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Crossover of conductance and local density of states in a single-channel disordered quantum wire
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The probability distribution of the mesoscopic local density of stdtB¥)S) for a single-channel disordered
quantum wire with chiral symmetry is computed in two different geometries. An approximate ansatz is pro-
posed to describe the crossover of the probability distributions for the conductance and LDOS between the
chiral and standard symmetry classes of a single-channel disordered quantum wire. The accuracy of this ansatz
is discussed by comparison with a large-deviation ansatz introduced by H. Schomerus and M. Titov in Phys.
Rev. B 67, 100201(2003.
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I. INTRODUCTION classes. The chiral universality classes are realized in prob-
The metal-insulator transition induced by disorder in the!@MS Of Anderson localization for which the Hamiltonian an-
problem of Anderson localization remains poorly understoodicommutes with some unitary operator for all realizations of
from a theoretical point of view. On the one hand, it is trueth€ disorder and in which case the DOS is known to be
that the prediction for the existence of a metal-insulator tranSingular at the band center in zéft" quasi-oné;” and
sition induced by disorder has been verified by numericalVO_dimensions™1% Even though the chiral universality
simulations. On the other hand, the critical exponents at thglasses are critical at the band center, they have been far less

. . . : ' tudied than the orthogonal, unitary, and symplectic univer-
metal-insulating transition measured numerically still cannotzality classes, which we will refer to as the standard univer-

be extracted from the field theories which are believed to__: T
embody the metal-insulator transitidThe paradigm of this sality classes. For example, the probability distribution of the

so-called mesoscopic local density of sta@POS) has

unpleasant situation is the plateau transition in the lowesfaan known since 1989 from the work of Altshuler and Pri-
Landau level of the integer quantum Hall effédthe devel- odin for a single chain with weak on-site disord&r!

opment of reliable methods to compute analytically criticalyhereas it has not yet been computed for the one-
properties at a disorder-induced metal-insulator transition regimensional random-hopping problem. The first aim of this
mains to this date an open problem. paper is to fill this gap.

The simplest known example of disorder-induced critical-  |f a diffusive regime exists, perturbative techniques can be
ity in the context of Anderson localization was solved byused to describe the crossovers between universality
Dyson in 1953 According to Dyson, the global density of classe€223 However, little is known quantitatively on the
states(DOS) in the thermodynamic limit and close to the crossover between two different universality classes, here de-
band center is anomalous when a single quantum particléned in terms of nonlinear-sigma models, say, from the dif-
hops with a random amplitude between the nearest-neighbdusive to the localized regimes. This is even true in one di-
sites of a chain excluding any other form of disorder, inmension, which is by far the most studied laboratory for
short, the one-dimensional random hopping problem. Subseé\nderson localization, as was recently illustrated by a flurry
quent works showed that Dyson’s spectral anomaly is relatedf works on the validity of one-parameter scaling in one
to a diverging localization length;? an anomalous decay of dimensior?*=22 The absence of a diffusive regime renders
the envelope of wave functiodsand an anomalous probabil- the concept of universality classes ambiguous in one dimen-
ity distribution of the resistance upon approaching the bandion in that symmetry alone does not specify a universality
center® class in one dimension. For example, the ratio of the local-

The coalescence of the concept of universality importedzation length to the mean-free path in a wire of finite width
from the theory of critical phenomena with the symmetryinterpolates smoothly between its two limiting values for
classification imported from random matrix theory has led tofully preserved or completely broken time-reversal symme-
a classification of diffusive regimes and disorder-inducedry, respectivley, as a function of a weak magnetic fféld.
metal-insulator transitions in terms of 10 universality classesSimilarly, fine tuning of microscopic parameters is required
that are uniquely characterized by the intrinsic symmetriego achieve delocalizatio@.e., diverging localization lengjh
preserved by the disordéassumed weaglkfor any given di-  of quasiparticles at the fermi energy in a dirty superconduct-
mensionality of spacgAccording to this classification, Dys- ing wire of finite thickness with both broken spin-rotation
on’s singular DOS is a trademark of the chiral universalityand time-reversal symmetries whereas delocalization be-
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comes generic in the thick-wire scaling liFd#3° One can (a)
nevertheless define symmetry classn one dimension by T \@\\
demanding that single-parameter scaling holds. Lack of uni- (rl=1)

versality in one dimension can then be understood as the fact

that there is no scaling limit for which single-parameter scal- (b)
ing becomes a generic property of an ensemble of random r

microscopic Hamiltonians of a given symmetry. Symmetry \\&
classes in one dimension cannot be construed as an enumera-
tion of stable or unstable fixed points of some putative effec-
tive field theory. Computing the crossover between symme- (c)

try classes in one dimension nevertheless remains a well- " \\Q&
defined problem.

Time-reversal symmetry cannot be broken for a spinless
particle constrained to move in a one-dimensional and sim-
ply connected world, in which case the only possible CroSS- FiG. 1. In this paper, we will consider two different simply
over between symmetry classes takes place between the Chsnnected geometries, which are imposed by suitable boundary

ral and standard classes. The second aim of this paper is {@nditions aty=-L/2 andy=+L/2, respectively, for a strictly 1D

compute the crossover between these two symmetry classggordered quantum wire. In geomeig) and (b) the disordered
in one dimension for the probability distributions of the con- quantum wire is closed to the right and open to the left where it is

ductance and of the LDOS from the ballistic to the localizedconnected to an ideal lead. The particle in geoméiyys subjected
regimes assuming a weak disorder at the microscopic levelo absorption whereas it is not in geometay. In geometry(c) the

In that regard, our results are complementary to the analysidisordered quantum wire is open to the left and to the right where it
made by Schomerus and Titov of the validity of one-is connected to ideal leads.

parameter scaling in one dimension in which they computed

exactly the first four cumulants of the logarithm of the con-grdey that interpolates smoothly between the standard and
ductance to leading order in the ratio of the length of thechjral symmetry classes. Conditiofi) implies that time-
chain to the localization length assuming a weak disorder afeversal symmetry is preserved for every realization of the
the microscopic level>?® We thus propose an approximate disorder. In 1D and assuming a metallic ground state in the
ansatz for the crossover whereby the approximation consistshsence of the disorder, the ground state consists of two dis-
of assuming that the phase and amplitude of the reflectiofnct Fermi points. Plane waves at the Fermi points are called
coefficient separate. By comparing the cumulants of thgeft- and right-movers, respectively. In the standard symme-
Lyapunov exponent of the transfer matrix computed with ourry class, the channels for forward and backward scatterings
approximate ansatz to the ones computed with the larggnduced by an on-site disorder potential in the basis of left-
deViation ansatz of SChomeI‘US and TitOV deep in the Iocaland right_movers are equa”y ||ke|y up to nonrandom oscil_
ization regime, we deduce that our ansatz captures the firgdtory factors. In the chiral symmetry class, the disorder po-
cumulant, but fails with the higher cumulants. tential is off-diagonal in the basis of left- and right-movers.
The paper is organized as follows. We formulate the onepresuming weak disorder in conditiofii) allows us to
dimensional problem of Anderson localization as a ContinU'Choose a kinetic energy that is a first_order differential Op_
ous Schrddinger equation with a relativistic kinetic energy ingrator, for it only makes sense to linearize the spectrum about
Sec. II. A functional renormalization group equation is de-the two Fermi points when the disorder potential is weak. We
rived for the probability distribution of the reflection coeffi- thus choose to model the dynamics of the single quantum

cient in Sec. lll. Exact solutions to these COUpIEd fUnCtionalpartide and the static random environment by the Hamil-
renormalization group equations are given for the chiral andgnian

the standard classes, as well as an approximate solution that
describes the crossovers between these two classes in Sec. q4 2
IV. The accuracy of the approximate solution for the cross- Hi=- Usld— -2 T, ,(Y), (2.19
over regime is estimated in Sec. V. The probability distribu- Y w0
tion of the LDOS is computed exactly in the chiral and stan-ynere we have set the Fermi velocity and# to one. The
dard classes whereas it is computed approximately in thgqndary conditions that will be imposed in the sequel are
crossover regime between these two classes in Sec. VI. V\@’epicted in Fig. 1. They all obey conditiofi). We have
conclude in Sec. VII. denoted byo, the unit 22 matrix and byo , 3 the 2x 2
Pauli matrices. The static random environment is represented
Il. MODEL by three independent potentialg(y) € R, ©=0,1,2that we
choose, for mathematical convenience, to be supported on
In this paper we want to investigate the statistical properthe interval +/2<y<+L/2, and to be white-noise and
ties of the LDOSy and dimensionless conductangdor a  Gaussian distributed with vanishing meg@tisorder averag-
single quantum particle, which i8) restricted to a simply ing is denoted by...))
connected and strictly one-dimensioaD) geometry and
(i) subjected to a static and weak random environn(éist (v, (y)=0, (2.1b

L
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(Y, (y))=29,8,,0y-Y). (2.19 PR\ Pt
lpj'R - ME lﬂo‘l‘ . (2'7)
The three variancesg ; , carry the dimensions of inverse E
length and need not be equal. A finite value Conservation of probability dictates that the scattering matrix
is unitary or, equivalently, that the transfer matrix is pseudo
(va(y)) =A (2.2 ynitary
can also be easily accommodated in our formafi$mm. this ()T 00 S =S 00 (ST =0y, (2.89
case, the clean system is insulatingfaspens up a dimer-
ization gap at the Fermi energy and the random environment (Mp)" o3 Mg= Mg 03 (Mp)' = . (2.8b)

mimics to a first approximation the static fluctuations of the
phonons responsible for the dimerization sufficiently close tadConservation of probability also implies the existence of the
the Peierls transitio?? The problem of Anderson localiza- polar decompositions

tion in the continuum defined by Eq2.19, (2.1b), and (v,* O) (—tanhx sechx) (U 0 )
E E E’

(2.19 is a coarse-grained version of a single particle hopping S =

on a simply connected chain with a uniform nearest-neighbor 0 u sechx tanhx/g\0 u'*
hopping amplitude subjected to weak and independent ran- (2.99
dom fluctuations of an on-site potential and of the nearest-
neighbor hopping amplitude. u 0 coshx sinhx\ (v O

The generic symmetry obeyed by E(.19 is time- ME:( ,> ( ) ) ( ,> ,
reversal invariance, 0 u’/g\sinhx coshx/g\0 v’/

. (2.9b
O'lH 0'1=H. (23)
whereug, Ug, vg, vg are independent complex numbers with

If the condition lugl?=|ugl?=|ve/?=|vg/?=1 andxg € R. The polar decompo-

sition is not unique. For example, the sign xf can be
90=01=0 (2.4 absorbed into a redefinition of, u’, vg, vg. The variablexg,
when restricted to the half ling0,~[, has the geometrical

is satisfied, or, for that matter, any equivalent condition Ob.'interpretation of a radial coordinate on a Riemannian

tained by a redefinition of the Pauli matrices through a posi-_ " . " 33234 . :
N . manifold>>°* The time-reversal symmetry of the Hamil-
tlon'llndepenQIenSU(Z) rotatlpn arou'ndr3,- Eq.(2.13 ha§ an  tonian implies the transformation laws
additional chiral symmetry in that it anticommutes with,

=7, (2.103

Consequently, all nonvanishing eigenvalueskbfcome in 01 Mg 01= ME, (2.10D

pairs with opposite signs. The origin of the chiral symmetrywhich enforce the constraintx‘E:u*E andU’E:U*E or, equiva-

of the continuum model for any given realization of the dis-|ently, te=tt. The chiral symmetry of the Hamiltonian im-
order is a sublattice symmetry of an appropriate lattice regupjies the transformation laws

larization. A microscopic random Hamiltonian realizing the

0'1H0'1:_H. (25)

chiral symmetry is, for example, a tight-binding Hamiltonian Se=(S9", (2.113
on a hypercubic lattice with strictly vanishing on-site ener-

gies and random hopping matrix elements restricted to oy Migo1 = Mg, (2.11b
nearest-neighbor sites, in short, the random hopping prob-

which enforce the constraintg,z=u_g and viz=v_g or,
equivalently,r,e=r’g, rig=r’g, t,e=t'c. Then, at the band
‘tcenterE=0 with the condition(2.4), the scattering matrix
becomes Hermitian.

Under the assumptions thé the disorder is weak and
(i) Ug, UE, vg, v are all independently and uniformly dis-

oL P rot P tributed on the unit circle in the complex plane, it was essen-
( ) = SE( ) = ( ) ( ) . (2.6) tially shown in Ref.35 that the probability distributioki of
E E E E

lem.

The LDOS, DOS, conductance, shot-noise power, etc
can all be extracted from the elements of the 2 scattering
matrix Sz at the energyE that connects incoming'i” ) and
outgoing(“0”) states

R i,R ’ i,R
s ¥ tr ¥ Xz =0 obeys the Fokker-Planck equation
The amplitude for incoming and outgoing waves to the left- axX(x;L) 14 )
and right-hand sides of the disordered region is denoted by TR E;(SIHV(ZX);(CSCKZX)X(X;L) (2.12

>R here. The matrix elementsr’ e C are the reflection
coefficients whereas the matrix elemertt$’ € C are the in the geometry of Fig. (t). The mean-free path is some
transmission coefficients. Alternatively, one can work withfunction of gy, g;, g,, andE. In a more general context of
the 2X 2 transfer matrixMg at the energyg, which follows  multi channel quantum wires, assumpti@i is known as
from the scattering matrix2.6) through the basis transfor- the isotropy assumptiotf,whereas the Fokker-Planck equa-
mation implied by tion (2.12 is a special case of the Dorokhov-Mello-Pichard-
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Kumar (DMPK) equation?’-*6 A consequence of assumption  (a) sL

(i) is one-parameter scaling as encoded by the Fokker- —_— —
Planck equatiori2.12), i.e., the probability distribution ok
and, consequently, aj=seci x depends on the single di-
mensionless parametef €. It is evident that assumptia(ii)
breaks down at the band cente=0 and with the chiral
condition (2.4) becauseug-o=Ug-, and ve=g=v¢-, are then

both real valued. Correspondingly, the Fokker-Planck equa- L
tion, obeyed by the probability distributionX of (b)
-0 <X o< *+, is different from Eq.(2.12 and given by
the diffusion equation ¢ St e St
1 1 2 2
IXOGL) _ 1 PA(L) (213 e SN M e 52\ ., "
aL 26 9x? '

in the geometry of Fig. (£).83831 The mean-free patl is FIG. 2. (a) A thin slice of lengthsL with a< SL < ¢ <L is added
some function ofg,. Again, the Fokker-Planck equation t0 the left of the disordered region of lendth (b) Two disordered
(2.13 encodes one-parameter scaling as the probability digegions 1 and 2 with scattering matricgsand S, respectively, in
tribution of x and, consequently, @f=sechx depends on the & quantum wire.
single dimensionless parametef€. There are no known
multiple-parameter scaling equations for the LDOS, DOS, d¢ ) ) = 1
conductance, etc., which describe the crossover between the = 2(&" +vg) +(v1 COS P+ v, Sin ¢)<\R+ \_E)
two limiting cases described by Eg®.12 and (2.13 for ‘
values ofL ranging from the ballistiqL smaller than the (3.4b
mean-free pathto the localized regiméL larger than the - -
mean-free pathto the best of our knowledgésee Refs. by using the relations
39-41 for discussions of two-parameter scalirye fill this roo=(@vi—vy)dL, tg=1+i(vg+tE)dL,
gap in the remainder of the paper.

ry =(@vy+tvy)dl, ty =1+i(vg+E)4L, (3.5

IIl. FUNCTIONAL RENORMALIZATION GROUP which are valid up to first order in the disorder potentials
EQUATIONS Vo1 and by expanding the right-hand side of K8.2) to

) o the same order. We note in passing that the mean-free path
We shall show in Secs. IV and VI that the statistical prop-(3.3) is simply given by

erties of the dimensionless conductaga@nd of the LDOSY

follow from the knowledge of the statistical properties of the 0= 1 (3.6)
reflection coefficient 2(g1+ ) '
r=1R explie), (3.1 in the Born approximation. For later convenience, we have

, , ) continued the energ¥ to the upper part of the complex
which has been decomposed into its square: modulafKR 0 plane,E=£"+i&", £=0. The continuous Langevin process
<1 and phage &¢<2_7-r. For a dlsorqlered wire of Iength (3.4) can also be formulated as the Fokker-Planck equation
L+ 4L as depicted in Fig. 2, the reflection coefficients iS  gpeyed by the joint probability distribution function

related to the entries of the scattering majx for the slice P(R, ¢:L). Using the standard methods of Chapter 3 in Ref.
of length 6L and to the entry, of the scattering matri§ 45 s,ay, one finde

for the much longer segment of lendthby the composition

law IP aP P 1 #P #P
gt P FRG R TR T RCRR R T Cri R g,
I’L+51_:I’5|_+t:51_(l—r|_l’:5]_)_lr|_t51_. (32) (?2
When the widthéL of the slice is much larger than the lattice + 1GM—PZ, (3.7a
spacinga, but much smaller than the mean-free pétlnere 2 d¢
defined by?? where
* Fo(R ¢) = 2w+ 2(2R- 1) - 6{R cos 2p,
(rars)= :7’ (3.3 o(R ¢) o+ 2( ) 4 2p
Fr(R,¢) =—20R-(R-1)(5R-1) + 6{R(R- 1
we infer the continuous Langevin process RR.¢) R~ )5 )+ 60R( cos 25,
dR = 4 1) .
FTi 48"R+ 2\VR(1 - R) (v, Sin ¢ — v, COS @), FoR @)= +e+ 5(5R+ 4+ 5)3'” 26, (3.7b
(3.49 and
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Gre(R @) = 2R(1 -R)? - 2(R(1 - R)? cos 2p,

Gre(R @) = {(1 - R¥sin 2¢,

1,¢ 1
Gypp(Rp) =4y + (R+2+R) 2<R+2+R)cos2¢.

(3.79
We have introduced the short-hand notations
O::=01x0Qy t=L/E,
e:=£&'1g,, w:=£&"g,,
=919, {o'=90/0s- (3.9

Observe that the dependence on the polar agglarises
solely from cos 2 and sin 25 in the Fokker-Planck equa-

tion (3.7). Thus, provided initial and boundary conditions are

also periodic on the intervaD,«{, the joint probability dis-
tribution P(R, ¢;L) is periodic on the interval0,n{ even
though the phaseb is originally defined modulo 2. The
periodicity 7 is a consequence of the Langevin proogséd)

being invariant undey R—-VRand ¢— ¢p+ar. A dimeriza-
tion gap(v,(y))=A produces the changes

A 1
Fo(R, @) — Fo(R,¢) + —(R- 1)-=cos ¢, (3.99
9+ \“R
Fr(R @) — Fr(R, ¢) + QA(R— 1)VRcosé, (3.9H
Fu(R @) — F 4R, ¢) + A(R+ 1)isin ¢. (3.90
(b 3 (b ] 2g+ V’rﬁ . .

The polar decompositiof2.9) suggests the change of vari-
able

JR=tanhx|, (3.10

in terms of which the Langevin proceé3.4) becomes

aL =-¢&"sinh X+ v, Sin ¢ —v, COS P,

(3.11a

d¢ _ 2 ,
aL - 2(&" +vg) + anh X 2((1;1 COS¢+v, Sin ¢).
(3.11bh

In turn, the joint probability distribution functiol(x, ¢;L)
obeys the Fokker-Planck equation

IW_ W AW L AW AW
at 0 ax Pag 2 o *9xa ¢
1 AW
Kys—>, 3.12
45 42 ( a
where

PHYSICAL REVIEW B 70, 195329(2004)

2 h X+ ———
Jo(X, @) = 2w cos SN2

2
+ cos 2p,
tanh22x) %

1 3 ¢
2tanh2< 2tanh2<

_ 5( 1
sinh?2x

J(X, @) = = w sinh X+ cos 2p,

)sin 2¢,
(3.12b

Jy(X, P) =+ §(

+
sinff2x  tanhf2x

and

1
Kux(X, @) = 5(1 —-{ cos 2p),

Kyp(X, @) = " sin 2¢,

h X

Kd,d,(x, ¢) = 4{0 + Ccos 2¢

(3.120

The Langevin proces&.11) or the Fokker-Planck equation
(3.12 are invariant undex— —x and ¢ — ¢+ .

Equationg3.7) and(3.12 are, from a conceptual point of
view, the main result of this paper as they determine under
what conditions one-parameter scaling holds in a 1D weakly
disordered quantum wire. For example, E(12 encodes
the functional renormalization group flow of the joint prob-
ability distribution of the radial coordinatgx|=arctankR
and phasep of the reflection coefficient. If it is the prop-
erty that the functional renormalization group flow of the
probability distribution ofx depends solely on the dimen-
sionless ratid_/¢ aside fromx, which is understood as one-
parameter scaling forx,*° then two examples of one-
parameter scaling can be constructed from E@sl2) as
follows. First, the Fokker-PlanadloMPK) Eg. (2.12) follows
from insertion of the ansatz

+
tan2x gtan H2x

1
W(X, ¢;L) = ——Al(x;L) (3.13

2T
into Egs. (3.12 with =0 and from integration ovegp
€[0,2#] of the resulting equation. Second, the Fokker-
Planck (DMPK) equation(2.13 follows from insertion of
the ansatz

1
W, ¢iL) = S[a(¢—0) + ob - m]X(xL) (314

with gp=0;=w=e=0 into EQgs.(3.12 and from integration
over ¢ of the resulting equation. One-parameter scaling is
not the rule for generic initial and boundary conditions of
Egs.(3.12 and for generic values of andgg ; , due to the
absence of a diffusive regime in P This is most clearly
seen by the fact that the localization lengthas defined by
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IV. SOLUTIONS TO THE FUNCTIONAL
RENORMALIZATION GROUP EQUATIONS

Exact and approximate solutions to the Fokker-Planck
equation(3.7) are derived in this section. We will consider
three regimes of parameter in Fig. 3. The first regime corre-
sponds to the chiral symmetry class. The second regime cor-
responds to the standard symmetry class. The third regime
describes a specific path connecting the two symmetry
classes.

The chiral symmetry class is given by the condition

820, (413)

which defines the band center of the energy eigenvalue spec-
FIG. 3. Parameter space for the Fokker-Planck equati@®  trum of Hamiltonian(2.19 when
or (3.12. The point Ch 1 has the coordinates {;=0, {=-1. It
represents the chiral symmetry class. The point KW 1 has the co- {=-1, £%=0, (9=9:=0), (4.1b
ordinates ¢=0, {p=—-¢=1. It represents the Kappus-Wegner

i.e., when Hamiltoniani2.1g anticommutes witlr; as in Eq.

7.5). The standard symmetry class occurs whenever
class. The regiong>0 and {<0 are equivalent in that they are t(r S y y

related by a rotation by an angtearoundo; of the Pauli matrices (=0 (9;=0y) (4.23
in the Hamiltonian(2.19. Especially, this rotation relates Ch 1 and
KW 1 to the points Ch 2 and KW 2, respectively. or

1/,=0 (4.2b

the typical dependence of the conductageeseckx on L

> ¢, is finite, é=2¢, for the standard symmetry class, but or
diverges in the chiral limigy=g,=w=e=0. Hence, the lo- flel = 5
calization length must depend on a second microscopic pa- el =0, (4.29

rameter aside fronf for generic values of andgo 1> Equa-  since any one of these three conditions decoulémm ¢

tions (3.7) and (3.12 describe the full crossover from the jn Eq. (3.7) and is consistent with a stationary probability

chiral to the standard class with no restrictions on the valuegistribution of ¢, which is uniformly distributed. In this pa-

of xandL. _ per we shall only consider the crossover between the chiral
For any given absorptionn=0, the parameter space and standard symmetry classes along the line

(£,%o,e) with ;=0 and{,e € R of Egs.(3.7) and(3.12 is

three-dimensional and is depicted in Fig. 3. Remarkably, the {=-1, =0, 0<e<co. (4.3

paramete( always enters Eqe3.7) and(3.12) as a prefactor We must naturally choose the initial and boundary condi-

to cos 2 or sin 24 and, conversely, COS@0r Sin 2p are  ionq o he imposed on the solutions to the Fokker-Planck

always multiplied tz)yg’. As vyel ;hall see ir:jSe?. IrY this prop- equation(3.7). Our choice is motivated by the computation
erty trns out to be crucial In our study of the crossovery¢y,e probability distribution of the LDOS that we will carry
between the chiral and standard symmetry classes.

. . . . out in Sec. VI. Two geometries depicted in Fig. 6 will be
K Equal\t/llor(iﬂ Wasddsrlved n tf(\jebstagdard cllassdbyl/DAbrl- considered in Sec. VI. The relevant geometries for the prob-
osov, Melnikov, and Kumar, and by Rammal and Doucoty i gistribution of the reflection coefficientthat enter the

among others starting from the continuous nonrelativistic., 1,1 tation of the LDOS are depicted in Eig. 1. In Fidg) 1
Schrédinger equatiotf—4” The largex limit pLiay P in Fig. 1. In Fig)

and 1b) the disordered quantum wire is closed on the right-
hand side and connected to a reservoir on the left-hand side.

IW _ (we? - 2¢ cos 2)W+ ( gea_ % . g £ cos 2¢> %V In Fig. 1(a) conservation of probability holds. In Fig (k)

at conservation of probability does not hold due to the presence
JW 1 AW of an absorptipn encoded. by a finite imagina_ry p&ft
+(-e—-3(sin 2¢)— +—(1-{cos 2p)— =wg, of E. In Fig. 1(c) the disordered quantum wire is open
d 4 JX at both ends and flux conservatigno absorption is as-
PW PW sumed. We choose the ideal initial conditionl andr=0
+{ sin(2¢>)[?x(?(ZS +(2{p+ 1+ cos 2¢)(3_¢2 when L=0 for the semiopen and fully open geometries of

Fig. 1, respectively. In the chiral symmetry class, we demand
(3.195 that the phase of is either 0 or# with probability 1/2
initially. In the standard symmetry class, we demand that the
of Eq. (3.12 was derived by Schomerus and Titov when phase ofr is uniformly distributed in the intervalO, 2n{
=0 and gy=g; starting from a Langevin process for the initially. In view of the periodicity of the Fokker-Planck
eigenfunctions of the discrete Schrédinger equation on a&quation(3.7) we always impose initial conditions with a
chain.?526 periodicity of .
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We shall now construct exact solutions to the Fokker- od ET0) F20))
Planck equation3.7) in the chiral and standard symmetry T =_Sﬁ+(2§o+ 1)(9_¢2' (4.69
classes, respectively, for the three geometries of Fig. 1. We
shall also solve the Fokker-Planck equatit®7) in the Its normalized, stationary, and periodic solution is
crossover regimg4.3) for the geometry of Fig. (). We 1
could not construct exact solutions to the Fokker-Planck D(p)=— (4.6b
equation(3.7) in the crossover between the chiral and stan- 2m

dard symmetry classes for the geometries of Figb) and whenever the phasé of r is uniformly distributed initially.

1(c). We shall construct, howevgr, an approximate _solution Qviore generally, the solution to E@4.69 converges to the
the Fokker-Planck equatiof3.7) in a crossover regime that L¥1iform probability distribution(4.6b as soon as>1 for

in_terpolates between the exact SOIU“OUS for the geometries %ny given initial probability distribution. This is also true for
Elgs. ].(b) anq 10). The accuracy of this approximate solu- the standard symmetry clagk2b) and(4.2¢) as co$2¢) and
tion will be discussed in Sec. V. sin(2¢) are ineffective in these limits.
Wheng; # g, and|e| < 1, the stationary probability distri-
A. Disordered quantum wire closed on the right-hand side bution of ¢ need not be uniform if0, 2. For example,
without absorption consider the casg=+1,£=0, {,=3(1+{)=1, for which the
In geometry 1a, an incoming plane wave from an idealFokker-Planck equatio#.4b) reduces to
lead is perfectly reflected by the disordered quantum wire.

2
Hence, the reflection coefficientof the disordered quantum 9% _ _ 2 co$24)d - 3 sir(2¢)@ +[3+ cos{2¢)]ﬂ
wire must be a pure phasg, =1, for all t=L/¢. We thus at Jd¢ 9 ¢*
insert the separation-of-variable ansatz (4.79
P(R ¢;t) = (R- 1)d(¢;t) (443  and has the stationary and normalized sol#fiéh
into the Fokker-Planck equatiai3.7) that, after integration 27
overR, reduces to O(p) = —_— 4.7b
(¢) I'%(1/4)J1 + cog¢ (“.7b
ad . X% . o
s =-2coq2¢)P —[e+ 3¢ sm(2¢)]£ with a periodicity of . HereI'(z) denotes the value of the

gamma function foz e C. Equation(4.7b) is a special case

PP of the stationary solution
+[2+1+¢ cos(2¢)]a—¢2. (4.4b

D(p) (4.79

1
By assumption, we have switched off the absorptienO. V240 + 1+ cog2¢)
Our choice of initial condition shall depend on the proximity

to the parameter regimes.1) and(4.2), but shall always be ~ © Ed. (4.4h with £=0 as shown by Tito?#? In the chiral
periodic on the interval0, . limit {—-1 and{,— 0, this solution becomes unnormaliz-

able and we have to use E@.5b as a stationary solution

1. Chiral symmetry class instead.
In the chiral symmetry clas$4.1), the Fokker-Planck 3. Crossover regime
equation(4.4b) reduces to For simplicity, we consider the crossover regicde3).5
9D Y 2 The chiral symmetry clasgl.l) is reached wher=0. The
—— =2 c042¢)P + 3 sin2¢)— +[1-cod2¢)]— standard symmetry clagg.20 is reached whefe|>1. In
Jt I ¢ J¢ the crossover regime, the Fokker-Planck equatédb) re-
(4.589  ducesto
and has the normalized, stationary, and periodic solution od oD o[ o
—=—g—+2—|sin¢p—sin ¢ |D. (4.8
at ip o d¢

1 1
D(p)==8(p—0)+=8(p— 4.5h
(@) 2 (¢-0) 2 (¢~ ) ( ) A stationary solution to Eq(4.8) is constructed from the

whenever the phas is O or = with probability 1/2 initially. ~ >°'40"

The same conclusion could have been anticipated by inspec- N (™ g*(e/2)(cotg’ ~cot ¢)
tion of the Langevin proces®.4) or from the fact that the D(p) = —J dp/ —————
chiral symmetry clas$4.1g9 and (4.1b imposes the condi- singJ sin ¢

tion that the scattering matrix is Hermitian, see E2j113. valid for >0 and on the intervdl0,«, by periodic exten-
sion to the interval0, 27{. The constantV'is chosen so that
the solution(4.9) is properly normalized. The solution inter-

In the standard symmetry clags2g, cos 2p and sin 2>  polates between Eqé4.5h) and (4.6b) ase—0 ande — oo,

drop out from the Fokker-Planck equatioh4b): respectively, as it should be. Equati¢h9) is an important

, (4.9

2. Standard symmetry class
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intermediary result as we will use it to construct an approxi-
mation to the probability distributions for the conductance

PHYSICAL REVIEW B 70, 195329(2004)

and LDOS in the crossover regime that interpolate between

the exact chiral and standard limiting probability distribu-
tions.

B. Disordered quantum wire closed on the right-hand side
with absorption

In geometry 1b, an incoming plane wave from an ideal

IR IR
ot =[2w+2(2R-1)]R +[2wR+ (1 -R)(1 - 5R)]ﬁ
+R(1 R)zﬁZR (4.133
IR? '
with the stationary and normalized solution
exd-2w/(1-R
RR) = 20e202A"20/1 “R)] (4.13h)

(1-R)?

lead is not perfectly reflected by the disordered quantum wire

due to a finite absorptiom=£"/g.. Hence, the reflection
coefficientr of the disordered quantum wire is not a pure
phase anymore,=vR expli¢).

1. Chiral symmetry class

In the chiral symmetry clasgt.19 and(4.1b), the phase
¢ and squared magnitud® of the reflection coefficient
must necessarily separate, since0<1 is necessarily real
valued,

PR ;1) =[38(¢-0) + 38— M R(R;t). (4.10

After insertion of Eq(4.10 into the Fokker-Planck equation
(3.7) one finds thafR(R;t) obeys

[2w+2(3R-2)]R +[2wR+ 3(1 -R)(1 - 3R)]%

at
+2R(1 R)Z&ZR (4.113
IR? '
with the stationary solution
R(R) :NM. (4.11b
VR(1-R)

The constantV'is chosen so that the solutigf.11b is prop-
erly normalized(this is always possible foo > 0). The sta-
tionary solution(4.11b has a square-root singularity &
=0, an essential singularity &=1, and is normalizable for
Re[0,1]. We shall see below that the probability fRito be

in the vicinity of 0 is enhanced in the chiral symmetry class

(4.1) compared to the standard symmetry clé&®).

2. Standard symmetry class

In the standard symmetry clagd.2), the phase¢ and
squared magnitudR of the reflection coefficient can rea-

sonably be taken to separate in view of the initial condition

of a uniformly distributed phase,

PR ¢;t) = %TR(R;t). (4.12

After insertion of the separation-of-variable ans#z12)
into the Fokker-Planck equatig®.7) one finds thatR(R;t)
obeys

The stationary solutiori4.13bh has an essential singularity
when R=1. The stationary solutioii4.13h was found by
Pradhan and Kuma&t When the initial condition on the
probability distribution of¢ is not that of a uniform distri-
bution, it is presumed that the deviations of the solution to
the Fokker-Planck equatio3.7) from the separation-of-
variable ansatz4.12) with the stationary solutio.13b are
short transients. We do not know of an analytical verification
of this assumption.

3. Crossover regime

There is no compelling reason to believe that the squared
amplitudeR and the phaseb of the reflection coefficient
separate in the crossover regime. However, short of an ex-
plicit exact solution to the Fokker-Planck equatig$7) in
the crossover regime, we shall nevertheless pursue a strategy
relying on an approximation built on a separation-of-variable
ansatz that allows us to interpolate between the chiral and
standard symmetry classes. One possible alternative to the
separation-of-variable ansatz that we tried is a perturbative
expansion about the standard symmetry ci@s®) using a
Fourier expansion of the joint probability distribution fBr
and ¢. However, this approach has the drawback that it can-
not be expected to interpolate all the way to the chiral sym-
metry class(4.1) in view of the nature of the singularities
characterizing the limiting probability distributions. For this
reason we will not present the perturbative approach in this
paper.

Our starting point is the separation-of-variable ansatz

P(R,¢;t) = R(R;1)D(h;t). (4.143

We further assume that the probability distribution function
for the phasesp shows a quick relaxation to its stationary
solution, i.e.,®(¢;t) is assumed to beindependent,

D(pit) = D(¢h). (4.14b

Insertion of Eq.(4.14) into the Fokker-Planck equatiqB.7)
followed by an integration oves yields

—C=[20+22R-1)-2 fa(R-DIR

+[20R+(1-R)(1-5R) -2 {a(1 -R)(1 - 2R)]%

+(1-¢a)R(1 —R)2Z2—§2, (4.153
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where the real constat is the ratio of two Fourier expan- BQQ(Q,¢) =20(p-1)(1-¢ cos 2p),
sion coefficients,

2m Bog(0, ) = {(20 — Dsin 2¢,

f d¢ cog2¢)P(¢) , ,
0 — -
@ = o : (4.15b B¢¢(Q’¢):4§O+%(2(Q _11)) +§(2(Q _11)) 0s 2.
f dg ©(g) ele ele
0 (4.179
A stationary solution to Eq4.159 is _
1. Chiral symmetry class
R(R :Nexp[— 20/[(1 - {o)(1 -R)]} 4.15 In the chiral symmetry clasg4.1) insertion of the
( ) —(al(1-{a) 2/(1-{a) ( d

R (1-R) separation-of-variable ansatz
This solution reduces to the known results in the standard b =[is(p-0+28(p-m]|0(0:1) (4.1
[Eq. (4.13b] and chiral[Eg. (4.11H] symmetry classes. In Qle. 41t [25(¢ )+ 2%$ W)] (@) 419
the standard symmetry clag2) the probability distribution into the Fokker-Planck equatiqé.17) yields
of the phase is uniformd®(¢)=1/27 and hencela=0, 90 90 20
whereas in the chiral symmetry cla@kl) it is a sum of the —=20+3(20-1)—+2(e-1)—
two delta functions®($)=38(¢-0)+38p-m), a=1, {= at Je Je
-1. There remains considerable arbitrariness in the choice of (4.199

® since many differentb share the same. In practice we
will choose the stationary solutio®.9) because we then
recover the true solution in the semiopen geometry of Fig. Qp:t=0=68(p-1). (4.19h
1(a) asw— 0. We postpone to Sec. V the discussion of the _ ] )

accuracy of the approximation implied by the separation-of-1 e normalized solution to E@4.19 has the integral repre-
variable ansatz4.153 with the choice(4.9) for the station- ~ Sentation

with the initial condition

ary probability distribution of. 1 o2 1 1
Qo) =—F=—=| du——F—
C. Disordered quantum wire opened at both ends without (v m4mt'3 ) (1-uve-u
absorption 1 D( )
u,v; _Nn2 . ’
In geometry 1c, an incoming plane wave from an ideal Xf UTQ)G DAuvieldt” (4,209
0 vo(l-v

lead is partially reflected and partially transmitted by the
disordered quantum wire. Following Abrikos6wve trade \yith the auxiliary function and variable
the squared magnitudRof the reflection coefficient for the

. : —u
resistancdinverse of conductange D(u,v;g)::ln{ % } t:=2t.  (4.20b

1 vu(l-u)
0= 1-R e [1e] (4.163 The integrations oveu andv can be performed in closed
form,
under which 122
1 arccos
dR Qe = —,—exp{— (arccosho )" } .
Qle, ¢;t) = P(R,¢;t)@ (4.16b V2mto(e - 1) 2t
(4.200
obeys the Fokker-Planck equation . o ]
5 By shifting the minimum of the resistange from 1 to O,
9Q =AQ-A 9Q -A 9Q + EB 7Q + #Q p:=0-1, we recover the same asymptotics for the probabil-
Jt o0 "Pap 2 %gp2 %ip0a¢ ity distribution of p computed by Stone and Joanopoufos
1 20 with a log-normal distribution of the nearest-neighbor hop-
+ =By, (4.173 ping amplitudes of the discrete Schrddinger equation when
2 g p—0 or p—o. The change of variablg=1/p yields the
where probability distribution
-1/2\2
Aoe,8) = 20(20 - 1), v _;p[ w]
V2mt(1-9g) g 2t
Ag(e,¢) =~ 2we(e-1)-(20-1), (4.21)
[20%-20+1 | for the conductancg in the chiral symmetry clasgl.1). The
A¢(Q,¢):8+§Wsm 2¢, (4175  same result follows from solving the diffusioDMPK)
equation(2.13) and performing the change of variablgs
and =1/cosRkx.??
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2. Standard symmetry class

In the standard symmetry clagd.2) insertion of the
separation-of-variable ansatz

Qe 4= -Qle (4.22
into the Fokker-Planck equatigd.17) yields
2
% =(20- 1)% +o(e- 1)3—52 (4.239
with the initial condition
Q(e;t=0=de-1). (4.23b

As shown by Abrikoso¥#* the normalized solution to Eq.
(4.239 and (4.23b has the integral representation

e—t/4 fl
t) = du
Q(e:H) = Ny

el o

o[Do(u; 0124t

[ul-u(e-u)

i (t/14)—

]1/2D0(u Q)

)~(y?1t)

4.24
(cosh’-y (cosRy — )2 (4.29
with y,:=-3 |n[29(1—v1—9_1)—1] and
e-u
Do(u;0) =1 . 4.2
olu; @) n{u(l—u)} (4.29
The change of variablg=1/p yields the probability distri-
bution
t/4) (21t
t) =1/ 4.2
Gg(g;t) = e 3[ (g cosﬁ"y 1)172 (4.26
with yg: =—§ In[Zg‘l(l—vl—g)—l] for the conductancg in

the standard symmetry clags.2).

3. Crossover regime

As was already the case in Sec. IV. B 3, we could not

solve the Fokker-Planck equatiogh.17) exactly in the cross-
over regime. We thus try the separation-of-variable ansatz

(e, ¢;1) = Q(e;)P(¢h). (4.27)

We are again assuming that the probability distributioiis
t independent and we made the specific choicedfagiven
by EQ. (4.9). Insertion of Eq.(4.27) into the Fokker-Planck
equation(4.17) followed by an integration over the phage
yields

3Q

20+ (20~ D1 - 200) 2
PR {aQ+ (20— 1)( g“)ag

2

+Q(Q—1)(1—£0z)ﬁ (4.283
with the initial condition
Qe;t=0)=d(p-1). (4.28b

The normalized solution to E@4.28) has the integral repre-
sentation

PHYSICAL REVIEW B 70, 195329(2004)
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FIG. 4. The mearna) and varianceb) of the conductance com-
puted from the probability distributioni4.3) as a function oft

=L/¢ for «=0,0.5,1 and/=-1.
- wga) ptal(1-ta) p[
1-la) amdt’

<1 )m/(l—m)
--1
1
u

XJ du

0

1
<)
0

[ul -u)(e -w]*?
with the auxiliary function and variable

t'(1 +§a)2]

Qle;y) = sin( 41— ta)?

—D2(u vio)lat’
dv 12(1 — ) U= ZaDWUv;e) (4.299

0=U | e
Uu(l_u)], t':=(1-¢at.
(4.29b

As it should be, we recover E¢4.20) whena=-1 and Eq.
(4.24 when «=0. The approximate probability distribution
g for the conductancg in the crossover regime is obtained
from Eq. (4.29 through

G(g;t) =g72Q(e;1), e(g)=g™*

The dependence anfor the mean and variance of the con-
ductance in the crossover regime computed from (B0
are depicted in Fig. 4. In the chiral symmetry class-1,
a=+1, the mean and variance decay liké2. For a=0.5
and«=0, the mean and variance decay exponentially with

D(u,v;0): = In[

(4.30

V. VALIDITY OF THE SEPARATION ANSATZ FOR THE
CROSSOVER REGIME

We have constructed an approximate solution to the
Fokker-Planck equation€3.7) and (4.17) in the crossover
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regime(4.3) by assuming the separation of the squared mag- 12— ' T T '
nitude R from the phasep of the reflection coefficient. In
this section we shall investigate the accuracy of this approxi- =
mation to the crossover reginié.3) for very large values of
the lengthL of the disordered quantum wire, i.d., much
larger than the localization lengtfy which will be defined =
below. To this end, we shall compare the cumulants of the “
radial coordinatex computed from the separation-of-variable - R
ansatz with the same cumulants computed from a large- 0 L— - L

1 1
.. . -10 -8 -7 -4 -2 0 2
deviation ansatz introduced by Schomerus and Fitaé. 1077 107 107 107 107 107 10
€

1/(1-)

-

A. Large t limit in the crossover regime with the FIG. 5. Numerical evaluation of 11-«) as a function ok in
Separation_of_variab|e ansatz the crossover I’eglmGl:S) The integrala deﬁned in Eq(415b iS

evaluated numerically for the stationary distribution of the phase

We begin from Eq(3.15 without absorption and in the (4.9 The line representing(2/2)logle| is a guide to the eyes.
crossover regime. We seek the asymptotic behavior when

— oo of the solutions to Eq(3.15 in the crossover regime.

We try the separation-of-variable ansatz anymore but a random variable as the right-hand side of Eq.

(5.39 vanishes whereas the right-hand side of Ef3b)
W(X, ¢;t) = X(x; ) D(¢h), (5.1)  remains finite. For the crossover regii@e3), the constant
implicitly depends ore. The asymptotic behavior ot for

where® is the stationary and normalized solutioh9). In-  small ¢ >0 can be evaluated as, with the probability distri-
sertion of Eq.(5.1) into Eq. (3.19 with subsequent integra- pytion (4.9),

tion over ¢ yields .
o) X

X 1 0xX 1 PX J dX(X2+ 1)—1/2f dy(yZ + 1)—1/Zee(y—x)/2

—=—-—(1+ —+-(1-{a)—. 5.2 1 — —

o=l + (-l . (5.2a S

1-a 2. a2 [ 2 1 1\-1/2pe(y-X)12

Equation(5.29 is nothing but the diffusion equation with a 2] dx(x*+1 dy(y“+ 1)~
constant drift proportional to the amount of chiral symmetry — "

breaking(1+{a), i.e., it is solved by 1
~-=ln &, (5.6)
expl= [x— (1 + {)t/2F[(1 - )t} 2
X(x;t) = , (5.2b ) L .
V(1 = o)t since a logarithmic divergence occurs both in thandy

integrals in the numerator as we take-0, while it occurs

normalized to the real_ Iin_e<e R. In the approxim_ation only in they integral in the denominator arourys —. It is
(5.2b, the only nonvanishing cumulants are the first andipen natural to identify

second cumulants,

2¢
1+ = at{=-1 and for e<1 5.
We =t =220, (5.39 Flea @ esl 6D
with the typical localization lengff (~|In|e|| X €) when ap-
) 1+a )2 1-¢a proaching the chiral symmetry claé$.1) through the cross-
X =\ [ x- > t] )= > t (5.3b  over regimeg4.3). We have also computed the dependence of
a on ¢ by evaluating Eq(5.6) numerically. In Fig. 5, 1(1

Provided a# -1 (i.e., away from the chiral symmetry —«) is plotted as a function of in the crossover regime
clasy, the random variable becomes self-averaging in the (4.3). We observe that 11-«) asymptotically behaves as
thermodynamic limit. It then makes sense to identify the lo-—(1/2)In || in the vicinity (¢ <0.1) of the chiral symmetry

calization lengthé through class(4.19 and(4.1b).

€
X)e= Et, t— oo, (5.9 B. Large t limit in the crossover regime
with the large-deviation ansatz

which, together with Eq(5.33, gives Schomerus and Tito??:26 devised a systematic method to
20 compute all the cumulants of the conductance and the LDOS

= 1+ia’ (5.9  to leading order iné/L(<1). In practice, they carried out

explicitly the computation of the first four cumulants.

In the standard symmetry clags.2) =0 and the localiza- To draw a connection to their work we note that whereas

tion length is twice the mean-free pafis2Xx ¢ as is well the parametrizatiox=arctank’R of the magnitude of the

known?®? In the chiral symmetry clas&.l) /a=-1 and the reflection coefficient is the natural one from a geometrical

localization length defined by E¢5.4) is not a finite number  point of view according to Eq%2.9), (2.12), and(2.13), it is

3
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U = ~ - ~ = +ioo
l1<u=2x Ing Inv (5.89 U(U, L) = %[e"o(z)s_zufo(Z, b) + O(e—luo(l)—#l(z)\S)].

that behaves statistically as the logarithm of the conductance -iee £

g (or the logarithm of the LDOS according to the Borland (5.11

conjecture, see Ref. 33in the regime defined by the Next th .

condition ext, assume the expansions
+o0 +o0

0<g<1. (5.8 po@=2 u 2, fo(zd) =2 ()2, (5.12

n=1 n=0

We denote byJ(u, ¢;L) the joint probability distribution of ) )
u and ¢, and introduces=2L/¢. We infer from Eq.(3.15 where the expansion coefﬁmep)g encodes thath cumu-

thatU(u, ¢;L) obeys the Fokker-Planck equation lant of u,
U L 3 U1 2U UMNe=n! us+O(L). (5.13
s =LgU+ (_ 5t 56cos 2‘15)% + 5(1 —{cos %)W Insertion of the expansio(5.12) into the Eq.(5.109 for k
5 =0 can be solved iteratively fon=0,1,.... Forn=0, Eq.
+ £ Sin24) s ’ (5.09 (5108 reduces to
Jdud
¢ 0 ZE(f)f(()O)y (514)
where whose normalized solution is nothing but the stationary and
normalized solution to Eq4.4b). Forn=1, Eq.(5.109 re-
=—{cos 2- ( L2 g sin 2¢) ” duces to
1 ¢ 7 p Y = L ,f 8 + (5 - 2¢ cod2¢) — ¢ sin(2)d,) .
+<§o+§+§cos 2(/5)(9—([)2 (5.19
& d P g 2 The expansion coefficiemf)l) is obtained from integrating
= 274 5 goa d>2 gl(agbco ¢> —(Zﬁsm ¢> Eqg. (5.15 over ¢ as a result ofZ , being a total derivative,
(5.9b =31+ Lad), (5.163
where

in the largeu limit and in the absence of absorption.
The fact thatC 4 can be written as a total derivative plays 0 2m ©
J dep cog2¢)fy (). (5.16b

an essential role when solving, for any given purely imagi-

nary z and any given positive integek, the eigenvalue 0

equation After comparison of Eqg5.13 and(5.16), on the one hand,
1 3 5 with Egs.(5.39 and(4.15b, on the other hand, we conclude
_ ; that the first cumulant of the logarithm of the conductance is
fx=|Ly—2 — -+ =L cos 2+ {sin2¢)— . : L
ik [ ¢ Z( ¢ 2+ ¢ sin2¢) ) computed exactly to leading order ig/L within the

2 separation-of-variable ansatz for the crossover redgin®.
+=(1-¢cos 2¢)] fi (5.10a As a corollary, the crossovés.5) for the typical localization

2 length is given exactly by the separation-of-variable ansatz.
Carrying on the iteration to compute the expansion coeffi-
cients Mg‘), however, we find that the separation-of-variable
o ansatz breaks down far=1,2,... as itdoes not agree any-
the large-deviation ansatz more with the large-deviation ansatz from Schomerus and

Titov in Refs. 25 and 26.

for the eigenvaluew,(z) and the normalized eigenfunction
fi(z, ¢) of ¢ with periodicity 7 that results from insertion of

+ioo dZ +0oo
. - il W(2s—zu
Ui git) i zw%e” z¢) (5.100 VI. PROBABILITY DISTRIBUTION OF THE LDOS
into Eq. (5.9 In this section, the probability distributiond(v;L) and

P(v; w) of the LDOSv in the geometries of Figs.(& and
6(b), respectively, are calculated based on the probability dis-
tribution function of the reflection coefficientr
e=\s“ﬁ exp(i¢) obtained in Sec. IV.

For largeu> 1, the integration ovez is dominated in Eq.
(5.10b by the region of size~1/u close to the origire=0.
Assume that for a nonvanishirzpf order 14, all eigenval-
ues u,(z) are real valued, of descending order, and that th
largest eigenvalugu.-¢(z) is separated fromw.-.(2) by a
finite gap. Consequently, truncation of the summation d&ver
to the single ternk=0 on the right-hand side of E¢5.10b For any given realization of the disorder potentiajs,
produces an exponentially small error the LDOS v(y) is defined by

A. Single-particle Green function and reflection coefficient
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(a) flected from the region to the leftight) of y for the continu-
ous nonrelativistic Schrédinger equation in the standard sym-
@ E metry class(6.4). Here we extend their analysis to the
continuous relativistic Hamiltonia¢2.19. A crucial observa-

tion in Ref. 21 is that, for weak disorder, the Green function
can be expanded in terms of free scattering states within a

L small interval of order of the mean-free pdtlsince one can

(b) assume that there are no impurities in this interval. The so-
lution to Eq.(6.2) for y andz belonging to such an impurity-

( L R ) free interval can be written as a linear combination of

eik(+Y+Z)X+XI; eik(+y_Z)X+XIv eik(_yﬂ))(_)(I, eik(_y_Z)X—XI! except

Y for the discontinuity ay=z,
L o ~ (e—ikyX_ + rI_e+iky)(+)(e+ikz/\/_ + rRe—ikzX+)T®
FIG. 6. (a) Disordered quantum wire of length closed at the v.2)= ifve(1 -1 rR) (z-y)
right end and connected to a perfect lead at the left end. Energy +iky “iky ikz ikz. AT
levels within the wire of length. are broadened beyond the mean + (€™xs + TR X ) (€ xy + 1 €Y )
level spacing by the coupling to the perfect le@d) Disordered iivp(l —r rg)
quantum wire of length. closed at both ends. Energy levels within
the wire are broadened beyond the mean level spacing by the ab- X0(y-2), (6.9
sorption ImE=£">0. wherey,:=(1,0)7, x_:=(0,1)T, O(y) is the Heaviside func-

tion that vanishes whey<< 0 and equals one wher>0, and
1 we have momentarily reinstated the Fermi veloecityand#
uy): :_;"" tr G(y,y), (6.1 in the relativistic dispersion relation Re= &’ =fivck. The
relative amplitudes among®*?y,x" as well as the factor
where the matrix elements(y, 2) in real space of the Green (1-r rg)™! are determined by taking into account multiple

function are obtained from solving scattering from the left and right boundaries of an interval
2 free of impurities.
E+in+ (Tgii +> a,w,.y) |G(y,2) = 8y - 2o, _ .Co.m.bining Eqgs(6.2) gnd(G.E_S) reproduces in the relativ-
dy .= istic limit the mesoscopic relation
, 1 1+ rRrL>

E=E& +ig", &£&=0, = R 6.6

V(y) 7TﬁU|: e(l_rRrL ( )

(7 positive infinitesimal (6.2 between the LDOS at and the reflection coefficients and

. . : . .rg from the disordered region to the left and rightyofre-
with the boundary conditions associated to the geometries 'g?)ectively, derived by Schomeres al2! for the nonrelativ-

Fig. 6. As long ay'1s far away ffom the ends of _th_e disor- istic continuous Schrddinger equation. In the nonrelativistic
dered quantum wire, say in the middle, the statistical prop-

erties of(y) should be independent gf However, the sta- case, the diagonal matrix element of the Green function in
. ny) st P ' real space gives the microscopic local density of states. The
tistical properties ofv(y) depend strongly on the boundary

. . \ microscopic local density of states exhibitg-dscillations?!
conditions at the ends of the disordered quantum Wiré. ‘The LDOS(6.6) is obtained after smearing out these oscil-

For completeness, we will understand, under the c_hiral liMifations. The effect of the relativistic approximatie®.1g is
of the LDOS(6.1), the property that the Green functio®.2) ¢, remove the &- oscillations from the outset. Henceforth let
anticommutes witho, i.e., us measure the LDO&(y) in units of 1{whvg), the DOS of
E=gy=0,=0, (6.3  aclean wire.
The probability distribution functionP(v;L,,Lg,w) of

whereas we will understand, under the standard limit of thqhe LDOS defined by Ea(6.6) is now simplv aiven b
LDOS (6.1), the conditions on the Green functi@®.2) that wy) defi YEA@.H1 W simply giv y

P(v;L,Lg o)
9=% (643 j 1 ) 1 2w 2
0 0 0 0
9o>01t02 (6.4b
or XPL(RL1¢L;LL|w) PR(RR!¢R;LR1w)

E 6.4 X 5( 1 -RbPg )

> + . . C V- f H

. (69 1+R_Re - 2R Ry GOS8, + )
Schomeruset al?! expressed the probability distribution (6.7)

of the LDOS in terms of the probability distributions of the
reflection coefficientr, (rg) for outgoing plane waves re- wherel, (Lg) is the length of the segment of the disordered
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quantum wire to the lef{right) of the pointy where the
LDOS is measured. The total length of the disordered quan-
tum wire is evidently given bysee Fig. 6

L:LL+LR' (68)

The dependence of the probability distribution for the LDOS
on the boundary conditions enters through the dependence of
the probability distributions P (R ,¢ ;L ,w) and
Pr(RRr, #r;Lgr,w) on the boundary conditions corresponding
to the geometries of Fig. #:21 This dependence on bound-
ary conditions is implied by the dependence lon,o or
Lr,w of the probability distribution of the two reflection co-
efficientsr| andrg, respectively. When a disordered quan-
tum wire of finite length is closed, one must broaden the
single-particle energy levels beyond the mean level spacing
to make sense of the energy dependence of the mesoscopic
LDOS. This is achieved here by introducing a finite absorp-

Distribution

Distribution
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standard ——

0.005
LDOS

standard

tion w=Im E/g,>0, in which case the dependence lbn
>{ or Lg>{ becomes immaterial. The absorptica
=Im E/g,>0 is switched off when a disordered quantum
wire of finite lengthL is connected to a perfect lead. We
consider first the geometry depicted in Figagand then the
geometry depicted in Fig.(b).

B. Semiopen wire

To calculate the probability distribution of the LDOS in a

(b)

FIG. 7. (a) Three traces for the probability distribution of the
LDOS are plotted withe=0,0.1, +o (from the bottom up at
=0.0) so as to interpolate between the chiral and standard symme-
try classeg6.3) and(6.4), respectively. Each trace is obtained from
numerical integration of Eq(6.7) for the semiopen geometry of
Fig. 6@ with L /€=2. (b) Three traces for the probability distri-

disordered quantum wire connected to a reservoir on the lefwution of the LDOS are plotted with=0,0.1, +° (from the bottom

and closed on the right, we ne€d the joint probability
distribution P (R, , ¢ ;L) for the squareR, of the magni-
tude of the reflection coefficiem and its phasep, on the
segment of lengthL, to the left of the point at which the
LDOS is measured andii) the probability distribution
Dr(pr;Lg) of the phasepy of the reflection coefficientg
on the segment of lenglky, to the right of the point at which
the LDOS is measured. The calculation @k(dg;Lg) is
outlined in Sec. IV A. The calculation d? (R , ¢, ;L,) is
outlined in Sec. IV C.

1. Chiral and standard symmetry classes

The probability distribution of the LDOS in the chiral
symmetry clasg6.3) is (see the Appendix

1
P(y, LL) = ———eX

-—1In? ) 6.9
J8aL /v v). (693

This is the probability distribution of a log-normal distrib-
uted random variable with

{In V)LL: = jm dv P(v;L)In »=0, (6.9b
0
{(In V)2>|_L: :r dv P(v;L)(In V)ZI% (6.90
0
The average LDOS is
(), =M, (6.10

which grows exponentially withL,. For comparison, the

probability distribution of the LDOS in the standard symme-

up atv=0.1) so as to interpolate between the chiral and standard
symmetry classe$6.3) and (6.4), respectively. Each trace is ob-
tained from numerical integration of E¢f.7) for the closed geom-
etry of Fig. @b) with w=1/12. We have verified that numerical
integration of Eq(6.7) agrees with a representation of £§.7) in
terms of elementary functions when possible.

try class(6.4), which was obtained in Refs. 19 and 21, is also
log-normal,

¢ L, \?
P(yviL))=————exp ——|Inv+—| |,
VamL 1€ v 4L, 4
(6.11a
_ L
(nwh ===, (6.11b
L \? 2L
<In y+—L) ==t (6.119
) [y ¢

Incidentally, the average LDOS is not affected by the disor-
der in the standard symmetry clagg) =1. The probability
distributions for the LDOS in the chiral and standard sym-
metry classes are depicted in Figa)l In the thermodynamic
limit L, —o°, the logarithm of the LDOS is self-averaging in
the standard symmetry class whereas this is not the case in
the chiral symmetry class. This difference could have been
anticipated from the identification In~-2x, valid when

L, /€> 1, with the radial coordinate that obeys the Fokker-
Planck equation§2.12) and(2.13), respectively.
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2. Separation ansatz for the crossover regime

Numerical evaluation of the integrals on the right-hand

side of EqQ.(6.7) is depicted in Fig. #®) for the crossover
regime(4.3) within our approximation which is encoded by
the separation-of-variable ansatz27)—4.29), and(4.9).

C. Closed wire

To calculate the probability distribution of the LDOS in a

disordered quantum closed at both ends with a finite absor

tion o, we need the joint probability distributions
P (R ,¢ ;L ,w) and Px(Rg, ¢r;Lg,w). We can safely ig-
nore the dependence dn i in the regimelg, >{ as is
done in Sec. IV B.

1. Chiral and standard symmetry classes

The probability distribution of the LDOS in the chiral
symmetry clas$6.3) is>® (see the Appendix

o|l- V2| )
2v '

X
(6.12a

where K,(x), n=0,1,... are thanodified Bessel functions
and has the asymptotics

21

L

14

~ (1 +17)
2v

1
Plviw)= { Ko<w/2>}

v 2 exp- wlv), for v<wl2,

1
P(v;w) =\ = In(w|l-7]), for [1-v|<—,
)

32 exp— wy), for v> 2lw.

(6.12b

For comparison, the probability distribution of the LDOS in
the standard symmetry clag6.4), which was obtained in
Refs. 19 and 21,

A exd- w(u—-1)]
P(v;w) = = 3 U
V2 an?iey  Vu—-(1+ V2)/(2V)

X[UKg(@VU2 = 1) + Ju2 - 1K (U2 - 1)],

(6.133
has the asymptotics
P(viw) v2exp- wly), for v<wl2,
" oC
v 2 exp- wy), for v>2lw.
(6.13b

The probability distributions for the LDOS in the chiral and
standard symmetry classes are depicted in Kig). Bpectral
weight from the tailsv< w/2 andv>2/w of the probability

PHYSICAL REVIEW B 70, 195329(2004)
_ 1

* 1
) [Ko(wlz)Ff . d”(l *?)

el

1
(0/2)[In(w/2)]?

Do

w—0

(6.149

Prhis result is identical to the smeared Dyson singularity of

the DOS in the chiral symmetry class,

[

( )_f q 2T 1 w
oysor @) | R g Infer2]P e + w2
w—0 1
= . 6.1
(w/2)[IN(w/2)]? (6.19

2. Separation ansatz for the crossover regime

Numerical evaluation of the integrals on the right-hand
side of Eq.(6.7) is depicted in Fig. ) for the crossover
regime(4.3) within our approximation which is encoded by
the separation-of-variable ansatz14), (4.15, and(4.9).

VIlI. CONCLUSION

The probability distribution of the mesoscopic local den-
sity of stategLDOS) v for a strictly one-dimensional prob-
lem of Anderson localization with chiral symmet¢the chi-
ral symmetry clagswas computed in closed form for two
simply connected geometries assuming a weak disorder. As
is the case when the chiral symmetry is maximally broken
(the standard symmetry clgsghe probability distribution of
v strongly depends on boundary conditions. In a semiopen
geometry we found that the probability distribution ofis
log-normal with a vanishing mean as opposed to log-normal
with a finite mean in the standard symmetry class. In a
closed geometry with absorption we found that the probabil-
ity distribution of v has a double-peak structure whereby the
second peak turns out to be a logarithmic singularity at
=1. We verified that the smeared Dyson singularity is repro-
duced by the mean value of the LDOS when the absorption
is sufficiently small. Furthermore, we found one exact and
proposed two approximate solutions to the functional renor-
malization group equation obeyed by the joint probability
distribution for the squared modulus and the phase of the
reflection amplitude of a finite and possibly dissipative wire
with semi open and open boundary conditions, respectively,
from which we could extract the approximate crossover of
the LDOSv and conductancg between the chiral and stan-

distribution in the standard symmetry class is redistributedlard symmetry classes. We could show that our approxima-
aroundv=1 in the chiral symmetry class. Consequently, intion is exact for the first cumulant, but fails to describe
the limit — 0, the mean value of the mesoscopic LDOS inhigher cumulants of the logarithms efandg in the cross-

the chiral symmetry class becomes over regime.
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0 © 2 21
P(v;LL,Lg, @) :f dXLf dXRf d¢Lf degr PL(X, ¢ ;L , @) Pr(Xg, dr;Lg, )
0 0 0

0

><§< 1 - tanif x_tanff xg ) (Ala)

T 1+tani X tantf xg — 2 tanhx tanhxzcos ¢, + )

where
PLr(XURr: DR Lk, ©) = X R(X RS LL/va)%[5(¢L/R —0)+ dpyr—m]. (Alb)

Integration over the angleg, r yields

1- tanthtanth> .\ ( 1 +tanthtanth>}
V= .

oo ee] 1
P(v;L ,Lg,w) = d dxg XL (X ;L ,w) X Lr,w)z| O\ v—
ilulr ) fo XLJO %R AL 0) XrikgiLr “’)2[ (V 1 + tanhx tanhxg 1 - tanhx tanhxg

(A2)
I
Semiopen wire Closed wire
Equation(2.13 implies that we need to evaluate E42) Equation (4.11b implies that we need to evaluate Eq.
with (A2) with
2
X xL) = — exp[_ N } (A3a) XL (x i w) = 2N g (/Aeosh & (A5a)
ve2mL /€ (2L./0)
Xr(Xg; ©) = 2N, g (@/2cosh 25 A5b
Al L) = B0 =) (Asb) o) (A5D)
= -1 i
It is found that where N, =[Ky(w/2)]™ . It is found that
1(” o 7, e P8(v - (pla)
P(r;L) == dxAL(xLy) dv-exp2x). (A4 P(riw) =2(N,) f dpJ dg—=——>—— (A6)
(L) ZL LOGLL) 8(v = exp(2x).  (Ad) N L)
Integration overx yields Eq.(6.99. Integration overmp andq yields Eq.(6.123.
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