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Microdisk resonator with a linear defect at some distance away from the circumference is studied theoreti-
cally. We demonstrate that the presence of the defect leads tosid enhancement of the output efficiency andsii d
directionality of the outgoing light. The dependence of the radiative losses and of the far-field distribution on
the position and orientation of the defect are calculated. The angular dependence of the far field is given by
Lorentzian with a width that has a sharp minimum for a certain optimal orientation of the defect line. For this
orientation the whispering-gallery mode of a circular resonator is scattered by the extended defect in the
direction normal to the disk boundary.
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I. INTRODUCTION

The idea to use a microdisk geometry as an alternative to
the Fabry–Perot cavity in a resonator design for a semicon-
ductor laser was introduced a decade ago.1 The advantage of
this geometry is that the losses for the whispering-gallery
modes of a circular resonator are governed by evanescent
leakage and, thus, can be very low. Namely, for a mode with
a maximal angular momentumM =nk0R, where then is the
effective refraction index,R is the resonator radius, andk0 is
the wave number of the radiation, the quality factor,Q, with
exponential accuracy is given by

ln Q = 2k0Rfn lnsn + În2 − 1 d − În2 − 1g. s1d

The value of the effective refraction index is determined by
the disk thickness and the indexes of an active and surround-
ing passive layers. In the pioneering paper Ref. 1 the effec-
tive index wasn<2, while k0R for the smallest microdisk
was <6. Then Eq.(1) yields Q<53105. Experimentally
measured values ofQ are much smaller,2 Q,150.The dis-
crepancy is partially due to a prefactor neglected in Eq.(1),
but primarily due to the absorption in the active layer.1,3 With
such a highQ-value the lasing threshold for a microdisk
resonator is very low. For the same reason the output power
is also low, which is not desirable. Another serious drawback
of the microdisk geometry is that the angular dependence of
the output intensity isIscd~cos2sMcd, whereas applications
require a directed emission. In order to remedy these draw-
backs, i.e., to increase the net output without increasing the
threshold, and to convert the outgoing light into a weakly
divergent beam, two proposals were put forward:

(i) To extract the light out of the resonator by using two
parallel disks.4 The first disk with highQ contains a multiple
quantum well structure in which the light is generated. The
second passive disk coupled to the laser contains an opening
serving as a leakage source. The shape of the opening deter-
mines the directionality of the output light.

(ii ) To couple the light out by introducing either an in-
dentation in the form of the “tip of the egg”2 or corrugation5

on thecircumferenceof the disk. In the geometry,2 the whis-
pering gallery mode couples out efficiently upon traversing
adiabatically the region of the “tip” with reduced radius of

curvature. The idea underlying the calculation in Ref. 5
is that by choosing the angular period of the corrugation
equal to 2p /M the whispering-gallery mode with angular
momentum,M, can be partially redirected outwards. This is
because the diffraction of the whispering-gallery mode on
the corrugation creates a satellite with a zero angular
momentum.

A radical solution for increasing the output, and, to a cer-
tain extent, directionality, by deforming the shape of the
disk6 seems to devaluate the attempts to extract light from a
perfectly circular microdisk. This solution relied on the fact
that deformation causes a qualitative change in the light-ray
dynamics, so that the whispering-gallery trajectory of a ray
becomes unstable. As a result, the ray eventually impinges
on the boundary at an angle smaller than the critical angle,
sin−1s1/nd. This leads to a refractive escape. The improve-
ment of the directionality of the output light from a wave-
chaotic resonator was studied theoretically in great detail.7,8

The results of calculations for both “bouncing ball” and
“bow-tie” modes andnk0R<100 can be roughly summarized
as follows. In each 90°-quadrant the output light is concen-
trated within a total angular interval of about 60° with a
strong peak of width,30° and a large number of narrow
satellites.7

In the present paper we suggest an alternative approach
for improving both the directionality and the output effi-
ciency of a circular microdisk. This improvement can be
achieved by introducing a properly orientedlinear defect
away from the circumference. Proposed geometry is illus-
trated in Fig. 1. The reason why the linear defect causes
directional emission from a microdisk is the following. The
field of a whispering-gallery mode “tunnels”towardsthe de-
fect line, which then assumes a role of the secondary source.
Since the source is extended, it emits a secondary light beam
which is weakly divergent. The divergence is minimal when
this secondary light beam is emitted in the radial direction,
i.e., in the direction normal to the disk boundary. It is con-
venient to characterize the position and orientation of the
defect by two parameters, namelyr0@k0

−1, radial distance
from the edge to the circumference, andd, the minimal dis-
tance from the defect line to the disk center. As it will be
shown below, the optimal orientation of the defect, for which
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the direction of the secondary beam is radial, is determined
by the conditiond=sR−r0d /Î2. Under this condition the di-
rectionality of the output light is maximal. Below we will
demonstrate that, with exponential accuracy, the radiative
losses caused by the defect are given by

ln Q =
25/2

3
S r0

R
D3/2

snk0Rd. s2d

These losses dominate over the evanescent losses Eq.(1)
if r0!R. The angular dependence of the defect-induced
emission is Lorentzian, which under the optimal condition
d=sR−r0d /Î2, has the form

Isbd =
1

b2 + 2n2sr0/Rd
, s3d

with the width which is also governed by the ratior0/R.
Note, that although Eqs.(2) and (3) apply only fork0r0@1,
this ratio can still be quite small as long ask0R is large.
Concerning the direction of the output light beam, the angle
b is measured with respect to the line, connecting the edge of
the defect and the center of the microdisk, as it is illustrated
in Fig. 2.

The paper is organized as follows. In Sec. II we derive
Eqs.(2) and (3) within the scalar diffraction theory. In Sec.
III we discuss the limits of applicability of the theory.
Numerical estimates are provided in Sec. IV.

II. ANGULAR DEPENDENCE OF THE OUTPUT LIGHT

Neglecting the difference between TE and TM polariza-
tions, the field of a whispering-gallery mode in a microdisk
represents a solution of the two-dimensional Helmholtz
equation

EMsr,fd ~ cossMfdJMsnk0rd, s4d

wherer and f are the polar coordinates,M is the angular
momentum, andJM is the Bessel function. We assume thatM
is close to the maximal valuenk0R. Then the field Eq.(4) is
localized at the boundaryr=R within a narrow ring of a

width dr,R/ snk0Rd2/3!R. At smaller r the field falls off
towards the center of the disk as

EM ~ cossMfd expF−
23/2

3M1/2snk0rd3/2G , s5d

wherer =R−r is the distance from the boundary.
Within the scalar diffraction theory the emitted field,

caused by the presence of a defect, is determined by the
Fresnel–Kirchhoff diffraction integral, in which the source is
the fieldEMsr ,fd taken atr=rsfd, wherersfd describes the
defect profile. In the case of a linear defect(Fig. 1) we have
rsfd=d/cosf. It is convenient to introduce instead ofr a
variablex which is the distance along the defect(Fig. 1). The
relation betweenr andx is the following:

r = fd2 + sÎsR− r0d2 − d2 − xd2g1/2

= R− r0 − x
ÎsR− r0d2 − d2

R− r0
. s6d

In the second equality we have used the fact thatx!R. Sub-
stituting Eq.(6) into Eq. (5) we obtain

EMsxd ~ expF−
23/2

3
S r0

R
D3/2

nk0RG exps− axd cosfMfsxdg,

s7d

where

a = 21/2nk0RS r0

R3D1/2ÎsR− r0d2 − d2

R− r0
. s8d

In Eq. (7) we assumed thatx! r0. Indeed, the relevant values
of x are,a−1. Then the conditionx! r0 can be rewritten as
r0a,snk0Rdsr0/Rd3/2@1. We see that this condition is
equivalent to the requirement that the asymptotics Eq.(5) is
valid at r =r0. The firstx-independent factor in Eq.(7) deter-
mines the dependence of the output field on the defect posi-
tion, r0. The expression Eq.(2) immediately follows from
this dependence.

The form of the functionfsxd in Eq. (7) can be easily
established from Fig. 1:

tan f =
ÎsR− r0d2 − d2 − x

d
. s9d

Now we are in position to write the expression for the inten-
sity of the outgoing light in the directionb. It is given by the
following integral along the defect

FIG. 2. Schematic illustration of the directional emission for the
optimal orientation of the defect.

FIG. 1. Schematic illustration of a circular microdisk of a radius
R with a linear defect. The defect position is characterized byr0-the
distance from the defect edge to the disk circumference along the
radius; the defect orientation is fixed by the minimal distance,d,
from the defect line to the disk center. The direction of the outgoing
light is characterized by the angleb measured from the line con-
necting the edge of the defect to the center of the disk.
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Isbd ~ UE
0

`

dx e−ax cosfMfsxdgE
−p

p

dw exp fink0bsx,wd

− ik0R cossc − wdgU2

. s10d

The integral overw is a standard Fresnel–Kirchhoff integral.
Parameterb in the exponent is the distance from a point
source, located on the defect, to the exit point(Fig. 1)

b2sx,wd = R2 +
d2

cos2ffsxdg
−

2Rd cosfw − fsxdg
cosffsxdg

. s11d

It is convenient to express the distanceb directly throughx
andw, which can be done using Eq.(9):

b2sx,wd = R2 + sR− r0d2 − 2Rsd cosw + ÎsR− r0d2 − d2sin wd

+ 2xsR sin w − ÎsR− r0d2 − d2d + x2. s12d

Recall now that the values ofx in the integral Eq.(10) are
small, x,a−1! r0. It can also be seen from Fig. 1 that the
outgoing ray is normal to the boundary when cosw=d/ sR
−r0d. This suggests that the difference

d = w − cos−1S d

R− r0
D s13d

is a small parameter. In other words, the major contribution
to the Fresnel–Kirchhoff integral comes from smalld!1.

The integrand in Eq.(10) is a rapidly oscillating
function. This allows one to expand the phase of the oscilla-
tions

Fsx,wd = Mfsxd + k0fnbsx,wd − R cossc − wdg s14d

in terms ofx andd:

Fsx,wd = Axx + Axxx
2 + 2Axdxd + Addd2. s15d

As it was already stated in the Introduction, the maximal
directionality of the outgoing light is achieved for the posi-
tion of the defectd=sR−r0d /Î2. To demonstrate this, we
introduce a dimensionless deviation from the optimal defect
position

Dsdd =
d

R
−

R− r0

Î2R
. s16d

We will see that the width of the functionIsbd increases
dramatically withD. Rather involved but straightforward cal-
culations yield the following expressions for the coefficients
in the expansion Eq.(15):

Axd =
nk0R

2r0
S1 −

4D2

1 − 4D2D <
nk0R

2r0
s1 − 4D2d, s17d

Add = − k0RF1 −
nR

r0
S1 −

4D2

1 − 4D2DG
< − k0RF1 −

nR

r0
s1 − 4D2dG , s18d

Axx =
nk0

4r0
, Ax = a

b

dc

, s19d

where the parameterdc in the expression forAx is defined as

dc = nS2r0

R
D1/2F 1 − 4D2

1 − 4n2D2G1/2

< n S2r0

R
D1/2

f1 + 2sn2 − 1dD2g. s20d

With the use of the expansion Eq.(15), the Fresnel–
Kirchhoff integral can be easily evaluated yielding

Isbd ~ UE
0

`

dx expF− xsa − iAxd + ix2SAxx −
Axd

2

Add
DGU2

.

s21d

The remaining integral overx is of the Fresnel-type. How-
ever, it cannot be reduced to the special functionsCisud and
Sisud, which describe the diffraction from a semi-infinite
plane.9 This is because the linear term in the exponent con-
tains a contribution −ax, which is real. For this reason, it is
convenient to introducea new variablez=ax in the integral
(21). Upon substituting the coefficients(17)–(19) into Eq.
(21) we arrive at the final result

Isbd ~ UE
0

`

dz expF− zS1 − i
b

dc
D + iz2 n + 1

4n2k0r0
FsDdGU2

,

s22d

where the functionFsDd is defined as

FsDd = 1 +
8nRD2

sn + 1dr0
. s23d

As in Eqs.(17)–(19), we kept only the leadingD2 term in the
definition of F. Now we can substantiate the statement
that the optimal directionality of the emission is achieved at
D=0. Indeed, thez2-term in the exponent of Eq.(22) leads to
the broadening and oscillations of the angular dependence,
Iscd. At small D we haveF<1; then thez2-term is multi-
plied by a small factor,sk0r0d−1!1 and, thus, can be ne-
glected. Then we immediately recover the Lorentzian Eq.
(3). On the other hand, for a general position of the defect we
haveD,1, andF,R/ r0. Then thez2-term acquires a much
larger coefficient 2R/ snk0r0

2d, resulting in the loss of the di-
rectionality of the output light. This is illustrated in Fig. 3. It
is seen that significant broadening and sideback oscillations
set in already at small values ofD. In particular, forD=0.3
the broadening is 60%.

III. DISCUSSION

Let us first discuss the validity of the assumptions used in
the above calculation

(a) Isbd was calculated within the scalar diffraction
theory using the Fresnel–Kirchhoff approach. Note that, for a
circular geometry,Isbd can be calculated exactly by solving
the scalar wave equation and treating defect as a perturba-
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tion. Then the expression forIsbd is given by a sum over
angular momenta of the leaking modes. Fresnel diffraction
corresponds to replacing this sum by an integral. The accu-
racy of such a replacement is determined by the next term in
the Poisson expansion, which contains an exponential factor
exp f−23/2pnk0sr0Rd1/2g. Thus, the condition of validity of
the Fresnel–Kirchhoff approach isr0@1/sk0

2Rd, which is not
restrictive at all.

(b) The calculation based on the Fresnel–Kirchhoff in-
tegral Eq.(10) implies that the field on the defect is created
only by the modeEMsr ,wd. In principle, the scattering by the
defect leads to the excitation of the modes withall momenta.
We have neglected the contribution of these excited modes to
the integrand in Eq.(10). The question arises: what is the
criterion for neglecting these contributions. There are two
aspects to be addressed:sid the validity of the perturbative
approach for an arbitrary orientation of the defect
and sii d how the criterion of validity is modified for the
optimal orientation d=sR−r0d /Î2. The answer to the
questionsid is that the perturbative approach is valid when
the decay EsR−r0d /EsRd,exp f−s23/2/3dsr0/Rd3/2nk0Rg
of the whispering-gallery mode Eq.(4) from the boundary
to the defect position is much smaller than
sr0ad−1,R1/2/k0r0

3/2!1. The meaning of this criterion,
fEsR−r0d /EsRdgsr0ad!1, is the following. The “dangerous”
modes, i.e., the modes for which the corresponding
rays intersect the defect, have the angular momenta
M ,nk0sR−r0d. Despite the microsdisk being an integrable
system, the presence of the defect might transform these
dangerous modes into chaotic. Thus, the above criterion
requires that the coupling of the mode withM <nk0R
to the dangerous modes is weak. In this criterion the
factor EsR−r0d /EsRd comes from the coupling “matrix ele-
ment,” while sr0ad−1 originates from the “energy

denominator.”
Remarkably, for the optimal orientation, the criterion

of validity of the perturbative treatment is much weaker,
and is given by fEsR−r0d /EsRdgsa/nk0d! sr0ad−1. The
additional small factor,sa/nk0d, in the matrix element
originates from the fact that, for the optimal orientation, the
field of the mode Eq.(4) with M <nk0R, upon scattering
by the defect, is directed primarily normally to the boundary
of the disk. On the other hand, the dangerous modes have
the momenta,M ,nk0sR−r0d. As can be seen from Eq.(10),
the excitation of the modes withsnk0R−Md*nk0r0 is
suppressed by a factorsnk0/ad2,R/ r0. Thus, the final
criterion of validity of the perturbative treatment can be
presented as

g @
3

2
ln snk0r0

2/Rd, s24d

where the parameterg is defined as

g = 21/2nk0RS r0

R
D3/2

. s25d

The condition Eq. s24d can be also rewritten as
g@ lnfg2/ snk0Rd1/2g, i.e., it is satisfied practically for any
g.1.

(c) According to Eq. (3), the full width at half
maximum (FWHM) is equal to 2dc=2ns2r0/Rd1/2. This
equation was derived under the assumption that the defect is
located far enough from the circumference of the disk, i.e.,
r0@dr,R/ snk0Rd2/3. It is possible to derive a more general
expression forIsbd, that is valid for r0,dr, when the as-
ymptotics Eq.(5) is not yet applicable. Derivation is based
on the integral representation of the Bessel function and
yields

Isbd ~
2

spgd1/2E
0

`

ds
e−gs2

s1 + sd2 + sb/dcd2 , s26d

whereg is defined by Eq.s25d. It is seen that the condition
r0@dr corresponds tog@1. Then we immediately recover
the Lorentzian Eq.s3d. At moderate g, the FWHM is
given by 2Csgddc, where the functionCsgd is plotted in
Fig. 3, inset. It is seen that within a wide interval
1&g&10 the broadening factorCsgd changes very
slowly. Then the FWHM can be expressed in terms ofg as
24/3nCsgdsg /nk0Rd1/3, which is also a slow function ofg.
Choosing for concretenessg=1, we find for FWHM a
concise expression3.35n/ snk0Rd1/3.

IV. CONCLUSION

A. Numerical estimates

We now turn to the numerical estimates. Four types of
microdisk semiconductor lasers have been described in the
literature so far:

(i) The lasers for wavelengthsl<1.5 mm have
M-values, reported in Refs. 1–4 and 10–15, that are rather
low s10&M &70d, and n<2.5. For this n and maximal
M =70 the FWHM is 116°.

FIG. 3. (a) Schematic illustration of the directional emission for
the optimal orientation of the defect.(b) Angular distribution of the
far-field emission intensity is plotted for different deviationsD [Eq.
(16)] from the optimal conditiond=sR−r0d /Î2. Inset: dimension-
less broadening factorC is plotted versus the dimensionless param-
eterg, defined by Eq.(25).
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(ii ) Lasers for l<0.8 mm16–18 have n<3.1 and also
rather smallM s30&M &300d. With maximal M =300 we
get 89° for FWHM.

(iii ) Nitride-based lasers operating atl<0.4 mm19–21

have much higherM-values s200&M &600d and n<2.8.
This yields the FWHM of 64°.

(iv) Microdisk lasers based on noncrystalline materials
(polymer22 and dye solution23) have also been reported. For
these materialsn<1.8 is smaller, and the values ofM (930
in Ref. 22 and 3000 in Ref. 23) are high. Both factors tend to
narrowIsbd. Namely, forM =1000 the FWHM of 34° can be
achieved.

B. Qualitative interpretation

Let us now discuss the physical meaning of the optimal
condition, d=sR−r0d /Î2. As it is seen from Eq.(7), the
phase of the whispering-gallery mode changes along the de-
fect. As the defect plays a role of a source of the outgoing
light, this change,fsxd, is equivalent to the rotation of the
line of the constant phase by an angle sin−1fd/ sR−r0dg. Then,
under the optimal condition, the line of the constant phase is
perpendicularto the radial line drawn through the edge of
the defect(Fig. 1). In other words, under the optimal condi-
tion, the defect can be replaced by a constant phase line at
distancer0 from the circumference that isparallel to the
circumference. Clearly, the angular width of the far field
emitted by this line is minimal for this parallel orientation.
Note that the conditiond=sR−r0d /Î2 corresponds to the
angle between the line of the defect and the line, connecting
the defect edge to the center of the microdisk, being equal to
45° (see Fig. 2). The meaning of this condition becomes
immediately transparent if the defect was located not within
the “tunneling” tail of the whispering-gallery mode, but
rather near the circumference. For this defect position, the
whispering-gallery mode can be viewed as a plane wave,
propagating along the perimeter. Correspondingly, the defect
can be viewed as abeamsplitterfor this plane wave. Then it
is obvious that one of the splitted beams would be directed
normally to the circumference precisely for the 45° orienta-
tion shown in Fig. 2. As follows from Eq.(3), moving the
defect away from the circumference byr0 leads to the diver-
gence of the output beam. On the other hand, such moving is
necessary to maintain a high quality factor, as follows from
Eq. (2).

Let us mention three points that are not directly related to
the optimal orientation:

(a) The extension of the whispering-gallery mode in
the direction perpendicular to the plane of the disk is equal to
Def f=D+fk0

În2−ns
2g−1+fk0

În2−na
2g−1, whereD is the thick-

ness of the disk, andns, na are the refractive indices of the
substrate and air, respectively. Then the angular divergence
of the output beam in the vertical direction can be estimated
as 2p /k0Def f.

(b) Normally a whispering-gallery mode can be
viewed as a standing wave resulting from superposition of
two counterpropagating waves along the circumference. This

gives rise to the cos2sMcd angular distribution of intensity in
the absence of a defect.1 From the analogy to the beamsplit-
ter it is easy to see that only one of two counterpropagating
waves is redirected by the defect towards the perimeter of the
disk, while the second wave is redirected towards the center.
This means that the defect-induced outputdoes notcontain
angular modulation~cos2sMcd.

(c) The scattering efficiency of the linear defect con-
stitutes a prefactor in the defect-induced quality factor, given
by Eq. (2). If the thickness,h, of the defect is small, this
prefactor can be also small. In Eq.(2) for ln Q this strength
constitutes an additive term. It is straightforward to see that
this term ish/ r0 times smaller than the main term. If the
material of the defect does not differ from the material of the
disk, so that the defect differs only in thickness from the rest
of the disk, then the scattering strength acquires an additional
small factordDef f/Def f, where dDef f is the change of the
effective thickness within the defect.

C. Concluding remarks

(i) In Ref. 6 the improvement of the output characteristics
of microdisk laser, achieved by introducing the deformation,
is due to the fact that, when the disk is deformed, the light
rays are unable to stay within a whispering-gallery trajectory,
and experience refractive escape in the course of the chaotic
motion.24 In the present paper we considered a perfectly cir-
cular microdisk with a defect. Apointlike defect at some
distance away from the boundary, which is the geometry
similar to that considered in Ref. 25, would be unable to
couple out all the whispering-gallery modes. Namely, such a
defect would not affect the modes having anodeat the defect
position. Naturally, a microdisk would lase in one of these
high-Q modes “decoupled” from the defect. Our main mes-
sage here is that no whispering-gallery mode can evade an
extendeddefect and will be directed out of the resonator as a
result of scattering by this defect.

(ii ) An alternative example of an extended defect in a
perfectly circular microdisk, an annulus, was studied in great
detail as a convenient example of a system exhibiting the
wave chaos.26–28However, from the perspective of the emis-
sion from the disk, the annulus cannot provide directionality.
This can be seen from a simple geometrical consideration. If
the linear defect with optimal orientation is approximated by
segment of a circle, so that the defect line is tangent to the
circle, then this approximating circle would contain another
region, which iscloser to the circumference than a defect.
Therefore, the leakage would be governed by thisclosest
region. But the closest region has a “wrong”(nonoptimal)
orientation. Hence, there will be no directionality of the
output.
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