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We have performed four-terminal conductance measurements of a one-dimensional(1D) channel in which it
is possible to modulate the potential profile using three overlaying finger gates. In such a 1D ballistic structure
we have observed that the conductance steps show a gradual decrease from 2e2/h to 0.9732e2/h with increas-
ing negative finger gate voltage in a short, clean 1D constriction. We suggest this phenomenon is due to
differing shifts of 1D subbands with changing spilt-gate voltage. Both a simple analytical estimate for an
adiabatic constriction and a realistic modeling of the device give the same magnitude of the conductance
decrease as observed in our experiments.
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It is known that the conductance of a one-dimensional
(1D) ballistic wire is quantized in units of 2e2/h. This was
discovered experimentally1 in split-gate induced constric-
tions in high-mobility two-dimensional electron gases
(2DEGs). Both experimental2 and theoretical results3 have
shown that the accuracy of the observed quantization is sen-
sitive to the detailed shape of the confining potential and the
presence of impurities. The observation that a high number
of conductance plateaus4 are exactly quantized, without the
appearance of any resonant features, indicates that adiabatic
transport in the constriction5,6 is attainable. However, regular
deviations of plateaus from quantized valuesn32e2/h have
been observed in long 1D wires7–10and have been associated
with either nonadiabaticity of the constriction or electron-
electron interactions in the 1D system. In the seminal work
of Tarucha, Honda, and Saku,7 a few percent deviations were
observed in longs5–10mmd weakly disordered quantum
wires.7 The deviation was observed to increase with increas-
ing wire length and was explained in terms of electron-
electron interactions in a “dirty Luttinger liquid.”11 The re-
duction of conductance plateaus of up to 25% has also been
observed in 5–6mm quantum wires and was ascribed to
backscattering of electrons due to impurities.10 Other struc-
tures with a more complicated geometry(T-shaped cleaved-
edge-overgrowth quantum wires8 and V-groove quantum
wires9) have shown a significant decrease of the value of the
conductance steps that has been attributed to backscattering
of electrons from the abrupt interface between the two-
dimensional(2D) contacts and the 1D wire.

In this article, we show that a deviation from the quan-
tized value 2e2/h is possible even in a clean, short constric-
tion in which residual scattering and effects of nonadiabatic-
ity are negligible. It is well established12 that the two-
terminal conductance of a clean ballistic 1D system is

determined by noninteracting source and drain contacts. In
such a clean system, deviations from exact quantization aris-
ing from the presence of electron-electron interactions are
not expected,12 since these occur only in weakly disordered
quantum wires(“dirty Luttinger liquid”).11 Therefore, the ob-
served deviation in our system could not be explained by
conductance renormalization due to electron-electron inter-
actions.

We have studied constrictions electrostatically shaped in
the 2DEG by a pair of split gates and three finger gates lying
across the channel. This versatile device permits control of
the electrostatic potential across and along the channel with-
out changing the series resistanceRs. We have measured the
conductanceG as a function of split-gate voltageVg at dif-
ferent center finger gate voltages,VF with outer finger gates
grounded to the 2DEG. With increasing negative voltage on
the center finger gate, we observed in a series ofGsVgd
curves the transition from pronounced steps to smeared con-
ductance steps. At the same time, the height of the first con-
ductance step gradually decreased from 2e2/h to 0.97
32e2/h. The effect was reproduced in two- and four-
terminal conductance measurements, whereas the series re-
sistanceRs=RsVg=0d is varied by an order of magnitude. We
ascribe this deviation from the conductance quantum 2e2/h
to the interplay between reflection in the first transmission
mode and tunneling via the second mode in the adiabatic
constriction. Electrostatics calculations show that the tops of
the first and second subbands move with different velocities
in response to the change of the split-gate voltage. This leads
to a slower decrease of the reflection as compared to simul-
taneous increase in the tunneling, and therefore, the onset of
the conductance step occurs at a lower value thanG
=2e2/h. The effect disappears when the smeared conduc-
tance steps turn into pronounced ones.
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The multilayered gated 1D structure was lithographically
defined 158 nm above the 2DEG, as shown in Fig. 1(a).
There is a 30-nm-thick layer of polymethylmethacrylate
(PMMA), which has been highly irradiated by an electron
beam, to act as a dielectric between the split gate and three
overlaying finger gates. The 2DEG has a carrier density of
2.531015 cm−2 with a mobility of 3.03106 cm2/V s after
brief illumination with a red-light-emitting diode. Experi-
ments were performed in a pumped3He cryostat at 300 mK
and the four-terminal resistance was measured using an ac
driving current of 10 nA at a frequency of 77 Hz with stan-
dard phase-sensitive techniques.

In our setup, the outer finger gates were grounded to the
2DEG, while the center finger gate voltageVF and the split-
gate voltageVg were varied over a wide range. In this
sample, potentiometric contacts were deliberately brought
close to the constriction(four-terminal measurements) to re-
duce the contribution of series resistance of the 2DEG[Fig.
1(b)]. The measured resistanceRs between the contacts in the
absence of the constriction was only 115V, that is 0.9% of
the quantum resistanceh/2e2. Thus, we were able to mea-
sure the conductance of the single-mode constriction pre-
cisely enough without resorting to subtraction of the series
resistance[Fig. 1(c)]. Notice that the series resistance was
725 V in the two-terminal measurements.

Figure 2 shows the measured dependencies of conduc-
tanceG on (a) the split-gate voltageVg and(b) the derivative
dVgsGd /dG for different finger gate voltages from 0 to
−4.8 V. If we consider the first conductance step we can
determine its heightG* by the value ofG at a point of in-
flection, where the derivativedVg/dG shown in Fig. 2(b)
reaches a maximum. As the voltage on the center finger gate
VF is made more negative, the step becomes narrower and
eventually transforms into a point of inflection. The reason
for the observed smearing of the conductance steps lies in the
decrease of the ratiovy/vx of the transverse and longitudinal
frequencies that define the shape of saddle potential in the

constriction.6 Figure 2(b) shows thatG* =2e2/h at VF=0 and
G* =0.9732e2/h at a large negative voltageVF=−1.6 V. In
the voltage range −1.6V,VF,0, a continuous transition
between these two values is observed. We note that the exact
conductance quantization ofG* =2e2/h at small negativeVF
confirms the validity of the four-terminal measurement setup.
Nonlocality of resistance in this setup can complicate mea-
surements of the conductance of the constriction. However,
by deliberately ensuring that the resistance of the potentio-
metric contacts is much smaller than that of the single-mode
channel one can neglect this nonlocality.

It is also worth mentioning that the gradual decrease of
the height of the first conductance step has been detected in
two-terminal conductance measurements, whereRs has been
subtracted. This decrease has been shown to be reproducible
for different cool-downs, indicating that it cannot be ex-
plained by residual disorder scattering. In addition, the lack
of resonant features and the pronounced conductance steps
demonstrate that we have a clean 1D system in which impu-
rity scattering is negligible. Therefore, we can exclude the
possibility of “dirty Luttinger liquid” behavior in our case.
Moreover, in contrast to previous observations,7–10 in which
the deviation from exact quantization increased with the
length of the quantum wire, in our case we observe an in-
crease in the deviation as the 1D region shortens. Therefore,
the deviation we observe must be of a different physical
origin.

Let us now see if the observed decrease of the conduc-
tance steps can be explained in the model of quasi-1D bal-
listic transport for an adiabatic constriction. The transverse
quantization of electrons allows us to view the scattering
problem in terms of the local transverse modes. The conduc-
tance is then given by the Landauer formula:G
=s2e2/hdokjutkju2, whereutkju2 is the probability that the flux
input in subbandj is traveling forward into subbandk. The
solution of the transverse Schrödinger equation at each value
x along the constriction gives energies of 1D subbandsEnsxd.
These subbandsEnsxd have the shape of smooth potential
barriers offset from each other by transverse quantum
"vynsxd. If "vyn changes slowly alongx then intersubband

FIG. 1. (a) Schematic view of device.(b) Four-terminal mea-
surement setup.(c) Measured dependences of resistanceR on the
split-gate voltageVg, with all finger gates grounded to the 2DEG
(the solid line). Horizontal dashed lines show valuesRn=h/2ne2 for
n=1,2,3. For comparison two-terminal measurement ofRsVgd is
shown by the dotted line.

FIG. 2. (a) Measured four-terminal conductanceGsVgd at differ-
ent center finger gate voltagesVF. From left to right:VF=0 to
−4.8 V in 0.2 V steps.(b) DerivativedVgsGd /dG at different center
finger gate voltagesVF. From bottom to top:VF=0 to −4.8 V in
0.2 V steps.
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scattering is suppressed and the total transmission coefficient
is equal to the sum of contributions of all subbands:5 T
=onTn, Tn= utnnu2. At G<2e2/h the conductance can be ex-
pressed in the form

G =
2e2

h
s1 − R1 + T2d, s1d

whereR1 is the reflection coefficient of the first subband and
T2 is the transmission coefficient through the second sub-
band. When the plateaus ofGsVgd appear smeared out, their
height is determined by the interplay of two basic phenom-
ena of quantum mechanics: above-barrier reflection and tun-
neling. If R1sVgd reduces more slowly thanT2sVgd increases,
then at the point of inflection of the curveGsVgd, the height
of the stepsG* can be less than the conductance quantum
2e2/h.

The effect is most easily seen in an approximation of a
saddle-point potentialUsx,yd=V0+ 1

2mfvy
2y2−vx

2sx−xmaxd2g,
for which the transmission coefficient via thenth subband
Ensxd=V0+"vysn−1/2d− 1

2mvx
2sx−xmaxd2 has a simple ana-

lytical expression:6 Tn=s1+e−pend−1, whereen=2fE−"vysn
− 1

2
d−V0g /"vx, n=1,2, . . ..
With increasing negative voltageVg on the split gate, the

saddle potential goes up and becomes narrower. Modeling of
the three-dimensional(3D) electrostatics shows that the
change ofvx is small compared to the change invy andV0,
as Vg varies. Thus, we can assume thatvy and V0 depend
linearly on Vg, while vx remains constant. One can readily
see that the second subband moves more rapidly than the
first one:

E18 =
dE1

dVg
=

dV0

dVg
+

1

2

"dvy

dVg
,

E28 =
dE2

dVg
=

dV0

dVg
+

3

2

"dvy

dVg
. s2d

Hence, at the minimum ofdT/dVg, it holds thatR1.T2.
Indeed, atT<1, the coefficients can be approximated as

R1 = 1 −T1 < expS− 2p
E − E1sxmaxd

"vx
D ,

T2 < expS− 2p
E2sxmaxd − E

"vx
D . s3d

At the point of inflection, d2T/dVg
2=0, we have T2

<R1sE18 /E28d
2, E=V0+"vy+"vx lnsE18 /E28d /2p, and

T* < 1 − e−pvy/vxSE28

E18
−

E18

E28
D . s4d

Let us estimate the deviationD=1−T* . If the steps on the
plot TsVgd are to be observed, it is necessary that that
vy/vx.1.25.6 Thus, the exponent in Eq.(4) does not exceed
2%. On the other hand, from computation of the electrostat-
ics (see below), dV0/dVg, 1

2"dvy/dVg and E28 /E18<2.
Therefore, the conductance step can decrease by 3%. When
the negative voltage on the center finger gate approaches

zero, vx decreases, and the effect vanishes exponentially.
Thus, the simple equation(4) predicts behavior that qualita-
tively agrees with our experimental results(Fig. 2).

Notice that the effect is absent ifE28=E18, i.e., whenV0 has
a linear dependence on the gate voltageVg, and frequencies
vy andvx remain constant.6 Essentially, this is the same as if
energy changes within the saddle potential are kept constant.
In this case the quantization is exactsT=nd because at the
inflection pointsE=V0+n"vy, the reflection coefficientRn is
equal to the transmission coefficientTn+1. However, if the
electrostatic potential deforms with varying gate voltage,
then GsVgd dependencies for fixed Fermi energy andGsEd
for a fixed potential can be qualitatively different.

Realistic modeling of the electrostatics of the devices al-
lows us to check the validity of this prediction without mak-
ing any assumptions about the shape of the potential profile.
The basis of the computations is given by the structural data:
thickness and material of the layers, concentration of doping
impurities, and 3D geometry of the gates. The electrostatic
potential Usx,y,zd was calculated self-consistently along
with the electron densityrsx,y,zd and the statistical
exchange-correlation potentialUexcsx,y,zd=Uexcsrd in the
GaAlAs/GaAs/GaAlAs quantum well.13 The function
Uexcsrd was chosen to be the same as that used recently for
modeling a 2DEG(Ref.14) and a 1D quantum wire.15 It is
important that exchange and correlation are taken into ac-
count, particularly at low electron densities.16

In the middle part of the channel,r was computed using a
quasiclassical approximation from the 1D density of states,
and the temperature was chosen to imitate tunneling through
the potential barrier alongx. We have found that the thresh-
old voltages for the finger gates are different in the modeling
of the electrostatics of the structures and those found experi-
mentally. However, we note that experimentally these volt-
ages are sensitive, for example, to the charge in PMMA
layer. As a result, we chose the gate voltages to fit computed
curvesGsVgd to the experimental curves. The conductance
was determined by solving the multiple-mode transmission
problem with an effective potentialUeffsx,yd in the plane of
2DEG calculated using 3D-electrostatic modeling for a given
Vg, andVF.17 We considered 15 transverse modes in the cal-
culations. As a result, if nonadiabaticity of the constriction is
responsible for the reduction in quantized values, then we
would expect to find evidence for intersubband scattering. In
fact, intersubband mixing is absent for the modeled constric-
tions and transport is adiabatic.

We also studied the effect of the transverse finger gates on
the electrostatic potential in the constriction. When the volt-
age on the outermost finger gates is equal to zero and the
negative voltage on the center finger gate is large, a potential
of a triangular shape is formed along the channel, with a
smoothed top and the base width defined by the separation
between the outermost finger gates[solid line in Fig. 3(a)]. If
there were only one finger gate in the center then the longi-
tudinal potential would resemble a triangle with a wider base
(dotted line). Finally, in the case in which there are no over-
laying finger gates, the potential would look like a smooth
wide hump[dashed line in Fig. 3(a)]. The presence of the
finger gates increasesvx and in addition decreasesvy, per-
miting the ratiovy/vx to approach 1.
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Figure 3(b) shows the computed 1D subbandsE1,2sxd for
Vg=−1.47 V andVF=−2.1 V [in this case,TsEFd=T1+T2

=0.96]. The Fermi levelEF=0 is located between the tops of
curvesE1sxd andE2sxd. Interestingly, the quantization of the
conductanceGsEd is exact for computed subbandsE1,2sxd.

The computedGsVgd is shown in Fig. 3(c) together with
the corresponding experimental curve. The computation was
done as follows. The two first subbandsE1sxd andE2sxd were
shifted with changing gate voltage with velocitiesdE1/dVg
=−4.8 and dE2/dVg=−11 meV/V, respectively sE28 /E18
=2.3d. The values of these velocities were determined from
the electrostatics at adjacent values of gate voltage. The
transmission coefficient was computed as the sum of trans-
mission coefficients of the first and second 1D subbands. By

computingGsVgd in such a way, there is no need to compute
the electrostatic potential for every value ofVg. As a result,
we find that near the conductance quantum we get results
very close to the more cumbersome and time-consuming
computations of 3D electrostatics followed by 2D transmis-
sion. From Fig. 3(c) we see that the predicted theoretical
curve is very close to the experimental curve. The same can
also be said about the curvesdGsVgd /dVg. The computations
demonstrate that the quantization steps are smeared out as
they are in the experiment and reproduce, with 1% precision,
the observed reduction in the height of the quantized conduc-
tance steps.

In conclusion, we have demonstrated that it is possible to
observe deviations from exact conductance quantization in
short adiabatic constrictions. In our devices we are able to
control the potential profile in the 1D constriction using
overlaying finger gates, and find a gradual decrease of the
height of the first conductance step from 2e2/h to 0.97
32e2/h as we increasing apply a negative voltage to an
overlaying finger gate. The effect can be explained using a
saddle-point potential model taking into account the defor-
mation of the potential with varying split-gate voltageVg.
Here we find that the dependence of conductance on gate
voltage is qualitatively different from that of energy such that
the deviation from exact quantization appears only inGsVgd.
We find that the top of the first subband moves two times
slower than the second subband in response to the change of
the split-gate voltage. This leads to a slower decrease of the
reflection compared to simultaneous increase in the tunnel-
ing, such that when the conductance step height is smeared
out it is also reduced. Realistic numerical modeling of the
electrostatics of the devices and transmission through the
constriction produces results that are very similar to our ex-
perimental data.
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