
Temperature dependence of Dyakonov-Perel spin relaxation in zinc-blende semiconductor
quantum structures

J. Kainz* and U. Rössler
Institut für Theoretische Physik, Universität Regensburg, 93040 Regensburg, Germany

R. Winkler
Institut für Festkörperphysik, Universität Hannover, Appelstrasse 2, 30167 Hannover, Germany

(Received 13 July 2004; published 17 November 2004)

The Dyakonov-Perel mechanism, intimately related to the spin splitting of the electronic states, usually
dominates the spin relaxation in zinc-blende semiconductor quantum structures. Previously it has been formu-
lated for the two limiting cases of low and high temperatures. Here we extend the theory to give an accurate
description of the intermediate regime which is often relevant for room temperature experiments. Employing
the self-consistent multiband envelope function approach, we determine the spin splitting of electron subbands
in n-s001d zinc-blende semiconductor quantum structures. Using these results we calculate spin relaxation rates
as a function of temperature and obtain excellent agreement with experimental data.
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I. INTRODUCTION

In the context of spintronic devices, the spin degree of
freedom has recently attracted considerable interest.1–5 Long
spin-relaxation times are crucial for the operation of such
devices. Therefore a quantitative understanding is required of
how spin relaxation depends on the system parameters and
operating conditions. It is generally accepted6 that in bulk
semiconductors with a zinc-blende structure and in quantum
well (QW) structures based on these materials the electronic
spin relaxation is dominated by the Dyakonov-Perel6–14 (DP)
and the Bir-Aronov-Pikus15 mechanisms. In the present
work, we considern-doped two-dimensional(2D) systems,
where the DP mechanism becomes dominant. This mecha-
nism is intimately related to the spin splitting of the elec-
tronic subbands in systems lacking inversion symmetry.9,10

The spin splitting can result from the inversion asymmetry of
the bulk crystal structure[bulk inversion asymmetry
(BIA )]16 and from the inversion asymmetry of the QW struc-
ture [structure inversion asymmetry(SIA)].17 The interplay
of BIA and SIA in asymmetrically doped QWs gives rise to
anisotropic spin relaxation10–13for spins aligned along differ-
ent crystallographic directions.

Previously, the DP theory has been formulated for the
limiting cases of low and high temperatures(i.e., for degen-
erate and nondegenerate electron systems).8–10,13 Here we
extend the theory to arbitrary temperatures in between these
limiting cases. Our calculations show that often room tem-
perature falls into this intermediate regime. Therefore our
findings are particularly important for spintronic devices
working at room temperature.18 We discuss the details of the
temperature dependence and address the influence of various
momentum scattering mechanisms. The temperature depen-
dence of the spin relaxation is strongly affected by the tem-
perature dependence of the momentum scattering mecha-
nisms, which are ruled by different power laws in the
electron energy.

We present accurate calculations of the temperature-
dependent spin-relaxation rates assuming realistic system

parameters. The spin splittings are obtained from self-
consistent calculations in the multiband envelope-function
approximation(EFA).19 We compare the calculated results
with experimental data for symmetricn-doped(001)-grown
GaAs/AlGaAs QWs measured by Terauchiet al.20 and Ohno
et al.21 Theory and experiment agree very well. Our calcula-
tions show that the anisotropy of the spin relaxation persists
up to room temperature.

II. DYAKONOV-PEREL MECHANISM AND SPIN
SPLITTING

In a single band approach, the DP spin relaxation is based
on the time evolution of the electron spin polarization

S= kTrs%ksdl = o
k

Trs%ksd, s1d

wherek is the electron wave vector,s is the vector of Pauli
spin matrices, and%k is the 232 electron spin-density ma-
trix. The dynamics ofS is ruled by a Bloch-like equation
containing the spin-orbit coupling

Hso=
"

2
s · Vskd. s2d

The spin-orbit coupling(2) is similar to a Zeeman term, but
Vskd is an effective magnetic field that depends on the un-
derlying material, on the geometry of the device, and on the
electron wave vectork. The vector Trs%ksd precesses about
Vskd which results in spin relaxation. However,(spin inde-
pendent) momentum scattering of the electrons with, e.g.,
phonons, (nonmagnetic) impurities or other electrons22,23

changesk and thus the direction and magnitude ofVskd felt
by the electrons. Therefore frequent scattering[on the time
scale of uVskdu−1] suppresses the precession and the spin
relaxation. This is the motional narrowing that is typical for
the DP mechanism,8 according to which the spin relaxation
ratets

−1~tp. Heretp is the momentum scattering time.
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Due to time reversal invariance we haveVs0d=0, while
for finite k the spin-orbit couplingHso causes a spin splitting
"uVskdu of the electron states. In this article we focus on
quasi-2D systems grown on a(001) surface and made from
semiconductors with a zinc-blende structure. In leading or-
der, the effective field in these systems reads

Vskid =
2g

" 1kxsky
2 − kkz

2ld
kyskkz

2l − kx
2d

0
2 +

2a

" 1 ky

− kx

0
2 . s3d

The first term characterizes the BIA spin splitting of the elec-
tron states. It is called the Dresselhaus ork3 term.16,24 It
exists already in bulk semiconductors with broken inversion
symmetry. In quasi-2D systems only the in-plane wave vec-
tor ki=skx,ky,0d is a continuous variable. In first order per-
turbation theory, the wave vector componentskz and powers
thereof are replaced by expectation values with respect to the
subband wave functions.

In asymmetric QWs, SIA gives rise to the second term in
Eq. (3) which is frequently called the Rashba term.17 The
coefficientsg anda depend on the underlying semiconductor
bulk material; buta depends also on the asymmetry of the
QW in growth direction.

Within the DP mechanism the relaxation of the compo-
nents ofS is ruled by8

]

]t
Si = −

1

ti
Si , s4d

where i =z, + ,− corresponds to the components ofS along

[001], [110], andf1̄10g, and we haveS±=1/Î2sSx±Syd. The
spin-relaxation rates are13

1

tz
=

4

"2 Ît1Fki
2sa2 + g2kkz

2l2d − ki
4g2kkz

2l
2

+ ki
6g21 + t3/t1

16
G ,

s5ad

1

t±
=

2

"2 Ît1Fki
2s±a − gkkz

2ld2 + ki
4g

2
s±a − gkkz

2ld

+ ki
6g21 + t3/t1

16
G . s5bd

The symbolÎ denotes an integral operator which is acting on
functions fskid according to

Î f =
1

esF+ − F−dd2ki
E sF+ − F−dfskidd2ki, s6d

where

F± =
1

1 + ebfEskid−m±g , s7d

is the Fermi distribution function,b=1/skBTd, and m+ and
m− are the chemical potentials for up and down spins, respec-
tively. In Eq. (5), the relaxation timest1 andt3 are given by

1

tnskid
= o

ki8

Wski,ki8df1 − cossnudg, s8d

whereWski ,ki8d is the momentum scattering rate between the
states with wave vectorski and ki8, calculated according to
Fermi’s golden rule.25 The symbolu denotes the angle be-
tweenki andki8.

III. DYAKONOV-PEREL THEORY FOR ARBITRARY
TEMPERATURE

In the following we use the effective mass approximation

Eskd = k2/z, s9d

wherez=2m* / "2, so that we can switch fromki to E as the
integration variable in Eq.(5). Assuming a sufficiently
small26 difference Dm=m+−m−, we have F+−F−<
−Dms]F0/]Ed and Î can be simplified to

Î f <
1

E S− ]F0

]E
DdE

E dES− ]F0

]E
D fsEd s10d

independent ofDm. Here

F0 =
1

1 + ebfE−m0g s11d

is the equilibrium Fermi distribution with the temperature-
dependent chemical potentialm0. For a 2D system with para-
bolic energy dispersion(9) the chemical potentialm0 can be
exactly evaluated giving

m0 =
1

b
lnseEFb − 1d, s12d

whereEF is the Fermi energy at temperatureT=0.
To proceed further, we must specify the scattering times

t1 andt3. Most scattering mechanisms25,27have a power-law
dependence oft1 and t3 on the energyE with the same
characteristic exponentn

t1 = JEn, t3 ~ En, s13d

whereJ is a constant independent ofE. (Note, however, that
in generalJ depends onT.) Then, t3/t1 is a constant de-
scribing the angular scattering characteristics of the scatter-
ing mechanism(see Appendix 2).

A short calculation yields

ÎEn =
Jnsbm0d

bns1 − e−EFbd
, s14d

where

Jnszd =E
0

` xn

4 cosh2Sx − z

2
Ddx. s15d

In particular, we find using Eq.(12)

J0sbm0d = 1 −e−EFb, s16ad
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J1sbm0d = EFb. s16bd

For arbitraryn, the integralsJnsbm0d can be represented in
closed form in terms of Lerch functions.28 As this offers no
advantage with respect to the numerical evaluation, we cal-
culateJnsbm0d by numerical quadrature.

The transport relaxation timettr can be obtained from

ttr =
E Et1sEd

]F0

]E
dE

E E
]F0

]E
dE

=
ÎJEn+1

ÎE
=

JJn+1sbm0d
bn+1EF

, s17d

see Eq.(A4) in the Appendix. Using

Ît1E
i =

bn+1ttrEFÎEn+i

Jn+1sbm0d
=

b1−ittrEF

1 − e−EFb

Jn+isbm0d
Jn+1sbm0d

s18d

wherei =1,2,3, wesimplify Eq. (5):

1

tz
=

4

"2

bEF

1 − e−EFbttrFsa2 + g2kkz
2l2d

z

b

−
g2kkz

2l
2

S z

b
D2Jn+2sbm0d

Jn+1sbm0d

+ g21 + t3/t1

16
S z

b
D3Jn+3sbm0d

Jn+1sbm0dG , s19ad

1

t±
=

2

"2

bEF

1 − e−EFbttrFs±a − gkkz
2ld2 z

b
+

g

2
s±a − gkkz

2ld

3S z

b
D2Jn+2sbm0d

Jn+1sbm0d
+ g21 + t3/t1

16
S z

b
D3Jn+3sbm0d

Jn+1sbm0dG .

s19bd

These formulas generalize the hitherto13 known limiting
cases of the low and high temperature regime of the DP spin
relaxation in quasi-2D systems.

IV. NUMERICAL RESULTS

To illustrate the theory developed in the preceding section
we show in Fig. 1 the spin relaxation ratestz

−1 andt±
−1 cal-

FIG. 1. (Color online) Spin-relaxation ratestz
−1 andt±

−1 as a function of carrier densityn and for different temperaturesT in asymmetric
(001) grown Al0.35Ga0.65As/GaAs-QWs(upper row) and Al0.3Ga0.7Sb/ InAs-QWs(lower row). The momentum scattering was assumed to be
isotropic (type I, see Table II) and independent ofT.
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culated as a function of carrier densityn and temperatureT
for asymmetric (001) grown AlGaAs/GaAs-QWs and
AlGaSb/ InAs-QWs with well widthL=100 Å. The spin
splitting was calculated self-consistently assuming that the
samples weren-doped on one side only. We usedttr
=0.1 ps(Ref. 29) and we assumed that the momentum scat-
tering was isotropic. The parameters are thus the same as in
Ref. 12 so that our results forT=1 K reproduce the values
obtained in Ref. 12 using the formulas for the low tempera-
ture limit of DP spin relaxation. At moderately high densi-
ties, the calculated rates usually increase with increasing
temperature by less than an order of magnitude. In Fig. 1 we
have assumed thatttr does not depend onT. In real systems,
ttr can decrease by more than an order of magnitude for such
an increase in temperature. Therefore we can usually expect
smaller spin relaxation rates at room temperature as com-
pared to low temperatures.

The largest variation of the spin-relaxation rates with tem-
perature occurs in the low density range. Here, the thermal
energykBT and the Fermi energyEF are of the same order of
magnitude for lowT. On the other hand, at higher tempera-
tures the spin relaxation is no longer controlled byEF but by
kBT. This results in the pronounced temperature dependence
at low densities which is visible in Fig. 1. The weaker tem-
perature dependence obtained for the InAs-based systems in
comparison with GaAs-based systems can be related to the
term proportional toT3 in Eq. (19), which dominates at low
temperature for GaAs due to its larger effective massm* and
smallerkkz

2l.
The strong anisotropy of the spin-relaxation times, i.e.,

the difference betweent+
−1 and t−

−1 and the nonmonotonous
behavior12 persist up to temperaturesT,100 K for the GaAs
system and even far beyond room temperature for the InAs
system. The huge difference, previously predicted for low
temperature,12 which is seen for densities aroundn,0.6
31012 cm−2 in the systems considered here, is therefore re-
markably stable with increasing temperature. For example,

the ratet−
−1 in the InAs system atn,0.431012 cm−2 is ap-

proximately 50 times smaller thantz
−1 or t−

−1 even at room
temperature.

V. COMPARISON WITH ROOM TEMPERATURE
EXPERIMENTS

Next, we calculate the spin-relaxation timestz of sym-
metrically n-doped(001)-grown QWs and compare our re-
sults with the experimental data obtained by Terauchiet al.20

and Ohnoet al.21 In both experiments the authors used a
pump-probe technique with circularly polarized light. The
Al0.4Ga0.6As/GaAs QW had a widthL=75 Å. The sample
parameters and measured30 tz for the eight samples investi-
gated by Terauchiet al. are reproduced in Table I. For these
systems we calculated the spin splitting and extracted the
values of the BIA spin-splitting parametersg and kkz

2l as a
function of the carrier densityn (see Fig. 2). The details of
this procedure have been described in Ref. 12. Due to the
symmetric doping of the samples, there is no Rashba effect
anda=0.

The spin-relaxation rates in Eq.(19) depend on the trans-
port relaxation timettr which is related to the transport mo-
bility mtr via

mtr =
ettr

m*
. s20d

Terauchiet al.20 determined for their samples the Hall mo-
bilities mHall, see Table I. These Hall mobilities are equal to
the transport mobilities only if the dominant scattering
mechanisms are isotropic[i.e., Wski ,ki8d does not depend on
the angleu]. If small-angle scattering predominates the trans-
port mobility mtr and the Hall mobilitymHall differ by the
Hall factor rHall.

25 A more detailed discussion of the effects
of various scattering mechanisms is given in the Appendix.
For the samples investigated by Terauchiet al.,20 the domi-
nant scattering mechanisms were not known. Therefore we
have considered three categories of scattering mechanisms
listed in Table II and denoted as types I, II, and III. Calcu-
lated values of the Hall factorrHall are given in the same
table.

Taking into account these effects and using the bulk GaAs
effective masssm* / m0=0.0665d, we obtain the transport re-

TABLE I. Measured carrier densityn, Hall mobility mHall, and
spin-relaxation timetz of the samples investigated by Terauchiet
al. (Ref. 20). The samples(a), (b), and (c) were n-doped in the
barrier only, while(d), (e), and (f) weren-doped in the well only.
The samples(g) and(h) weren- and(weakly) p-doped in the well.
All values refer to room temperature.

Doping Sample n f1011 cm−2g mHall fcm2/V sg tz [ps]

Barrier (a) 1.4 4600 33

n-doped (b) 2.6 4700 32

(c) 4.7 4200 37

Well (d) 0.4 3500 35

n-doped (e) 2.4 2800 43

(f) 6.0 2500 49

Well n- and (g) 4.7 800 105

p-doped (h) 9.8 1500 56

FIG. 2. (Color online) Calculated BIA spin splitting parameters
g (left axis) and kkz

2l (right axis) as a function of carrier densityn
for symmetrically doped Al0.4Ga0.6As/GaAs-QWs withL=75 Å.
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laxation timettr from Eq.(20). For the samples in Table I the
mobilities were measured only at room temperature. In order
to derive the results shown in this section, we have thus used
in Eq. (19) the same value ofttr for all temperatures. Accord-
ingly, the temperature dependence of the spin-relaxation
rates is determined only by the Fermi distribution. A different
experiment, where this restriction does not apply, will be
discussed below in Sec. VI.

The calculated results are shown in Fig. 3 together with
the experimental data of Terauchiet al.. For comparison, we
also show the results based on the formulas for the low and
high temperature limit, respectively. It can be seen that Eq.
(19) reproduces the results obtained with the simplified for-
mulas for the corresponding limits. For most of the systems
investigated by Terauchiet al., room temperature falls into
the nondegenerate(high temperature) limit. However, in the
more heavily doped samples a significant deviation appears.
For sample(h) the value oftz predicted by the theory for the
nondegenerate limit is approximately 60% larger than the
value obtained using Eq.(19).

In GaAs at room temperature, the mobility is limited by
scattering at the deformation potential of acoustic phonons
(type I) and at polar optical phonons(type II). The scattering
at ionized impurities(weakly screened: type II; screened:
type I), which usually dominates the mobility at lowT, is not
relevant here. Therefore the results calculated for scattering
mechanisms of type III do not apply in the present case.

The experimental values for the spin relaxation time are
between the theoretical results obtained for scattering mecha-
nisms of type I and II. For the samples(g) and(h) the mea-
sured values are significantly closer to the theoretical values
obtained for type I scattering than for all other samples. This
agrees well with the fact that only these two samples were
codoped with donors and acceptors. The scattering at neutral
acceptors makes type I scattering more important for these

samples. This reasoning is supported by the fact that the
samples(g) and (h) have the smallest mobilities(see Table
II ) which we attribute to the additional scattering mecha-
nism.

In summary, we have achieved quantitative agreement be-
tween theory and experiment for the spin-relaxation rates of
eight different samples. A similar EFA-based approach was
applied by Lauet al.14 for the samples discussed here with
comparable results. However, the previous work did not take
into account the doping self-consistently and no explicit for-
mulas were given for the treatment of the temperature depen-
dence of the spin relaxation. Furthermore, we would like to
emphasize that it is important to take into account the differ-
ence between the Hall mobility usually measured in experi-
ments and the transport mobility, which governs the spin
relaxation. To the best of our knowledge, so far this aspect
has not been taken into account in the context of spin relax-
ation.

VI. COMPARISON WITH TEMPERATURE-DEPENDENT
MEASUREMENTS

The spin-relaxation time depends on the temperature via
the Fermi distribution function and the variation of the trans-
port mobility. To get a more detailed understanding of the
interplay of these quantities we compare our theoretical re-
sults with the spin-relaxation times measured as a function of
temperature by Ohnoet al.21 The sample used in their ex-
periment corresponds to sample(d) of Table I. The measured
values of the spin-relaxation timetz and the Hall mobility
mHall are reproduced in Fig. 4. Once again, the spin-
relaxation timetz has been calculated as a function of tem-
perature. But in contrast to Fig. 3, we have used here the
temperature-dependent transport relaxation time obtained
from the Hall mobility measured as a function ofT. Figure

TABLE II. Energy dependence, scattering angle characteristic, and Hall factor for various scattering
mechanisms. We have listed the exponents for the power-law behavior of the momentum relaxation time[Eq.
(13)] for bulk (Refs. 25, 27, 35, and 36) sn3Dd and 2D systemssn2Dd based on Eq.(A7). The scattering angle
characteristic is specified by the ratio of the scattering timest3/t1 (cf. Sec. A 2). The Hall factorrHall is the
ratio of Hall and transport mobility(cf. Sec. A 3).

3D 2D

Scattering mechanism n3D rHall
3D n2D t3/t1 rHall

2D

Type I:

acoustic phonons(deformation potential)

−1/2 3p/8 0 1 1

optical phonons(deformation potential)

ionized impurities(screened)

neutral impurities

alloy scattering

interface roughness

Type II: acoustic phonons(polar, piezoelectric) +1/2 45p/128 1 1/3 7/5

optical phonons(polar)

Type III: ionized impurities(weakly screened) +3/2 415p/512 2 1/9 99/35
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4(a) shows the theoretical results of the extended theory for
the three types of scattering mechanisms together with the
results assuming the degenerate and nondegenerate limit.

Once again, an excellent quantitative agreement between
theory and experiment can be achieved at room temperature
assuming that the dominant scattering mechanisms are of
type II (e.g., polar optical phonons). The measured decrease
of the Hall mobility at high temperatures is a signature of
phonon scattering,25 which agrees well with this interpreta-
tion.

In the low temperature range(up to about 100 K) the
experimental data are well explained by type III scattering
(i.e., by scattering at weakly screened impurities). In samples
which are not modulation doped, like the ones considered
here, this scattering mechanism usually limits the mobility at
low temperatures and leads to a characteristic increase of the
mobility with increasing temperature[Fig. 4(b)].

The temperature dependence of the Hall mobility at inter-
mediate temperaturess80 K&T&200 Kd indicates that ion-
ized impurity scattering becomes less important with increas-
ing temperature. Instead, phonon scattering becomes the
dominant scattering mechanism. As expected, the measured
values oftzsTd depart from the calculated curve for type III
scattering with increasing temperature and approach the
curve for type II scattering(polar phonon scattering). While
we have a remarkably good agreement between theory and

experiment forT*20 K, a discrepancy arises at low tem-
peraturesT&20 K. As the Hall mobility was not measured
for T,13 K this deviation cannot be examined more closely.
It could be caused by approximations in the scattering theory.
For example, at low temperatures the simple power-law de-
pendence in Eq.(13) becomes incorrect for ionized impurity
scattering.25 In samples with high mobilities(mobilities
larger than the mobilities of the samples studied in this work)
the electron-electron collisions neglected here constitute a
further possible source of systematic errors. Such processes
conserve the total momentum of the electron system so that
they do not affect the mobility. The DP spin relaxation, on
the other hand, is reduced by any kind of scattering. We
therefore have a correction due to electron-electron scatter-
ing, which is particularly important in high mobility
samples.22,32,33Finally, it is possible that in the pump-probe
experiment by Ohnoet al.21 the laser beam heated up the
electron system so that the electron temperature was indeed
higher than shown in Fig. 4(a).34

VII. CONCLUSIONS

Based on the self-consistent multiband envelope function
approximation, we obtain an accurate description of the spin
splitting and Dyakonov-Perel spin relaxation in quasi-2D
systems. In the present work, we extend the theory of DP

FIG. 3. (Color online) Calcu-
lated spin-relaxation timetz of
different samples (a)–(h) as a
function of temperatureT in com-
parison with room temperature
measurements(squares) from Ter-
auchiet al. (Ref. 20). The theoret-
ical results refer to the degenerate
limit (dotted lines), to the nonde-
generate limit(dashed lines), and
to the generalized theory(full
lines). For each set of curves, the
upper curve corresponds to scat-
tering at weakly screened ionized
impurities (type III), while the
middle and lower curves represent
momentum scattering of types II
and I, respectively(see Table II).
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spin relaxation in order to connect the previously known
results for the limiting cases of low and high temperatures.
Therefore our realistic theory renders considerations with re-
spect to the degeneracy or nondegeneracy of the electron
system unnecessary.

We demonstrate the strengths of our approach by compar-
ing with spin-relaxation timestz measured by Terauchiet
al.20 and Ohno et al.21 for a large variety of different
samples. Using a simple model,9 the latter authors obtained
theoretical estimates fortz that differed by an order of mag-
nitude from the experimental values, whereas we are able to
obtain excellent quantitative agreement between experiment
and theory.

Up to now, the spin-relaxation timest± could not be de-
termined experimentally. We corroborate here the
prediction11,12 that one of the timest+ or t− increases non-
monotonously as a function of electron density. Our
temperature-dependent calculations show that this feature is
remarkably stable with increasing temperature and that it is
connected with a huge anisotropy of the spin relaxation.
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APPENDIX: SCATTERING THEORY

In this appendix we give a short overview of the energy
dependence and scattering angle characteristic of various

electron momentum scattering mechanisms. As commonly
done in the literature,25,27,35–37we assume that the electron
system is nondegenerate and that the scattering is quasielas-
tic, i.e., the scattering does not change the kinetic energy. We
start by considering bulk systems. Then we discuss the modi-
fications necessary for 2D systems.

1. Relaxation times

In this work we treat scattering based on Fermi’s golden
rule, where the transition rateWsk ,k8d between states with
wave vectorsk andk8 is25

Wsk,k8d =
2p

"
uHk8k

scattu2dfEsk8d − Eskdg, sA1ad

Hk8k
scatt=

1

V
E

V

e−ik8·rUscattsrdeik·rd3r sA1bd

with the crystal volumeV and the scattering potential
Uscattsrd. Using the effective mass approximation(9), we ob-
tain for the scattering rate out of the stateukl into any other
stateuk8l of a nondegenerate electron system25

1

tskd
= o

k8

,

Wsk,k8d. sA2d

Here the tilde indicates that the sum is restricted to final
statesuk8l with the same spin orientation as the initial state,
i.e., we have assumed that the scattering processes do not
change the spin. The scattering timetskd is the average time
between scattering events, i.e., it can be identified with the
time during which the electron is in the stateukl.

For nonisotropic scattering mechanisms the information
about the initial momentum is not lost after the timetskd, but
decays on the time scale of the momentum relaxation time
t1skd, which is defined as25

1

t1skd
= o

k8

,

Wsk,k8ds1 − cosud. sA3d

For elastic scattering, as assumed here,t1skd depends only
on the energyEskd (see Sec. A 2). The timet1 determines the
transport mobility via Eq.(20) and13,25

ttr =
E dEZsEdE

]F0

]E
t1sEd

E dEZsEdE
]F0

]E

. sA4d

Here,F0 is the Fermi distribution function(11). Assuming a
parabolic dispersion(9), the density of statesZsEd is propor-
tional to ÎE in 3D systems and it is independent ofE in 2D
systems.

2. Scattering angle characteristic

In the framework of the aforementioned approximations,
the transition rateWsk ,k8d can be expressed for many scat-
tering mechanisms as a power law35

FIG. 4. (Color online) (a) Spin-relaxation timetz and (b) mea-
sured(Refs. 21 and 31) Hall mobility mHall as a function of tem-
peratureT. In (a) the labeling of the calculated curves is analogous
to Fig. 3 and the measured values(Ref. 21) are represented by
squares. The sample parameters are those of sample(d) in Table I.
In the very low temperature rangeT,13 K, no theoretical evalua-
tion of tz is possible due to lack of experimental data for the Hall
mobility.
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Wsk,k8d ~
1

q2n , sA5d

whereq is the momentum transfer

q ; uk − k8u = 2k sinsu/2d sA6ad

=2ÎzE sinsu/2d. sA6bd

Combining these equations with Eq.(8) we get Eq.(13). In
Table II we have compiled from the literature25,27,35,36the
exponentsn for various scattering mechanisms. The scatter-
ing mechanisms of type I are isotropic, while for types II and
III small angle scattering is increasingly predominant. The
values ofn for 2D systems are derived from the values for
3D systems, using the fact that the momentum scattering
rates 1/t1 are proportional to the density of states.25 Assum-
ing that the remaining contributions to the exponentn do not
depend on the dimensionality of the system, we thus have

n2D = n3D + 1/2. sA7d

For some scattering mechanisms, values ofn2D have been
given explicitly in the literature.38,39 They agree with our
values in Table II.

Using Eqs.(8), (A5), and(A6) we have in 2D systems

1

tn
~ E

0

2p

du
1 − cossnud
sin2nsu/2d

. sA8d

Thus we get40

t3

t1
= 5 s2 − nds3 − nd

n2 − n + 6
, n ø 3/2

1/9, n . 3/2.
6 sA9d

The values for the ratiot3/t1 obtained by means of Eq.(A9)
are listed in Table II. They are identical with the values used
by Lau et al.14 as far as they are given there.

3. Hall and transport mobility

In general, the mobilitymHall determined from Hall mea-
surements differs from the transport mobilitymtr (obtained
from, e.g., the experimental conductance) by the Hall
factor25,27

rHall =
mHall

mtr
. sA10d

The values ofrHall in Table II have been obtained from the
exponentn (for 3D and 2D systems, respectively) using25,27

rHall =
Gs2n + 5/2dGs5/2d

fGsn + 5/2dg2 , sA11d

where G denotes the gamma function.28 We have 1ø rHall
ø99/35, i.e.,mtrømHall.
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