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I. INTRODUCTION

The metal-insulator transition induced by disorder in the
problem of Anderson localization remains poorly understood
from a theoretical point of view. On the one hand, it is true
that the prediction for the existence of a metal-insulator tran-
sition induced by disorder has been verified by numerical
simulations. On the other hand, the critical exponents at the
metal-insulating transition measured numerically still cannot
be extracted from the field theories which are believed to
embody the metal-insulator transition.1 The paradigm of this
unpleasant situation is the plateau transition in the lowest
Landau level of the integer quantum Hall effect.2 The devel-
opment of reliable methods to compute analytically critical
properties at a disorder-induced metal-insulator transition re-
mains to this date an open problem.

The simplest known example of disorder-induced critical-
ity in the context of Anderson localization was solved by
Dyson in 1953.3 According to Dyson, the global density of
states(DOS) in the thermodynamic limit and close to the
band center is anomalous when a single quantum particle
hops with a random amplitude between the nearest-neighbor
sites of a chain excluding any other form of disorder, in
short, the one-dimensional random hopping problem. Subse-
quent works showed that Dyson’s spectral anomaly is related
to a diverging localization length,4–6 an anomalous decay of
the envelope of wave functions,7 and an anomalous probabil-
ity distribution of the resistance upon approaching the band
center.8

The coalescence of the concept of universality imported
from the theory of critical phenomena with the symmetry
classification imported from random matrix theory has led to
a classification of diffusive regimes and disorder-induced
metal-insulator transitions in terms of 10 universality classes
that are uniquely characterized by the intrinsic symmetries
preserved by the disorder(assumed weak) for any given di-
mensionality of space.9 According to this classification, Dys-
on’s singular DOS is a trademark of the chiral universality

classes. The chiral universality classes are realized in prob-
lems of Anderson localization for which the Hamiltonian an-
ticommutes with some unitary operator for all realizations of
the disorder and in which case the DOS is known to be
singular at the band center in zero,10,11 quasi-one,12–14 and
two dimensions.15–18 Even though the chiral universality
classes are critical at the band center, they have been far less
studied than the orthogonal, unitary, and symplectic univer-
sality classes, which we will refer to as the standard univer-
sality classes. For example, the probability distribution of the
so-called mesoscopic local density of states(LDOS) has
been known since 1989 from the work of Altshuler and Pri-
godin for a single chain with weak on-site disorder,19–21

whereas it has not yet been computed for the one-
dimensional random-hopping problem. The first aim of this
paper is to fill this gap.

If a diffusive regime exists, perturbative techniques can be
used to describe the crossovers between universality
classes.22,23 However, little is known quantitatively on the
crossover between two different universality classes, here de-
fined in terms of nonlinear-sigma models, say, from the dif-
fusive to the localized regimes. This is even true in one di-
mension, which is by far the most studied laboratory for
Anderson localization, as was recently illustrated by a flurry
of works on the validity of one-parameter scaling in one
dimension.24–28 The absence of a diffusive regime renders
the concept of universality classes ambiguous in one dimen-
sion in that symmetry alone does not specify a universality
class in one dimension. For example, the ratio of the local-
ization length to the mean-free path in a wire of finite width
interpolates smoothly between its two limiting values for
fully preserved or completely broken time-reversal symme-
try, respectivley, as a function of a weak magnetic field.29

Similarly, fine tuning of microscopic parameters is required
to achieve delocalization(i.e., diverging localization length)
of quasiparticles at the fermi energy in a dirty superconduct-
ing wire of finite thickness with both broken spin-rotation
and time-reversal symmetries whereas delocalization be-
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comes generic in the thick-wire scaling limit.23,30 One can
nevertheless define asymmetry classin one dimension by
demanding that single-parameter scaling holds. Lack of uni-
versality in one dimension can then be understood as the fact
that there is no scaling limit for which single-parameter scal-
ing becomes a generic property of an ensemble of random
microscopic Hamiltonians of a given symmetry. Symmetry
classes in one dimension cannot be construed as an enumera-
tion of stable or unstable fixed points of some putative effec-
tive field theory. Computing the crossover between symme-
try classes in one dimension nevertheless remains a well-
defined problem.

Time-reversal symmetry cannot be broken for a spinless
particle constrained to move in a one-dimensional and sim-
ply connected world, in which case the only possible cross-
over between symmetry classes takes place between the chi-
ral and standard classes. The second aim of this paper is to
compute the crossover between these two symmetry classes
in one dimension for the probability distributions of the con-
ductance and of the LDOS from the ballistic to the localized
regimes assuming a weak disorder at the microscopic level.
In that regard, our results are complementary to the analysis
made by Schomerus and Titov of the validity of one-
parameter scaling in one dimension in which they computed
exactly the first four cumulants of the logarithm of the con-
ductance to leading order in the ratio of the length of the
chain to the localization length assuming a weak disorder at
the microscopic level.25,26 We thus propose an approximate
ansatz for the crossover whereby the approximation consists
of assuming that the phase and amplitude of the reflection
coefficient separate. By comparing the cumulants of the
Lyapunov exponent of the transfer matrix computed with our
approximate ansatz to the ones computed with the large-
deviation ansatz of Schomerus and Titov deep in the local-
ization regime, we deduce that our ansatz captures the first
cumulant, but fails with the higher cumulants.

The paper is organized as follows. We formulate the one-
dimensional problem of Anderson localization as a continu-
ous Schrödinger equation with a relativistic kinetic energy in
Sec. II. A functional renormalization group equation is de-
rived for the probability distribution of the reflection coeffi-
cient in Sec. III. Exact solutions to these coupled functional
renormalization group equations are given for the chiral and
the standard classes, as well as an approximate solution that
describes the crossovers between these two classes in Sec.
IV. The accuracy of the approximate solution for the cross-
over regime is estimated in Sec. V. The probability distribu-
tion of the LDOS is computed exactly in the chiral and stan-
dard classes whereas it is computed approximately in the
crossover regime between these two classes in Sec. VI. We
conclude in Sec. VII.

II. MODEL

In this paper we want to investigate the statistical proper-
ties of the LDOSn and dimensionless conductanceg for a
single quantum particle, which is(i) restricted to a simply
connected and strictly one-dimensional(1D) geometry and
(ii ) subjected to a static and weak random environment(dis-

order) that interpolates smoothly between the standard and
chiral symmetry classes. Condition(i) implies that time-
reversal symmetry is preserved for every realization of the
disorder. In 1D and assuming a metallic ground state in the
absence of the disorder, the ground state consists of two dis-
tinct Fermi points. Plane waves at the Fermi points are called
left- and right-movers, respectively. In the standard symme-
try class, the channels for forward and backward scatterings
induced by an on-site disorder potential in the basis of left-
and right-movers are equally likely up to nonrandom oscil-
latory factors. In the chiral symmetry class, the disorder po-
tential is off-diagonal in the basis of left- and right-movers.
Presuming weak disorder in condition(ii ) allows us to
choose a kinetic energy that is a first-order differential op-
erator, for it only makes sense to linearize the spectrum about
the two Fermi points when the disorder potential is weak. We
thus choose to model the dynamics of the single quantum
particle and the static random environment by the Hamil-
tonian

H: = − s3i
d

dy
− o

m=0

2

smvmsyd, s2.1ad

where we have set the Fermi velocityvF and" to one. The
boundary conditions that will be imposed in the sequel are
depicted in Fig. 1. They all obey condition(i). We have
denoted bys0 the unit 232 matrix and bys1,2,3 the 232
Pauli matrices. The static random environment is represented
by three independent potentialsvmsydPR, m=0,1,2that we
choose, for mathematical convenience, to be supported on
the interval −L /2øyø +L /2, and to be white-noise and
Gaussian distributed with vanishing mean(disorder averag-
ing is denoted byk. . .l)

kvmsydl = 0, s2.1bd

FIG. 1. In this paper, we will consider two different simply
connected geometries, which are imposed by suitable boundary
conditions aty=−L /2 andy= +L /2, respectively, for a strictly 1D
disordered quantum wire. In geometry(a) and (b) the disordered
quantum wire is closed to the right and open to the left where it is
connected to an ideal lead. The particle in geometry(b) is subjected
to absorption whereas it is not in geometry(a). In geometry(c) the
disordered quantum wire is open to the left and to the right where it
is connected to ideal leads.
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kvmsydvnsy8dl = 2gmdmndsy − y8d. s2.1cd

The three variancesg0,1,2 carry the dimensions of inverse
length and need not be equal. A finite value

kv2sydl = D s2.2d

can also be easily accommodated in our formalism.31 In this
case, the clean system is insulating asD opens up a dimer-
ization gap at the Fermi energy and the random environment
mimics to a first approximation the static fluctuations of the
phonons responsible for the dimerization sufficiently close to
the Peierls transition.32 The problem of Anderson localiza-
tion in the continuum defined by Eq.(2.1a), (2.1b), and
(2.1c) is a coarse-grained version of a single particle hopping
on a simply connected chain with a uniform nearest-neighbor
hopping amplitude subjected to weak and independent ran-
dom fluctuations of an on-site potential and of the nearest-
neighbor hopping amplitude.

The generic symmetry obeyed by Eq.(2.1a) is time-
reversal invariance,

s1H
*s1 = H. s2.3d

If the condition

g0 = g1 = 0 s2.4d

is satisfied, or, for that matter, any equivalent condition ob-
tained by a redefinition of the Pauli matrices through a posi-
tion independentSUs2d rotation arounds3, Eq. (2.1a) has an
additional chiral symmetry in that it anticommutes withs1,

s1Hs1 = − H. s2.5d

Consequently, all nonvanishing eigenvalues ofH come in
pairs with opposite signs. The origin of the chiral symmetry
of the continuum model for any given realization of the dis-
order is a sublattice symmetry of an appropriate lattice regu-
larization. A microscopic random Hamiltonian realizing the
chiral symmetry is, for example, a tight-binding Hamiltonian
on a hypercubic lattice with strictly vanishing on-site ener-
gies and random hopping matrix elements restricted to
nearest-neighbor sites, in short, the random hopping prob-
lem.

The LDOS, DOS, conductance, shot-noise power, etc.,
can all be extracted from the elements of the 232 scattering
matrix SE at the energyE that connects incoming(“i” ) and
outgoing(“o” ) states

Sco,L

co,RD
E

= SESci,L

ci,RD
E

; Sr t8

t r8
D

E
Sci,L

ci,RD
E
. s2.6d

The amplitude for incoming and outgoing waves to the left-
and right-hand sides of the disordered region is denoted by
ci/o,L/R here. The matrix elementsr ,r8PC are the reflection
coefficients whereas the matrix elementst ,t8PC are the
transmission coefficients. Alternatively, one can work with
the 232 transfer matrixME at the energyE, which follows
from the scattering matrix(2.6) through the basis transfor-
mation implied by

Sco,R

ci,R D
E

= MESci,L

co,LD
E
. s2.7d

Conservation of probability dictates that the scattering matrix
is unitary or, equivalently, that the transfer matrix is pseudo
unitary

sSEd† s0 SE = SE s0 sSEd† = s0, s2.8ad

sMEd† s3 ME = ME s3 sMEd† = s3. s2.8bd

Conservation of probability also implies the existence of the
polar decompositions

SE = Sv8* 0

0 u
D

E
S− tanhx sechx

sechx tanhx
D

E
Sv 0

0 u8*
D

E

,

s2.9ad

ME = Su 0

0 u8
D

E
Scoshx sinh x

sinh x coshx
D

E
Sv 0

0 v8
D

E

,

s2.9bd

whereuE, uE8, vE, vE8 are independent complex numbers with
uuEu2= uuE8 u2= uvEu2= uvE8 u2=1 andxEPR. The polar decompo-
sition is not unique. For example, the sign ofxE can be
absorbed into a redefinition ofuE, uE8, vE, vE8. The variablexE,
when restricted to the half linef0,`f, has the geometrical
interpretation of a radial coordinate on a Riemannian
manifold.33,34 The time-reversal symmetry of the Hamil-
tonian implies the transformation laws

SE = sSEdT, s2.10ad

s1 ME
* s1 = ME, s2.10bd

which enforce the constraintsuE8 =uE
* andvE8 =vE

* or, equiva-
lently, tE= tE8. The chiral symmetry of the Hamiltonian im-
plies the transformation laws

S+E = sS−Ed†, s2.11ad

s1M+Es1 = M−E, s2.11bd

which enforce the constraintsu+E8 =u−E and v+E8 =v−E or,
equivalently,r+E=r−E

* , r+E8 =r−E8
* , t+E= t−E8

* . Then, at the band
centerE=0 with the condition(2.4), the scattering matrix
becomes Hermitian.

Under the assumptions that(i) the disorder is weak and
(ii ) uE, uE8, vE, vE8 are all independently and uniformly dis-
tributed on the unit circle in the complex plane, it was essen-
tially shown in Ref.35 that the probability distributionX of
xEù0 obeys the Fokker-Planck equation

] Xsx;Ld
] L

=
1

4,

]

] x
sinhs2xd

]

] x
cschs2xdXsx;Ld s2.12d

in the geometry of Fig. 1(c). The mean-free path, is some
function of g0, g1, g2, andE. In a more general context of
multi channel quantum wires, assumption(ii ) is known as
the isotropy assumption,36 whereas the Fokker-Planck equa-
tion (2.12) is a special case of the Dorokhov-Mello-Pichard-
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Kumar (DMPK) equation.37,36A consequence of assumption
(ii ) is one-parameter scaling as encoded by the Fokker-
Planck equation(2.12), i.e., the probability distribution ofx
and, consequently, ofg=sech2 x depends on the single di-
mensionless parameterL /,. It is evident that assumption(ii )
breaks down at the band centerE=0 and with the chiral
condition (2.4) becauseuE=0=uE=08 and vE=0=vE=08 are then
both real valued. Correspondingly, the Fokker-Planck equa-
tion, obeyed by the probability distributionX of
−`,xE=0, +`, is different from Eq.(2.12) and given by
the diffusion equation

] Xsx;Ld
] L

=
1

2,

]2Xsx;Ld
] x2 s2.13d

in the geometry of Fig. 1(c).8,38,31 The mean-free path, is
some function ofg2. Again, the Fokker-Planck equation
(2.13) encodes one-parameter scaling as the probability dis-
tribution of x and, consequently, ofg=sech2x depends on the
single dimensionless parameterL /,. There are no known
multiple-parameter scaling equations for the LDOS, DOS,
conductance, etc., which describe the crossover between the
two limiting cases described by Eqs.(2.12) and (2.13) for
values ofL ranging from the ballistic(L smaller than the
mean-free path) to the localized regime(L larger than the
mean-free path) to the best of our knowledge(see Refs.
39–41 for discussions of two-parameter scaling). We fill this
gap in the remainder of the paper.

III. FUNCTIONAL RENORMALIZATION GROUP
EQUATIONS

We shall show in Secs. IV and VI that the statistical prop-
erties of the dimensionless conductanceg and of the LDOSn
follow from the knowledge of the statistical properties of the
reflection coefficient

r = :ÎR expsifd, s3.1d

which has been decomposed into its square modulus 0øR
ø1 and phase 0øf,2p. For a disordered wire of length
L+dL as depicted in Fig. 2, the reflection coefficientrL+dL is
related to the entries of the scattering matrixSdL for the slice
of length dL and to the entryrL of the scattering matrixSL
for the much longer segment of lengthL by the composition
law

rL+dL = rdL + tdL8 s1 − rLrdL8 d−1rLtdL. s3.2d

When the widthdL of the slice is much larger than the lattice
spacinga, but much smaller than the mean-free path,, here
defined by22

krdLrdL
* l = :

dL

,
, s3.3d

we infer the continuous Langevin process

dR

dL
= − 4E9R+ 2ÎRs1 − Rdsv1 sin f − v2 cosfd,

s3.4ad

df

dL
= 2sE8 + v0d + sv1 cosf + v2 sin fdSÎR+

1
ÎR

D ,

s3.4bd

by using the relations

rdL = siv1 − v2ddL, tdL = 1 + isv0 + EddL,

rdL8 = siv1 + v2ddL, tdL8 = 1 + isv0 + EddL, s3.5d

which are valid up to first order in the disorder potentials
v0,1,2, and by expanding the right-hand side of Eq.(3.2) to
the same order. We note in passing that the mean-free path
(3.3) is simply given by

, =
1

2sg1 + g2d
s3.6d

in the Born approximation. For later convenience, we have
continued the energyE to the upper part of the complex
plane,E=E8+ iE9, E9ù0. The continuous Langevin process
(3.4) can also be formulated as the Fokker-Planck equation
obeyed by the joint probability distribution function
PsR,f ;Ld. Using the standard methods of Chapter 3 in Ref.
42 say, one finds43

] P

] t
= F0P − FR

] P

] R
− Ff

] P

] f
+

1

2
GRR

]2P

] R2 + GRf

]2P

] R] f

+
1

2
Gff

]2P

] f2 , s3.7ad

where

F0sR,fd = 2v + 2s2R− 1d − 6zR cos 2f,

FRsR,fd = − 2vR− sR− 1ds5R− 1d + 6zRsR− 1dcos 2f,

FfsR,fd = + « +
z

2
S5R+ 4 +

1

R
Dsin 2f, s3.7bd

and

FIG. 2. (a) A thin slice of lengthdL with a!dL!,!L is added
to the left of the disordered region of lengthL. (b) Two disordered
regions 1 and 2 with scattering matricesS1 andS2, respectively, in
a quantum wire.
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GRRsR,fd = 2Rs1 − Rd2 − 2zRs1 − Rd2 cos 2f,

GRfsR,fd = zs1 − R2dsin 2f,

GffsR,fd = 4z0 +
1

2
SR+ 2 +

1

R
D +

z

2
SR+ 2 +

1

R
Dcos 2f.

s3.7cd

We have introduced the short-hand notations

g±: = g1 ± g2, t: = L/,,

«: = E8/g+, v: = E9/g+,

z: = g−/g+, z0: = g0/g+. s3.8d

Observe that the dependence on the polar anglef arises
solely from cos 2f and sin 2f in the Fokker-Planck equa-
tion (3.7). Thus, provided initial and boundary conditions are
also periodic on the intervalf0,pf, the joint probability dis-
tribution PsR,f ;Ld is periodic on the intervalf0,pf even
though the phasef is originally defined modulo 2p. The
periodicityp is a consequence of the Langevin process(3.4)
being invariant underÎR→−ÎR andf→f+p. A dimeriza-
tion gapkv2sydl=D produces the changes

F0sR,fd → F0sR,fd +
D

g+
sR− 1d

1
ÎR

cosf, s3.9ad

FRsR,fd → FRsR,fd +
D

g+
sR− 1dÎR cosf, s3.9bd

FfsR,fd → FfsR,fd +
D

2g+
sR+ 1d

1
ÎR

sin f. s3.9cd

The polar decomposition(2.9) suggests the change of vari-
able

ÎR= tanhuxu, s3.10d

in terms of which the Langevin process(3.4) becomes

dx

dL
= − E9sinh 2x + v1 sin f − v2 cosf, s3.11ad

df

dL
= 2sE8 + v0d +

2

tanh 2x
sv1 cosf + v2 sin fd.

s3.11bd

In turn, the joint probability distribution functionWsx,f ;Ld
obeys the Fokker-Planck equation

] W

] t
= J0W− Jx

] W

] x
− Jf

] W

] f
+

1

2
Kxx

]2W

] x2 + Kxf

]2W

] x ] f

+
1

2
Kff

]2W

] f2 , s3.12ad

where

J0sx,fd = 2v cosh 2x +
1

sinh22x

− zS 1

sinh22x
+

2

tanh22x
Dcos 2f,

Jxsx,fd = − v sinh 2x +
1

2

1

tanh 2x
−

3

2

z

tanh 2x
cos 2f,

Jfsx,fd = « + zS 1

sinh22x
+

3

tanh22x
Dsin 2f,

s3.12bd

and

Kxxsx,fd =
1

2
s1 − z cos 2fd,

Kxfsx,fd =
z

tanh 2x
sin 2f,

Kffsx,fd = 4z0 +
2

tanh22x
+ z

2

tanh22x
cos 2f.

s3.12cd

The Langevin process(3.11) or the Fokker-Planck equation
(3.12) are invariant underx→−x andf→f+p.

Equations(3.7) and(3.12) are, from a conceptual point of
view, the main result of this paper as they determine under
what conditions one-parameter scaling holds in a 1D weakly
disordered quantum wire. For example, Eqs.(3.12) encodes
the functional renormalization group flow of the joint prob-
ability distribution of the radial coordinateuxu=arctanhÎR
and phasef of the reflection coefficientr. If it is the prop-
erty that the functional renormalization group flow of the
probability distribution ofx depends solely on the dimen-
sionless ratioL /, aside fromx, which is understood as one-
parameter scaling forx,40 then two examples of one-
parameter scaling can be constructed from Eqs.(3.12) as
follows. First, the Fokker-Planck(DMPK) Eq. (2.12) follows
from insertion of the ansatz

Wsx,f;Ld =
1

2p
Xsx;Ld s3.13d

into Eqs. (3.12) with v=0 and from integration overf
P f0,2pf of the resulting equation. Second, the Fokker-
Planck (DMPK) equation(2.13) follows from insertion of
the ansatz

Wsx,f;Ld =
1

2
fdsf − 0d + dsf − pdgXsx;Ld s3.14d

with g0=g1=v=«=0 into Eqs.(3.12) and from integration
over f of the resulting equation. One-parameter scaling is
not the rule for generic initial and boundary conditions of
Eqs.(3.12) and for generic values of« andg0,1,2 due to the
absence of a diffusive regime in 1D.23 This is most clearly
seen by the fact that the localization lengthj, as defined by
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the typical dependence of the conductanceg=sech2x on L
@,, is finite, j=2,, for the standard symmetry class, but
diverges in the chiral limitg0=g1=v=«=0. Hence, the lo-
calization length must depend on a second microscopic pa-
rameter aside from, for generic values of« andg0,1,2. Equa-
tions (3.7) and (3.12) describe the full crossover from the
chiral to the standard class with no restrictions on the values
of x andL.

For any given absorptionvù0, the parameter space
sz ,z0,«d with z0ù0 andz ,«PR of Eqs.(3.7) and (3.12) is
three-dimensional and is depicted in Fig. 3. Remarkably, the
parameterz always enters Eqs.(3.7) and(3.12) as a prefactor
to cos 2f or sin 2f and, conversely, cos 2f or sin 2f are
always multiplied byz. As we shall see in Sec. IV this prop-
erty turns out to be crucial in our study of the crossover
between the chiral and standard symmetry classes.

Equation(3.7) was derived in the standard class by Abri-
kosov, Melnikov, and Kumar, and by Rammal and Doucot
among others starting from the continuous nonrelativistic
Schrödinger equation.44–47 The largex limit

] W

] t
< sve2x − 2z cos 2fdW+ Sv

2
e2x −

1

2
+

3

2
z cos 2fD ] W

] x

+ s− « − 3z sin 2fd
] W

] f
+

1

4
s1 − z cos 2fd

]2W

] x2

+ z sins2fd
]2W

] x ] f
+ s2z0 + 1 +z cos 2fd

]2W

] f2

s3.15d

of Eq. (3.12) was derived by Schomerus and Titov whenv
=0 and g0=g1 starting from a Langevin process for the
eigenfunctions of the discrete Schrödinger equation on a
chain.25,26

IV. SOLUTIONS TO THE FUNCTIONAL
RENORMALIZATION GROUP EQUATIONS

Exact and approximate solutions to the Fokker-Planck
equation(3.7) are derived in this section. We will consider
three regimes of parameter in Fig. 3. The first regime corre-
sponds to the chiral symmetry class. The second regime cor-
responds to the standard symmetry class. The third regime
describes a specific path connecting the two symmetry
classes.

The chiral symmetry class is given by the condition

« = 0, s4.1ad

which defines the band center of the energy eigenvalue spec-
trum of Hamiltonian(2.1a) when

z = − 1, z0 = 0, sg0 = g1 = 0d, s4.1bd

i.e., when Hamiltonian(2.1a) anticommutes withs1 as in Eq.
(2.5). The standard symmetry class occurs whenever

z = 0 sg1 = g2d s4.2ad

or

1/z0 = 0 s4.2bd

or

1/u«u = 0, s4.2cd

since any one of these three conditions decouplesR from f
in Eq. (3.7) and is consistent with a stationary probability
distribution off, which is uniformly distributed. In this pa-
per we shall only consider the crossover between the chiral
and standard symmetry classes along the line

z = − 1, z0 = 0, 0, « , `. s4.3d

We must naturally choose the initial and boundary condi-
tions to be imposed on the solutions to the Fokker-Planck
equation(3.7). Our choice is motivated by the computation
of the probability distribution of the LDOS that we will carry
out in Sec. VI. Two geometries depicted in Fig. 6 will be
considered in Sec. VI. The relevant geometries for the prob-
ability distribution of the reflection coefficientr that enter the
computation of the LDOS are depicted in Fig. 1. In Figs. 1(a)
and 1(b) the disordered quantum wire is closed on the right-
hand side and connected to a reservoir on the left-hand side.
In Fig. 1(a) conservation of probability holds. In Fig. 1(b)
conservation of probability does not hold due to the presence
of an absorption encoded by a finite imaginary partE88
=vg+ of E. In Fig. 1(c) the disordered quantum wire is open
at both ends and flux conservation(no absorption) is as-
sumed. We choose the ideal initial conditionr =1 andr =0
when L=0 for the semiopen and fully open geometries of
Fig. 1, respectively. In the chiral symmetry class, we demand
that the phase ofr is either 0 orp with probability 1/2
initially. In the standard symmetry class, we demand that the
phase ofr is uniformly distributed in the intervalf0,2pf
initially. In view of the periodicity of the Fokker-Planck
equation(3.7) we always impose initial conditions with a
periodicity of p.

FIG. 3. Parameter space for the Fokker-Planck equations(3.7)
or (3.12). The point Ch 1 has the coordinates«=z0=0, z=−1. It
represents the chiral symmetry class. The point KW 1 has the co-
ordinates «=0, z0=−z=1. It represents the Kappus-Wegner
anomaly. The two shaded planes represent the standard symmetry
class. The regionsz.0 and z,0 are equivalent in that they are
related by a rotation by an anglep arounds3 of the Pauli matrices
in the Hamiltonian(2.1a). Especially, this rotation relates Ch 1 and
KW 1 to the points Ch 2 and KW 2, respectively.
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We shall now construct exact solutions to the Fokker-
Planck equation(3.7) in the chiral and standard symmetry
classes, respectively, for the three geometries of Fig. 1. We
shall also solve the Fokker-Planck equation(3.7) in the
crossover regime(4.3) for the geometry of Fig. 1(a). We
could not construct exact solutions to the Fokker-Planck
equation(3.7) in the crossover between the chiral and stan-
dard symmetry classes for the geometries of Figs. 1(b) and
1(c). We shall construct, however, an approximate solution to
the Fokker-Planck equation(3.7) in a crossover regime that
interpolates between the exact solutions for the geometries of
Figs. 1(b) and 1(c). The accuracy of this approximate solu-
tion will be discussed in Sec. V.

A. Disordered quantum wire closed on the right-hand side
without absorption

In geometry 1a, an incoming plane wave from an ideal
lead is perfectly reflected by the disordered quantum wire.
Hence, the reflection coefficientr of the disordered quantum
wire must be a pure phase,rr * =1, for all t=L /,. We thus
insert the separation-of-variable ansatz

PsR,f;td = dsR− 1dFsf;td s4.4ad

into the Fokker-Planck equation(3.7) that, after integration
over R, reduces to

] F

] t
= − 2z coss2fdF − f« + 3z sins2fdg

] F

] f

+ f2z0 + 1 +z coss2fdg
]2F

] f2 . s4.4bd

By assumption, we have switched off the absorptionv=0.
Our choice of initial condition shall depend on the proximity
to the parameter regimes(4.1) and(4.2), but shall always be
periodic on the intervalf0,pf.

1. Chiral symmetry class

In the chiral symmetry class(4.1), the Fokker-Planck
equation(4.4b) reduces to

] F

] t
= 2 coss2fdF + 3 sins2fd

] F

] f
+ f1 − coss2fdg

]2F

] f2

s4.5ad

and has the normalized, stationary, and periodic solution

Fsfd =
1

2
dsf − 0d +

1

2
dsf − pd s4.5bd

whenever the phasef is 0 orp with probability 1/2 initially.
The same conclusion could have been anticipated by inspec-
tion of the Langevin process(3.4) or from the fact that the
chiral symmetry class(4.1a) and (4.1b) imposes the condi-
tion that the scattering matrix is Hermitian, see Eq.(2.11a).

2. Standard symmetry class

In the standard symmetry class(4.2a), cos 2f and sin 2f
drop out from the Fokker-Planck equation(4.4b):

] F

] t
= − «

] F

] f
+ s2z0 + 1d

]2F

] f2 . s4.6ad

Its normalized, stationary, and periodic solution is

Fsfd =
1

2p
s4.6bd

whenever the phasef of r is uniformly distributed initially.
More generally, the solution to Eq.(4.6a) converges to the
uniform probability distribution(4.6b) as soon ast@1 for
any given initial probability distribution. This is also true for
the standard symmetry class(4.2b) and(4.2c) as coss2fd and
sins2fd are ineffective in these limits.

Wheng1Þg2 andu«u&1, the stationary probability distri-
bution of f need not be uniform inf0,2pf. For example,
consider the casez= +1, «=0, z0= 1

2s1+zd=1, for which the
Fokker-Planck equation(4.4b) reduces to

] F

] t
= − 2 coss2fdF − 3 sins2fd

] F

] f
+ f3 + coss2fdg

]2F

] f2

s4.7ad

and has the stationary and normalized solution25,48

Fsfd =
Î2p

G2s1/4dÎ1 + cos2f
s4.7bd

with a periodicity ofp. HereGszd denotes the value of the
gamma function forzPC. Equation(4.7b) is a special case
of the stationary solution

Fsfd ~
1

Î2z0 + 1 +z coss2fd
s4.7cd

to Eq. (4.4b) with «=0 as shown by Titov.49 In the chiral
limit z→−1 andz0→0, this solution becomes unnormaliz-
able and we have to use Eq.(4.5b) as a stationary solution
instead.

3. Crossover regime

For simplicity, we consider the crossover regime(4.3).50

The chiral symmetry class(4.1) is reached when«=0. The
standard symmetry class(4.2c) is reached whenu«u@1. In
the crossover regime, the Fokker-Planck equation(4.4b) re-
duces to

] F

] t
= − «

] F

] f
+ 2

]

] f
Ssin f

]

] f
sin fDF. s4.8d

A stationary solution to Eq.(4.8) is constructed from the
solution

Fsfd =
N

sin f
E

f

p

df8
e+s«/2dscotf8−cot fd

sin f8
, s4.9d

valid for «.0 and on the intervalf0,pf, by periodic exten-
sion to the intervalf0,2pf. The constantN is chosen so that
the solution(4.9) is properly normalized. The solution inter-
polates between Eqs.(4.5b) and (4.6b) as «→0 and«→`,
respectively, as it should be. Equation(4.9) is an important
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intermediary result as we will use it to construct an approxi-
mation to the probability distributions for the conductance
and LDOS in the crossover regime that interpolate between
the exact chiral and standard limiting probability distribu-
tions.

B. Disordered quantum wire closed on the right-hand side
with absorption

In geometry 1b, an incoming plane wave from an ideal
lead is not perfectly reflected by the disordered quantum wire
due to a finite absorptionv=E9 /g+. Hence, the reflection
coefficient r of the disordered quantum wire is not a pure
phase anymore,r =ÎR expsifd.

1. Chiral symmetry class

In the chiral symmetry class(4.1a) and (4.1b), the phase
f and squared magnitudeR of the reflection coefficientr
must necessarily separate, since 0ø r ø1 is necessarily real
valued,

PsR,f;td = f 1
2dsf − 0d + 1

2dsf − pdgRsR;td. s4.10d

After insertion of Eq.(4.10) into the Fokker-Planck equation
(3.7) one finds thatRsR; td obeys

] R

] t
= f2v + 2s3R− 2dgR + f2vR+ 3s1 − Rds1 − 3Rdg

] R
] R

+ 2Rs1 − Rd2
]2R
] R2 s4.11ad

with the stationary solution

RsRd = Nexpf− v/s1 − Rdg
ÎRs1 − Rd

. s4.11bd

The constantN is chosen so that the solution(4.11b) is prop-
erly normalized(this is always possible forv.0). The sta-
tionary solution(4.11b) has a square-root singularity atR
=0, an essential singularity atR=1, and is normalizable for
RP f0,1g. We shall see below that the probability forR to be
in the vicinity of 0 is enhanced in the chiral symmetry class
(4.1) compared to the standard symmetry class(4.2).

2. Standard symmetry class

In the standard symmetry class(4.2), the phasef and
squared magnitudeR of the reflection coefficientr can rea-
sonably be taken to separate in view of the initial condition
of a uniformly distributed phasef,

PsR,f;td =
1

2p
RsR;td. s4.12d

After insertion of the separation-of-variable ansatz(4.12)
into the Fokker-Planck equation(3.7) one finds thatRsR; td
obeys

] R
] t

= f2v + 2s2R− 1dgR + f2vR+ s1 − Rds1 − 5Rdg
] R
] R

+ Rs1 − Rd2
]2R
] R2 s4.13ad

with the stationary and normalized solution

RsRd = 2ve2vexpf− 2v/s1 − Rdg
s1 − Rd2 . s4.13bd

The stationary solution(4.13b) has an essential singularity
when R=1. The stationary solution(4.13b) was found by
Pradhan and Kumar.51 When the initial condition on the
probability distribution off is not that of a uniform distri-
bution, it is presumed that the deviations of the solution to
the Fokker-Planck equation(3.7) from the separation-of-
variable ansatz(4.12) with the stationary solution(4.13b) are
short transients. We do not know of an analytical verification
of this assumption.

3. Crossover regime

There is no compelling reason to believe that the squared
amplitudeR and the phasef of the reflection coefficientr
separate in the crossover regime. However, short of an ex-
plicit exact solution to the Fokker-Planck equation(3.7) in
the crossover regime, we shall nevertheless pursue a strategy
relying on an approximation built on a separation-of-variable
ansatz that allows us to interpolate between the chiral and
standard symmetry classes. One possible alternative to the
separation-of-variable ansatz that we tried is a perturbative
expansion about the standard symmetry class(4.2) using a
Fourier expansion of the joint probability distribution forR
andf. However, this approach has the drawback that it can-
not be expected to interpolate all the way to the chiral sym-
metry class(4.1) in view of the nature of the singularities
characterizing the limiting probability distributions. For this
reason we will not present the perturbative approach in this
paper.

Our starting point is the separation-of-variable ansatz

PsR,f;td = RsR;tdFsf;td. s4.14ad

We further assume that the probability distribution function
for the phasef shows a quick relaxation to its stationary
solution, i.e.,Fsf ; td is assumed to bet-independent,

Fsf;td = Fsfd. s4.14bd

Insertion of Eq.(4.14) into the Fokker-Planck equation(3.7)
followed by an integration overf yields

] R
] t

= f2v + 2s2R− 1d − 2 zasR− 1dgR

+ f2vR+ s1 − Rds1 − 5Rd − 2 zas1 − Rds1 − 2Rdg
] R
] R

+ s1 − zadRs1 − Rd2
]2R
] R2 , s4.15ad
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where the real constanta is the ratio of two Fourier expan-
sion coefficients,

a: =

E
0

2p

df coss2fdFsfd

E
0

2p

df Fsfd
. s4.15bd

A stationary solution to Eq.(4.15a) is

RsRd = Nexph− 2v/fs1 − zads1 − Rdgj
R−za/s1−zads1 − Rd2/s1−zad . s4.15cd

This solution reduces to the known results in the standard
[Eq. (4.13b)] and chiral[Eq. (4.11b)] symmetry classes. In
the standard symmetry class(4.2) the probability distribution
of the phase is uniformFsfd=1/2p and henceza=0,
whereas in the chiral symmetry class(4.1) it is a sum of the
two delta functionsFsfd= 1

2dsf−0d+ 1
2dsf−pd, a=1, z=

−1. There remains considerable arbitrariness in the choice of
F since many differentF share the samea. In practice we
will choose the stationary solution(4.9) because we then
recover the true solution in the semiopen geometry of Fig.
1(a) as v→0. We postpone to Sec. V the discussion of the
accuracy of the approximation implied by the separation-of-
variable ansatz(4.15a) with the choice(4.9) for the station-
ary probability distribution off.

C. Disordered quantum wire opened at both ends without
absorption

In geometry 1c, an incoming plane wave from an ideal
lead is partially reflected and partially transmitted by the
disordered quantum wire. Following Abrikosov44 we trade
the squared magnitudeR of the reflection coefficientr for the
resistance(inverse of conductance)

%: =
1

1 − R
P f1,`f s4.16ad

under which

Qs%,f;td = PsR,f;td
dR

d%
s4.16bd

obeys the Fokker-Planck equation

] Q

] t
= A0Q − A%

] Q

] %
− Af

] Q

] f
+

1

2
B%%

]2Q

] %2 + B%f

]2Q

] % ] f

+
1

2
Bff

]2Q

] f2 , s4.17ad

where

A0s%,fd = 2vs2% − 1d,

A%s%,fd = − 2v%s% − 1d − s2% − 1d,

Afs%,fd = « +
z

2

2%2 − 2% + 1

%s% − 1d
sin 2f, s4.17bd

and

B%%s%,fd = 2%s% − 1ds1 − z cos 2fd,

B%fs%,fd = zs2% − 1dsin 2f,

Bffs%,fd = 4z0 +
1

2

s2% − 1d2

%s% − 1d
+

z

2

s2% − 1d2

%s% − 1d
cos 2f.

s4.17cd

1. Chiral symmetry class

In the chiral symmetry class(4.1) insertion of the
separation-of-variable ansatz

Qs%,f;td = f 1
2dsf − 0d + 1

2dsf − pdgQs%;td s4.18d

into the Fokker-Planck equation(4.17) yields

] Q
] t

= 2Q + 3s2% − 1d
] Q
] %

+ 2%s% − 1d
]2Q
] %2

s4.19ad

with the initial condition

Qs%;t = 0d = ds% − 1d. s4.19bd

The normalized solution to Eq.(4.19) has the integral repre-
sentation

Qs%;td =
1

p

%−1/2

Î4pt83E
0

1

du
1

s1 − udÎ% − u

3 E
0

1

dv
Dsu,v;%d
Îvs1 − vd

e−D2su,v;%d/4t8 s4.20ad

with the auxiliary function and variable

Dsu,v;%d: = lnF % − u

vus1 − udG, t8: = 2t. s4.20bd

The integrations overu and v can be performed in closed
form,

Qs%;td =
1

Î2pt%s% − 1d
expF−

sarccosh%1/2d2

2t
G .

s4.20cd

By shifting the minimum of the resistance% from 1 to 0,
r : =%−1, we recover the same asymptotics for the probabil-
ity distribution of r computed by Stone and Joanopoulos8

with a log-normal distribution of the nearest-neighbor hop-
ping amplitudes of the discrete Schrödinger equation when
r→0 or r→`. The change of variableg=1/% yields the
probability distribution

Gsg;td =
1

Î2pts1 − gd g
expF−

sarccoshg−1/2d2

2t
G

s4.21d

for the conductanceg in the chiral symmetry class(4.1). The
same result follows from solving the diffusion(DMPK)
equation(2.13) and performing the change of variablesg
=1/cosh2x.22
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2. Standard symmetry class

In the standard symmetry class(4.2) insertion of the
separation-of-variable ansatz

Qs%,f;td =
1

2p
Qs%;td s4.22d

into the Fokker-Planck equation(4.17) yields

] Q
] t

= s2% − 1d
] Q
] %

+ %s% − 1d
]2Q
] %2 s4.23ad

with the initial condition

Qs%;t = 0d = ds% − 1d. s4.23bd

As shown by Abrikosov,44 the normalized solution to Eq.
(4.23a) and (4.23b) has the integral representation

Qs%;td =
e−t/4

Î4pt3
E

0

1

du
e−fD0su;%dg2/4t

fus1 − uds% − udg1/2D0su;%d

=Î 4

pt3
E

y%

+`

dy
ye−st/4d−sy2/td

scosh2y − %d1/2 s4.24d

with y% : =−1
2 lnf2%s1−Î1−%−1d−1g and

D0su;%d = lnF % − u

us1 − udG . s4.25d

The change of variableg=1/% yields the probability distri-
bution

Gsg;td =Î 4

pt3g3E
yg

+`

dy
y e−st/4d−sy2/td

sg cosh2y − 1d1/2 s4.26d

with yg: =−1
2 lnf2g−1s1−Î1−gd−1g for the conductanceg in

the standard symmetry class(4.2).

3. Crossover regime

As was already the case in Sec. IV. B 3, we could not
solve the Fokker-Planck equation(4.17) exactly in the cross-
over regime. We thus try the separation-of-variable ansatz

Qs%,f;td = Qs%;tdFsfd. s4.27d

We are again assuming that the probability distributionF is
t independent and we made the specific choice forF given
by Eq. (4.9). Insertion of Eq.(4.27) into the Fokker-Planck
equation(4.17) followed by an integration over the phasef
yields

] Q
] t

= − 2zaQ + s2% − 1ds1 − 2zad
] Q
] %

+ %s% − 1ds1 − zad
]2Q
] %2 s4.28ad

with the initial condition

Qs%;t = 0d = ds% − 1d. s4.28bd

The normalized solution to Eq.(4.28) has the integral repre-
sentation

Qs%;td = sinS− pza

1 − za
D%za/s1−zad

Î4p3t83
expF−

t8s1 + zad2

4s1 − zad2G
3 E

0

1

du
S1

u
− 1Dza/s1−zad

fus1 − uds% − udg1/2

3 E
0

1

dv
e−D2su,v;%d/4t8

v1/2s1 − vd1/s1−zadDsu,v;%d s4.29ad

with the auxiliary function and variable

Dsu,v;%d: = lnF % − u

vus1 − udG, t8: = s1 − zadt.

s4.29bd

As it should be, we recover Eq.(4.20) whenza=−1 and Eq.
(4.24) when a=0. The approximate probability distribution
G for the conductanceg in the crossover regime is obtained
from Eq. (4.29) through

Gsg;td = g−2Qs%;td, %sgd = g−1. s4.30d

The dependence ont for the mean and variance of the con-
ductance in the crossover regime computed from Eq.(4.30)
are depicted in Fig. 4. In the chiral symmetry classz=−1,
a= +1, the mean and variance decay liket−1/2. For a=0.5
anda=0, the mean and variance decay exponentially witht.

V. VALIDITY OF THE SEPARATION ANSATZ FOR THE
CROSSOVER REGIME

We have constructed an approximate solution to the
Fokker-Planck equations(3.7) and (4.17) in the crossover

FIG. 4. The mean(a) and variance(b) of the conductance com-
puted from the probability distribution(4.3) as a function oft
=L /, for a=0,0.5,1 andz=−1.
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regime(4.3) by assuming the separation of the squared mag-
nitudeR from the phasef of the reflection coefficientr. In
this section we shall investigate the accuracy of this approxi-
mation to the crossover regime(4.3) for very large values of
the lengthL of the disordered quantum wire, i.e.,L much
larger than the localization lengthj, which will be defined
below. To this end, we shall compare the cumulants of the
radial coordinatex computed from the separation-of-variable
ansatz with the same cumulants computed from a large-
deviation ansatz introduced by Schomerus and Titov.25,26

A. Large t limit in the crossover regime with the
separation-of-variable ansatz

We begin from Eq.(3.15) without absorption and in the
crossover regime. We seek the asymptotic behavior whent
→` of the solutions to Eq.(3.15) in the crossover regime.
We try the separation-of-variable ansatz

Wsx,f;td = Xsx;tdFsfd, s5.1d

whereF is the stationary and normalized solution(4.9). In-
sertion of Eq.(5.1) into Eq. (3.15) with subsequent integra-
tion overf yields

] X
] t

= −
1

2
s1 + zad

] X
] x

+
1

4
s1 − zad

]2X
] x2 . s5.2ad

Equation(5.2a) is nothing but the diffusion equation with a
constant drift proportional to the amount of chiral symmetry
breakings1+zad, i.e., it is solved by

Xsx;td =
exph− fx − s1 + zadt/2g2/fs1 − zadtgj

Îps1 − zadt
s5.2bd

normalized to the real linexPR. In the approximation
(5.2b), the only nonvanishing cumulants are the first and
second cumulants,

kxlc: = kxl =
1 + za

2
t, s5.3ad

kx2lc: =KSx −
1 + za

2
tD2L =

1 − za

2
t. s5.3bd

Provided zaÞ−1 (i.e., away from the chiral symmetry
class), the random variablex becomes self-averaging in the
thermodynamic limit. It then makes sense to identify the lo-
calization lengthj through

kxlc =
,

j
t, t → `, s5.4d

which, together with Eq.(5.3a), gives

j =
2,

1 + za
. s5.5d

In the standard symmetry class(4.2) a=0 and the localiza-
tion length is twice the mean-free pathj=23, as is well
known.52 In the chiral symmetry class(4.1) za=−1 and the
localization length defined by Eq.(5.4) is not a finite number

anymore but a random variable as the right-hand side of Eq.
(5.3a) vanishes whereas the right-hand side of Eq.(5.3b)
remains finite. For the crossover regime(4.3), the constanta
implicitly depends on«. The asymptotic behavior ofa for
small «.0 can be evaluated as, with the probability distri-
bution (4.9),

1

1 − a
=

E
−`

+`

dxsx2 + 1d−1/2E
−`

x

dysy2 + 1d−1/2e«sy−xd/2

2E
−`

+`

dxsx2 + 1d−3/2E
−`

x

dysy2 + 1d−1/2e«sy−xd/2

, −
1

2
ln «, s5.6d

since a logarithmic divergence occurs both in thex and y
integrals in the numerator as we take«→0, while it occurs
only in they integral in the denominator aroundy=−`. It is
then natural to identify

j =
2,

1 + za
sat z = − 1 and for « ! 1d s5.7d

with the typical localization length5,6 s,ulnu«uu3,d when ap-
proaching the chiral symmetry class(4.1) through the cross-
over regime(4.3). We have also computed the dependence of
a on « by evaluating Eq.(5.6) numerically. In Fig. 5, 1/s1
−ad is plotted as a function of« in the crossover regime
(4.3). We observe that 1/s1−ad asymptotically behaves as
−s1/2dln u«u in the vicinity s«,0.1d of the chiral symmetry
class(4.1a) and (4.1b).

B. Large t limit in the crossover regime
with the large-deviation ansatz

Schomerus and Titov,25,26 devised a systematic method to
compute all the cumulants of the conductance and the LDOS
to leading order inj /Ls!1d. In practice, they carried out
explicitly the computation of the first four cumulants.

To draw a connection to their work we note that whereas
the parametrizationx=arctanhÎR of the magnitude of the
reflection coefficient is the natural one from a geometrical
point of view according to Eqs.(2.9), (2.12), and(2.13), it is

FIG. 5. Numerical evaluation of 1/s1−ad as a function of« in
the crossover regime(4.3). The integrala defined in Eq.(4.15b) is
evaluated numerically for the stationary distribution of the phase
(4.9). The line representing −s1/2dlogu«u is a guide to the eyes.
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1 ! u: = 2x , − ln g , − ln n s5.8ad

that behaves statistically as the logarithm of the conductance
g (or the logarithm of the LDOSn according to the Borland
conjecture, see Ref. 53) in the regime defined by the
condition

0 ø g ! 1. s5.8bd

We denote byUsu,f ;Ld the joint probability distribution of
u and f, and introduces;2L /,. We infer from Eq.(3.15)
that Usu,f ;Ld obeys the Fokker-Planck equation

] U

] s
= LfU + S−

1

2
+

3

2
z cos 2fD ] U

] u
+

1

2
s1 − z cos 2fd

]2U

] u2

+ z sins2fd
]2U

] u ] f
, s5.9ad

where

Lf: = − z cos 2f − S«

2
+

3

2
z sin 2fD ]

] f

+ Sz0 +
1

2
+

z

2
cos 2fD ]2

] f2

= −
«

2

]

] f
+ z0

]2

] f2 +
g1

g+
S ]

] f
cosfD2

+
g2

g+
S ]

] f
sin fD2

s5.9bd

in the largeu limit and in the absence of absorption.
The fact thatLf can be written as a total derivative plays

an essential role when solving, for any given purely imagi-
nary z and any given positive integerk, the eigenvalue
equation

mkfk = FLf − zS−
1

2
+

3

2
z cos 2f + z sins2fd

]

] f
D

+
z2

2
s1 − z cos 2fdG fk s5.10ad

for the eigenvaluemkszd and the normalized eigenfunction
fksz,fd of f with periodicityp that results from insertion of
the large-deviation ansatz

Usu,f;Ld =E
−i`

+i` dz

2pi ok=0

+`

emkszds−zufksz,fd s5.10bd

into Eq. (5.9).
For largeu@1, the integration overz is dominated in Eq.

(5.10b) by the region of size,1/u close to the originz=0.
Assume that for a nonvanishingz of order 1/u, all eigenval-
uesmkszd are real valued, of descending order, and that the
largest eigenvaluemk=0szd is separated frommk=1szd by a
finite gap. Consequently, truncation of the summation overk
to the single termk=0 on the right-hand side of Eq.(5.10b)
produces an exponentially small error

Usu,f;Ld =E
−i`

+i` dz

2pi
fem0szds−zuf0sz,fd + Ose−um0szd−m1szdusdg.

s5.11d

Next, assume the expansions

m0szd = o
n=1

+`

m0
snd zn, f0sz,fd = o

n=0

+`

f0
sndsfdzn, s5.12d

where the expansion coefficientm0
snd encodes thenth cumu-

lant of u,

kunlc = n ! m0
snds+ Oss0d. s5.13d

Insertion of the expansion(5.12) into the Eq.(5.10a) for k
=0 can be solved iteratively forn=0,1, . . .. Forn=0, Eq.
(5.10a) reduces to

0 =Lff0
s0d, s5.14d

whose normalized solution is nothing but the stationary and
normalized solution to Eq.(4.4b). For n=1, Eq. (5.10a) re-
duces to

m0
s1df0

s0d = Lff0
s1d + s 1

2 − 3
2z coss2fd − z sins2fd]fd f0

s0d.

s5.15d

The expansion coefficientm0
s1d is obtained from integrating

Eq. (5.15) over f as a result ofLf being a total derivative,

m0
s1d = 1

2s1 + za0
s0dd, s5.16ad

where

a0
s0d: =E

0

2p

df coss2fdf0
s0dsfd. s5.16bd

After comparison of Eqs.(5.13) and(5.16), on the one hand,
with Eqs.(5.3a) and(4.15b), on the other hand, we conclude
that the first cumulant of the logarithm of the conductance is
computed exactly to leading order inj /L within the
separation-of-variable ansatz for the crossover regime(4.3).
As a corollary, the crossover(5.5) for the typical localization
length is given exactly by the separation-of-variable ansatz.
Carrying on the iteration to compute the expansion coeffi-
cientsm0

snd, however, we find that the separation-of-variable
ansatz breaks down forn=1,2, . . . as itdoes not agree any-
more with the large-deviation ansatz from Schomerus and
Titov in Refs. 25 and 26.

VI. PROBABILITY DISTRIBUTION OF THE LDOS

In this section, the probability distributionsPsn ;Ld and
Psn ;vd of the LDOSn in the geometries of Figs. 6(a) and
6(b), respectively, are calculated based on the probability dis-
tribution function of the reflection coefficient r
=ÎR expsifd obtained in Sec. IV.

A. Single-particle Green function and reflection coefficient

For any given realization of the disorder potentialsv0,1,2,
the LDOSnsyd is defined by54
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nsyd: = −
1

p
Im tr Gsy,yd, s6.1d

where the matrix elementsGsy,zd in real space of the Green
function are obtained from solving

FE + ih + s3i
d

dy
+ o

m=0

2

smvmsydGGsy,zd = dsy − zds0,

E = E8 + iE9, E9 ù 0,

sh: positive infinitesimald s6.2d

with the boundary conditions associated to the geometries in
Fig. 6. As long asy is far away from the ends of the disor-
dered quantum wire, say in the middle, the statistical prop-
erties ofnsyd should be independent ofy. However, the sta-
tistical properties ofnsyd depend strongly on the boundary
conditions at the ends of the disordered quantum wire.19,21

For completeness, we will understand, under the chiral limit
of the LDOS(6.1), the property that the Green function(6.2)
anticommutes withs1, i.e.,

E = g0 = g1 = 0, s6.3d

whereas we will understand, under the standard limit of the
LDOS (6.1), the conditions on the Green function(6.2) that

g1 = g2 s6.4ad

or

g0 @ g1 + g2 s6.4bd

or

E @ g1 + g2. s6.4cd

Schomeruset al.21 expressed the probability distribution
of the LDOS in terms of the probability distributions of the
reflection coefficientrL srRd for outgoing plane waves re-

flected from the region to the left(right) of y for the continu-
ous nonrelativistic Schrödinger equation in the standard sym-
metry class(6.4). Here we extend their analysis to the
continuous relativistic Hamiltonian(2.1a). A crucial observa-
tion in Ref. 21 is that, for weak disorder, the Green function
can be expanded in terms of free scattering states within a
small interval of order of the mean-free path, since one can
assume that there are no impurities in this interval. The so-
lution to Eq.(6.2) for y andz belonging to such an impurity-
free interval can be written as a linear combination of
eiks+y+zdx+x−

T, eiks+y−zdx+x+
T, eiks−y+zdx−x−

T, eiks−y−zdx−x+
T, except

for the discontinuity aty=z,

Gsy,zd =
se−ikyx− + rLe+ikyx+dse+ikzx− + rRe−ikzx+dT

i"vFs1 − rLrRd
Qsz− yd

+
se+ikyx+ + rRe−ikyx−dse−ikzx+ + rLe+ikzx−dT

i"vFs1 − rLrRd

3Qsy − zd, s6.5d

wherex+: =s1,0dT, x−: =s0,1dT, Qsyd is the Heaviside func-
tion that vanishes wheny,0 and equals one wheny.0, and
we have momentarily reinstated the Fermi velocityvF and"
in the relativistic dispersion relation ReE;E8="vFk. The
relative amplitudes amongeiks±y±zdx±x7

T as well as the factor
s1−rLrRd−1 are determined by taking into account multiple
scattering from the left and right boundaries of an interval
free of impurities.

Combining Eqs.(6.2) and (6.5) reproduces in the relativ-
istic limit the mesoscopic relation

nsyd =
1

p"vF
ReS1 + rRrL

1 − rRrL
D s6.6d

between the LDOS aty and the reflection coefficientsrL and
rR from the disordered region to the left and right ofy, re-
spectively, derived by Schomeruset al.21 for the nonrelativ-
istic continuous Schrödinger equation. In the nonrelativistic
case, the diagonal matrix element of the Green function in
real space gives the microscopic local density of states. The
microscopic local density of states exhibits 2kF oscillations.21

The LDOS(6.6) is obtained after smearing out these oscil-
lations. The effect of the relativistic approximation(2.1a) is
to remove the 2kF oscillations from the outset. Henceforth let
us measure the LDOSnsyd in units of 1/sp"vFd, the DOS of
a clean wire.

The probability distribution functionPsn ;LL ,LR,vd of
the LDOSnsyd defined by Eq.(6.6) is now simply given by

Psn;LL,LR,vd

=E
0

1

dRLE
0

1

dRRE
0

2p

dfLE
0

2p

dfR

3PLsRL,fL ;LL,vd PRsRR,fR;LR,vd

3dSn −
1 − RLRR

1 + RLRR − 2ÎRLRR cossfL + fRd
D ,

s6.7d

whereLL sLRd is the length of the segment of the disordered

FIG. 6. (a) Disordered quantum wire of lengthL closed at the
right end and connected to a perfect lead at the left end. Energy
levels within the wire of lengthL are broadened beyond the mean
level spacing by the coupling to the perfect lead.(b) Disordered
quantum wire of lengthL closed at both ends. Energy levels within
the wire are broadened beyond the mean level spacing by the ab-
sorption ImE=E9.0.
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quantum wire to the left(right) of the point y where the
LDOS is measured. The total length of the disordered quan-
tum wire is evidently given by(see Fig. 6)

L = LL + LR. s6.8d

The dependence of the probability distribution for the LDOS
on the boundary conditions enters through the dependence of
the probability distributions PLsRL ,fL ;LL ,vd and
PRsRR,fR;LR,vd on the boundary conditions corresponding
to the geometries of Fig. 1.19,21 This dependence on bound-
ary conditions is implied by the dependence onLL ,v or
LR,v of the probability distribution of the two reflection co-
efficients rL and rR, respectively. When a disordered quan-
tum wire of finite length is closed, one must broaden the
single-particle energy levels beyond the mean level spacing
to make sense of the energy dependence of the mesoscopic
LDOS. This is achieved here by introducing a finite absorp-
tion v=Im E/g+.0, in which case the dependence onLL
@, or LR@, becomes immaterial. The absorptionv
=Im E/g+.0 is switched off when a disordered quantum
wire of finite lengthL is connected to a perfect lead. We
consider first the geometry depicted in Fig. 6(a) and then the
geometry depicted in Fig. 6(b).

B. Semiopen wire

To calculate the probability distribution of the LDOS in a
disordered quantum wire connected to a reservoir on the left
and closed on the right, we need(i) the joint probability
distribution PLsRL ,fL ;LLd for the squareRL of the magni-
tude of the reflection coefficientrL and its phasefL on the
segment of lengthLL to the left of the point at which the
LDOS is measured and(ii ) the probability distribution
FRsfR;LRd of the phasefR of the reflection coefficientrR

on the segment of lengthLR to the right of the point at which
the LDOS is measured. The calculation ofFRsfR;LRd is
outlined in Sec. IV A. The calculation ofPLsRL ,fL ;LLd is
outlined in Sec. IV C.

1. Chiral and standard symmetry classes

The probability distribution of the LDOS in the chiral
symmetry class(6.3) is (see the Appendix)

Psn;LLd =
1

Î8pLL/,

1

n
expS−

,

8LL
ln2nD . s6.9ad

This is the probability distribution of a log-normal distrib-
uted random variable with

kln nlLL
: =E

0

`

dn Psn;LLdln n = 0, s6.9bd

ksln nd2lLL
: =E

0

`

dn Psn;LLdsln nd2 =
4LL

,
. s6.9cd

The average LDOS is

knlLL
= e2LL/,, s6.10d

which grows exponentially withLL. For comparison, the
probability distribution of the LDOS in the standard symme-

try class(6.4), which was obtained in Refs. 19 and 21, is also
log-normal,

Psn;LLd =
1

Î4pLL/,

1

n
expF−

,

4LL
Sln n +

LL

,
D2G ,

s6.11ad

kln nlLL
= −

LL

,
, s6.11bd

KSln n +
LL

,
D2L

LL

=
2LL

,
. s6.11cd

Incidentally, the average LDOS is not affected by the disor-
der in the standard symmetry class,knlLL

=1. The probability
distributions for the LDOS in the chiral and standard sym-
metry classes are depicted in Fig. 7(a). In the thermodynamic
limit LL →`, the logarithm of the LDOS is self-averaging in
the standard symmetry class whereas this is not the case in
the chiral symmetry class. This difference could have been
anticipated from the identification lnn,−2x, valid when
LL /,@1, with the radial coordinatex that obeys the Fokker-
Planck equations(2.12) and (2.13), respectively.

FIG. 7. (a) Three traces for the probability distribution of the
LDOS are plotted with«=0,0.1, +̀ (from the bottom up atn
=0.01) so as to interpolate between the chiral and standard symme-
try classes(6.3) and(6.4), respectively. Each trace is obtained from
numerical integration of Eq.(6.7) for the semiopen geometry of
Fig. 6(a) with LL /,=2. (b) Three traces for the probability distri-
bution of the LDOS are plotted with«=0,0.1, +̀ (from the bottom
up at n=0.1) so as to interpolate between the chiral and standard
symmetry classes(6.3) and (6.4), respectively. Each trace is ob-
tained from numerical integration of Eq.(6.7) for the closed geom-
etry of Fig. 6(b) with v=1/12. We have verified that numerical
integration of Eq.(6.7) agrees with a representation of Eq.(6.7) in
terms of elementary functions when possible.
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2. Separation ansatz for the crossover regime

Numerical evaluation of the integrals on the right-hand
side of Eq.(6.7) is depicted in Fig. 7(a) for the crossover
regime(4.3) within our approximation which is encoded by
the separation-of-variable ansatz(4.27)–(4.29), and(4.9).

C. Closed wire

To calculate the probability distribution of the LDOS in a
disordered quantum closed at both ends with a finite absorp-
tion v, we need the joint probability distributions
PLsRL ,fL ;LL ,vd and PRsRR,fR;LR,vd. We can safely ig-
nore the dependence onLL,R in the regimeLR/L@, as is
done in Sec. IV B.

1. Chiral and standard symmetry classes

The probability distribution of the LDOS in the chiral
symmetry class(6.3) is55 (see the Appendix)

Psn;vd = F 1

K0sv/2dG21

n
expF−

vs1 + n2d
2n

GK0Svu1 − n2u
2n

D ,

s6.12ad

where Knsxd, n=0,1, . . . are themodified Bessel functions
and has the asymptotics

Psn;vd ~ 5
n−1/2 exps− v/nd, for n ! v/2,

− lnsvu1 − nud, for u1 − nu !
1

v
,

n−3/2 exps− vnd, for n @ 2/v.

s6.12bd

For comparison, the probability distribution of the LDOS in
the standard symmetry class(6.4), which was obtained in
Refs. 19 and 21,

Psn;vd =
v2

Î2pn3/2E
s1+n2d/s2nd

`

du
expf− vsu − 1dg

Îu − s1 + n2d/s2nd

3fuK0svÎu2 − 1d + Îu2 − 1K1svÎu2 − 1dg,

s6.13ad

has the asymptotics

Psn;vd ~ Hn−2 exps− v/nd, for n ! v/2,

n−1/2 exps− vnd, for n @ 2/v.

s6.13bd

The probability distributions for the LDOS in the chiral and
standard symmetry classes are depicted in Fig. 7(b). Spectral
weight from the tailsn!v /2 andn@2/v of the probability
distribution in the standard symmetry class is redistributed
aroundn=1 in the chiral symmetry class. Consequently, in
the limit v→0, the mean value of the mesoscopic LDOS in
the chiral symmetry class becomes

knlv =
1

fK0sv/2dg2E
1

`

dnS1 +
1

n2D
3expF−

v

2
Sn +

1

n
DGK0Xv

2
Sn −

1

n
DC

=
v→0 1

sv/2dflnsv/2dg2 . s6.14d

This result is identical to the smeared Dyson singularity of
the DOS in the chiral symmetry class,

nDysonsvd: =E
−`

`

d«
2p

u«uulnu«/2uu3
1

p

v

«2 + v2

=
v→0 1

sv/2dflnsv/2dg2 . s6.15d

2. Separation ansatz for the crossover regime

Numerical evaluation of the integrals on the right-hand
side of Eq.(6.7) is depicted in Fig. 7(b) for the crossover
regime(4.3) within our approximation which is encoded by
the separation-of-variable ansatz(4.14), (4.15), and(4.9).

VII. CONCLUSION

The probability distribution of the mesoscopic local den-
sity of states(LDOS) n for a strictly one-dimensional prob-
lem of Anderson localization with chiral symmetry(the chi-
ral symmetry class) was computed in closed form for two
simply connected geometries assuming a weak disorder. As
is the case when the chiral symmetry is maximally broken
(the standard symmetry class), the probability distribution of
n strongly depends on boundary conditions. In a semiopen
geometry we found that the probability distribution ofn is
log-normal with a vanishing mean as opposed to log-normal
with a finite mean in the standard symmetry class. In a
closed geometry with absorption we found that the probabil-
ity distribution ofn has a double-peak structure whereby the
second peak turns out to be a logarithmic singularity atn
=1. We verified that the smeared Dyson singularity is repro-
duced by the mean value of the LDOS when the absorption
is sufficiently small. Furthermore, we found one exact and
proposed two approximate solutions to the functional renor-
malization group equation obeyed by the joint probability
distribution for the squared modulus and the phase of the
reflection amplitude of a finite and possibly dissipative wire
with semi open and open boundary conditions, respectively,
from which we could extract the approximate crossover of
the LDOSn and conductanceg between the chiral and stan-
dard symmetry classes. We could show that our approxima-
tion is exact for the first cumulant, but fails to describe
higher cumulants of the logarithms ofn andg in the cross-
over regime.
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APPENDIX: PROBABILITY DISTRIBUTION OF THE
LDOS IN THE CHIRAL SYMMETRY CLASS

In the appendix we prove Eqs.(6.9a) and (6.12a). We
make use of the fact that the probability distributions for the
squared modulus and phases of the reflection coefficients
rL/R=tanhxL/R expsifL/Rd factorize in the chiral symmetry
class. We have chosen here to represent 0ø sRL/Rd1/2ø1 by
tanhxL/R. We thus need to compute

Psn;LL,LR,vd =E
0

`

dxLE
0

`

dxRE
0

2p

dfLE
0

2p

dfR PLsxL,fL ;LL,vd PRsxR,fR;LR,vd

3dSn −
1 − tanh2 xLtanh2 xR

1 + tanh2 xLtanh2 xR − 2 tanhxLtanhxRcossfL + fRdD sA1ad

where

PL/RsxL/R,fL/R;LL/R,vd = XL/RsxL/R;LL/R,vd 1
2fdsfL/R − 0d + dsfL/R − pdg. sA1bd

Integration over the anglesfL/R yields

Psn;LL,LR,vd =E
0

`

dxLE
0

`

dxR XLsxL ;LL,vd XRsxR;LR,vd
1

2
FdSn −

1 − tanhxLtanhxR

1 + tanhxLtanhxR
D + dSn −

1 + tanhxLtanhxR

1 − tanhxLtanhxR
DG .

sA2d

Semiopen wire

Equation(2.13) implies that we need to evaluate Eq.(A2)
with

XLsxL ;LLd =
2

Î2pLL/,
expF−

xL
2

s2LL/,dG , sA3ad

XRsxR;LRd = dsxR − `d. sA3bd

It is found that

Psn;LLd =
1

2
E

−`

`

dx XLsx;LLd dsn − exps2xdd. sA4d

Integration overx yields Eq.(6.9a).

Closed wire

Equation (4.11b) implies that we need to evaluate Eq.
(A2) with

XLsxL ;vd = 2Nve−sv/2dcosh 2xL , sA5ad

XRsxR;vd = 2Nve−sv/2dcosh 2xR, sA5bd

whereNv=fK0sv /2dg−1. It is found that

Psn;vd = 2sNvd2E
1

`

dpE
1

`

dq
e−vpqdsn − sp/qdd
Îsp2 − 1dsq2 − 1d

. sA6d

Integration overp andq yields Eq.(6.12a).
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