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Using the method o$uperbosonizatiome consider a model of a random magnetic figkiMF) acting on
both orbital motion and spin of electrons in two dimensions. The method is based on exact integration over one
particle degrees of freedom and reduction of the problem to a functional integral over supern@(rices.
We consider a general case when both the direction of the RMF argl fétor of the Zeeman splitting are
arbitrary. Integrating out fast variations @fwe come to a standard collisional unitary nonlineanodel. The
collision term consists of purely orbital, spin, and some mixed parts. For a particular problem of a fixed
direction of RMF, we show that additional soft excitations identified with spin modes should appear. Consid-
ering é-correlated weak RMF and puttirgi=2 we find the transport time,. This time is two times smaller
than that for spinless patrticles.
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I. INTRODUCTION In addition to the difficulty of a description of the long
range disorder, the standard scheme is not convenient for a
Models of a random magnetic fie{MF) acting on elec- generalization of the RMF model for the case when spin
trons in two dimensions are intensively studied in meso-degrees of freedom are important. This is because the effect
scopic physics. There are direct experiments on highef the magnetic field on the orbital electron motion is ac-
mobility heterostructures subjected to a magnetic field oftounted for by adding a vector potential in the Hamiltonian,
randomly pinned flux vortices in a type-ll superconductingwhereas the interaction with the electron spin is described by
gate! type-l superconducting graidspr a demagnetized the magnetic field itself. As the correlations of the vector
ferromagne For theoreticians, the RMF models are impor- potentials and the magnetic fields are different, it is not easy
tant as an example of systems with an interaction reduced tim consider both the effects on equal footing.
a gauge field. These models arise in theory of composite This problem has been partly resolved in a recent paper
fermions in the fractional quantum Hall effect near half for free electrons in @ with the g-factorg=2 and a magnetic
filling* as well as in a description of doped Mott insulaters. field perpendicular to the plane. Unfortunately, a mathemati-
From the theoretical point of view, one of the most inter-cal trick of replacing the initial Hamiltonian by a dirac
esting tasks in the study of any model with a disorder is taHamiltonian used in that paper, which was the basis of the
determine the large scale behavior of electrons and find unsuggested calculation scheme, can be applied only for this
versal properties of the model. In doing so, one may comgarticular system.
either to a metal or insulating behavior. In the latter case Another analytical method suggested in Ref. 21 enables
electron wave functions should be localized. In the contexbne to avoid using the saddle-point approximation and to
of the RMF models the localizations have been discussed inbtain a ballisticc model applicable at all distances down to
many numerical works, which resulted in three different con-the Fermi wavelength\r. This method is based on using
clusions:(1) localization of all the state%;® (2) existence of quasiclassical equations of motion which contain not the
a band of delocalized stat&s?and(3) localization of all the  vector potential but the magnetic field only. As the vector
states except those in the band cefter potential itself does not enter the ballisicmodel one can
Analytically, the RMF models were studied by the stan-include rather easily the Zeeman term without extra assump-
dard diagrammatic technigtfeas well as using different tions about the value of thg factor and the direction of the
nonlinearo models®-21 The final conclusion drawn by us- magnetic field. However, this is still not the most general
ing the methods was that the RMF models belonged to thenethod because it is essentially based on the quasiclassical
usual unitary class of universality with localization in two approximation and therefore short range correlations of the
dimensiongprovided the correlations of the RMB.B_,) at  magnetic field cannot be considered.
small q— 0 increase slower than 47, Ref. 20. In the present paper we use a methodsoperbosoniza-
Usually, when deriving the proper model for the RMF tion suggested recentf. The method is based on the exact
problems one uses the standard schénimsed on the integration over the one particle motion and reformulation of
saddle-point approximation. Calculations presented in Refghe initial fermionic problem in terms of a functional integral
18-20 are performed in this way. From the point of view of over supermatrice®(r,r’). As it has been shown in Ref. 24,
the conventional perturbation theory this approximation corin the quasiclassical regimesmooth disorder and lengths
responds to the self-consistent Born approximation, which isarger than\g) the matrixQ(r,r’) corresponds to the matrix
not good for a long range disorder. The same approximatio®,(r) of Ref. 25. The method of the superbosonization has
has been used in the diagrammatic approach of Ref. 18. several advantages. First, it uses neither saddle-point nor
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quasiclassical approximations and is exact. Both short andssumed to act both on the orbital motion and electron spin.
long range disorder can be considered on its basis. Secon@ur consideration is based on the methodwperbosoniza-
integration over one particle motion is carried out beforetion proposed in a recent papérThis method uses exact
disorder averaging. The latter enables one to consider intentegration over electron degrees of freedom and reformula-
action effects related to the random scattering more carefullytion of the problem in terms of integrals over supermatrices
Finally, the method results in a simple expression for theyith a rotational symmetrynonlinearc mode).
energy in terms of the matricég(r,r’) and makes the dis-  Before starting the study of the RMF problem we would
order averaging a rather simple procedure. _ like to give an alternative derivation of the superbosonized
The theory is invariant with respect to rotations of the mqgel. Although, the scheme of the derivation presented in
matrix Q(r,r’) in the superspace provided they commuteRet 24 is straightforward and exact, the final representation
with the HamiltonianH. This makes possible the separation of the Green’s function in terms of a functional integral over
of the massive modes from the soft ones and we can intehe supermatrices can be obtained even in a more simple
grate them out. We show that this procedure is justified onlyyay. Following the standard wagee the book) we intro-
in the regime when the scattering effects do not result in gyce first a generating functionzfa]
strong coupling between electrons. For the short range disor-
der this is so over distances exceeding the correlation length
of the disordelor the Fermi wavelengthg) whereas for the Z[a]= f exp(— L [¢])Dy, (2.9
smooth disorder the coupling becomes sufficiently weak be-
yond theLyapunov lengthThe latter case was discussed in ;
many details in Refs. 26 and 27, where the Lagrangiah,[¢] has the form
The low energy theory found is described by a ballistic /. o o
nonlinearo model with a collision term. This term consists Lly]=—i f zp(r)(Hr —e+—+
of three parts that can be related to the purely orbital and spin 2
scatterings and some mixture of the first two. The last scat- _
tering originates from the interference between orbital and +i f y(r)alr,r’)g(r’)drdr’, (2.2
spin motions in the same configuration of RMF. The second
scattering, similar to the model with magnetic impuritiese ~ ~ . ) o o
Ref. 22, results generally in the relaxation of all spin modes.Hr is Hamiltonian of the initial mode{we write it below
Accordingly, the theory applicable in the diffusive limit is and(r) is a supervector. The conjugated superveg¢io) is
described by supermatric€¥r) proportional to the unit ma- related toy(r) according to the following definition:
trix in the spin space and corresponding to the unitary en-
semble. W) = T
Further, we consider a particular model with a fixed di- W) =(Cy. 23
rection of RMF. We show that an additional soft mode re-The structure of the supervectofsr), E(f) as well as the
lated to fluctuations of the spin along the field should apPPe3f, 1 of the matrixC depends on the problem involvetbr

in this case. Using a standard method of integrating out th‘aetails see Ref. 22 For the problem of electrons with spin

angle modes we come to the diffusivamodel with both the idered bel hould b
charge and spin modes and find the transport timé®ue to considered below(r) should be a 16-component supervec-

the magnetic field the time reversal symmetry is broken ander- i _
the supermatrixQ(r) entering the obtained energy functional  'ne Lagrangian.[¢], Eq.(2.2), differs from the conven-
should be diagonal in the particle-hole space. At the samional one by the presence of the souate,r’). In general,
time, the presence of the additional spin mode changes tH&€ source term is for the problem considered an arbitrary
form of the supermatriQ(r) so that it partially preserves the 16 16 supermatrix depending on two coordinates’. Dif-
spin structure. The latter means that the model discussed fgrentiating in elements of this matrix one can obtain various
not necessarily related to the usual unitary class of symmetrgorrelation functions. For example, the level-level correla-

The paper is organized as follows. In Sec. Il we discusgion functionR(w) can be written as
the superbosonization procedure and give an alternative deri-
vation of superbosonized theory. At the end of the section we
discuss symmetry properties of the obtained model and deri-
vation of the nonlinearr model.

In Sec. Il we introduce the main definitions of the RMF provided the sourca(r,r’) is taken in the following form:
model involved, derive ther model valid in the collisional
regime and discuss conditions of its applicability. alr,r’y=ar)sr -r")

In Sec. IV the same problem is considered in the diffusive
limit. We calculate with the help of the obtained diffusive . 0

) . - & o
model the transport time and the spin susceptibility. a(r) = ( 01 . ) dn o= %,2(1 K. 2.5
2

+id
2

A) Y(r)dr

1
R(w)=—-- lim Re

= Zla 2.4
2 2(mV)2aa=0  dagda, lal (24

Il. SUPERBOSONIZATION AND DERIVATION OF THE o
MODEL k=%1 in fermionic and bosonic blocks, respectively. As su-

Below we consider a two-dimensionéld) electron gas permatrix i,(r)i,(r’') is self-conjugated, one may consider
placed in a static inhomogeneous magnetic field. The field isnly self-conjugated sources
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a(r,r’y=cal(r',r)C'=a(r,r"). 2.6 10
(r.r’) (r.r) (r.r’) 2.6 Q. (r,r")=KQ(r',nK, K:( ) (2.14
Sources with constraint E¢2.6) have a minimal number of 0 k

fil)enments required when finding an arbitrary correlation funci/vhereQL:(1/2)A[A,Q], kis the same as in E2.5). Re-

The integral defined in Eqg2.1) and (2.2) is Gaussian lation (2.14) will be used below when formulating the struc-

; ture of ac- model.
and can be readily calculated Equations(2.10—<2.12 have been suggested in Ref. 24

Aol = }S G es @4 w+i5A_ and we want to demonstrate now a simpler way of their
[a]=ex 2 trin € 2 all: derivation. In order to prove E@2.10) we write the follow-
2.7 ing identity:

The logarithmic derivative of the partition functidal, Eq. _ o5 sexp-3StrnQ dr
(2.7), in a’is a matrix Green’s functio®(r,r’) iz"1a] 5Q(r",r) Q(r”,r)dr

sIinZa] i , i ~ +ié

sar.r) =§G(T,f ) (2.9 Xexp(—EStr{H—e+§+w2 A—a]Q)DQ
satisfying the following equation: =id(r-r’"), (2.1H

<|Z|r N AN —a)G(r,r’) =is(r-r). and integrate ove® by parts. The derivativé/ 5Q should
2 2 act now on bothQ and the exponential. At this point, the

(2.9 supersymmetry plays a crucial role. Differentiating first the
. . supermatrixQ we obtain the supermatrix produgs/ 6Q)Q.

Calculating the Green's functio®(r,r’) from Eq.(2.9) and  Ag the number of the anticommuting variables in the sum
using Eq.(2.8) one can find the partition functiaf{a], Eqs.  over the matrix elements is equal to the number of the boson
(2.1) and(2.7). ones and the derivatives have the opposite signs, this matrix

What we want to show now is that the Green’s function,product vanishes. Differentiating the exponential only we
Eq. (2.9), can be represented exactly as an integral over stcome to the following equation:
permatricesQ(r,r’) in the following form:

~ -1 nl w wtio ”
Glr,r") =7 Ya] f QUr.r)exst- F{QIDQ, (2.10 Za] JdriH-er g+ Ama)nr)
whereZ[a] is a partition function X f Q(r",r"exp(— F[Q)DQ=id(r —r").
Zla)= f exp(- F{Q)DQ (2.1 (2.18

Equation (2.16) proves immediately that the integral Eq.
(2.10 does satisfy Eq(2.9) and we really have the alterna-
i R o w+is tive representation of the Green’s function in terms of an
FJQl= ESUJ (Hr metst ) integral over the supermatric€
Integrating Eq.(2.10) over the source(r,r’) we con-
clude that partition functiong[a], Egs.(2.1) and(2.7) and

z[a], Eqg. (2.12), are proportional to each other with a coef-
i ficient that is independent of the source. Puttaig,r’)=0

- EStrJ a(r,r")Q(r',r)drdr’. (2.12 in the definitions of both functions and finding thgta=0]

=Z[a=0]=1 due to supersymmetry we come to the equality

and the functionaF,[Q] has the form

1
X 8(r =r")Q(r,r")drdr’ + EStr InQ

SupermatrixQ(r,r’) in the integral Eq.(2.10) is not arbi-
trary and should have a certain structure. First, it must be Z[a]=7Z[a]. (2.17
self-conjugated
Q)= Q) (2.13 \(;Ve emphasize that the relatuQZ_.l?)_l? exact and does not
epend on the form of the Hamiltoni&h), Eq.(2.2), and the
to provide the same for the result of the integration in Eq.sourcea(r,r’) provided both the partition functions are de-
(2.10. fined in Egs.(2.1) and(2.11) in terms of the superintegrals.
Second, the structure of the supermat@ ,r’) should In the low energy limit, the field theory specified by Eq.
be defined such that the ener§y[Q], Eq. (2.12, would  (2.12) can be reduced to an effective nonlineamodel?* A
have a minimum. One can show that this takes place ipossibility of this reduction is related to the invariance of the
Str(Q?) is non-negative. The latter requirement is fulfilled for free energy functionafF, with respect to the rotations of the
the supermatrices with the following constraint: supermatrixQ
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Q—VQV (2.19 CoAa <01 0),
for the case when the unitary mathiA/=1 commutes with 0 ¢
the HamiltoniarH, EqQ.(2.2). This means that the low energy , _
limit of the model is determined by rotations with small ¢ = (_0 "’y> Cy= (_O - '(’y)’ (3.2
values of commutatofH,V]. For different problems the oy 0 oy, O

smallness of the commutator can be provided by imposing

on the rotations/ different conditions. For the RMF model Where the matrix\ is the third Pauli matrix in the advanced-
we discuss this point at the end of Sec. IlL. retarded space. Below we also use the matgix+1 in the

In order to reduce the general formula, E2.19, to agc  time-reversal space and=7®0, o=(0y,0y,07). Using
model containing only the rotationg we represent the su- these definitions we write the Hamiltoniaty, Eq. (2.2), as

permatrixQ in the form follows:
Q=VqV, Vv=1, (2.19 .1 e 2 g
. . . ) Hr:_ —in——T3A(I’) _EF__,LLBB(r)E, (33)
whereq is a dlag_onal matrixqg, A]=0. One can impose the 2m C 2

condition VA=AV to fix the gauge freedom related to the ) ) )
invariance of the definition, E¢2.19), with respect to the #&=€/(2md), gis a factor that determines the Zeeman split-
replacemeny/— Vv, where[v,A]=0. The spectrum of fluc- ting. In Ref. 23 the authors p@=2 and assumed that the
tuations of the matrixj has a gap and they can be considerednagnetic fields(r) was perpendicular to the plane of elec-
using the saddle-point approximation. Substitution of Eqlron gas. This was the only case when the mathematical trick
(2.19 into the free energy functional, E2.12), and inte-  Used in that paper and based on replacing the initial Hamil-
gration overq carried out in the quadratic in fluctuationsepf ~ tonian(3.3) by the dirac Hamiltonian could be realized. In
approximation results in the following expression for the ef-the present paper, using the scheme of the calculations we

fective free energy functional: consider a more general case with an arbitrary valug of
factor and the direction of the magnetic field.
i ~ @tid 1. =~ As mentioned previously, we consider the limit of a weak
-— - 2 )
FIVI= 2StV(V{H * 2 A’V} g) 4Str(V[H,V]g) ' magnetic field. This assumption implies that the correspond-

(2.20 ing radiusRy of the cyclotron motiorR,;=ve(eB/mo ™, vg

' is Fermi velocity, is larger than other characteristic lengths.
whereg is the Green'’s function, Eq2.9), in the absence of Then, considering electrons in a region with sizes smaller
the sourcea=0. This expression has been obtained in Ref. 24hanR, one can choose the vector potenfdl) such that it
and is just the first two terms of the expansion of the freewould be small everywhere in this region. The smallness of

energy functional in powers of the commuta[éf,v]. Asit the vector potential allows one to represent the Hamiltonian
has been shown in Ref. 24, this approximation is sufficient ifEq. (3.3) as the sum of the main pa, and a small pertur-
the scattering is rather weak. We use E20 as the start-  pation sH
ing point for the study of the RMF problem and consider the
limit of a weak field. o . R y 2

H; =Hg + dH,, HOr:__r_EFa

. RMF: FORMULATION OF THE PROBLEM. 2m

REDUCTION TO COLLISIONAL o MODEL

In order to take into account the spin of the electrons one
should double the number of variables and consider in Egs.
(2.1) and (2.2) 16-component supervectorgr). The most
convenient choice for their structure is as folloygge also We choose for the vector potential the following gauge:
Ref. 22

. &
oA, = |m3C73A(r)Vr * o SARD) - g,uBEB(r). (3.4

g gm div, A(r,z=0) = ¢,A\(r,z=0) + §,A/(r,z=0) =0,
lﬂ: lﬁz y ¢m_ Um ]l
ASr,z=0)=0,
ﬂm:i< Xm* ) vm:i< s” ) (3.1 i i i
2 ioyx™)’ 2 i, S )’ : r is the coordinate on the plane of electron gas. This gauge

corresponds to the well-known London gauge in the super-
wherem=1,2 divides the supervector space into advanced:onductivity theory.

(A) and retardedR) subspacesy™, S" are anti- and com- The next step in the calculation is to average the partition
muting two-component vectors in spin spaog,is the sec-  function Z[a]=J exp(~F[V])DV with F[V] from Eq.(2.20

ond Pauli matrix. The matrixC that determines the charge over the random magnetic field. In the present paper we take
conjugation is written now as a Gaussian distribution of the field with the pair correlation
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mc)?2 absolute valuép|, which is equivalent to integration over
<Bi(r)Bj(r,)>:2(?> w;(r—r’). (3.9 =p2/2m-¢, and unit vectom=p/p. Making the replace-
ment dp — vdédn and carrying out the integration over
The free energyF[V], Eq. (2.20, is written in a somewhat only in the Green’s functiomy,, we have
implicit way. In order to reduce it to a more explicit way we 1

use the Wigner representation. J Jopdé =1 [g_ e+ 9(1 +A) +i5A} dé= mA.
For any matrixO it is defined as 2

(3.12
r_ = ipp
O +pl2,r" = pl2) Jop(r)e' dp. (3.6 Using Eq.(3.12 we come to the following result fdf,, Eq.
-~ A (3.11):
The product of two operator®,, O, can be written in the _ s
. L . : _ +
Wigner representation in the following form: FoV] = %}Strf AVn(r)(anVr . l(w2 [ )A>Vn(r)drdn.
O1p(r) * Qgp(r) = Olp(r)exp{ ~(V, )]Ozp(r) (3.13

(3.77  This expression is just the usual kinetic term of the ballistic

o model with the matrixQn:VnAVn. In order to take into

The operatiorx introduced in Eq(3.7) has all properties of consideration the scattering one should calculate the rest

the usual matrix product. In particular, it is associative. termsF
- . . ; 1 V], F[V] of Eq. (3.8).
_Using the Wigner representation we expand €20 in In the main in small commutatdi,, V], Eq. (3.10, ap-
H and regard only terms up to the second order proximation the ternF,[V], Eq.(3.8), may be written in the
FIV] = Fo[V] + Fy[V] + F,[V], (3.  following form:
where the right-hand side is the sum of terms of the zeroth, — Ve
first, and second order in the field, respectively. Below we Fa[V] = ZSt(VLoH, Vigo). (3.14

present an explicit calculation of the zeroth term only. Cal-

culation of the other terms can be carried out in the sam&’SiNg the Wigner representation and neglecting high gradi-

way. ents of the matrice¥,(r), Vy(r) we find with the help of Eq.
The zeroth order terr [V] takes the form (3.9
i — 1 — . e .
Fo[V]= 2 St(V[Ho,VIgo) - ZSU(V[HO,V]QO)Z, FalV]=iz —Str f e9'[- mpA(q) - (/4 2B(q)]
-2 otis X Vpqr2(1)GopVpeqr2(1)dIr dpda. (3.19
Ho= om T A 3.9 4, Eq. (3.15, we disregard the terrte?/2mc)A?(r) in 6H,,

i ) , . i Eq. (3.4), because it results in higher magnetic field correc-
Yop i the Fourrier tra_nsfoimed Green's fU”Ct'_O” B2.9) In  tions. Moreover, considering large distances and therefore
the absence of the fielh=0 and the sourca=0. We find — as5yming that the matricas,(r) vary in space slower than
the_ commutatofH,,V] and write it in the Wigner represen- ha vector potentiaA(r) and magnetic field3(r) we con-
tation as clude that the functiona¥;[V] should be self averaging and
i(w+i0) vanish. Thus, only ternF,[V] in the expansion Eqg(3.8)
[A,Vp(n)]. (3.10  gives a contribution related to the scattering in the RMF. In

the main order it reads

v,
Mo V1= P Ev,(r) +

Equation(3.10 contains a small frequenay and the gradi-

entV,V,(r). Being interested in variations at distances much g JV]=- _Str(V[éH V]ggdHgo) - ‘Str(v[51-| V]go)?
exceedlng the wavelength we neglect the second term in Eq.

(3.9). In the same approximation one may replace the “star e \2

product” Eq. (3.7) by the usual one and write the first term ~ - (—) Strf [— pA(Q) + (9/4)2XB(q)]
in Eq. (3.9) as follows: 2mc

1 np X V—ra1) Gop-q/2Vpegralr)
ravi= 2 [ o] P2 9y g aran o
2 2 X[~ mpA(Q") + (g/4)%B(q")]
3.1 — - )
5 X Va1 )Gop-q:12Vpeq (1€ dr dpdgely”.
The Green's functiomy, has a sharp peak at the Fermi sur- (3.16)

face, whereas the functior}, is smooth. Therefore, one may
replace in Eq.(3.11) the momentunp by its value at the Equation(3.16) can be easily averaged over the magnetic
surfacep— pen, consider separately the integration over thefield. Noticing again thagg, is a sharp function of the mo-

195326-5



K. B. EFETOV AND V. R. KOGAN PHYSICAL REVIEW B70, 195326(2004)

mentump at the Fermi surface and using 8.5 we come  Fermi wavelength\g in the case of short ranged RMF or

to the o model with the following effective energy: over the Lyapunov lengtlh,_ in the case of a long ranged
field.
F[Qn] = Fkin[Qn] + Forb[Qn] + Fsp[Qn] + Fmix[Qn]y
whereF,;,[Q,] determines ballisti¢or free) propagation and IV. DIFEUSIVE MODEL

coincides withFy[Q,] Eg. (3.13, whereas the other terms

are related to three types of scattering which can be called as In this section we study the diffusive limit of the model

orbital, spin, and some mixture of the first two, respectively,0btained in Eqs(3.17<3.19 and also calculate the spin
susceptibility in this limit.

_ (m)? 1+n4n, We start the reduction of the theory given by Egs.
Ford Qnl = g )1 —nanWZZ(nl n2) (3.17—~3.19 to the effectivec model applicable in the dif-
fusive limit noticing that the functionals, Eq&3.17—3.19),
X in(r)an(r)drdnldnz, (3.17 are invariant with respect to rotationXr)
()2 2 Qu(r) = UMNQu(NU(r), UNU=1  (4.2)
FsdQnl=- TStr % w;j(ng—ny) " "

providedU(r) is the é function in the spin space. This means

X Qn,(r)aiQn,(r)o;drdnydns, (3.19 thatonly t_he charge que related to quctl_Jations of the elec-
tron density and described by supermatrices with the usual

unitary symmetry remains gapless in the diffusive limit.

2
Frid Qnl=— MStrf (ﬁ)MWZ.(nl -n,) The situation changes if one considers a random magnetic
2 4) 1-nn, ¥ field with a fixed directiorh, h?=1, replacing the pair func-
X 01Qn, () Qy(r)drdnsdn,, (3.19  tion, Eq.(3.5), by the following one:
2
wherew;;(n;—n,) is the Fourier transformation of the corre- (B(r)B(r")) = 2(@> w(r —r'), (4.2)
e

lation function Eq.(3.5) for the momentum differencg at

the Fermi surfacey=pg(n;—n;) and the sum over, j is  \yhereB(r) is the absolute value of the magnetic field. Func-
implied in Egs.(3.18 and(3.19. The lastmixed termEQ.  jon w(r -r’) being considered in@should be independent
(3.19, takes into account the effect of interference betweeny ine coordinate alonh due to the condition djB=0. One

the orbital and spin scattering in the same configuration of, readily see that in this case the energies Egs.

RMF. The functionalFo{Qy], Eq. (3.17), has been previ- 317 (3 19 are invariant with respect to the transforma-

ously obtained in Ref. 20. Let us be reminded @& jon, Eq.(4.1), if U(r) commutes with the matrixr,= (ch)

=V, AV, in Egs.(3.19+3.19 is still a 16X 16 supermatrix and, consequently, an additional soft mode identified with the

with an additional spin structure. spin mode alongh appears. Considering only charge and
The functionals, Eqs(3.17~3.19), have a form typical spin modes[Q,,0,,]=0, and simplifying Eqs(3.17~3.19

for o model in the regime that can be specified as collisionalywe come to the following form of collision term:

From this point of viewny, n, in Egs.(3.179—3.19 can be

considered as momenta of a particle before and after colli- Foouf Q1= - MStrJ {cos’- 61 +Nn4Ny N (Q)z]

sion whereas the integrands determine corresponding transi- ~ Scatt<n 8 2

tion probability. Previously we assumed that the matrices

V,(r) vary in space sufficiently slowly. Now we can clarify X W(N; = N2)Qn, (1) Qp,(r)drdnydny, (4.3

this assumption more carefully. where co9)=(e,h), e, is z ort. Because of the usual space

We notice that its formulation is directly related to the ;
symmetry the ternt,[V], Eq. (3.19, vanishes and does
conditions under which the collisional regime described by y y m V1 E. (319

g ibute to the energy E¢.3).
EQgs.(3.17—3.19 should be used. These conditions depenor|0t contr e
on the kind of disorder. If disorder is short ranggticorre- . Frpm Eq.(4.3) one can come to the diffusive model
lated the scattering may be considered as a collision on th§ngling out the angle moded, (r)
length scales exceeding the Fermi wavelengthThe situ- ~ =
ation becomes more complicated when the disorder is long Qn(r) =U(r)Qu(r)u(r),
ranged. This case for the potential disorder was first studie¢hat describe the fluctuation of the particle momentuand
in Refs. 26 and 27 and then, with using results of thesgntegrating them out. Calculation of integrals over the angle
papers and applying the ballistic model, in Ref. 25. The modesén is standard and can be found in details, e.g., in

”.‘Ode' W'th a long ranged magnetic f'eld. was dlreqtly CON"Ref. 20. The final expression for the effective energy has the
sidered in Ref. 21. It was shown that collisional regime COr-,sual form

responds to lengths exceeding the Lyapunov lenfgth

=vF>\[1, A\ is the rate of divergency of the classical trajecto- TV _—

ries. F[Q(r)]:EStrJ[D(VrQ) +2i0AQ(r)]dr, (4.4
Summing up, the model found in EQq$3.179)—3.19

should be valid for matrice¥,(r) slowly varying over the ~whereD=v2,/2, 7, is the transport time

1 - n1n2
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#Z[a]

&al(?az

ayq,a,=0

2
7= m/f [co§ 6(1+nyn,) + (g) (1- nlnz)] TIGR(ry,r)0iGL (rar o] ==

X W(n; = n,y)dn,dn,. (4.5 (4.9

This time determines the relaxation of the angle modes andyhere the sourca(r,r’) is taken as follows:
hence, of the particle momentum The supermatriceQ(r)

entering into Eq(4.4) are diagonal in the particle-hole space a(r,r’)= ( 0 &)
but not necessarily proportional to the unity in the spin an(r) 0
space. The only requirement is that they should commute

with the matrix o,. The presence of the spin structure of 1-k - azg.Tg(r D) 0
Q(r) leads to a difference between the discussed and conven- air) = 5 . 0 TS — )
tional unitary models and means that the former may not be 07 81 =14)
related to one of the usual types of ensembles.

)5(r—r’),

&

.
If the magnetic field iss correlated in space the transport ) 1-k % (alUi o(r—ry) 0 )

time can be explicitly calculated and expressed through the % 0 — 0] 8(r =1y )

time 77, in the model of spinless electrons and perpendicular 4.9

magnetic field
1 -1 > Substitution of the partition functiod[a] taken in diffusive
7y =17 {cos 0+ (g/2)]. (4.6) limit into Eq. (4.8) results in the following expression for the

In the case of the magnetic field perpendicular to the planesusceptibility:

cosf=1, and free electrong,=2, the transport time;, turns -

out two times smaller than the transport time for the spinless  x;;(q, ) = g,uév[ dj — iwl_6<Tr(UiT[Q84(Q) +QsAa)])
electrons. The same result for this particular case has been

established in Ref. 23.

Using Eqs(3.179—3.19), and(4.4) one can calculate vari- X Tr(o][Qr(- o) + Qug- A )o |- (4.10
ous physical quantities. Below we find the spin magnetic
susceptibility relying on the diffusive model E¢.4). The first term in the brackets is the usual Pauli susceptibility.

First, we use the Kubo formula and write the magneticThe other term determines the correction to this result related
moment due to the spin of electrons as a sum of two termso RMF. The angular brackets. .)q in Eq. (4.10) imply the
averaging of the quantity inside them over the ma®iwith
the free energy functional, E.4).
wherem, is a purely spin contribution We calculate this average using the parametrization

Q(r) = A[1+iP(N][1-iP(n)] ™, (4.1

where the nondiagonal matrik(r), E(r):—P(r), [P,A]=0
is the sum of the charge and spin modes

mM(r,®) = Mgr, ®) + M1, ),

+o0

d
M fr, ) =i Mgg f Ei[n(e— ©) - (6]

—00

X Trf[eﬁ(r,r')[a-B(r',w)]eﬁ_w(r',r)a]dr'

P(r) = Pey(r) + (Zh)Pgdr). (4.12
. 29 e A ) Pcr(r), Psfr) are & functions in the spin space. Their struc-
* "“Bzf_w n(e)Trf [Ge(r.r’) ture should be found in correspondence with Efj14) and
condition[Q, 73]=0. This results in the following represen-
X[o-B(r',w)GAr',no-GR (r,r) tation:

X[o - B(r',w)]GX(r',r)aldr’, 4.7 0 Buyep(r) )

i i Pch(sp)(r) = (—
Tr corresponds to the trace in the usual spin space. The other Berysp () 0

term mg, is given by the same formula taken after the re-
placementg/4)oB(r’,w)— —-iA(r’,w)V,. This contribution

is related to both orbital and spin motions. It is determined B (r) = Qcnisp(r)  1pachisp(r) 413
by the angle modes and interaction between the charge and chisptt/ — Pherp(T) iBepen(r) | '
spin modes. Both factors are irrelevant in diffusive limit and chisp)

the contribution is small. whereB e (r)=CoB . (r)CT, & b |
I chisp (M) = CoBensp » Acnisp(N), bensp (1) are usua
_So, we 'neglgcmso and calculateng, Thg contribution to and jy surep-Grassman matrices >44 unit, in spin and
this quantity given by the second term in Eg.7) can be S
partlcle-hole spaces

easily found and corresponds to the usual Pauli susceptibi

ity. In order to calculate the first term we express the product achsp(T) 0
of two Green’s functionsGR and GA through the partition Bcnep(r) :( P . )
function, Egs(2.1) and(2.11) 0 Acpysp (1)
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( (bch(Sp)(f) 0 ) of the rotationsV only and obtained some nonlinear
splf) = * model.
0 bc*‘(Sp)(r) The derivation of ther model is carried out for an arbi-

trary HamiltonianH and does not depend on its explicit
form. Particularly, it may be used for both short and long
)' (4.14 range disorder. Explicit form of the model as well as the
limits of its applicability depend on the character of terms
In Gauss approximation the charge and spin modes giveontained in Hamiltoniail. In this paper we deal only with
independent contributions to the energy E44). Standard a weak RMF without an additional potential disorder and
calculation of the average in EGA.10) in the same approxi- consider the theory in the regime that may be called colli-

Pl,ZCHsp)(r) 0

f’l,zms )(r) = ( *
P 0 - Pl,2cl{sp)(r)

mation gives sional. This regime is achieved differently depending on cor-
Dq? relation length of RMF. If the field i$ correlated the model
xij(Q,) = GMEV(% —hh) + g#éVDz—_hihj- is valid at distances larger than wavelenggh In the case of

g -iw long range RMF they should be larger than the Lyapunov

(4.15 lengthl,.
After averaging the free energy functional over RMF we

In the particular case when RMF has only the perpendiculapbtain thes model with a collision term consisting of three
component, this expression is in agreement with the result cfontributions that could be called orbital, spin, and mixed
Ref. 23. one. The first contribution comes from the part of the Hamil-
tonian acting on the orbital motion, the second one—from
the part acting on spin, whereas the last one comes as a result
of joint averaging of them and describes correlations be-

In the present work we consider a two-dimensional electween the spin and orbit scattering.
tron gas placed in a nonuniforfrandom magnetic field The collisional term turns out to be invariant with respect
(RMF) using a method of superbosonizati@Ref. 24. The  to the rotationQ, —UQU provided thatU is & function in
problem is studied in a quite general formulation with takingthe spin space. This allows us to conclude that in general
into account interaction of the magnetic field with the spin ofonly the mode related to the charge transport or charge mode
electrons. The direction of the magnetic field is assumed rarshould survive in the diffusive limit. At the same time, we
dom in space and the value gffactor—arbitrary. show that in the particular case of RMF with a fixed direc-

In the present paper we use a method proposed in Ref. 2¢on h one more spin mode should be considered as well. The
This method is based on the exact transformation of the iniexistence of the additional mode changes the form of the
tial field theory written in terms of a functional integral over used supermatrice®(r) so that they, remaining diagonal in
supervectors) to a theory described by a functional integral the particle-hole space, may have a non-trivial spin structure.
over supermatrice® and, by the analogy with quantum field This contrasts the symmetry of the supermatri@efsr, e.g.,
theory, can be called superbosonization. As the method ihe model with magnetic impurities when all spin blocks are
exact it enables us to deal with both the short and long ranggroportional to the unit matrices. In this particular case we
disorder. obtain theo model in the standard diffusive form and find

The found theory turns out to be invariant with respect tothe transport timer,. Due to the symmetry with respect to
the rotations in the superspaG— VQV, V are unitary su- the inversion of the coordinates the collision term describing

permatrices/V=1, provided that they commute with Hamil- the correlations between the spin and orbit contributions van-

tonian:[I:|,V]=O. This means that the low energy limit of the ishes in the model with a non-fluctuating fixed RMF and

th i 4 ibed by the rotatioNswith 1 does not contribute tay,.
eory Is described by the rotatiohSwith a smail commu- Finally, in diffusive limit, we calculate the spin magnetic

tator [H,V]. Conditions which should be imposed on the susceptibility. The part of the susceptibility transversal to the
supermatrice¥ to provide the smallness of the commutator direction h is given by the usual Pauli expression whereas
depend on the character of the terms contained in Hamilthe longitudinal one has an additional contribution propor-
tonianH, e.g., on the kind of disorder. Singling out the mas-tional to the diffusion propagator.

sive modes related to the fluctuations of the advanced and

retarded blocksq in the representatiorQ=VqV where

g-arbitrary diagonal supermatricgg, A]=0 and integrating The authors acknowledge support from SFB 491 and
them out we come to an effective energy functional in termsSFB/Transregio 12.

V. DISCUSSION
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