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The ultrafast(picosecong coherent dynamics of exciton systems in semiconductors can be approximately
described by bosonic mean-field equations. These equations are nonlinear and therefore difficult to solve
analytically. It is thus important to study the general dynamical properties of these equations, such as the
underlying symmetry and corresponding conservation laws. It is shown in this paper that, Xbspecies
exciton systenge.g., heavy-hole and light-hole excitgna mean-field Hamiltoniagincluding the coupling to
external fields and fermionic correctionsan be formulated which is a member of &&N,N) algebra. As a
consequence, the equations of motion for the center-of-mass momentum dependent exciton distribution and the
coherent biexciton amplitude can be cast into a form similar to that of the optical Bloch vector in two-level
atoms that belong to the algets&(2) [or, more generallyiN-level atoms with algebrau(N)]. It is shown that
the analog to the Bloch sphere Milevel atoms is an unbounded hypersurfégeneralized hyperbolojdhat
constrains the motion of the exciton distribution and coherent biexciton amplitude. Further constants of mo-
tions that constrain the motion on the hypersurface are found frosu@h, N) generalization to the Hioe-
Eberly method insu(N) systemgN-level atom$ [F. Hioe and J. Eberly, Phys. Rev. Lett7, 838(1981)].

DOI: 10.1103/PhysRevB.70.195319 PACS nuni®er78.67.De, 71.35.Gg, 78.4%p

[. INTRODUCTION time scale, on which dephasing and relaxation processes can
be ignored(See, for example, Refs. 23—2%.0r a sample at

Nonlinear semiconductor optics based on excitations nedow temperature, excited in the low-density regime, the cor-
the fundamental band gap offers invaluable information orresponding times are typically on the order of several pico-
many-body effects and particle correlatioffer recent re- secondgor even tens of picoseconds
views, see, e.g., Refs. 1):4Vhile excitation in the interband Under these conditions, it is reasonable to assume that the
continuum(i.e., transitions from a valence band high into adynamics of the correlated exciton system can well be de-
conduction banp probes mainly electron-hole plasma ef- scribed by a mean-field Hamiltonian, i.e., a Hamiltonian that
fects, optical excitations of the lowest bound excitgusu-  treats the correlations in a mean-field description and rules
ally the Is excitong probe many-body effects of the corre- out incoherent exciton-exciton scattering and relaxation pro-
lated exciton system. One of the excitation regimes that hasesses. Mean-field Hamiltonians have been used in many
been under intense study recently is the so-cajlédegime,  different areas of physics to extract important information on
in which the optical nonlinear response is treated up to thehe system’s dynamics. One of the most prominent examples
third order in the light field amplitudes involved in the opti- is that of plasma screening in electron or electron-hole plas-
cal excitation and the probing of the semiconductor responsmas which can be described by a mean-field Hamiltonian
(see, e.g., Refs. 5-16 for theoretical dejails with self-consistently computed screened Coulomb potential

In addition to fermionic theories, which treat the exciton (Ehrenreich-Cohen methpdfor a textbook discussion see,
properly in terms of its electron and hole constituents, therdor example, Ref. 26, p. 142The mean-field Hamiltonian is
exists a wide variety of studies treating the excitons asonstructed in such a way that the equations of motion of the
bosonic particlegsee, e.g., Refs. 17-pFermionic theories operators under consideration obtained from this Hamil-
are more fundamental, but they are often very difficult totonian are identical to those obtained from the full Hamil-
evaluate, especially in cases where excitons dominate thenian followed by a Hartree-Fock factorization.
nonlinear response. This happens, for example, when the op- In the present context we are dealing with ldrexciton
tical light field is in resonance with the lowest exciton statesystem(where N denotes the number of different exciton
and the exciton population is kept at low densities and lowspecies, for examplbl=4 if we have heavy-hole and light-
temperature. In cases like these, bosonic theories are advalmele excitons and both are twofold spin degenératé will
tageous, because they can give simple and transparent phydetermine an appropriate mean-field Hamiltonian which is
cal interpretations for the observed optical nonlinearities. used to determine the equations of motion of bosgeii-

In order to discuss excitonic optical nonlinearities, oneton) operators. It includes optical excitation, exciton-exciton
needs to specify the geometry of the system and the timinteraction, and fermionic corrections that describe phase-
scale under consideration. In this paper, we are interested gpace blocking in the exciton-photon coupling. In particular,
the exciton dynamics in a thin semiconductor quantum wellwe will derive the mean-field Heisenberg equations for the
The light field is assumed to be in normal incidence, whichexciton distribution functiori.e., the distribution as function
means that the optically excited excitofes, more precisely, of center-of-mass in-plane momentum of the excijpasd
excitonic interband coherengdsave zero in-plane center-of- the coherent biexciton amplitude. While the equations of mo-
mass momentum. Moreover, we only deal with the ultrafastion of these two functions are difficult to solve, we will be
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able to derive all constants of motion associated with thell. SU(2) AND SU(1,1) GROUPS, ALGEBRAS, AND THEIR
dynamical symmetry of the mean-field Hamiltonian. REALIZATIONS IN PHYSICAL SYSTEMS

In two-level atomgand also inN-level atom$, constants
of motion are conveniently discussed in terms of the BlochS
sphere and restrictions for the Bloch vector moving on thek
Bloch sphergsee Ref. 27 for an extensive discussion of the

two-level atom. 'In this case, the underlying symmetry group o.iew of these groupgand their generalizatiorBUN) and

that .can. explain the constants of motion $EU(N)..The SU(M,N)] as well as their algebras. The short review of the
Hamiltonian of theN-level atom can be expressed in terms b amatical properties &U(N) andSUM ,N) will be lim-

of the group generators GUN), qnd the -dynamlcal var-ited to aspects relevant for the study of exciton dynamics
ables of the system can be associated with these generatogiscyssed in the latter chapters of this paper. We will also
Hioe and Eberly have shown how to exploit the properties ofeview some known aspects of the relationship between the
the su(N) algebra in the formulation of the equations of mo- groupsSUN) andSUM, N) and their algebras and physical
tion of the dynamical variables of alevel systent®?°and systems, notably that betwe&t(2) and the two-level atom.
how one can obtain conservation laggenstants of motion  Thjs will help lay the foundation of the discussion of the
corresponding t&UN). application ofSU(N,N) to a bosonic description of excitons.

In our case, described by tiNeexciton mean-field Hamil- The groupSU(2) is the group of all two-dimensional uni-
tonian, the underlying symmetry group is ®t(N). It has tary matrices with unit determinant
been shown by Huard§that, in the case of a single-species
weakly interacting Bose system, the underlying symmetry uP@ty@ =1, defu@}=1 (1)
group isSU(1,1). This group is well known in the context of
guantum optics, and a generaliz8tl(1, 1) Bloch vector has or more explicitly
been formulated by Dattokt al3!

It is therefore natural for us to ask whether our mean-field U@ = ( a B ) |a|2 + |ﬁ|2: 1
Hamiltonian, which is a Hamiltonian for aN-species exci- -g a) ’
ton system and includes, besides exciton-exciton interaction,
effects of optical excitation as well as fermionic corrections,wherea and 8 are complex numbers. We use the superscript
can be associated with the symmetry gr&&ig(N,N). If so @ in our discussion 08U(2), while the superscrigf? will
(and we will show that this is indeed possiplene can de- be used below in the discussion 8tX1,1). The three gen-
rive a generalized Bloch vector and relate it to the expectaerators ofSU(2) can be chosen as
tion values of the dynamical variables of inter@stthis case
the exciton momentum distribution and the biexciton ampli- L}Z) =05, j=1,2,3, (3)
tude. We will show that, similar to the case of a two-level
atom, one can define a generalized Bloch vector and genethereoy’s are the Pauli matrices
alized Bloch hypersurfacéot a sphere in this cagahich i
yield immediately information about constraints on the dy- _ (0 1) _ (0 - ') _ (1 0 )

) X . i o= , oo=| . , O3= . 4
namics of the dynamical variables. Moreover, we will show "1 0 27\i o \o -1
that the method employed by Hioe and Ebé&tly determine
higher constants of motion based 8t(N) can be general- The matriceS{L}z),j =1,2,3 obey the commutation relations
ized to SUN,N), even though the generalization will have 5
important mathematical differences compared to the Hioe L212]=23 §§12ﬁ|-|(2)-
1=1

Most of the general mathematical properties of the groups
U(2) and, to a lesser degr&iJ)(1, 1), are by now text book
nowledge(see, e.g., Ref. 32 However, we believe it is
useful for the purpose of this paper to start out with a brief

(2)

Eberly method. (5)

This paper is organized as follows: in Sec. Il, we briefly

review the basic concepts of the groups(2) andSU(l,l)_ where thegﬁf are antisymmetric under the interchange of
[including generalizations t8U(N) andSUM,N)] and their any two subscripts an6(122)3:1. TheL®s form a basis of

algebras; in Sec. Ill, we study the structure of the effectivey,q su(2) algebra, whose elementthe linear superpositions
mean-field Hamiltonian of a general spatially homogeneous

2), . . - )

exciton system and relate it to tte(N,N) algebra. This OT L S with arbitrary “‘-‘?'. coefnc[en)s are the two
: . . dimensional traceless Hermitian matrices, i.e.,

su(N,N) dynamical algebra allows us to write the mean-field
equations in two equivalent forms. One is a generalized L@t=1@  THL@}=0. (6)
Bloch vector form, and the other is a matrix equation thatis ’ _
formally analogous to the Liouville equation for a density ~ Similarly, the groupSU(1,1) is the group of all two-
matrix (but we stress that the analogy is only formal and onlydimensional matrices satisfyifiy
useful for the derivation of the desired constants of mgtion
In Sec. IV, we use thg“density matrix”) equatipn obtaingd Ut 1 0 UG = 1
in Sec. Ill to study higher constants of motion associated -1 0
with the su(N,N) symmetry. A brief summary is given in
Sec. V. or more explicitly

_01>' de(Uti=1 (7
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N(2N-1)
o
U<“>=( - B*), o~ |B2=1. ) -
B a L= (A2 A@3)s - »A 20 A@3)s -+ »ARN-1,2M)5
The three generators of the gro8p(1,1) can be chosen in
terms of the Pauli matrices as BuayBasy - Buan By - Ban-1,m)
L](u) - 7]](11)01_' 7](111) = 7,(211) =i, 77(311) =1 (9 N(QN-1)
with the commutation relations Cay ---»Can-1)s (16)
3 71D 710 -1
— o ' h
[L}11)1 Lgll)] = 2'% g}ﬁl)_lm(l—l)l-l(ll)- (10) where
— A
The SU(1,1) generators in Eq(9) form a basis of the (A v = el Sumin + Gundom),
su(1,1) algebra, whose elemengthe linear superpositions lsm<n<2N,
of L™s with arbitrary real coefficienys are two-
dimensional matrices with the following properties: (Bmn) ur = ,7:?1”(_ D(8umOun= 8undum), I=m<n<2N,

L(ll)T<1 0 ):(1 0 )L(ll), L™} =0. (11 2
0 _1 0 _1 (C(r));/,y: méﬂv(5u1+5ﬂ2+ e +(5,ur_r5p, r+1)1

The similarity between definitions given in Eq4) and
(2) and those in Eqg7) and(8) suggests that we can define Isr<2N-1, 17
both groups/algebras in a unified way:

UTG - LTG =GL nrAnnz 77:?1”: i[@)(N—m)—@)(N—n)]/Q, @(m) _ {1 m=0
Group: Algebra: (12 -1 m<o.
defU}=1, Tr{L}=0
(18)
The commutation relations df are
(1 0) for SU(2) (2N)2-1
or -
_ _ T —
G= 01 (13) [LaLl=2i X §hj|h_l|-|. (19
(1 0 ) for SUL,1) =1 )
0 -1 or D).

where & are antisymmetric under the interchange of any

If we consider the group members as operators acting in gNO subscripts and

two-dimensional linear space, they conserve the “lengths” of 1= (s s oo s T ons Tz e s a1 o
vectors ’ ’

N(2N-1)
2

t= 2 Gijxi x; = x'Gx, (14) 77?2, 77?3, cees 77113,2N’ 771233, cees 77123N—1,2N’ L...,1).
=1

N(N-1) 2N-1 - (20)

wherex is any two-dimensional column vector a@dcan be . -

viewed as the “metric matrix.” TheL;'s defined in Eq(16) and the unit matriX satisfy the
The definition given by Eq(12) can be naturally gener- following orthogonality relations:

alized to theSUM,N) [with SUM)=SUM,0)] group/ o - o o

algebra, i.e., th& UM ,N) group/algebra is defined as the set  Tr{L/L;}=28;, TrL{I}=Tr{I"L;}=0, THITI}=2N,

of all (M+N) X (M+N) matricesU/L satisfying(12) with (22)
([ Tmxm 0 which will be used to prove Eq63) at the end of the fol-
G= 0 —lyxn/' (15 lowing section.

We now turn to the physical application of tke(2) and
wherel is the unit matrix. su(1,1) groups/algebras. We start from a two-level quantum
The definition given by Eq(12) for the SUM,N) group/  system, where the Hilbert space is spanned by two orthonor-
algebra is rather abstract, and a more explicit form of thismal states|1) and |2). The four operatorsi)(j| (i,j=1,2)
group/algebra is usually desirable in practical applicationsform a complete basis for the linear operators of the system
For the purpose of this paper, we write down an explicit formin the sense that any linear operator of the system can be
of one set ofSUN,N) group generators which form a basis written as a linear superpositigvith complex coefficients
of the suN,N) algebra, of these four operators. Equivalently, one can use the basis
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L@ = 111y2] + [2)(1 , L@ = _if1y2] - |2)(1 , ture, thg operators i.n Eq26) are actually dgfined in a
v = {102+ 261} 2 {12 - [2xal higher-dimensional Hilbert spa¢Eock spacg This operator
2 A2 representation has its application in the Hartree-Fock theory
Ly’ =[101 - [22], N¥=[1)1[+[2X2],  (22)  of electron-hole systems in semiconductors, which can be
which has the advantage of revealing #1#2) dynamical treated as a coupled ensemblesaf2) subsystems analogous

structure of the system. To see this, we first note that thd? two-level atoms: in the Hartree-Fock theory, for each
~2). . . . center-of-mass momentuknthe corresponding “two levels
{L:”;j=1,2,3 in Eg. (22) satisfy the same commutation

' of an electron are the conduction and valence bands.
relations as the generators of t8&A2) group[see Eq(5)]. The SU(1,1) case is more complicated. We note that the

Thus they form a representation of the set of generators, E,_gimensional matrix representaticre., the original defi-
(3), and are a basis of tt&(2) algebra. Moreover, thEJ@’S nition) in Eq. (8) of the SU(1, 1) group isnot unitary. Actu-
commute withR®: ally, because of the noncompactness of the grdujl, 1),
. there is no finite-dimensional unitary representation f&¥ it;
[L? N®]=0. (23)  as a consequence there is no finite-dimensional Hermitian
é(_epresentation for thesu(1,1) algebra. Since in standard
guantum mechanics, the Hamiltonian is Hermitian, we do
ot expect the dynamical algebra of a finite-dimensional
quantum system to beu(l,1). However, in the infinite-

We have already mentioned that, because of the complet
ness of the basis statél$ and|2), any linear operator of the
system, including the Hamiltonian, can be written as linea

L. " (2), (D).
superposition of thd"; "s andN®: dimensional bosonic Fock space, we do have a unitary/
3 . 3 . Hermitian representation for trs1,1) group /algebra. For
0= oL? +0X?, H=X2 hL®+hX?. (24)  example, in quantum optics it is well known that there are
=1 =1 two-mode electromagnetic fields whose Hamiltonian, written

In other words, any linear operator of the system is a superin terms of bosonic creation and annihilation operators, is a
position of theIA_sz)'s andR@ with complex coefficients, and linear combination of theu(1,1) generator¥

the (Hermitian) Hamiltonian is a superposition of tHAé]z)’s LY =i{blbl - boby}, LY =blb} + byby,
andR®@ with real coefficients. Equatio(23) means that for
the most general Hamiltonian of a two-level system, which is I:gll) _ BIBH 6562 +1, QD = 6{61 _ B;Bz. 27)

a linear combination of thd:.fz) and R@ with real coeffi- )
T (1),

cients, theR? part does not contribute to the equations ofAgain, the Li*"'s defined in these equations all commute
motion, because it commutes with any linear operator of thavith XV, and satisfy the commutation relations of the

system.}}(z) itself is a constant of motion su1l,1) generatorg10), thus giving aHermitian operator
representation of theu1,1) algebra.
Q§¢<2) =0. (25) The above discussions can also be generalizesii)
dt andsuM,N), respectively. For the purpose of this paper, we

only write down the operator representation of #u€N, N)
generators in Fock space. Given two sets of bosonic creation
and annihilation operatorga,,al},{€,,&l} (u=1,2,... N)

that fulfill the commutation relations

Since the operaton:cfz) defined in Eq(22) also satisfy the
same commutation reJIations as those given in (By. they
form an operator representation of the basis of $u?)

algebra. Now, other than a term proportionalN@, which

commutes with any linear operator of the system, the Hamil- [éu,él,] = Suu's [éu,éz,] =8y, oOthers=0, (28

tonian is a linear combination with real coefficients of the

threesu(2) generators. Thus we conclude that the dynamicawe can construct the operator representation for the basis of

algebra of the two-level atomic systemsig(2). the suN,N) algebra, for which we already have given a
Equation(22) is the operator representationsif2) alge- ~ Matrix representatiofsee Eq(16)]. The operator represen-

bra in the first quantization picture. Going to the second@tion can be written as

quantization picture, we replace the Dirac states by creation NQ@N-1)

and annihilation operatofwhich can either be bosonic or .

fermionicy: L=(Aq2,A013) - A om»A@3)s -+ ARN-1,28)»

L?" =blb, +blb;, LP’=(-i){bjb,- bjb,}, o . . .
B12):B13)s -+ 5B onysB23)s + -+ 5B an-1,23)
f_gz)/ = 6161 - BerE)z, R@’ = 6161 + 6;62 (26) N@N-1)

In this way, we construct an operator representa{fofﬁ)’} A A

C(l)’ cee ’C(ZN—I))

for the su(2) algebra in Fock space, all of which commute

with X@’. Note that, although we start from a two-level V-1
representation and then pass to the second quantization pieith

(29)
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approximated to account only forsExcitons. This way of
constructing the bosonic exciton Hamiltonian yields explicit
expressions for the interaction and coupling matrix elements.

A(mn) = 77'r?1n(|:)(mn) + P(nm)): lsm<ns 2N,

é(mn) = nﬁn(— i)(|5(mn) - |5(nm)), Ism<n<2N, However, the discussion in this paper does not depend on the
details of the matrix elements in the Hamiltonian. Therefore,
R 2 . R R R we will base our discussion on a Hamiltonian of the follow-
Cn= r(r+ 1)(P(11) + Py * -+ Py = P 1), ing general form
1<r=2N-1, (30) H=HY+H? +HO + {4,

where 7B is defined in Eq(18) and - - N
o H® =2 e;(kybf(kpby(ky),

ala, 1sm=<N, 1<n<N ke
5 aler . 1=m=<N, N+1<n<2N
(mn) = n 1
mn _Cm_Nan, N+1=m=<2N, 1sn=<N H(4):_ E {lejzjj(k"'qk)bT(kl"'q)
—BmnCly, N+1=m=<2N, N+1<n=2N. kykod.a
(31) xb] (k= a)b] (ko)b] (ky),
One can prove that the operators in EB9) satisfy the
same commutation relations as the matrices in(E6): G :2 {Qj(t)bj‘r(o) + Q! (H)b;(0)}
(2N)2-1 _—
[Ln,Li]=2i > §hj|71|—|- (32)
1=1

! HO= > {lejzjéji(ﬂjzjlkl"'qa/-’*jéjikl)
Thus the operators in Eq29) are actually the operator rep- kKiQo

resentation of the e_Iements in E4.6) and form a basis of _ w<bf (kl+q)6fr (- q)Q-r(t)B-r(kl) +H.c),
thesu(N,N) algebra in Fock space. Note that the operators in 1 l2 I

Eq. (29) are Hermitian because of the unitarity of the opera-

tor representation of th8U(N,N) group. Also all the opera- k= p,j Ki=myj ke K'= ,u,/,/kl i rkz,
tors in EQ.(29) commute with

2N N m
= =i i i’ i’
X=3 P tN=Z1EE -G8 69 M e, @ Unlzinld (39
m=1

We will use this representation when discussing the dyHere,m; is mass of the exciton of specija,sandf) andb' are
namical algebra of thé&l-species exciton mean-field equa- bosonic exciton annihilation and creation operators, respec-
tions in the following section. tively:

[bj(k),b], (k)] = & S,

Ill. THE su(N,N) DYNAMICAL STRUCTURE OF THE
BOSONIC MEAN-FIELD EQUATIONS FOR EXCITONS “ ~ ~ ~
_ . . _ [b;(k), by (k")]=[b](k),b/,(k")]= 0. (35)
In this section, we show that the effective mean-field
Hamiltonian of anN-spemes exciton system In a SeMICon- » Hamiltonian (34), I:|1 is the dipole coupling to the light
ductor quantum well is a sum of sub-Hamiltonians with
suN,N) dynamical algebras. This leads to the equations 0f|eld H2 is the kinetic enerng3 is the exchange correction
the generalized “Bloch vector” and “density matrix” of the t0 Hy, andH, is the boson-boson interaction. Furthermare,
system, both of which are equivalent to the mean-field equals the single-particle kinetic energy, is the two-particle in-
tions obtained directly from the original Hamiltonian. They teraction matrix{}/# is the Rabi frequency of the light field,
can be used to study the conserved quantities associated widJ is the third-order correction of the exciton-photon cou-
the suN,N) algebras, as will be discussed in the following Pling coefficient related to the four-exciton wave-function
section. overlap matrix. The single exciton states are labeled by in-

As mentioned in the Introduction, the excitons are treated?lane wave vectors or momeng’s and g's) and internal
as exact bosons with the exchange effects of fermionic conguantum numberg’s); the zero momenta |h11 reflects the
stituents being included in the Hamiltonigme., in the fact that we are dealing with normal-incidence irradiation of
boson-boson interaction and boson-photon coupliidne  the quantum well, i.e., the light creates only excitons with
bosonic Hamiltonian has been designed in a way that izero in-plane momentum.
yields the same nonlinear interband polarization in the third- The dynamical variables of the system are constructed to
order regime as a more rigorous fermionic theory which isbe consistent witlfin-plane@ momentum conservation
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b.(t) = (bi(k = 0)) upper half of thek “plane” (i.e., {k|k,=0}), and
J J ’

I . Ay, KD = e, (K) 8+ 20 AV, (e K = g o0l K
Fi (6.0 = (B (k)b (K)) = (B (0))(b; (0)) &0, B T A

= By * Vi (g5, K ~ 050 0~ g KO}

F2 5, (k1) = (b, (= k)by (K)) = (by,(0) )by (0)) &0, (36) CE @D+ S Vo (o Ko K)
TN YIS PA G M PR Y ad 1P

whereb(t) is related to the coherent exciton amplititugie- i’

terband polarization F is related to the optically inactive Vo (wo Ko=w KO (Db (t
exciton density, andF? is related to the coherent biexciton i (43K~ 1K) 703 (DD
amphtud.e. The megn—fleld equgnons for these Yarlablgs can +2> {3 0, K gy OB (D (0)
be obtained by using the Heisenberg equati@iv/ O i’

=[O, H] for any operatoO) and the random-phase approxi- +3 (iv K i K)b (D (D)}
mation, as illustrated in Ref. 26: first calculate the commu- e

tators on the right-hand sides of the Heisenberg equations for

bj(k=0), b;rz(k)bjl(k), and bjz(—k)bjl(k), then take the ex- AJ?’J.
pectation values of the equations and factorize the right-hand v
sides into products of the variables defined in E3§), con-

1 a

sistent with the momentum conservation. However, it can be +E Viljzj’J(k’O)bJ(t)bj,(t)

equivalently treated in another way: we first linearize the i’

Hamiltonian, Eq.(34), into products of the variables in Eq. +25 3 (K0 (Dbt

(36) and one or two creation/annihilation operatofshe % uai'i (K O (VB

momentum conservation requires that these operators can

only be bj(kZO),bsz(k)bjl(k),bjz(—k)bjl(k).] Then we put A2 (k t) =AY (k t) + AR (_ k t). (38)
IFIPA Jhot ! 12 !

this linearized Hamiltonian in the Heisenberg equations and
take the expectation values of these equations. These twkhis leads to the following mean-field equations FoandF?2
ways of obtaining the mean-field equations are equivalent,

but the latter can give more insight into the symmetry prop- ih—F(k,t) =[Ak,1),F(k, )]+ A%k, H)F(k,1)
erties and related conservation laws. at
In this paper we focus on the equations fgr; (k) and — Fa(k, ) AZ (K, 1)

Ff‘ljz(k) with nonzerok, since, as we will see later, the main

point of this paper does not concern the equatiorb;ofin 9

other wordsb; can be formally taken as an external param-ifi—-F(k,t) = A(k,)F3(k,t) + Fa(k, ) AT(- k,1)

eter. Among all the terms in the linearized Hamiltonian, only

those containing two operators contribute to commutators in + A3(K,DFT(= k,t) + F(k, ) A%(K,t) + A3(k,1),
the Heisenberg equations fbfz(k)bjl(k) and bjz(—k)bjl(k), (39)

since any single operator term is proportionaltiék=0) \yhereF, F2, A andA® are matrices with elements defined in
which must commute with operators with nonzero momentag s, (36) and(38). The superscripts T ariidenote the Her-

This fact, together with the arguments on the linearizeqpjtian conjugate and transposition, respectively. From the
Hamiltonian in last paragraph, we have the following effec-gefinitions of these matrices we have

tive Hamiltonian for the nonzero momentum excitons:

. o FTk,t) =F(k,t), AT(k,t)=Ak,1),
Herr= 2 Aj,(K,0b] (K)by (K)

jaiak Fa T(-k,t) = FKk,t), A®T(=k,t)=A%K,t). (40)
+ > {Afl’j’;(k,t)ﬁjl(k)f)jz(— k) +H.c} The Hamiltonian given in Eq.37) is a sum of sub-
Jaak Hamiltonians of differenk pairs
— nt K " -
=2 {Ajljz(k’t)bil(k)biz(k) Hett= 2 Heir(K)
ja2(k)’ ®)’

+A; . (-k,0bf (=K)b; (-k) . . .
e e Flers(k) = 3 {Ay 5, (k. DB, ()b (k) + A j (kOB (— k)

*

+ A%, (kDb (K)by,(~ k) Iz o
Ay o xb (=k)+ A% (k,t)b; (k)b (-k
AL (B! (0B (- k), 37 110 A6 0B (B
a ~t nto_
where (k)’ means that the summation is restricted to the +Ailiz(k't)b1'1(k)biz( K)}- (42)
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Eachl:|eff(k) in Eq. (41) is a linear combination of the fol-
lowing operators:

bf (k)by,(k), bf (~k)by,(~ k),

by, (~ K)by,(k),  bf (K)b] (k). (42)
With the substitution
a=bik), &=b-k (43)

it can be shown thafpr eachk pair, every operator in Eq.
(42) is linear superposition of theuN,N) generators in Eq.

(29 andX in Eq. (33) (plus an additive term proportional to
the identity operatgr Therefore, the Hamiltonian given in
EqQ. (41) can be written as

(2N)2-1

A i - -
> Tk, Lk) + EHO(k,t)N(k) +y(k, D)l

ﬁeff(k) = E
j=1

(44)

The Hermiticity of the Hamiltonian requires that all the co-

efficients (I}, Iy, y) in Eq. (44) are real. Moreover, since

&(k) andc-numbery(k ,t) commute with aIII:j(k)’s, the last
two terms in Hamiltonian(44) do not contribute to the dy-
namical equations of the operators in E42) and can there-

PHYSICAL REVIEW B 70, 195319(2004

[N(K),Her(k)] = 0. (48)

The mean-field equations fdr and R are then easily ob-
tained by using the Heisenberg equations:

J -
—Rwp=0, (49)
P (2N)2-1 _ A
prUSCUEEDS &I, 0 1 (k). (50)
|,h=1 Yi

To get a completely antisymmetric equation, we define

. Li(k
Sik) = —J% [i(k,t) = g1T;(k,t). (51
J
Substituting Eq(51) into Eq.(50) leads to
P (2N)%-1 A
5(%(k)> = IhE &inln(K,0(S(k)). (52
,h=1

Equation(52) [together with Eq(49)] is the antisymmetric
form of the mean-field equations fdf and F2. It is the
bosonic counterpart of Bloch vector equations in the atomic
N-level case(for example, in the two-level case it is the
equation that has the familiar “torque” structuds/dt
=yXx3§, which is crucial to the understanding of the time

fore be ignored. The effective mean-field Hamiltonian is nowevolution of the systef). Equation(52) allows us to intro-

(2N)2-1

> Ik, L (k).

=1

Hers(k) = > (45)

It is obvious that this Hamiltonian has the dynamical algebr

of suN,N).

duce the concept of the generalized Bloch ve¢&k)) in

the case of excitonic mean-field dynamics. We note that the
fermionic counterpart of the semiconductor generalization of
the Bloch vector has been discussed in the context of the

Hartree-Fock approximatiorfgsemiconductor Bloch equa-

tions) (see, for example, Refs. 35 and)3Bhere, the dynam-

In the remainder of this section we cast the mean-fieldcg of the generalized Bloch vector is governed by a torque

equation(39) for F andF? into two other equivalent forms,

equation analogous to that of a two-level atom with the fa-

the generalized Bloch vector and the generalized density mayjiar SU2) as the underlying symmetry group.

trix equations. Both of them will be found useful in identi-

One conservation laws follows, in an obvious way, imme-

fying conservation laws inherent in the mean-field equation%“ate'y from Eq.(49) [indeed, Eq(49) states the conserva-

(39). This is in complete analogy to the case of tiidevel

atom, where Hioe and Eberly derived conservation law:

from the Bloch vector and the Liouville equatioffs.

We begin with deriving the Bloch vector equation. We
will define the generalized Bloch vector, analogous to the

definition in Ref. 28 for the atomibl-level system. For each
k-pair, the set olL;(k) andX(k) obtained from substituting

gion of the quantit;(&(k))]. Another conservation law can be

obtained from the antisymmetry of E¢2), which yields

(2N)2-1

> (SK)XS(K)=0.

i=1

P (53

>

Eqg. (43) into Egs.(29—(31) satisfy the same commutation Equation(53) says that the generalized Bloch vect&tk))

relations as those in E@32):

(2N)2-1
[Lhk),LkI=20 S fh”—l”“m” LK), [Lik),8K)]=0.
=1

(46)
This implies
(2N)2-1
[L;(K), Her(K)1 =i Ia s,»hﬁfnh(k,t)ﬁ.(kx (47

moves on a hypersurface

(2N)2-1

> (S(k)XS(K)) = const. (54)
i=1

The properties of this hypersurface are very different from
those in the atomid\N-level case, because some components

of (é(k)) are imaginary. Instead of a hypersphere as in the
atomic N-level case, the hypersurface where the generalized

Bloch vector for excitons(S(k)), moves isunboundedWe
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will discuss the structure of this surface more specifically aiye now dEfineEO(k):2(5':)2_1«':]('(»?]'/7]j2) which simpli-
the end of the following section. fies Eq.(57) to !

Equations(49) and (53) are the two lowest order con-
served quantities associated with &N, N) symmetry. In 0= — —
order to obtain higher order constants of motion, we make 'hERO(k) = My (k). Ro(k)]. (58)
use of the RIX 2N density matrix formalism analogous to
that of theN-level atomic systenisu(N)).28 To this end, we It is interesting to note that this equation has the form of the
note that the;’s in Eq. (16) and theL's in Eq. (29) are both Liouville equation for the density matrix
representations for th&(N,N) algebra. The former is a rep- d_ —
resentation in the infinite-dimensional Fock space while the Iﬁd_tp: [H.p] (59
latter is a representation in &Z2limensional space. For rea- o
sons that will become apparent at the end of this section, wg we formally make the correspondendé,«—H, Ry— p.

candefinea matrix(which we will call “quasi-Hamiltoniany However, neitheR, nor My, has the standard interpretation

in the following way. We replace the;'s in the original  oq that in the quantum mechanics. Actually, unlikend p
Hamiltonian[Eq. (45)] by their counterparts of@@X 2N ma- | . . L . e
jn the density matrixor Liouville) equation, neitheR, nor

trices. For practical purposes, namely to make the explici
form of this quasi-Hamitonian simpldsee Eq.(64) in the My is Hermitian because theN2< 2N representation of the
following sectior}, we also add a term proportional to the suN,N) algebra(L;) is not Hermitian. Thus, Eq58) does
unit matrix |. We then have the definition not define a complete quantum mechanical problem. It is
merely a convenient way to rewrite the mean-field equations

_ (@21 — 5 _ of motion for the exciton momentum distribution and biex-
Mu(k) = > > Mk, L+ EHo(k,t)L (55  citon amplitude which were orginially given by ER9).
=1 We have derived Eq58) from Eg.(50). Conversely, one

— . — . . . can also obtain Eq50) starting from Eq(58), thus we con-
Clearly, My(k), just as theljs, is a N X 2N matrix. This clude that Eq(58) and Eq.(50) are equivalent to each other.

quasi—Ham.iItonian. will play an importan_t role in theN2 However, onlytogether withEq. (49) is Eq. (50) [or Eq.
X 2N density matrix equation we are looking for. Indeed, We(5g)] equivalent to the original mean-field equations Egs.

will show now that the Heisenberg equatiditsq. (S0)] can  39) for F and F?, and it is more convenient to have an
be cast into a form similar to a Liouville equation, in which equation[having the same form as E(58)] which itself is

My(k) plays the role of the Hamiltonian. equivalent to Eqs(39). To this end, we define another den-
The commutation betweel's and M are the same as sity matrix
those given in Eq(47) ~
o= (N(k))
- @ B RKO=Z| Rok)+ | = =1)I [ (60)
Lh=1 Y The factor; and the constant -1 in this definition are only

: for practical purposes to simplify the explicit form Bf[see
We can now use Eq50) [together with Eqs(55) and(56)] . - ; .
to derive the RIX 2N generalized density matrix equation. Eg. (64) in the following sectiof Equations(58) and (49)

— i diatel t that
Multiplying both sides of Eq(50) by L,—/77j2 and summing immediately suggest tha

over the index, we have 0= — —
ifi—R(k) =[My(k),R(k)]. (61)
p (2N)2-1 Ii-(k))f (2N)2-1 - It
- > ==y §jh,Hh(k,t)ﬂ<L,(k)>L1 Although Eq.(61) looks almost the same as E@S), Eq.
It j=1 7 jlh=1 77 (61) itself is equivalent to Eqs(50) and (49). Using the
(@2N)2-1 @ (k)>(2N)2—1 definition for R(k) [Eq. (60)] andMy(k) [Eqg. (55)], one can
= > '—2 > (- éinj) prove this by showing that one can obtain E@£) and(49)
I=1 kel starting from Eq.(61). Thus Eq.(61) is equivalent to Egs.
M Thi (39 —
XIp(k, ) =L, An immediate result from Eq61) is that the trace oR",
, y for any k and for non-negative integer, is a constant of
@1 - motion
Lk 1 = ——
= 2 o IMyko.L] .
=7 TRy =0. (62)
@N2-1 ~ at
BER vl (O . . . .
T H(K), < 77|2 . This should clarify the reasons for casting the Heisenberg

equations of motion into a form analogous to a Liouville
(57)  equation[i.e., Eq.(61)]. In particular, Eq(62) suggests up to
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2N constants of motion. This is because for-2N there 1'%, we obtain the quasi-density matrix and quasi-
should be no more independent constants of motion. We wilHamiltonian matrix entering Eq61) as
express these constants of motion in terms of physical quan- a
tities in the following section. E(k) =( F(k) —Fk) )
Using Eq.(21) one can easily show Ffk) -F'(-k)-1/"

(2N)2-1

TR=®-N TR= 3 @&+ 5 (-N72 o= A0 AW,
i=1

-A%¥(k) -AT(-k)
(63) Equation(64) expresses the density matrix and Hamiltonian
Substituting Eq(63) into Eq.(62) leads exactly to Eqg49) in terms of the physical quantities. It helps us to make the
and(53), the two lowest-order constants of motion. physical contents of the constants of motion more clear. With
' Eq. (64) one can also easily check that E¢39) and(61) are
equivalent.

We now consider the constants of motion given by Eq.
(62). Forn=1 we have

(64)

IV. CONSTANTS OF MOTION OF THE MEAN-FIELD
EXCITON EQUATIONS ASSOCIATED WITH THE
su(N,N) DYNAMICAL ALGEBRA

In this section, we use E¢62) to get the explicit forms of iTr{E(k,t)} = i[Tr{F(k,t) -F(-k,H)}=N]
some higher order conserved quantities. Up to now, the at at

quantities in Eq(62) have been defined in an abstract way. 9 -

Now we will write them down directly in terms of the exci- =—(N(k,t))=0. (65)
ton momentum distributiofr and the coherent biexcitation gt

amplitudeF?2. Using the definitions oR, I\WH, F,F3, T',and Forn=2 we have

Rl = ( F2(k) - F3(k)Ff(k) - F(k)F3(k) + FA(k)FT(- k) + F&(k) ) 66)
TR = FT= R (0 - Fk) = F(F3(K) + (FT(= k) + 1)
[

Therefore, second-order constant of motion together with the reflection
0 — P symmetry gives TiR®}=const(without the inversion sym-
—Tr{R%(k,t)} = —Tr{F(k,t)? + [F(- k,t) +1]? metry this is not true and the third-order constant of motion
It gt is independent of the first tyoForn=4 a somewhat lengthy

- 2F31(k,t)F3(k,t)} = 0. (67) but straightforward algebra leads to

Note that the above two constants of motion come directly a at 5

from the suN,N) symmetry, e.g., then=1 case holds, ETr{[F(k,t)(F(k,t) +1) = FAk, R (kD]

whether the system has spatial inversion symmetry or not. If . . :

the system has spatial reflection invariance - 2F(k,)F3(k, )[F'(k,t)F(k,t) = F (K, )F* (k, )]}

F)=F(-k), Fi(k)=F-k) (69 =0 (79

then then=1 case is trivial. Fon=2, Eq.(67) is in this case Similar steps can be used to get all the other higher-order

simplified to ' conserved quantities. Note again that onkg 2N give inde-

pendent constants of motion.
As an example, we now treat the case where we have only
one species of excitons, i.Bl=1, in more detail. Equation

(69) is then reduced to
The counterpart of this constant of motion is familiar in

atomic two-level systems as well as fermionic cases, such asl + f(k,t)]f(k,t) — [f2(k,t)|? = const(independent of time),

%Tr{F(k,t)(F(k,t) +1) - F(k,H)F3(k, 1)} =0. (69

the electron-hole Hartree-Fock equations, also known as (71)
semiconductor Bloch equatiorisee, for example, Refs. 35
and 36 and pp. 323 and 391 of Ref.)37 wheref and f are simplified notations foF,; and F§,, re-

For simplicity, we will assume spatial inversion symme- spectively. The counterpart of E¢71) in the electron-hole
try, Eq. (68), when discussing the higher-order conservedHartree-Fock systeni{semiconductor Bloch equationss
guantities. Fon=3, the case is again trivial in sense that thewell known (again, see, for example, p. 391 of Ref)37
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ne(k,1)(1 —ng(k,1)) = |P(k,t)|*>= const, (72 @

wheren, and P are the electron occupation number and in-
terband polarization, respectively. Equatior?) is essen-
tially the same as Eq2.37) in Ref. 27 of a two-level atom
system

u?(t) +v2(t) +wA(t) =1 (73
if we make the correspondence

W 2ny(k) =1, u+iv < 2P(k) (74)

A4

which, as already mentioned, implies that the Hartree-Fock 1f ®)
electron-hole system is a coupled ensemble of subsystems '
(for differentk’s) analogous to atomic two-level systems. /

The sign difference in Eqs(71) and (72) makes the ,
behaviors of the quantities in these two equations qualita- / a
tively different. To see this, we takéRef?,Imf2,f) or s )/ Im f
(ReP,ImP,n,) as the three components of they,z) coor- 4 .
dinates in an abstract three-dimensional space. Then, Eq. >
(71) says tha(Ref?,Imf?,f) lies on an unbounded hyperbo- Re f*
loid, while Eq.(72) says thatReP,ImP,n,) is restricted to a
sphere(which is well known as the “Bloch sphene'Figure FIG. 1. (a) Schematic of the conventional Bloch sphere restrict-
1 illustrates this qualitative difference graphically. It comesing the motion of the Bloch vector of two-level atoms and fermi-
from the qualitatively different dynamical algebras of the onic systems described by tial populationn; and the complex
two systemssu2) in the case of the electron-hole system polarizationP to a spherdsu(2) algebrd. (b) The excitonic analog
andsu(1,1) in the exciton case. to the Bloch spheréa hyperboloigl restricting the motion of the

While formally the motion of the generalized excitonic generalized Bloch vector of an excitonic system described by the
Bloch vector is on an unbounded surface, one should notgea) excitonic populationf and the complex two-exciton ampli-
that physical reasons put a restrictrion on the actual motiofide f* to a hyperboloidsu(1, 1) algebr.
on this surface. The underlying assumption of coherent ul-
trafast exciton dynamics governed by the mean-field equasystem. An explicit method to obtain all the constants of
tions of motion restricts the validity of the model to rela- motion associated with theuN,N) algebra has been given.
tively small exciton densities, which in turn limits the The qualitatively different behavior of the generalized Bloch
dynamics of the excitonic Bloch vector to lie within a limited vector of the exciton system, compared to that of the Bloch
region on the unbounded hyperboloid. vector of the electron-hole system, is thus explained by the
difference between the dynamical algebras of the two sys-
tems. To conclude this paper, we remark that the same
method we use in this paper to get the conserved quantities

In summary, we point out that the momentum-conservingesulting from the dynamical algebra can also be applied to
exciton mean-field equations, including the coupling to ex-multiband electron-hole systems, of which the dynamical al-
ternal fields and fermionic corrections, have the dynamicagebra issuN).
structuresuN,N). We have shown that one can define a
non-real generalized Bloch vector and a non-Hermitian den-
sity matrix description, which allowed us to investigate the  This work was supported by DARPA, ONR, JSOP, and
symmetry properties and related conservation laws of th€OEDIP.

V. SUMMARY
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