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Using the method ofsuperbosonizationwe consider a model of a random magnetic field(RMF) acting on
both orbital motion and spin of electrons in two dimensions. The method is based on exact integration over one
particle degrees of freedom and reduction of the problem to a functional integral over supermatricesQsr ,r 8d.
We consider a general case when both the direction of the RMF and theg factor of the Zeeman splitting are
arbitrary. Integrating out fast variations ofQ we come to a standard collisional unitary nonlinears model. The
collision term consists of purely orbital, spin, and some mixed parts. For a particular problem of a fixed
direction of RMF, we show that additional soft excitations identified with spin modes should appear. Consid-
ering d-correlated weak RMF and puttingg=2 we find the transport timettr. This time is two times smaller
than that for spinless particles.
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I. INTRODUCTION

Models of a random magnetic field(RMF) acting on elec-
trons in two dimensions are intensively studied in meso-
scopic physics. There are direct experiments on high-
mobility heterostructures subjected to a magnetic field of
randomly pinned flux vortices in a type-II superconducting
gate,1 type-I superconducting grains,2 or a demagnetized
ferromagnet.3 For theoreticians, the RMF models are impor-
tant as an example of systems with an interaction reduced to
a gauge field. These models arise in theory of composite
fermions in the fractional quantum Hall effect near half
filling4 as well as in a description of doped Mott insulators.5

From the theoretical point of view, one of the most inter-
esting tasks in the study of any model with a disorder is to
determine the large scale behavior of electrons and find uni-
versal properties of the model. In doing so, one may come
either to a metal or insulating behavior. In the latter case
electron wave functions should be localized. In the context
of the RMF models the localizations have been discussed in
many numerical works, which resulted in three different con-
clusions:(1) localization of all the states;6–8 (2) existence of
a band of delocalized states;9–14and(3) localization of all the
states except those in the band center.15–17

Analytically, the RMF models were studied by the stan-
dard diagrammatic technique18 as well as using different
nonlinears models.18–21 The final conclusion drawn by us-
ing the methods was that the RMF models belonged to the
usual unitary class of universality with localization in two
dimensions(provided the correlations of the RMFkBqB−ql at
small q→0 increase slower than 1/q2, Ref. 20).

Usually, when deriving the propers model for the RMF
problems one uses the standard scheme22 based on the
saddle-point approximation. Calculations presented in Refs.
18–20 are performed in this way. From the point of view of
the conventional perturbation theory this approximation cor-
responds to the self-consistent Born approximation, which is
not good for a long range disorder. The same approximation
has been used in the diagrammatic approach of Ref. 18.

In addition to the difficulty of a description of the long
range disorder, the standard scheme is not convenient for a
generalization of the RMF model for the case when spin
degrees of freedom are important. This is because the effect
of the magnetic field on the orbital electron motion is ac-
counted for by adding a vector potential in the Hamiltonian,
whereas the interaction with the electron spin is described by
the magnetic field itself. As the correlations of the vector
potentials and the magnetic fields are different, it is not easy
to consider both the effects on equal footing.

This problem has been partly resolved in a recent paper23

for free electrons in 2d with theg-factorg=2 and a magnetic
field perpendicular to the plane. Unfortunately, a mathemati-
cal trick of replacing the initial Hamiltonian by a dirac
Hamiltonian used in that paper, which was the basis of the
suggested calculation scheme, can be applied only for this
particular system.

Another analytical method suggested in Ref. 21 enables
one to avoid using the saddle-point approximation and to
obtain a ballistics model applicable at all distances down to
the Fermi wavelengthlF. This method is based on using
quasiclassical equations of motion which contain not the
vector potential but the magnetic field only. As the vector
potential itself does not enter the ballistics model one can
include rather easily the Zeeman term without extra assump-
tions about the value of theg factor and the direction of the
magnetic field. However, this is still not the most general
method because it is essentially based on the quasiclassical
approximation and therefore short range correlations of the
magnetic field cannot be considered.

In the present paper we use a method ofsuperbosoniza-
tion suggested recently.24 The method is based on the exact
integration over the one particle motion and reformulation of
the initial fermionic problem in terms of a functional integral
over supermatricesQsr ,r 8d. As it has been shown in Ref. 24,
in the quasiclassical regime(smooth disorder and lengths
larger thanlF) the matrixQsr ,r 8d corresponds to the matrix
Qnsr d of Ref. 25. The method of the superbosonization has
several advantages. First, it uses neither saddle-point nor
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quasiclassical approximations and is exact. Both short and
long range disorder can be considered on its basis. Second,
integration over one particle motion is carried out before
disorder averaging. The latter enables one to consider inter-
action effects related to the random scattering more carefully.
Finally, the method results in a simple expression for the
energy in terms of the matricesQsr ,r 8d and makes the dis-
order averaging a rather simple procedure.

The theory is invariant with respect to rotations of the
matrix Qsr ,r 8d in the superspace provided they commute

with the HamiltonianĤ. This makes possible the separation
of the massive modes from the soft ones and we can inte-
grate them out. We show that this procedure is justified only
in the regime when the scattering effects do not result in a
strong coupling between electrons. For the short range disor-
der this is so over distances exceeding the correlation length
of the disorder(or the Fermi wavelengthlF) whereas for the
smooth disorder the coupling becomes sufficiently weak be-
yond theLyapunov length. The latter case was discussed in
many details in Refs. 26 and 27.

The low energy theory found is described by a ballistic
nonlinears model with a collision term. This term consists
of three parts that can be related to the purely orbital and spin
scatterings and some mixture of the first two. The last scat-
tering originates from the interference between orbital and
spin motions in the same configuration of RMF. The second
scattering, similar to the model with magnetic impurities(see
Ref. 22), results generally in the relaxation of all spin modes.
Accordingly, the theory applicable in the diffusive limit is
described by supermatricesQsr d proportional to the unit ma-
trix in the spin space and corresponding to the unitary en-
semble.

Further, we consider a particular model with a fixed di-
rection of RMF. We show that an additional soft mode re-
lated to fluctuations of the spin along the field should appear
in this case. Using a standard method of integrating out the
angle modes we come to the diffusives model with both the
charge and spin modes and find the transport timettr. Due to
the magnetic field the time reversal symmetry is broken and
the supermatrixQsr d entering the obtained energy functional
should be diagonal in the particle-hole space. At the same
time, the presence of the additional spin mode changes the
form of the supermatrixQsr d so that it partially preserves the
spin structure. The latter means that the model discussed is
not necessarily related to the usual unitary class of symmetry.

The paper is organized as follows. In Sec. II we discuss
the superbosonization procedure and give an alternative deri-
vation of superbosonized theory. At the end of the section we
discuss symmetry properties of the obtained model and deri-
vation of the nonlinears model.

In Sec. III we introduce the main definitions of the RMF
model involved, derive thes model valid in the collisional
regime and discuss conditions of its applicability.

In Sec. IV the same problem is considered in the diffusive
limit. We calculate with the help of the obtained diffusives
model the transport time and the spin susceptibility.

II. SUPERBOSONIZATION AND DERIVATION OF THE s
MODEL

Below we consider a two-dimensionals2dd electron gas
placed in a static inhomogeneous magnetic field. The field is

assumed to act both on the orbital motion and electron spin.
Our consideration is based on the method ofsuperbosoniza-
tion proposed in a recent paper.24 This method uses exact
integration over electron degrees of freedom and reformula-
tion of the problem in terms of integrals over supermatrices
with a rotational symmetry(nonlinears model).

Before starting the study of the RMF problem we would
like to give an alternative derivation of the superbosonized
model. Although, the scheme of the derivation presented in
Ref. 24 is straightforward and exact, the final representation
of the Green’s function in terms of a functional integral over
the supermatrices can be obtained even in a more simple
way. Following the standard way(see the book22) we intro-
duce first a generating functionalZfag

Zfag =E exps− LafcgdDc, s2.1d

where the LagrangianLafcg has the form

Lafcg = − i E c̄sr dSĤr − e +
v

2
+

v + id

2
LDcsr ddr

+ i E c̄sr dasr ,r 8dcsr 8ddrdr 8, s2.2d

Ĥr is Hamiltonian of the initial model(we write it below)
andcsr d is a supervector. The conjugated supervectorc̄sr d is
related tocsr d according to the following definition:

c̄sr d = sCcdTsr d. s2.3d

The structure of the supervectorscsr d, c̄sr d as well as the
form of the matrixC depends on the problem involved(for
details see Ref. 22). For the problem of electrons with spin
considered belowcsr d should be a 16-component supervec-
tor.

The LagrangianLafcg, Eq. (2.2), differs from the conven-
tional one by the presence of the sourceasr ,r 8d. In general,
the source term is for the problem considered an arbitrary
16316 supermatrix depending on two coordinatesr , r 8. Dif-
ferentiating in elements of this matrix one can obtain various
correlation functions. For example, the level-level correla-
tion functionRsvd can be written as

Rsvd =
1

2
−

1

2spnVd2 lim
a1,a2=0

Re
]2

]a1]a2
Zfag s2.4d

provided the sourceasr ,r 8d is taken in the following form:

asr ,r 8d = âsr ddsr − r 8d

âsr d = Sâ1 0

0 − â2
D, â1,2=

a1,2

2
s1 − kd, s2.5d

k= ±1 in fermionic and bosonic blocks, respectively. As su-

permatrixcasr dc̄bsr 8d is self-conjugated, one may consider
only self-conjugated sources
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āsr ,r 8d ; CaTsr 8,r dCT = asr ,r 8d. s2.6d

Sources with constraint Eq.(2.6) have a minimal number of
elements required when finding an arbitrary correlation func-
tion.

The integral defined in Eqs.(2.1) and (2.2) is Gaussian
and can be readily calculated

Zfag = expS1

2
Str lnFĤ − e +

v

2
+

v + id

2
L − aGD .

s2.7d

The logarithmic derivative of the partition functionZfag, Eq.
(2.7), in a is a matrix Green’s functionGsr ,r 8d

d ln Zfag
dasr ,r 8d

=
i

2
Gsr ,r 8d s2.8d

satisfying the following equation:

SĤr − e +
v

2
+

v + id

2
L − aDGsr ,r 8d = idsr − r 8d.

s2.9d

Calculating the Green’s functionGsr ,r 8d from Eq. (2.9) and
using Eq.(2.8) one can find the partition functionZfag, Eqs.
(2.1) and (2.7).

What we want to show now is that the Green’s function,
Eq. (2.9), can be represented exactly as an integral over su-
permatricesQsr ,r 8d in the following form:

Gsr ,r 8d = Z̃−1fag E Qsr ,r 8dexps− FafQgdDQ, s2.10d

whereZ̃fag is a partition function

Z̃fag =E exps− FafQgdDQ s2.11d

and the functionalFafQg has the form

FafQg =
i

2
StrE SĤr − e +

v

2
+

v + id

2
LD

3 dsr − r 8dQsr ,r 8ddrdr 8 +
1

2
Str lnQ

−
i

2
StrE asr ,r 8dQsr 8,r ddrdr 8. s2.12d

SupermatrixQsr ,r 8d in the integral Eq.(2.10) is not arbi-
trary and should have a certain structure. First, it must be
self-conjugated

Q̄sr ,r 8d = Qsr ,r 8d s2.13d

to provide the same for the result of the integration in Eq.
(2.10).

Second, the structure of the supermatrixQsr ,r 8d should
be defined such that the energyFafQg, Eq. (2.12), would
have a minimum. One can show that this takes place if
StrsQ2d is non-negative. The latter requirement is fulfilled for
the supermatrices with the following constraint:

Q'sr ,r 8d = KQ'
+ sr 8,r dK, K = S1 0

0 k
D , s2.14d

whereQ'=s1/2dLfL ,Qg, k is the same as in Eq.(2.5). Re-
lation (2.14) will be used below when formulating the struc-
ture of as model.

Equations(2.10)–(2.12) have been suggested in Ref. 24
and we want to demonstrate now a simpler way of their
derivation. In order to prove Eq.(2.10) we write the follow-
ing identity:

− 2iZ̃−1fag E FE d exps− 1
2Str ln Qd

dQsr 9,r d
Qsr 9,r 8ddr 9G

3 expS−
i

2
StrFĤ − e +

v

2
+

v + id

2
L − aGQDDQ

= idsr − r 8d, s2.15d

and integrate overQ by parts. The derivatived /dQ should
act now on bothQ and the exponential. At this point, the
supersymmetry plays a crucial role. Differentiating first the
supermatrixQ we obtain the supermatrix productsd /dQdQ.
As the number of the anticommuting variables in the sum
over the matrix elements is equal to the number of the boson
ones and the derivatives have the opposite signs, this matrix
product vanishes. Differentiating the exponential only we
come to the following equation:

Z̃−1fag E dr 9SĤ − e +
v

2
+

v + id

2
L − aDsr ,r 9d

3E Qsr 9,r 8dexps− FafQgdDQ = idsr − r 8d.

s2.16d

Equation (2.16) proves immediately that the integral Eq.
(2.10) does satisfy Eq.(2.9) and we really have the alterna-
tive representation of the Green’s function in terms of an
integral over the supermatricesQ.

Integrating Eq.(2.10) over the sourceasr ,r 8d we con-
clude that partition functionsZfag, Eqs.(2.1) and (2.7) and

Z̃fag, Eq. (2.11), are proportional to each other with a coef-
ficient that is independent of the source. Puttingasr ,r 8d=0
in the definitions of both functions and finding thatZfa=0g
=Z̃fa=0g=1 due to supersymmetry we come to the equality

Zfag = Z̃fag. s2.17d

We emphasize that the relation(2.17) is exact and does not

depend on the form of the HamiltonianĤr , Eq. (2.2), and the
sourceasr ,r 8d provided both the partition functions are de-
fined in Eqs.(2.1) and (2.11) in terms of the superintegrals.

In the low energy limit, the field theory specified by Eq.
(2.12) can be reduced to an effective nonlinears model.24 A
possibility of this reduction is related to the invariance of the
free energy functionalFa with respect to the rotations of the
supermatrixQ
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Q → VQV̄ s2.18d

for the case when the unitary matrixVV̄=1 commutes with

the HamiltonianĤ, Eq.(2.2). This means that the low energy
limit of the model is determined by rotationsV with small

values of commutatorfĤ ,Vg. For different problems the
smallness of the commutator can be provided by imposing
on the rotationsV different conditions. For the RMF model
we discuss this point at the end of Sec. III.

In order to reduce the general formula, Eq.(2.12), to as
model containing only the rotationsV we represent the su-
permatrixQ in the form

Q = VqV̄, VV̄= 1, s2.19d

whereq is a diagonal matrixfq,Lg=0. One can impose the

condition VL=LV̄ to fix the gauge freedom related to the
invariance of the definition, Eq.(2.19), with respect to the
replacementV→Vv, wherefv ,Lg=0. The spectrum of fluc-
tuations of the matrixq has a gap and they can be considered
using the saddle-point approximation. Substitution of Eq.
(2.19) into the free energy functional, Eq.(2.12), and inte-
gration overq carried out in the quadratic in fluctuations ofq
approximation results in the following expression for the ef-
fective free energy functional:

FfVg =
i

2
StrSV̄FĤ +

v + id

2
L,VGgD −

1

4
StrsV̄fĤ,Vggd2,

s2.20d

whereg is the Green’s function, Eq.(2.9), in the absence of
the sourcea=0. This expression has been obtained in Ref. 24
and is just the first two terms of the expansion of the free

energy functional in powers of the commutatorfĤ ,Vg. As it
has been shown in Ref. 24, this approximation is sufficient if
the scattering is rather weak. We use Eq.(2.20) as the start-
ing point for the study of the RMF problem and consider the
limit of a weak field.

III. RMF: FORMULATION OF THE PROBLEM.
REDUCTION TO COLLISIONAL s MODEL

In order to take into account the spin of the electrons one
should double the number of variables and consider in Eqs.
(2.1) and (2.2) 16-component supervectorscsr d. The most
convenient choice for their structure is as follows(see also
Ref. 22)

c = Sc1

c2D, cm = Sqm

vm D ,

qm =
1
Î2

S xm*

isyx
mD, vm =

1
Î2

S Sm*

isyS
mD , s3.1d

wherem=1,2 divides the supervector space into advanced
(A) and retarded(R) subspaces;xm, Sm are anti- and com-
muting two-component vectors in spin space,sy is the sec-
ond Pauli matrix. The matrixC that determines the charge
conjugation is written now as

C = L ^ Sc1 0

0 c2
D ,

c1 = S 0 isy

isy 0
D, c2 = S 0 − isy

isy 0
D , s3.2d

where the matrixL is the third Pauli matrix in the advanced-
retarded space. Below we also use the matrixt3= ±1 in the
time-reversal space andS=t3 ^ s, s=ssx,sy,szd. Using

these definitions we write the HamiltonianĤr , Eq. (2.2), as
follows:

Ĥr =
1

2m
F− i¹r −

e

c
t3Asr dG2

− eF −
g

2
mBBsr dS, s3.3d

mB=e/ s2mcd, g is a factor that determines the Zeeman split-
ting. In Ref. 23 the authors putg=2 and assumed that the
magnetic fieldBsr d was perpendicular to the plane of elec-
tron gas. This was the only case when the mathematical trick
used in that paper and based on replacing the initial Hamil-
tonian (3.3) by the dirac Hamiltonian could be realized. In
the present paper, using the scheme of the calculations we
consider a more general case with an arbitrary value ofg
factor and the direction of the magnetic field.

As mentioned previously, we consider the limit of a weak
magnetic field. This assumption implies that the correspond-
ing radiusRH of the cyclotron motionRH=vFseB/mcd−1, vF

is Fermi velocity, is larger than other characteristic lengths.
Then, considering electrons in a region with sizes smaller
thanRH one can choose the vector potentialAsr d such that it
would be small everywhere in this region. The smallness of
the vector potential allows one to represent the Hamiltonian

Eq. (3.3) as the sum of the main partĤ0 and a small pertur-

bationdĤ

Ĥr = Ĥ0r + dĤr , Ĥ0r = −
¹r

2

2m
− eF,

dĤr = i
e

mc
t3Asr d¹r +

e2

2mc2A2sr d −
g

2
mBSBsr d. s3.4d

We choose for the vector potential the following gauge:

divr Asr ,z= 0d ; ]xAxsr ,z= 0d + ]yAysr ,z= 0d = 0,

Azsr ,z= 0d = 0,

r is the coordinate on the plane of electron gas. This gauge
corresponds to the well-known London gauge in the super-
conductivity theory.

The next step in the calculation is to average the partition
function Zfag=e exps−FfVgdDV with FfVg from Eq. (2.20)
over the random magnetic field. In the present paper we take
a Gaussian distribution of the field with the pair correlation
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kBisr dBjsr 8dl = 2Smc

e
D2

wijsr − r 8d. s3.5d

The free energyFfVg, Eq. (2.20), is written in a somewhat
implicit way. In order to reduce it to a more explicit way we
use the Wigner representation.

For any matrixO it is defined as

Osr + r/2,r 8 − r/2d =E Opsr deiprdp. s3.6d

The product of two operatorsÔ1, Ô2 can be written in the
Wigner representation in the following form:

O1psr d p Q2psr d = O1psr dexpF i

2
s¹Q r¹W p − ¹Q p¹W rdGO2psr d.

s3.7d

The operationp introduced in Eq.(3.7) has all properties of
the usual matrix product. In particular, it is associative.

Using the Wigner representation we expand Eq.(2.20) in

dĤ and regard only terms up to the second order

FfVg = F0fVg + F1fVg + F2fVg, s3.8d

where the right-hand side is the sum of terms of the zeroth,
first, and second order in the field, respectively. Below we
present an explicit calculation of the zeroth term only. Cal-
culation of the other terms can be carried out in the same
way.

The zeroth order termF0fVg takes the form

F0fVg =
i

2
StrsV̄fH0,Vgg0d −

1

4
StrsV̄fH0,Vgg0d2,

H0 =
p̂2

2m
− eF +

v + id

2
L s3.9d

g0p is the Fourrier transformed Green’s function Eq.(2.9) in
the absence of the field,A =0 and the sourcea=0. We find
the commutatorfH0,Vg and write it in the Wigner represen-
tation as

ifH0,Vg =
p¹r

m
Vpsr d +

isv + idd
2

fL,Vpsr dg. s3.10d

Equation(3.10) contains a small frequencyv and the gradi-
ent¹rVpsr d. Being interested in variations at distances much
exceeding the wavelength we neglect the second term in Eq.
(3.9). In the same approximation one may replace the “star
product”p Eq. (3.7) by the usual one and write the first term
in Eq. (3.9) as follows:

F0fVg =
1

2
E V̄psr dFp¹r

m
+

isv + idd
2

LGVpsr dg0pdrdp.

s3.11d

The Green’s functiong0p has a sharp peak at the Fermi sur-
face, whereas the functionVp is smooth. Therefore, one may
replace in Eq.(3.11) the momentump by its value at the
surface:p→pFn, consider separately the integration over the

absolute valueupu, which is equivalent to integration overj
=p2/2m−eF, and unit vectorn=p /p. Making the replace-
ment dp→ndjdn and carrying out the integration overj
only in the Green’s functiong0p we have

E g0pdj = i E Fj − e +
v

2
s1 + Ld + idLG−1

dj = pL.

s3.12d

Using Eq.(3.12) we come to the following result forF0, Eq.
(3.11):

F0fVg =
pn

2
StrE LV̄nsr dSvFn¹r +

isv + idd
2

LDVnsr ddrdn.

s3.13d

This expression is just the usual kinetic term of the ballistic

s model with the matrixQn=VnLV̄n. In order to take into
consideration the scattering one should calculate the rest
termsF1fVg, F2fVg of Eq. (3.8).

In the main in small commutatorfH0,Vg, Eq. (3.10), ap-
proximation the termF1fVg, Eq. (3.8), may be written in the
following form:

F1fVg =
i

2
StrsV̄fdH,Vgg0d. s3.14d

Using the Wigner representation and neglecting high gradi-

ents of the matricesVpsr d, V̄psr d we find with the help of Eq.
(3.4)

F1fVg = i
e

2mc
StrE eiqrf− t3pAsqd − sg/4dSBsqdg

3 Vp−q/2sr dg0pV̄p+q/2sr ddrdpdq. s3.15d

In Eq. (3.15), we disregard the termse2/2mc2dA2sr d in dHr ,
Eq. (3.4), because it results in higher magnetic field correc-
tions. Moreover, considering large distances and therefore
assuming that the matricesVpsr d vary in space slower than
the vector potentialAsr d and magnetic fieldBsr d we con-
clude that the functionalF1fVg should be self averaging and
vanish. Thus, only termF2fVg in the expansion Eq.(3.8)
gives a contribution related to the scattering in the RMF. In
the main order it reads

F2fVg = −
1

2
StrsV̄fdH,Vgg0dHg0d −

1

4
StrsV̄fdH,Vgg0d2

< − S e

2mc
D2

StrE f− t3pAsqd + sg/4dSBsqdg

3 Vp−q/2sr dg0p−q/2V̄p+q/2sr d

3f− t3pAsq8d + sg/4dSBsq8dg

3 Vp−q8/2sr dg0p−q8/2V̄p+q8/2sr deisq+q8drdrdpdqdq8.

s3.16d

Equation (3.16) can be easily averaged over the magnetic
field. Noticing again thatg0p is a sharp function of the mo-
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mentump at the Fermi surface and using Eq.(3.5) we come
to thes model with the following effective energy:

FfQng = FkinfQng + ForbfQng + FspfQng + FmixfQng,

whereFkinfQng determines ballistic(or free) propagation and
coincides withF0fQng Eq. (3.13), whereas the other terms
are related to three types of scattering which can be called as
orbital, spin, and some mixture of the first two, respectively,

ForbfQng = −
spnd2

8
StrE 1 + n1n2

1 − n1n2
wzzsn1 − n2d

3 Qn1
sr dQn2

sr ddrdn1dn2, s3.17d

FspfQng = −
spnd2

2
StrE Sg

4
D2

wijsn1 − n2d

3 Qn1
sr dsiQn2

sr ds jdrdn1dn2, s3.18d

FmixfQng = −
spnd2

2
StrE Si

g

4
D fn1 3 n2gz

1 − n1n2
wzjsn1 − n2d

3 s jQn1
sr dQn2

sr ddrdn1dn2, s3.19d

wherewijsn1−n2d is the Fourier transformation of the corre-
lation function Eq.(3.5) for the momentum differenceq at
the Fermi surfaceq=pFsn1−n2d and the sum overi, j is
implied in Eqs.(3.18) and (3.19). The lastmixed term, Eq.
(3.19), takes into account the effect of interference between
the orbital and spin scattering in the same configuration of
RMF. The functionalForbfQng, Eq. (3.17), has been previ-
ously obtained in Ref. 20. Let us be reminded thatQn

=VnLV̄n in Eqs. (3.17)–(3.19) is still a 16316 supermatrix
with an additional spin structure.

The functionals, Eqs.(3.17)–(3.19), have a form typical
for s model in the regime that can be specified as collisional.
From this point of viewn1, n2 in Eqs.(3.17)–(3.19) can be
considered as momenta of a particle before and after colli-
sion whereas the integrands determine corresponding transi-
tion probability. Previously we assumed that the matrices
Vnsr d vary in space sufficiently slowly. Now we can clarify
this assumption more carefully.

We notice that its formulation is directly related to the
conditions under which the collisional regime described by
Eqs.(3.17)–(3.19) should be used. These conditions depend
on the kind of disorder. If disorder is short ranged(d corre-
lated) the scattering may be considered as a collision on the
length scales exceeding the Fermi wavelengthlF. The situ-
ation becomes more complicated when the disorder is long
ranged. This case for the potential disorder was first studied
in Refs. 26 and 27 and then, with using results of these
papers and applying the ballistics model, in Ref. 25. The
model with a long ranged magnetic field was directly con-
sidered in Ref. 21. It was shown that collisional regime cor-
responds to lengths exceeding the Lyapunov lengthlL
=vFlL

−1, lL is the rate of divergency of the classical trajecto-
ries.

Summing up, the model found in Eqs.(3.17)–(3.19)
should be valid for matricesVnsr d slowly varying over the

Fermi wavelengthlF in the case of short ranged RMF or
over the Lyapunov lengthlL in the case of a long ranged
field.

IV. DIFFUSIVE MODEL

In this section we study the diffusive limit of the model
obtained in Eqs.(3.17)–(3.19) and also calculate the spin
susceptibility in this limit.

We start the reduction of the theory given by Eqs.
(3.17)–(3.19) to the effectives model applicable in the dif-
fusive limit noticing that the functionals, Eqs.(3.17)–(3.19),
are invariant with respect to rotationsUsr d

Qnsr d → Usr dQnsr dŪsr d, Usr dŪsr d = 1 s4.1d

providedUsr d is thed function in the spin space. This means
that only the charge mode related to fluctuations of the elec-
tron density and described by supermatrices with the usual
unitary symmetry remains gapless in the diffusive limit.

The situation changes if one considers a random magnetic
field with a fixed directionh, h2=1, replacing the pair func-
tion, Eq. (3.5), by the following one:

kBsr dBsr 8dl = 2Smc

e
D2

wsr − r 8d, s4.2d

whereBsr d is the absolute value of the magnetic field. Func-
tion wsr −r 8d being considered in 3d should be independent
of the coordinate alongh due to the condition divrB=0. One
can readily see that in this case the energies Eqs.
(3.17)–(3.19) are invariant with respect to the transforma-
tion, Eq. (4.1), if Usr d commutes with the matrixsh;sshd
and, consequently, an additional soft mode identified with the
spin mode alongh appears. Considering only charge and
spin modes,fQn ,shg=0, and simplifying Eqs.(3.17)–(3.19)
we come to the following form of collision term:

FscattfQng = −
spnd2

8
StrE Fcos2 u

1 + n1n2

1 − n1n2
+ Sg

2
D2G

3 wsn1 − n2dQn1
sr dQn2

sr ddrdn1dn2, s4.3d

where cosu=sezhd, ez is z ort. Because of the usual space
symmetry the termFmixfVg, Eq. (3.19), vanishes and does
not contribute to the energy Eq.(4.3).

From Eq. (4.3) one can come to the diffusives model

singling out the angle modesQ̃nsr d

Qnsr d = Usr dQ̃nsr dŪsr d,

that describe the fluctuation of the particle momentumn and
integrating them out. Calculation of integrals over the angle

modesQ̃n is standard and can be found in details, e.g., in
Ref. 20. The final expression for the effective energy has the
usual form

FfQsr dg =
pn

8
StrE fDs¹rQd2 + 2ivLQsr dgdr , s4.4d

whereD=vF
2ttr /2, ttr is the transport time
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ttr
−1 = pnE Fcos2 us1 + n1n2d + Sg

2
D2

s1 − n1n2dG
3 wsn1 − n2ddn1dn2. s4.5d

This time determines the relaxation of the angle modes and,
hence, of the particle momentumn. The supermatricesQsr d
entering into Eq.(4.4) are diagonal in the particle-hole space
but not necessarily proportional to the unity in the spin
space. The only requirement is that they should commute
with the matrix sh. The presence of the spin structure of
Qsr d leads to a difference between the discussed and conven-
tional unitary models and means that the former may not be
related to one of the usual types of ensembles.

If the magnetic field isd correlated in space the transport
time can be explicitly calculated and expressed through the
time ttr8 in the model of spinless electrons and perpendicular
magnetic field

ttr
−1 = ttr8

−1fcos2 u + sg/2d2g. s4.6d

In the case of the magnetic field perpendicular to the plane,
cosu=1, and free electrons,g=2, the transport timettr turns
out two times smaller than the transport time for the spinless
electrons. The same result for this particular case has been
established in Ref. 23.

Using Eqs.(3.17)–(3.19), and(4.4) one can calculate vari-
ous physical quantities. Below we find the spin magnetic
susceptibility relying on the diffusive model Eq.(4.4).

First, we use the Kubo formula and write the magnetic
moment due to the spin of electrons as a sum of two terms

msr ,vd = mspsr ,vd + msosr ,vd,

wheremsp is a purely spin contribution

mspsr ,vd = imB
2 g

2
E

−`

+` de

2p
fnse − vd − nsedg

3 TrE fGe
Rsr ,r 8dfs ·Bsr 8,vdgGe−v

A sr 8,r dsgdr 8

+ imB
2 g

2
E

−`

+`

nsedTrE fGe
Asr ,r 8d

3fs ·Bsr 8,vdgGe
Asr 8,r ds − Ge+v

R sr ,r 8d

3fs ·Bsr 8,vdgGe
Rsr 8,r dsgdr 8, s4.7d

Tr corresponds to the trace in the usual spin space. The other
term mso is given by the same formula taken after the re-
placementsg/4dsBsr 8 ,vd→−iAsr 8 ,vd¹r8. This contribution
is related to both orbital and spin motions. It is determined
by the angle modes and interaction between the charge and
spin modes. Both factors are irrelevant in diffusive limit and
the contribution is small.

So, we neglectmso and calculatemsp. The contribution to
this quantity given by the second term in Eq.(4.7) can be
easily found and corresponds to the usual Pauli susceptibil-
ity. In order to calculate the first term we express the product
of two Green’s functionsGR and GA through the partition
function, Eqs.(2.1) and (2.11)

TrfGe
Rsr 1,r 2ds jGe−v

A sr 2,r 1dsig = −U ]2Zfag
]a1]a2

U
a1,a2=0

,

s4.8d

where the sourceasr ,r 8d is taken as follows:

asr ,r 8d = S 0 a12sr d
a21sr d 0

Ddsr − r 8d,

a12sr d =
1 − k

2
^ S− a2s j

Tdsr − r 2d 0

0 a1si
Tdsr − r 1d

D ,

a21sr d =
1 − k

2
^ Sa1si

Tdsr − r 1d 0

0 − a2s j
Tdsr − r 2d

D .

s4.9d

Substitution of the partition functionZfag taken in diffusive
limit into Eq. (4.8) results in the following expression for the
susceptibility:

xi jsq,vd = gmB
2nFdi j − iv

pn

16
kTrssi

TfQ84sqd + Q37sqdgd

3 Trss j
TfQ73s− qd + Q48s− qdgdlQG . s4.10d

The first term in the brackets is the usual Pauli susceptibility.
The other term determines the correction to this result related
to RMF. The angular bracketsk. . .lQ in Eq. (4.10) imply the
averaging of the quantity inside them over the matrixQ with
the free energy functional, Eq.(4.4).

We calculate this average using the parametrization

Qsr d = Lf1 + iPsr dgf1 − iPsr dg−1, s4.11d

where the nondiagonal matrixPsr d, P̄sr d=−Psr d, fP,Lg=0
is the sum of the charge and spin modes

Psr d = Pchsr d + sShdPspsr d. s4.12d

Pchsr d, Pspsr d ared functions in the spin space. Their struc-
ture should be found in correspondence with Eq.(2.14) and
condition fQ, t̂3g=0. This results in the following represen-
tation:

Pchsspdsr d = S 0 Bchsspdsr d

B̄chsspdsr d 0
D ,

Bchsspdsr d = S âchsspdsr d i r̂1chsspdsr d

r̂2chsspd
+ sr d ib̂chsspdsr d

D , s4.13d

whereB̄chsspdsr d=C0Bchsspd
T sr dC0

T, âchsspdsr d, b̂chsspdsr d are usual
and r̂1,2chsspd-Grassman matrices 434 unit, in spin and
particle-hole spaces

âchsspdsr d = Sachsspdsr d 0

0 achsspd
* sr d D ,
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b̂chsspdsr d = Sbchsspdsr d 0

0 bchsspd
* sr d D ,

r̂1,2chsspdsr d = Sr1,2chsspdsr d 0

0 − r1,2chsspd
* sr d D . s4.14d

In Gauss approximation the charge and spin modes give
independent contributions to the energy Eq.(4.4). Standard
calculation of the average in Eq.(4.10) in the same approxi-
mation gives

xi jsq,vd = gmB
2nsdi j − hihjd + gmB

2n
Dq2

Dq2 − iv
hihj .

s4.15d

In the particular case when RMF has only the perpendicular
component, this expression is in agreement with the result of
Ref. 23.

V. DISCUSSION

In the present work we consider a two-dimensional elec-
tron gas placed in a nonuniform(random) magnetic field
(RMF) using a method of superbosonization(Ref. 24). The
problem is studied in a quite general formulation with taking
into account interaction of the magnetic field with the spin of
electrons. The direction of the magnetic field is assumed ran-
dom in space and the value ofg factor—arbitrary.

In the present paper we use a method proposed in Ref. 24.
This method is based on the exact transformation of the ini-
tial field theory written in terms of a functional integral over
supervectorsc to a theory described by a functional integral
over supermatricesQ and, by the analogy with quantum field
theory, can be called superbosonization. As the method is
exact it enables us to deal with both the short and long range
disorder.

The found theory turns out to be invariant with respect to

the rotations in the superspaceQ→VQV̄, V are unitary su-

permatricesVV̄=1, provided that they commute with Hamil-

tonian:fĤ ,Vg=0. This means that the low energy limit of the
theory is described by the rotationsV with a small commu-

tator fĤ ,Vg. Conditions which should be imposed on the
supermatricesV to provide the smallness of the commutator
depend on the character of the terms contained in Hamil-
tonianH, e.g., on the kind of disorder. Singling out the mas-
sive modes related to the fluctuations of the advanced and

retarded blocksq in the representationQ=VqV̄ where
q-arbitrary diagonal supermatricesfq,Lg=0 and integrating
them out we come to an effective energy functional in terms

of the rotationsV only and obtained some nonlinears
model.

The derivation of thes model is carried out for an arbi-
trary HamiltonianH and does not depend on its explicit
form. Particularly, it may be used for both short and long
range disorder. Explicit form of the model as well as the
limits of its applicability depend on the character of terms
contained in HamiltonianH. In this paper we deal only with
a weak RMF without an additional potential disorder and
consider the theory in the regime that may be called colli-
sional. This regime is achieved differently depending on cor-
relation length of RMF. If the field isd correlated the model
is valid at distances larger than wavelengthlF. In the case of
long range RMF they should be larger than the Lyapunov
length lL.

After averaging the free energy functional over RMF we
obtain thes model with a collision term consisting of three
contributions that could be called orbital, spin, and mixed
one. The first contribution comes from the part of the Hamil-
tonian acting on the orbital motion, the second one—from
the part acting on spin, whereas the last one comes as a result
of joint averaging of them and describes correlations be-
tween the spin and orbit scattering.

The collisional term turns out to be invariant with respect

to the rotationQn→UQŪ provided thatU is d function in
the spin space. This allows us to conclude that in general
only the mode related to the charge transport or charge mode
should survive in the diffusive limit. At the same time, we
show that in the particular case of RMF with a fixed direc-
tion h one more spin mode should be considered as well. The
existence of the additional mode changes the form of the
used supermatricesQsr d so that they, remaining diagonal in
the particle-hole space, may have a non-trivial spin structure.
This contrasts the symmetry of the supermatricesQ for, e.g.,
the model with magnetic impurities when all spin blocks are
proportional to the unit matrices. In this particular case we
obtain thes model in the standard diffusive form and find
the transport timettr. Due to the symmetry with respect to
the inversion of the coordinates the collision term describing
the correlations between the spin and orbit contributions van-
ishes in the model with a non-fluctuating fixed RMF and
does not contribute tottr.

Finally, in diffusive limit, we calculate the spin magnetic
susceptibility. The part of the susceptibility transversal to the
direction h is given by the usual Pauli expression whereas
the longitudinal one has an additional contribution propor-
tional to the diffusion propagator.
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