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The ultrafast(picosecond) coherent dynamics of exciton systems in semiconductors can be approximately
described by bosonic mean-field equations. These equations are nonlinear and therefore difficult to solve
analytically. It is thus important to study the general dynamical properties of these equations, such as the
underlying symmetry and corresponding conservation laws. It is shown in this paper that, for anN-species
exciton system(e.g., heavy-hole and light-hole excitons), a mean-field Hamiltonian(including the coupling to
external fields and fermionic corrections) can be formulated which is a member of thesusN,Nd algebra. As a
consequence, the equations of motion for the center-of-mass momentum dependent exciton distribution and the
coherent biexciton amplitude can be cast into a form similar to that of the optical Bloch vector in two-level
atoms that belong to the algebrasus2d [or, more generally,N-level atoms with algebrasusNd]. It is shown that
the analog to the Bloch sphere inN-level atoms is an unbounded hypersurface(generalized hyperboloid) that
constrains the motion of the exciton distribution and coherent biexciton amplitude. Further constants of mo-
tions that constrain the motion on the hypersurface are found from ansusN,Nd generalization to the Hioe-
Eberly method insusNd systems(N-level atoms) [F. Hioe and J. Eberly, Phys. Rev. Lett.47, 838 (1981)].
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I. INTRODUCTION

Nonlinear semiconductor optics based on excitations near
the fundamental band gap offers invaluable information on
many-body effects and particle correlations(for recent re-
views, see, e.g., Refs. 1–4). While excitation in the interband
continuum(i.e., transitions from a valence band high into a
conduction band) probes mainly electron-hole plasma ef-
fects, optical excitations of the lowest bound excitons(usu-
ally the 1s excitons) probe many-body effects of the corre-
lated exciton system. One of the excitation regimes that has
been under intense study recently is the so-calledxs3d regime,
in which the optical nonlinear response is treated up to the
third order in the light field amplitudes involved in the opti-
cal excitation and the probing of the semiconductor response
(see, e.g., Refs. 5–16 for theoretical details).

In addition to fermionic theories, which treat the exciton
properly in terms of its electron and hole constituents, there
exists a wide variety of studies treating the excitons as
bosonic particles(see, e.g., Refs. 17–22). Fermionic theories
are more fundamental, but they are often very difficult to
evaluate, especially in cases where excitons dominate the
nonlinear response. This happens, for example, when the op-
tical light field is in resonance with the lowest exciton state
and the exciton population is kept at low densities and low
temperature. In cases like these, bosonic theories are advan-
tageous, because they can give simple and transparent physi-
cal interpretations for the observed optical nonlinearities.

In order to discuss excitonic optical nonlinearities, one
needs to specify the geometry of the system and the time
scale under consideration. In this paper, we are interested in
the exciton dynamics in a thin semiconductor quantum well.
The light field is assumed to be in normal incidence, which
means that the optically excited excitons(or, more precisely,
excitonic interband coherences) have zero in-plane center-of-
mass momentum. Moreover, we only deal with the ultrafast

time scale, on which dephasing and relaxation processes can
be ignored.(See, for example, Refs. 23–25.) For a sample at
low temperature, excited in the low-density regime, the cor-
responding times are typically on the order of several pico-
seconds(or even tens of picoseconds).

Under these conditions, it is reasonable to assume that the
dynamics of the correlated exciton system can well be de-
scribed by a mean-field Hamiltonian, i.e., a Hamiltonian that
treats the correlations in a mean-field description and rules
out incoherent exciton-exciton scattering and relaxation pro-
cesses. Mean-field Hamiltonians have been used in many
different areas of physics to extract important information on
the system’s dynamics. One of the most prominent examples
is that of plasma screening in electron or electron-hole plas-
mas which can be described by a mean-field Hamiltonian
with self-consistently computed screened Coulomb potential
(Ehrenreich-Cohen method) (for a textbook discussion see,
for example, Ref. 26, p. 142). The mean-field Hamiltonian is
constructed in such a way that the equations of motion of the
operators under consideration obtained from this Hamil-
tonian are identical to those obtained from the full Hamil-
tonian followed by a Hartree-Fock factorization.

In the present context we are dealing with anN-exciton
system(where N denotes the number of different exciton
species, for exampleN=4 if we have heavy-hole and light-
hole excitons and both are twofold spin degenerate). We will
determine an appropriate mean-field Hamiltonian which is
used to determine the equations of motion of bosonic(exci-
ton) operators. It includes optical excitation, exciton-exciton
interaction, and fermionic corrections that describe phase-
space blocking in the exciton-photon coupling. In particular,
we will derive the mean-field Heisenberg equations for the
exciton distribution function(i.e., the distribution as function
of center-of-mass in-plane momentum of the excitons), and
the coherent biexciton amplitude. While the equations of mo-
tion of these two functions are difficult to solve, we will be
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able to derive all constants of motion associated with the
dynamical symmetry of the mean-field Hamiltonian.

In two-level atoms(and also inN-level atoms), constants
of motion are conveniently discussed in terms of the Bloch
sphere and restrictions for the Bloch vector moving on the
Bloch sphere(see Ref. 27 for an extensive discussion of the
two-level atom). In this case, the underlying symmetry group
that can explain the constants of motion isSUsNd. The
Hamiltonian of theN-level atom can be expressed in terms
of the group generators ofSUsNd, and the dynamical vari-
ables of the system can be associated with these generators.
Hioe and Eberly have shown how to exploit the properties of
thesusNd algebra in the formulation of the equations of mo-
tion of the dynamical variables of anN-level system,28,29and
how one can obtain conservation laws(constants of motion)
corresponding toSUsNd.

In our case, described by theN-exciton mean-field Hamil-
tonian, the underlying symmetry group is notSUsNd. It has
been shown by Huang30 that, in the case of a single-species
weakly interacting Bose system, the underlying symmetry
group isSUs1,1d. This group is well known in the context of
quantum optics, and a generalizedSUs1,1d Bloch vector has
been formulated by Dattoliet al.31

It is therefore natural for us to ask whether our mean-field
Hamiltonian, which is a Hamiltonian for anN-species exci-
ton system and includes, besides exciton-exciton interaction,
effects of optical excitation as well as fermionic corrections,
can be associated with the symmetry groupSUsN,Nd. If so
(and we will show that this is indeed possible), one can de-
rive a generalized Bloch vector and relate it to the expecta-
tion values of the dynamical variables of interest(in this case
the exciton momentum distribution and the biexciton ampli-
tude). We will show that, similar to the case of a two-level
atom, one can define a generalized Bloch vector and gener-
alized Bloch hypersurface(not a sphere in this case) which
yield immediately information about constraints on the dy-
namics of the dynamical variables. Moreover, we will show
that the method employed by Hioe and Eberly28 to determine
higher constants of motion based onSUsNd can be general-
ized to SUsN,Nd, even though the generalization will have
important mathematical differences compared to the Hioe-
Eberly method.

This paper is organized as follows: in Sec. II, we briefly
review the basic concepts of the groupsSUs2d andSUs1,1d
[including generalizations toSUsNd andSUsM ,Nd] and their
algebras; in Sec. III, we study the structure of the effective
mean-field Hamiltonian of a general spatially homogeneous
exciton system and relate it to thesusN,Nd algebra. This
susN,Nd dynamical algebra allows us to write the mean-field
equations in two equivalent forms. One is a generalized
Bloch vector form, and the other is a matrix equation that is
formally analogous to the Liouville equation for a density
matrix (but we stress that the analogy is only formal and only
useful for the derivation of the desired constants of motion).
In Sec. IV, we use the(“density matrix”) equation obtained
in Sec. III to study higher constants of motion associated
with the susN,Nd symmetry. A brief summary is given in
Sec. V.

II. SU„2… AND SU„1,1… GROUPS, ALGEBRAS, AND THEIR
REALIZATIONS IN PHYSICAL SYSTEMS

Most of the general mathematical properties of the groups
SUs2d and, to a lesser degreeSUs1,1d, are by now text book
knowledge(see, e.g., Ref. 32). However, we believe it is
useful for the purpose of this paper to start out with a brief
review of these groups[and their generalizationsSUsNd and
SUsM ,Nd] as well as their algebras. The short review of the
mathematical properties ofSUsNd andSUsM ,Nd will be lim-
ited to aspects relevant for the study of exciton dynamics
discussed in the latter chapters of this paper. We will also
review some known aspects of the relationship between the
groupsSUsNd andSUsM ,Nd and their algebras and physical
systems, notably that betweenSUs2d and the two-level atom.
This will help lay the foundation of the discussion of the
application ofSUsN,Nd to a bosonic description of excitons.

The groupSUs2d is the group of all two-dimensional uni-
tary matrices with unit determinant

Us2d†Us2d = I, dethUs2dj = 1 s1d

or more explicitly

Us2d = S a b

− b* a* D, uau2 + ubu2 = 1, s2d

wherea andb are complex numbers. We use the superscript
(2) in our discussion ofSUs2d, while the superscript(11) will
be used below in the discussion ofSUs1,1d. The three gen-
erators ofSUs2d can be chosen as

Lj
s2d = s j, j = 1,2,3, s3d

wheres j’s are the Pauli matrices

s1 = S0 1

1 0
D, s2 = S0 − i

i 0
D, s3 = S1 0

0 − 1
D . s4d

The matriceshLj
s2d , j =1,2,3j obey the commutation relations

fLh
s2d,Lj

s2dg = 2io
l=1

3

jhjl
s2dLl

s2d, s5d

where thejhjl
s2d are antisymmetric under the interchange of

any two subscripts andj123
s2d =1. The Lj

s2d’s form a basis of
the sus2d algebra, whose elements(the linear superpositions
of Lj

s2d’s with arbitrary real coefficients) are the two-
dimensional traceless Hermitian matrices, i.e.,

Ls2d† = Ls2d, TrhLs2dj = 0. s6d

Similarly, the groupSUs1,1d is the group of all two-
dimensional matrices satisfying33

Us11d†S1 0

0 − 1
DUs11d = S1 0

0 − 1
D, dethUs11dj = 1 s7d

or more explicitly
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Us11d = S a b

b* a* D, uau2 − ubu2 = 1. s8d

The three generators of the groupSUs1,1d can be chosen in
terms of the Pauli matrices as

Lj
s11d = h j

s11ds j, h1
s11d = i, h2

s11d = i, h3
s11d = 1 s9d

with the commutation relations

fLj
s11d,Lh

s11dg = 2io
l=1

3

j jhl
s2dh j

s11d hh
s11d

hl
s11d Ll

s11d. s10d

The SUs1,1d generators in Eq.(9) form a basis of the
sus1,1d algebra, whose elements(the linear superpositions
of Lj

s11d’s with arbitrary real coefficients) are two-
dimensional matrices with the following properties:

Ls11d†S1 0

0 − 1
D = S1 0

0 − 1
DLs11d, TrhLs11dj = 0. s11d

The similarity between definitions given in Eqs.(1) and
(2) and those in Eqs.(7) and(8) suggests that we can define
both groups/algebras in a unified way:

Group:HU†GU = G

dethUj = 1,
Algebra:HL†G = GL

TrhLj = 0
s12d

with

G =5S
1 0

0 1
D for SUs2d

S1 0

0 − 1
D for SUs1,1d.

s13d

If we consider the group members as operators acting in a
two-dimensional linear space, they conserve the “lengths” of
vectors

, ; o
j=1

2

Gijxi
*xj = x†Gx, s14d

wherex is any two-dimensional column vector andG can be
viewed as the “metric matrix.”

The definition given by Eq.(12) can be naturally gener-
alized to theSUsM ,Nd [with SUsMd;SUsM ,0d] group/
algebra, i.e., theSUsM ,Nd group/algebra is defined as the set
of all sM +Nd3 sM +Nd matricesU /L satisfying(12) with

G = SIM3M 0

0 − IN3N
D , s15d

whereI is the unit matrix.
The definition given by Eq.(12) for theSUsM ,Nd group/

algebra is rather abstract, and a more explicit form of this
group/algebra is usually desirable in practical applications.
For the purpose of this paper, we write down an explicit form
of one set ofSUsN,Nd group generators which form a basis
of the susN,Nd algebra,

s16d

where

sAsmnddmn = hmn
A sdmmdnn + dmndnmd,

1 ø m, n ø 2N,

sBsmnddmn = hmn
B s− idsdmmdnn − dmndnmd, 1 ø m, n ø 2N,

sCsrddmn =Î 2

rsr + 1d
dmnsdm1 + dm2 + ¯ + dmr − rdm r+1d,

1 ø r ø 2N − 1, s17d

hmn
A = hmn

B = i fQsN−md−QsN−ndg/2, Qsmd ; H1 mù 0

− 1 m, 0.

s18d

The commutation relations ofL̄
W

are

fL̄h,L̄jg = 2i o
l=1

s2Nd2−1

jhjl
hh h j

hl
L̄l , s19d

where jhjl are antisymmetric under the interchange of any
two subscripts and

s20d

The L̄i’s defined in Eq.(16) and the unit matrixĪ satisfy the
following orthogonality relations:

TrhL̄i
†L̄jj = 2di j , TrhL̄i

†Īj = TrhĪ†L̄ij = 0, TrhĪ†Īj = 2N,

s21d

which will be used to prove Eq.(63) at the end of the fol-
lowing section.

We now turn to the physical application of thesus2d and
sus1,1d groups/algebras. We start from a two-level quantum
system, where the Hilbert space is spanned by two orthonor-
mal statesu1l and u2l. The four operatorsuilk j u si , j =1,2d
form a complete basis for the linear operators of the system
in the sense that any linear operator of the system can be
written as a linear superposition(with complex coefficients)
of these four operators. Equivalently, one can use the basis
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L̂1
s2d = hu1lk2u + u2lk1uj, L̂2

s2d = − ihu1lk2u − u2lk1uj,

L̂3
s2d = u1lk1u − u2lk2u, :̂s2d = u1lk1u + u2lk2u, s22d

which has the advantage of revealing thesus2d dynamical
structure of the system. To see this, we first note that the

hL̂j
s2d ; j =1,2,3j in Eq. (22) satisfy the same commutation

relations as the generators of theSUs2d group [see Eq.(5)].
Thus they form a representation of the set of generators, Eq.

(3), and are a basis of thesus2d algebra. Moreover, theL̂j
s2d’s

commute with:̂s2d:

fL̂j
s2d,:̂s2dg = 0. s23d

We have already mentioned that, because of the complete-
ness of the basis statesu1l and u2l, any linear operator of the
system, including the Hamiltonian, can be written as linear

superposition of theL̂j
s2d’s and :̂s2d:

Ô = o
j=1

3

ojL̂j
s2d + o0:̂s2d, Ĥ = o

j=1

3

hjL̂j
s2d + h0:̂s2d. s24d

In other words, any linear operator of the system is a super-

position of theL̂j
s2d’s and:̂s2d with complex coefficients, and

the (Hermitian) Hamiltonian is a superposition of theL̂j
s2d’s

and :̂s2d with real coefficients. Equation(23) means that for
the most general Hamiltonian of a two-level system, which is

a linear combination of theL̂j
s2d and :̂s2d with real coeffi-

cients, the:̂s2d part does not contribute to the equations of
motion, because it commutes with any linear operator of the

system.:̂s2d itself is a constant of motion

d

dt
:̂s2d = 0. s25d

Since the operatorsL̂j
s2d defined in Eq.(22) also satisfy the

same commutation relations as those given in Eq.(5), they
form an operator representation of the basis of thesus2d
algebra. Now, other than a term proportional to:̂s2d, which
commutes with any linear operator of the system, the Hamil-
tonian is a linear combination with real coefficients of the
threesus2d generators. Thus we conclude that the dynamical
algebra of the two-level atomic system issus2d.

Equation(22) is the operator representation ofsus2d alge-
bra in the first quantization picture. Going to the second
quantization picture, we replace the Dirac states by creation
and annihilation operator(which can either be bosonic or
fermionic):

L̂1
s2d8 = b̂1

†b̂2 + b̂2
†b̂1, L̂2

s2d8 = s− idhb̂1
†b̂2 − b̂2

†b̂1j,

L̂3
s2d8 = b̂1

†b̂1 − b̂2
†b̂2, :̂s2d8 = b̂1

†b̂1 + b̂2
†b̂2. s26d

In this way, we construct an operator representationhL̂j
s2d8j

for the sus2d algebra in Fock space, all of which commute

with :̂s2d8. Note that, although we start from a two-level
representation and then pass to the second quantization pic-

ture, the operators in Eq.(26) are actually defined in a
higher-dimensional Hilbert space(Fock space). This operator
representation has its application in the Hartree-Fock theory
of electron-hole systems in semiconductors, which can be
treated as a coupled ensemble ofsus2d subsystems analogous
to two-level atoms: in the Hartree-Fock theory, for each
center-of-mass momentumk the corresponding “two levels”
of an electron are the conduction and valence bands.

The SUs1,1d case is more complicated. We note that the
two-dimensional matrix representation(i.e., the original defi-
nition) in Eq. (8) of the SUs1,1d group isnot unitary. Actu-
ally, because of the noncompactness of the groupSUs1,1d,
there is no finite-dimensional unitary representation for it;33

as a consequence there is no finite-dimensional Hermitian
representation for thesus1,1d algebra. Since in standard
quantum mechanics, the Hamiltonian is Hermitian, we do
not expect the dynamical algebra of a finite-dimensional
quantum system to besus1,1d. However, in the infinite-
dimensional bosonic Fock space, we do have a unitary/
Hermitian representation for thesus1,1d group /algebra. For
example, in quantum optics it is well known that there are
two-mode electromagnetic fields whose Hamiltonian, written
in terms of bosonic creation and annihilation operators, is a
linear combination of thesus1,1d generators34

L̂1
s11d = ihb̂1

†b̂2
† − b̂2b̂1j, L̂2

s11d = b̂1
†b̂2

† + b̂2b̂1,

L̂3
s11d = b̂1

†b̂1 + b̂2
†b̂2 + 1, :̂s11d = b̂1

†b̂1 − b̂2
†b̂2. s27d

Again, the L̂j
s11d’s defined in these equations all commute

with :̂s11d, and satisfy the commutation relations of the
sus1,1d generators(10), thus giving aHermitian operator
representation of thesus1,1d algebra.

The above discussions can also be generalized tosusNd
andsusM ,Nd, respectively. For the purpose of this paper, we
only write down the operator representation of thesusN,Nd
generators in Fock space. Given two sets of bosonic creation
and annihilation operatorshâu,âu

†j ,hĉu, ĉu
†j su=1,2, . . . ,Nd

that fulfill the commutation relations

fâu,âu8
† g = duu8, fĉu,ĉu8

† g = duu8, others = 0, s28d

we can construct the operator representation for the basis of
the susN,Nd algebra, for which we already have given a
matrix representation[see Eq.(16)]. The operator represen-
tation can be written as

s29d

with

YANG, KWONG, AND BINDER PHYSICAL REVIEW B 70, 195319(2004)

195319-4



Âsmnd = hmn
A sP̂smnd + P̂snmdd, 1 ø m, n ø 2N,

B̂smnd = hmn
B s− idsP̂smnd − P̂snmdd, 1 ø m, n ø 2N,

Ĉsrd =Î 2

rsr + 1d
sP̂s11d + P̂s22d + ¯ + P̂srr d − rP̂sr+1 r+1dd,

1 ø r ø 2N − 1, s30d

wherehmn
A/B is defined in Eq.(18) and

P̂smnd =5
âm

† ân, 1 ø mø N, 1 ø n ø N

âm
† ĉn−N

† , 1 ø mø N, N + 1 ø n ø 2N

− ĉm−Nân, N + 1 ø mø 2N, 1 ø n ø N

− ĉm−Nĉn−N
† , N + 1 ø mø 2N, N + 1 ø n ø 2N.

s31d

One can prove that the operators in Eq.(29) satisfy the
same commutation relations as the matrices in Eq.(16):

fL̂h,L̂jg = 2i o
l=1

s2Nd2−1

jhjl
hh h j

hl
L̂l . s32d

Thus the operators in Eq.(29) are actually the operator rep-
resentation of the elements in Eq.(16) and form a basis of
thesusN,Nd algebra in Fock space. Note that the operators in
Eq. (29) are Hermitian because of the unitarity of the opera-
tor representation of theSUsN,Nd group. Also all the opera-
tors in Eq.(29) commute with

:̂ = o
m=1

2N

P̂smmd + N = o
j=1

N

fâj
†âj − ĉj

†ĉjg. s33d

We will use this representation when discussing the dy-
namical algebra of theN-species exciton mean-field equa-
tions in the following section.

III. THE su„N ,N… DYNAMICAL STRUCTURE OF THE
BOSONIC MEAN-FIELD EQUATIONS FOR EXCITONS

In this section, we show that the effective mean-field
Hamiltonian of anN-species exciton system in a semicon-
ductor quantum well is a sum of sub-Hamiltonians with
susN,Nd dynamical algebras. This leads to the equations of
the generalized “Bloch vector” and “density matrix” of the
system, both of which are equivalent to the mean-field equa-
tions obtained directly from the original Hamiltonian. They
can be used to study the conserved quantities associated with
the susN,Nd algebras, as will be discussed in the following
section.

As mentioned in the Introduction, the excitons are treated
as exact bosons with the exchange effects of fermionic con-
stituents being included in the Hamiltonian(i.e., in the
boson-boson interaction and boson-photon coupling). The
bosonic Hamiltonian has been designed in a way that it
yields the same nonlinear interband polarization in the third-
order regime as a more rigorous fermionic theory which is

approximated to account only for 1s excitons. This way of
constructing the bosonic exciton Hamiltonian yields explicit
expressions for the interaction and coupling matrix elements.
However, the discussion in this paper does not depend on the
details of the matrix elements in the Hamiltonian. Therefore,
we will base our discussion on a Hamiltonian of the follow-
ing general form

Ĥ = Ĥs1d + Ĥs2d + Ĥs3d + Ĥs4d,

Ĥs2d = o
j ,k1

« jsk1db̂j
†sk1db̂jsk1d,

Ĥs4d =
1

2 o
k1,k2,q,a

hVj1j2j28 j18
sk + q,k8db̂j1

† sk1 + qd

3b̂j2
† sk2 − qdb̂j2

8 sk2db̂j1
8 sk1d,

Ĥs1d = o
j

hV jstdb̂j
†s0d + V j

*stdb̂js0dj,

Ĥs3d = o
k1,q,a

hJj1j2j28 j18
sm j2j1

k1 + q,m j28 j18
k1d

3b̂j1
† sk1 + qdb̂j2

† s− qdV j28
stdb̂j18

sk1d + H.c.j,

k ; m j2j1
k1 − m j1j2

k2, k8 ; m j28 j18
k1 − m j18 j28

k2,

m j j 8 ;
mj

mj + mj8
, a ; h j1, j2, j18, j28j. s34d

Here,mj is mass of the exciton of speciesj , andb̂ andb̂† are
bosonic exciton annihilation and creation operators, respec-
tively:

fb̂jskd,b̂j8
† sk8dg = d j j 8dkk8,

fb̂jskd,b̂j8sk8dg = fb̂j
†skd,b̂j8

† sk8dg = 0. s35d

In Hamiltonian (34), Ĥ1 is the dipole coupling to the light

field, Ĥ2 is the kinetic energy,Ĥ3 is the exchange correction

to Ĥ1, andĤ4 is the boson-boson interaction. Furthermore,«
is the single-particle kinetic energy,V is the two-particle in-
teraction matrix,V /" is the Rabi frequency of the light field,
andJ is the third-order correction of the exciton-photon cou-
pling coefficient related to the four-exciton wave-function
overlap matrix. The single exciton states are labeled by in-
plane wave vectors or momenta(k ’s and q’s) and internal

quantum numbers(j ’s); the zero momenta inĤ1 reflects the
fact that we are dealing with normal-incidence irradiation of
the quantum well, i.e., the light creates only excitons with
zero in-plane momentum.

The dynamical variables of the system are constructed to
be consistent with(in-plane) momentum conservation
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bjstd ; kb̂jsk = 0dl,

Fj1j2
sk,td ; kb̂j2

† skdb̂j1
skdl − kb̂j2

† s0dlkb̂j1
s0dldk0,

Fj1j2
a sk,td ; kb̂j2

s− kdb̂j1
skdl − kb̂j2

s0dlkb̂j1
s0dldk0, s36d

wherebstd is related to the coherent exciton amplititude(in-
terband polarization), F is related to the optically inactive
exciton density, andFa is related to the coherent biexciton
amplitude. The mean-field equations for these variables can

be obtained by using the Heisenberg equation(i"] /]tÔ

=fÔ,Ĥg for any operatorÔ) and the random-phase approxi-
mation, as illustrated in Ref. 26: first calculate the commu-
tators on the right-hand sides of the Heisenberg equations for

b̂jsk =0d, b̂j2
† skdb̂j1

skd, and b̂j2
s−kdb̂j1

skd, then take the ex-
pectation values of the equations and factorize the right-hand
sides into products of the variables defined in Eq.(36), con-
sistent with the momentum conservation. However, it can be
equivalently treated in another way: we first linearize the
Hamiltonian, Eq.(34), into products of the variables in Eq.
(36) and one or two creation/annihilation operators.[The
momentum conservation requires that these operators can

only be b̂jsk =0d ,b̂j2
† skdb̂j1

skd ,b̂j2
s−kdb̂j1

skd.] Then we put
this linearized Hamiltonian in the Heisenberg equations and
take the expectation values of these equations. These two
ways of obtaining the mean-field equations are equivalent,
but the latter can give more insight into the symmetry prop-
erties and related conservation laws.

In this paper we focus on the equations forFj1j2
skd and

Fj1j2
a skd with nonzerok, since, as we will see later, the main

point of this paper does not concern the equation ofbj. In
other words,bj can be formally taken as an external param-
eter. Among all the terms in the linearized Hamiltonian, only
those containing two operators contribute to commutators in

the Heisenberg equations forb̂j2
† skdb̂j1

skd and b̂j2
s−kdb̂j1

skd,
since any single operator term is proportional tob̂jsk =0d
which must commute with operators with nonzero momenta.
This fact, together with the arguments on the linearized
Hamiltonian in last paragraph, we have the following effec-
tive Hamiltonian for the nonzero momentum excitons:

Ĥef f = o
j1j2,k

L j1j2
sk,tdb̂j1

† skdb̂j2
skd

+ o
j1j2,k

hL j1j2
a8* sk,tdb̂j1

skdb̂j2
s− kd + H.c.j

= o
j1j2,skd8

hL j1j2
sk,tdb̂j1

† skdb̂j2
skd

+ L j1j2
s− k,tdb̂j1

† s− kdb̂j2
s− kd

+ L j1j2
a* sk,tdb̂j1

skdb̂j2
s− kd

+ L j1j2
a sk,tdb̂j1

† skdb̂j2
† s− kdj, s37d

where skd8 means that the summation is restricted to the

upper half of thek “plane” (i.e., hk ukxù0j), and

L j1j2
sk,td = « j1

skdd j1j2
+ o

q j j 8

hVj1j8 j j 2
sm j8 j1

k − m j1j8q,m j j 2
k

− m j2jqd + Vj1j8 j2jsm j8 j1
k − m j1j8q,m j2jq − m j j 2

kdj

3Fjj 8sq,td + o
j j 8

hVj1j8 j j 2
sm j8 j1

k,m j j 2
kd

+ Vj1j8 j2jsm j8 j1
k,− m j2jkdjbj8

* stdbjstd

+ 2o
j j 8

hJj1j8 j j 2
sm j8 j1

k,m j j 2
kdbj8

* stdV jstd

+ Jj2j8 j j 1

* sm j8 j2
k,m j j 1

kdbj8stdV j
*stdj,

L j1j2
a8 sk,td =

1

2Hoq
Vj1j2j8 jsk,qdFjj 8

a sq,td

+ o
j j 8

Vj1j2j8 jsk,0dbjstdbj8std

+ 2o
j j 8

Jj1j2j8 jsk,0dV j8stdbjstdJ ,

L j1j2
a sk,td = L j1j2

a8 sk,td + L j1j2
a8 s− k,td. s38d

This leads to the following mean-field equations forF andFa

i"
]

] t
Fsk,td = fLsk,td,Fsk,tdg + Lask,tdFa†sk,td

− Fask,tdLa†sk,td,

i"
]

] t
Fask,td = Lsk,tdFask,td + Fask,tdLTs− k,td

+ Lask,tdFTs− k,td + Fsk,tdLask,td + Lask,td,

s39d

whereF, Fa, L andLa are matrices with elements defined in
Eqs.(36) and(38). The superscripts † andT denote the Her-
mitian conjugate and transposition, respectively. From the
definitions of these matrices we have

F†sk,td = Fsk,td, L†sk,td = Lsk,td,

Fa Ts− k,td = Fask,td, La Ts− k,td = Lask,td. s40d

The Hamiltonian given in Eq.(37) is a sum of sub-
Hamiltonians of differentk pairs

Ĥef f = o
skd8

Ĥef fskd

Ĥef fskd = o
j1j2

hL j1j2
sk,tdb̂j1

† skdb̂j2
skd + L j1j2

s− k,tdb̂j1
† s− kd

3b̂j2
s− kd + L j1j2

a* sk,tdb̂j1
skdb̂j2

s− kd

+ L j1j2
a sk,tdb̂j1

† skdb̂j2
† s− kdj. s41d
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EachĤef fskd in Eq. (41) is a linear combination of the fol-
lowing operators:

b̂j1
† skdb̂j2

skd, b̂j1
† s− kdb̂j2

s− kd,

b̂j2
s− kdb̂j2

skd, b̂j1
† skdb̂j2

† s− kd. s42d

With the substitution

âj ; b̂jskd, ĉj ; b̂js− kd s43d

it can be shown that,for eachk pair, every operator in Eq.
(42) is linear superposition of thesusN,Nd generators in Eq.

(29) and:̂ in Eq. (33) (plus an additive term proportional to
the identity operator). Therefore, the Hamiltonian given in
Eq. (41) can be written as

Ĥef fskd =
"

2 o
j=1

s2Nd2−1

P jsk,tdL̂jskd +
"

2
P0sk,td:̂skd + gsk,tdÎ .

s44d

The Hermiticity of the Hamiltonian requires that all the co-
efficients sP j ,P0,gd in Eq. (44) are real. Moreover, since

:̂skd andc-numbergsk ,td commute with allL̂jskd’s, the last
two terms in Hamiltonian(44) do not contribute to the dy-
namical equations of the operators in Eq.(42) and can there-
fore be ignored. The effective mean-field Hamiltonian is now

Ĥef fskd =
"

2 o
j=1

s2Nd2−1

P jsk,tdL̂jskd. s45d

It is obvious that this Hamiltonian has the dynamical algebra
of susN,Nd.

In the remainder of this section we cast the mean-field
equation(39) for F andFa into two other equivalent forms,
the generalized Bloch vector and the generalized density ma-
trix equations. Both of them will be found useful in identi-
fying conservation laws inherent in the mean-field equations
(39). This is in complete analogy to the case of theN-level
atom, where Hioe and Eberly derived conservation laws
from the Bloch vector and the Liouville equations.28

We begin with deriving the Bloch vector equation. We
will define the generalized Bloch vector, analogous to the
definition in Ref. 28 for the atomicN-level system. For each

kW-pair, the set ofL̂jskd and :̂skd obtained from substituting
Eq. (43) into Eqs. (29)–(31) satisfy the same commutation
relations as those in Eq.(32):

fL̂hskd,L̂jskdg = 2i o
l=1

s2Nd2−1

jhjl
hh h j

hl
L̂lskd, fL̂jskd,:̂skdg = 0.

s46d

This implies

fL̂jskd,Ĥef fskdg = i" o
l,h=1

s2Nd2−1

j jhl
h jhh

hl
Phsk,tdL̂lskd, s47d

f:̂skd,Ĥef fskdg = 0. s48d

The mean-field equations forL̂ and :̂ are then easily ob-
tained by using the Heisenberg equations:

]

] t
k:̂skdl = 0, s49d

]

] t
kL̂jskdl = o

l,h=1

s2Nd2−1

j jhlPhsk,td
h j hh

hl
kL̂lskdl. s50d

To get a completely antisymmetric equation, we define

Ŝjskd =
L̂jskd

h j
, G jsk,td = h jP jsk,td. s51d

Substituting Eq.(51) into Eq. (50) leads to

]

] t
kŜjskdl = o

l,h=1

s2Nd2−1

j jhlGhsk,tdkŜlskdl. s52d

Equation(52) [together with Eq.(49)] is the antisymmetric
form of the mean-field equations forF and Fa. It is the
bosonic counterpart of Bloch vector equations in the atomic
N-level case(for example, in the two-level case it is the
equation that has the familiar “torque” structuredsW /dt
=gW 3sW, which is crucial to the understanding of the time
evolution of the system28). Equation(52) allows us to intro-

duce the concept of the generalized Bloch vectorkŜWskdl in
the case of excitonic mean-field dynamics. We note that the
fermionic counterpart of the semiconductor generalization of
the Bloch vector has been discussed in the context of the
Hartree-Fock approximation(semiconductor Bloch equa-
tions) (see, for example, Refs. 35 and 36). There, the dynam-
ics of the generalized Bloch vector is governed by a torque
equation analogous to that of a two-level atom with the fa-
miliar SUs2d as the underlying symmetry group.

One conservation laws follows, in an obvious way, imme-
diately from Eq.(49) [indeed, Eq.(49) states the conserva-

tion of the quantityk:̂skdl]. Another conservation law can be
obtained from the antisymmetry of Eq.(52), which yields

]

] t
o
i=1

s2Nd2−1

kŜiskdlkŜiskdl = 0. s53d

Equation(53) says that the generalized Bloch vectorkŜWskdl
moves on a hypersurface

o
i=1

s2Nd2−1

kŜiskdlkŜiskdl = const. s54d

The properties of this hypersurface are very different from
those in the atomicN-level case, because some components

of kŜWskdl are imaginary. Instead of a hypersphere as in the
atomicN-level case, the hypersurface where the generalized

Bloch vector for excitons,kŜWskdl, moves isunbounded. We
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will discuss the structure of this surface more specifically at
the end of the following section.

Equations(49) and (53) are the two lowest order con-
served quantities associated with thesusN,Nd symmetry. In
order to obtain higher order constants of motion, we make
use of the 2N32N density matrix formalism analogous to
that of theN-level atomic systemssusNdd.28 To this end, we

note that theL̂j’s in Eq. (16) and theLj’s in Eq. (29) are both
representations for thesusN,Nd algebra. The former is a rep-
resentation in the infinite-dimensional Fock space while the
latter is a representation in a 2N-dimensional space. For rea-
sons that will become apparent at the end of this section, we
candefinea matrix(which we will call “quasi-Hamiltonian”)
in the following way. We replace theL̂j’s in the original
Hamiltonian[Eq. (45)] by their counterparts of 2N32N ma-
trices. For practical purposes, namely to make the explicit
form of this quasi-Hamitonian simpler[see Eq.(64) in the
following section], we also add a term proportional to the

unit matrix Ī. We then have the definition

M̄Hskd =
"

2 o
j=1

s2Nd2−1

P jsk,tdL̄j +
"

2
P0sk,tdĪ . s55d

Clearly, M̄Hskd, just as theL̄j’s, is a 2N32N matrix. This
quasi-Hamiltonian will play an important role in the 2N
32N density matrix equation we are looking for. Indeed, we
will show now that the Heisenberg equations[Eq. (50)] can
be cast into a form similar to a Liouville equation, in which

M̄Hskd plays the role of the Hamiltonian.

The commutation betweenL̄j’s and M̄H are the same as
those given in Eq.(47)

fL̄j,M̄Hskdg = i" o
l,h=1

s2Nd2−1

j jhl
h jhh

hl
Phsk,tdL̄l . s56d

We can now use Eq.(50) [together with Eqs.(55) and (56)]
to derive the 2N32N generalized density matrix equation.

Multiplying both sides of Eq.(50) by L̄j /h j
2 and summing

over the indexj , we have

]

] t
o
j=1

s2Nd2−1
kL̂jskdlL̄j

h j
2 = o

j ,l,h=1

s2Nd2−1

j jhlPhsk,td
hh

h jhl
kL̂lskdlL̄j

= o
l=1

s2Nd2−1
kL̂lskdl

hl
2 o

j ,h=1

s2Nd2−1

s− jlhjd

3Phsk,td
hl hh

h j
L̄ j

= o
l=1

s2Nd2−1
kL̂lskdl

hl
2

1

i"
fM̄Hskd,L̄lg

=
1

i"
FM̄Hskd, o

l=1

s2Nd2−1
kL̂lskdlL̄l

hl
2 G .

s57d

We now defineR̄0skd=o j=1
s2Nd2−1skL̂jskdlL̄j /h j

2d which simpli-
fies Eq.(57) to

i"
]

] t
R̄0skd = fM̄Hskd,R̄0skdg. s58d

It is interesting to note that this equation has the form of the
Liouville equation for the density matrix

i"
d

dt
r̄ = fH̄,r̄g s59d

if we formally make the correspondenceM̄H↔ H̄, R̄0↔ r̄.

However, neitherR̄0 nor M̄H has the standard interpretation

as that in the quantum mechanics. Actually, unlikeH̄ and r̄

in the density matrix(or Liouville) equation, neitherR̄0 nor

M̄H is Hermitian because the 2N32N representation of the

susN,Nd algebrasL̄jd is not Hermitian. Thus, Eq.(58) does
not define a complete quantum mechanical problem. It is
merely a convenient way to rewrite the mean-field equations
of motion for the exciton momentum distribution and biex-
citon amplitude which were orginially given by Eq.(39).

We have derived Eq.(58) from Eq. (50). Conversely, one
can also obtain Eq.(50) starting from Eq.(58), thus we con-
clude that Eq.(58) and Eq.(50) are equivalent to each other.

However, onlytogether withEq. (49) is Eq. (50) [or Eq.
(58)] equivalent to the original mean-field equations Eqs.
(39) for F and Fa, and it is more convenient to have an
equation[having the same form as Eq.(58)] which itself is
equivalent to Eqs.(39). To this end, we define another den-
sity matrix

R̄skd =
1

2
HR̄0skd + S k:̂skdl

N
− 1D ĪJ . s60d

The factor 1
2 and the constant −1 in this definition are only

for practical purposes to simplify the explicit form ofR̄ [see
Eq. (64) in the following section]. Equations(58) and (49)
immediately suggest that

i"
]

] t
R̄skd = fM̄Hskd,R̄skdg. s61d

Although Eq. (61) looks almost the same as Eq.(58), Eq.
(61) itself is equivalent to Eqs.(50) and (49). Using the

definition for R̄skd [Eq. (60)] andM̄Hskd [Eq. (55)], one can
prove this by showing that one can obtain Eqs.(50) and(49)
starting from Eq.(61). Thus Eq.(61) is equivalent to Eqs.
(39).

An immediate result from Eq.(61) is that the trace ofR̄n,
for any k and for non-negative integern, is a constant of
motion

]

] t
TrhR̄nj = 0. s62d

This should clarify the reasons for casting the Heisenberg
equations of motion into a form analogous to a Liouville
equation[i.e., Eq.(61)]. In particular, Eq.(62) suggests up to
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2N constants of motion. This is because forn.2N there
should be no more independent constants of motion. We will
express these constants of motion in terms of physical quan-
tities in the following section.

Using Eq.(21) one can easily show

TrhR̄j = k:̂l − N, TrhR̄2j =
1

2 o
i=1

s2Nd2−1

kŜilkŜil +
1

2N
sk:̂l − Nd2.

s63d

Substituting Eq.(63) into Eq. (62) leads exactly to Eqs.(49)
and (53), the two lowest-order constants of motion.

IV. CONSTANTS OF MOTION OF THE MEAN-FIELD
EXCITON EQUATIONS ASSOCIATED WITH THE

su„N ,N… DYNAMICAL ALGEBRA

In this section, we use Eq.(62) to get the explicit forms of
some higher order conserved quantities. Up to now, the
quantities in Eq.(62) have been defined in an abstract way.
Now we will write them down directly in terms of the exci-
ton momentum distributionF and the coherent biexcitation

amplitudeFa. Using the definitions ofR̄, M̄H, F, Fa, G, and

Ga, we obtain the quasi-density matrix and quasi-
Hamiltonian matrix entering Eq.(61) as

R̄skd = S Fskd − Faskd
Fa†skd − FTs− kd − 1

D ,

M̄Hskd = S Lskd Laskd
− La†skd − LTs− kd

D . s64d

Equation(64) expresses the density matrix and Hamiltonian
in terms of the physical quantities. It helps us to make the
physical contents of the constants of motion more clear. With
Eq. (64) one can also easily check that Eqs.(39) and(61) are
equivalent.

We now consider the constants of motion given by Eq.
(62). For n=1 we have

]

] t
TrhR̄sk,tdj =

]

] t
fTrhFsk,td − Fs− k,tdj − Ng

=
]

] t
k:̂sk,tdl = 0. s65d

For n=2 we have

R̄2skd = S F2skd − FaskdFa†skd − FskdFaskd + FaskdFTs− kd + Faskd
Fa†skdFskd − FTs− kdFa†skd − Fa†skd − Fa†skdFaskd + sFTs− kd + Id2 D . s66d

Therefore,

]

] t
TrhR̄2sk,tdj =

]

] t
TrhFsk,td2 + fFs− k,td + Ig2

− 2Fa†sk,tdFask,tdj = 0. s67d

Note that the above two constants of motion come directly
from the susN,Nd symmetry, e.g., then=1 case holds,
whether the system has spatial inversion symmetry or not. If
the system has spatial reflection invariance

Fskd = Fs− kd, Faskd = Fas− kd s68d

then then=1 case is trivial. Forn=2, Eq.(67) is in this case
simplified to

]

] t
TrhFsk,tdsFsk,td + Id − Fa†sk,tdFask,tdj = 0. s69d

The counterpart of this constant of motion is familiar in
atomic two-level systems as well as fermionic cases, such as
the electron-hole Hartree-Fock equations, also known as
semiconductor Bloch equations(see, for example, Refs. 35
and 36 and pp. 323 and 391 of Ref. 37).

For simplicity, we will assume spatial inversion symme-
try, Eq. (68), when discussing the higher-order conserved
quantities. Forn=3, the case is again trivial in sense that the

second-order constant of motion together with the reflection

symmetry gives TrhR̄3j=const (without the inversion sym-
metry this is not true and the third-order constant of motion
is independent of the first two). Forn=4 a somewhat lengthy
but straightforward algebra leads to

]

] t
TrhfFsk,tdsFsk,td + Id − Fask,tdFa†sk,tdg2

− 2Fsk,tdFask,tdfFa†sk,tdFsk,td − FTsk,tdFa†sk,tdgj

= 0. s70d

Similar steps can be used to get all the other higher-order
conserved quantities. Note again that onlynø2N give inde-
pendent constants of motion.

As an example, we now treat the case where we have only
one species of excitons, i.e.N=1, in more detail. Equation
(69) is then reduced to

f1 + fsk,tdgfsk,td − ufask,tdu2 = constsindependent of timetd,

s71d

where f and fa are simplified notations forF11 andF11
a , re-

spectively. The counterpart of Eq.(71) in the electron-hole
Hartree-Fock system(semiconductor Bloch equations) is
well known (again, see, for example, p. 391 of Ref. 37):
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nesk,td„1 − nesk,td… − uPsk,tdu2 = const, s72d

wherene and P are the electron occupation number and in-
terband polarization, respectively. Equation(72) is essen-
tially the same as Eq.(2.37) in Ref. 27 of a two-level atom
system

u2std + v2std + w2std = 1 s73d

if we make the correspondence

w ↔ 2neskd − 1, u + iv ↔ 2Pskd s74d

which, as already mentioned, implies that the Hartree-Fock
electron-hole system is a coupled ensemble of subsystems
(for different k ’s) analogous to atomic two-level systems.

The sign difference in Eqs.(71) and (72) makes the
behaviors of the quantities in these two equations qualita-
tively different. To see this, we takesRefa, Imfa, fd or
sReP, ImP,ned as the three components of thesx,y,zd coor-
dinates in an abstract three-dimensional space. Then, Eq.
(71) says thatsRefa, Imfa, fd lies on an unbounded hyperbo-
loid, while Eq.(72) says thatsReP, ImP,ned is restricted to a
sphere(which is well known as the “Bloch sphere”). Figure
1 illustrates this qualitative difference graphically. It comes
from the qualitatively different dynamical algebras of the
two systems:sus2d in the case of the electron-hole system
andsus1,1d in the exciton case.

While formally the motion of the generalized excitonic
Bloch vector is on an unbounded surface, one should note
that physical reasons put a restrictrion on the actual motion
on this surface. The underlying assumption of coherent ul-
trafast exciton dynamics governed by the mean-field equa-
tions of motion restricts the validity of the model to rela-
tively small exciton densities, which in turn limits the
dynamics of the excitonic Bloch vector to lie within a limited
region on the unbounded hyperboloid.

V. SUMMARY

In summary, we point out that the momentum-conserving
exciton mean-field equations, including the coupling to ex-
ternal fields and fermionic corrections, have the dynamical
structuresusN,Nd. We have shown that one can define a
non-real generalized Bloch vector and a non-Hermitian den-
sity matrix description, which allowed us to investigate the
symmetry properties and related conservation laws of the

system. An explicit method to obtain all the constants of
motion associated with thesusN,Nd algebra has been given.
The qualitatively different behavior of the generalized Bloch
vector of the exciton system, compared to that of the Bloch
vector of the electron-hole system, is thus explained by the
difference between the dynamical algebras of the two sys-
tems. To conclude this paper, we remark that the same
method we use in this paper to get the conserved quantities
resulting from the dynamical algebra can also be applied to
multiband electron-hole systems, of which the dynamical al-
gebra issusNd.
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