
conductance at the bottom of the 120 jumps in our data. Ithe bottom of the jumps, for the tops, and for the corrected
contrast with the uniform distribution related to the uncor-random numbers, respectively. Once again, there is clearly
rected dataFig. 2), this distribution resembles a Gaussianno support for the claim of conductance quantization.
peaked atAg=0, whose width at half height is 0.27. This  On the same lines described above, we have corrected our
peak is not necessarily evidence for conductance quantizatata to account for a possible resistance in parallel with a
tion. After all, 29 parameter@ne series resistance for each quantized conductance channel. A parallel resistance was fit-
switch) were fitted, aiming to peak the distribution at this ted to each device. This was carried out trying all values
point. The width of this distribution is a measure of how from the highest measured jump resistance up toK80in
close the corrected measured conductances are from tH®0() steps. Trying a lower resistance would not make
guantized values. In order to decide whether the silicorsense, since the parallel resistance ought to be higher than
switches have a quantized conductance channel in series withe measured value. On the other hand, trying higher values
some other resistance, we have generated 29 sets of randevould be irrelevant, since the correction becomes rather
numbers. Each random set mimics the results from one desmall, if the parallel resistance is much higher than the mea-
vice, in the sense that it contains one number for each jumpured jump resistance, which is typically in the’ 1D range.
observed in thé(V) curve of the device and this number was As before, the fitted resistance for a device is the one which
randomly picked in the range from the minimum to maxi- gives the lowest value fob, that is, the one which brings the
mum jump conductance measured with that device. Correctorrected conductances closer to the quantized values. For
ing each random set for a fitted series resistance and calcthe bottom of the jumps, using the tentati@g,.nmin turns
lating g, the way described above, one obtains a Gaussiarequal to 2°/h, €/h, and (¢?/h)/2, we obtained Gaussian-
like distribution peaked akg=0. One hundred collections of like distributions peaked atg=0, whose width at half

29 random sets were generated and processed as describeeight were 0.57, 0.60, and 0.49, respectively. For the tops,
All of the 100 distributions had a width close to the one usingGguanum2€?/h, €?/h, and(€?/h)/2, the width of theAg
obtained with the corrected experimental data. In fact, sumeistributions were 0.59, 0.55, and 0.58, respectively. After
ming up these distributions and dividing by 100, one obtainghe parallel resistance correction, the aforementioned random
the average\g distribution of random numbers corrected for collections gave rise tdg distributions whose width were
series resistances which is shown in Figh)51t is a Gauss- 0.55+0.04, 0.54+0.04, and 0.55+0.03, for tentative conduc-
ian and its half-height widti{0.24+0.03 is essentially the tance quantums equal t@&Zh, €/h, and(e?/h)/2, respec-
same as that of the distribution obtained with the correctedively. Once more, one cannot credibly propose the conduc-
experimental dat&0.27 shown in Fig. %5a). The tolerance tance at jumps is quantized.

mentioned(0.03 is the average absolute deviation of the It is noticeable that the width of thAg distribution re-
width of the random collections to their average width, lated to the corrected experimental data is roughly the same,
which turns out to be the width of the averagg distribu-  whichever is the tentative quantum. This scale invariance is
tion. In other words, the series resistance correction bringsonsistent with randomly distributeglvalues. It is also im-

the experimental jump conductances closer to the quantizegbrtant to emphasize that we have only tried corrections for
values, but similar sets of random numbers are brought justoltage-independent parasitic resistances. Therefore one
as close. Naturally, there is no ground to claim there is aould argue that the parasitic resistance may depend on the
guantized conductance channel concealed by some series kltage bias applied to the device. Nevertheless, we feel that
sistance, unless the distribution corresponding to the comithout a supporting theory, the proposition that quantization
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actually takes place, but is concealed by a resistance with aamorphous silicon. We believe the subject could be further

unknown dependence on voltage, would be a matter of faithenlightened, if other authors analyzed their data using the
We have studied silicon switches like those supposed tetatistical methods proposed here. The method employed to

exhibit conductance quantization. Although the samples disprove that conductance is not quantized with any quantum

played current jumps in theV) curves as those presented in can be useful in other problems to look for a possible quan-

the literature, a careful statistical analysis of the data showeflim for the measured quantity.

no evidence for conductance quantization with any quantum

above the experimental precision. It is also shown that the This work is supported by FAPEMIGBrazil). The au-

data analysis previously used in the literature is inappropriatéhors acknowledge useful discussions with Professor P. C.

to establish whether conductance quantization occurs iMain and Professor L. Eaves.
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