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Strong-coupling branching between edges of fractional quantum Hall liquids
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We have developed a theory of quasiparticle backscattering in a system of point contacts formed between
single-mode edges of several fractional quantum Hall liq@d@HLs) with different filling factorsy; and one
common single-mode edge, of another FQHL. In the strong-tunneling limit, the model of quasiparticle
backscattering is obtained by the duality transformation of the electron tunneling model. The new physics
introduced by the multipoint-contact geometry of the system is coherent splitting of backscattered quasiparti-
cles at the point contacts in the course of propagation along the commonvgdgke “branching ratios”
characterizing the splitting determine the charge and exchange statistics of the edge quasiparticles that can be
different from those of Laughlin’s quasiparticles in the bulk of FQHLs. Accounting for the edge statistics is
essential for the system of more than one point contact and requires the proper description of the flux attach-
ment to tunneling electrons.
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I. INTRODUCTION rect quantization of the two-terminal FQHL conductahte.
Electron transport properties of the fractional quantun,|MuIt|p0|nt-c0ntactJunct|ons with a well-controlled geometry

Hall liquids (FQHLS) continue to attract considerable interest SiMilar to the one considered in this work are also studied
motivated by the unusual properties of FQHL excitations€XPerimentally? -

which are characterized by fractional charge and nontrivial The main technical obstacle to the (_:iescrlptlon of strong
exchange statistics. Since excitations in the bulk of a typicaju/tiPoint-contact tunneling between different edges is the
FQHL are suppressed by the energy gap, the low-energ ct that the bosonic fields in the tgnnellng operators of dllf-
transport properties are determined by the gapless modes ferent contacts do not commute with each other and, at first

the edges of the liquidiin the simplest case of a FQHL with sight, cannot be Io_calized simultaneously at the _minima of
large tunnel potential, as can be done for one point contact.

fillings factor »=1/0dd its sharp edge should support one This problem is resolved, however, if the bosonic fields are

bospnlc ”?°d9 2that is described as a single branch of Ch'ref'nllodifieol2 by the proper choice of the statistical phase of the
Lu}tmger liquid: Althou_gh'the edge states are gapl_ess and 'Qunneling electrongsee Eqs(11) and(12) below]. The sta-
principle can carry excitations of arbitrary charge, in the casgjgiica| phase preserves the Fermi statistics of electrons but
of tunneling between the edges of FQHLs with equal filling 3ccounts for the change of the number of flux quanta at-
factors, strong tunneling produces excitations whichgched to them in the FQHL&in the process of tunneling
coincide with Laughlin’s quasiparticles in the bulk of the petween the liquids with different filling factors. With the
liquid. Experiments on resonant tunneling through a quanflux attachment taken into account, the total bosonic tunnel-
tum antidot and on the shot noise in quasiparticle back-ing fields commute, and one can build the strong-coupling
scattering in a single point contacheasure directly the frac- description of the multipoint-contact junction in close anal-
tional charge of these excitations. Edge-state tunnelinggy to the case of one point contact. Here, we use this ap-
should also make possible the measurements of quasipartigieoach to develop complete description of strong tunneling
exchange statistisvhich can be used in the development of in  the multipoint-contact junction extending previous
FQHE qubit$ for solid-state quantum computation. resultd? to quasiparticle backscattering.

In the situation of tunneling between the edges of FQHLs Important elements of our approach can be summarized as
with different filling factors, strong tunneling should produce follows. Specific junction model considered in this work is
quasiparticles that are different from bulk quasipartiéles. characterized by the existence of one edgeommon to all
The charge of such “contact” quasiparticles coincides withpoint contacts(Fig. 1). The quasiparticle backscattering is
the dc conductance of the point conté€tthe two are mea- produced by finite reflection coefficients of the contacts, and
sured in units of electron chargeand the free-electron con- is described as instanton tunneling between the infinite set of
ductance?/h, respectively. Theory up to now could predict the ground states of the original electron tunneling model
only the properties of one point contact between differenthat are degenerate in the absence of backscattering. Expan-
edges. The aim of this work is to develop a theory of strongsion of the junction dynamics in terms of instantons gives the
tunneling between FQHL edges with different filling factors model of quasiparticle tunneling which is dual to the electron
in a junction with more than one point contact. Such a modetunneling model. Duality transformation relating the two
of multipoint-contact junction was introducet to describe  models produces the quasiparticle exchange statistics from
experiment¥ on tunneling between FQHL edge and externalthe electron statistical phases ascribed through the flux at-
Fermi-liquid reservoir. Understanding of the strong-tachement. Correct description of quasiparticle statistics in
tunneling limit of this model is important for the description our junction geometry enables one to combine sequentially
of the reservoir-edge equilibration that is responsible for corthe edge-state transformations at different point contacts in
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X X2 Vo Xn separated from the 0 edge, the tunnel currents between them
A 1 U, ‘U, X should be carried by individual electrons. We assume that the
' ' : tunnel contact formed by thgh edge is located at the point
x; along the 0 edge and its width is much smaller than the
Vi Va Vn magnetic length. Tunneling in such a system of contacts is
described by the Lagrangian
FIG. 1. Diagram of the model of a tunnel junction considered in n
t[hIS work: n edges of FQHLS V\.Ilt.h different fllllng factorg tunngl Liunn= E [szpg(xj,t) lﬂj(xj't) +H.cl, (1)
into one FQHL edge with the filling factar, at pointsx; along this j=1

edge.U; are electron tunneling amplitudes. Each edge is assumed to

support one branch of bosonic excitations with arrows indicatingvl‘/here the tunnel amplitudetssj are taken to be real and posi-

direction of propagation of these excitations. tive, and¢; is the electron operator of tHeh edge.
If we assume that all edges are sharp enough to enable us

such a way that the incoming edges are split coherently t{) use simpl_e bpsonic single-mode description of the edge-
) . . ALtate dynamics introduced by Werhe electron operatoy;

each point contact in the course of propagation along th%an be expressed as

common edgey,. This process can be described with the

“branching ratios” which define how the incoming currents = (zwa)—1/2§|ei¢|(x,t)/€7|‘ (2)

(or chargepare split between the outgoing edges. Quasipar- ] o ) ]

ticles produced by backscattering at one point contact arklere ¢, is the bosonic field of the eddeMajorana fermions

split similarly at all point contacts downstream the edge & account for mutual statistics of electrons in different edges,

from the “contact of origin,” and the edge-state branchinggNd a common factor h/=D/v denotes momentum cutoff

ratios determine the charges generated in each edge by badi-the edge excitations. Since the spatial dynamics of the

scattering. As usual, these charges should manifest therfdgesj=1...n does not affect the tunnel currents, propaga-

selves through the intensity of the shot noise of outgoindion Velocities of these edges are irrelevant, and we take

currents. The charge splitting also provides natural interprethem to be equal to the velocity of the excitations of the

tation of the quasiparticle exchange statistics obtained by thedgero. The bosonic fieldgs are normalized in such a way

duality transformation, so that both the charge and statisticiat their free dynamics is governed by the standard La-

of backscattered quasiparticles can be viewed as being dgfangian density

fined by the strong-coupling edge-state branching. n
The paper is organized as follows. Section Il defines the Lo= 1 > ¢|é|_l¢ = l(ﬁé'lgﬁ,
electron tunneling model considered in this work. Section I 2\ =0 PTP 2

describes the bosonization procedure for the Klein factors of

electron tunneling operators that implements the flux attach- R S

ment. Section IV explains the instanton transformation, for- Gp = EEax(ﬂt*' vk, <)
mulates the dual model of quasiparticle tunneling, and cal- &

culates the dc current and shot noise in outgoing edges of thehich corresponds to the Hamiltonian

junction. In Sec. V we apply the results of Sec. IV to the

situation that corresponds to the junction between a Fermi- -v 2

liquid reservoir and FQHL edge. Quasiparticle backscatter- Ho 477f (G () @
ing in this case gives rise to corrections to the Ohmic behav- . .
ior of the junction: nonlinear current-voltage characteristicand the commutation relations

and .shot noise, which limit the reservo_w-edge equmbratlo_n [#1(X), pp(0)] = i78,SgN(X). (5)
obtained in the absence of backscattering. In the Appendix, ) . )

we summarize for convenience the known results for strong " the following, we will need free correlator of the fields
tunneling in one point contact that are used in the main text¢r ordered in imaginary time:

Il. MULTIEDGE MODEL OF WEAK G|p(X, T) = apg(xi T)v g(va) = <TT{¢|(X! T) ¢|(010)}>
ELECTRON TUNNELING (6)

To find this correlator, we start with the retarded Green’s

The model we consider consists nfedges of different e i
function in real timet:

FQHLs of the filling factorsy;, j=1,...,n, which formn
tunnel point contacts with an edge of another FQHL of the gR(x,t) = =10 (x,1), (0,01, 7
filling factor v, (see Fig. 1 All liquids are assumed to cor- ) ) ) o
respond to simple Laughlin states with the filling facters ~Where®(t) is the step function. LagrangiaB) implies that
=1/odd, 1=0, ... n, which in general can all be different. dynamics ofgR(x,t) is governed by the equation

Since bulk excitations inside the liquids have energy gap, at R _

energies below some common cutoff enemy only the o(d+ VoG X1) = 28X A1)
edges support excitations that propagate along them. In th®olution of this equation that satisfies the symmetry of the
weak tunneling regime, when each of tjte edges is well Eq. (7) [the commutator part of Eq7) should be antisym-
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metric with respect to simultaneous change of sigm,of is { o+ v }1’2 10

gR(x,t) = wO(t)sgr(x — vt). VoV
are chosen in such a way that the normalization of the
bosonic operatop; coincides with the normalization of the
bosonic fieldsp, used before, so that the imaginary-time cor-
relator of ¢; is given by the same Eq(8) with x=0:
9(0,0)=7/|w|.

In the Lagrangian9), F; represents the anticommuting
statistical Klein factorsF;=&¢;, which account for mutual

A i@ __ _ _ statistics of electrons in different edges. These factors play

G =IO VLA XD, A]) == 7O Dsgrix-uvt), an important role in the strong multiedge tunneling consid-
give g(x,w) for negative frequencies, and it can finally be ered in this work. A convenient way of taking them into
written for all Matsubara frequencies as account 1?1%0 express them through the zero-energy bosonic

fields 7;:*

2 1
g(x,w) = fsgr(X)(- >t ®(wX)e‘“’x’”>. (8) Fi=€n, [, pl=imy, (11)

The standard steps: Fourier transformation @f(x,t),
gR(x, w)=[dte“'gR(x,t), and analytical continuation to the
upper half-plane of frequencyw—iw, give the Fourier
transform of the imaginary-time correlator for positive fre-
quenciesw: g(x, )= —gR(X, ®)|y—iw-

Similar calculations for the advanced Green'’s function

where y; are odd integers. Different choices ¢f corre-
pond to different branches of the phase of the fermionic
tatistical factor —1 arising from interchange gf and F;.
Under the condition that the point contacts are well-

The first part of this correlator does not depend|xnand
characterizes singular behavior of the correlator at shor
times,g(x, 7) ~ i sgnx7)/2, which is responsible for the in-

traedge statistics of the electronic operat@ks With the separatedy; - x> a, minimization of energy of the strong-

adopted normalization of,, the operator of charge density coupling ground state requires that the statistical phases are
of thelth edge at poink is taken a¥&

pi(x,7) = (Nuf2m)ayy (x,7),
and the current in the edge is related to the charge density as

JiI=vp. ) . )

As in the case of a single point contact, the effective eIec-T his eq_uatlo.n assumes tiﬁt the<p0|nt contacts are numbered
tron tunneling amplitudes are renormalized from their origi-f"1S in Fig. .1');;<gi for. 1\If<r]1 \n(;i and the coprdmatex
nlvluesy 0. (1) by fuctatons of el The * 122588 1 e drecton of e ede propagton,
effective tunneling amplitudes scale with energy in suc . : ,
way that the weak-tunneling limit is always stable at suffi—e\:o_fg'er transform of ther-ordered correlator of the fields
ciently low energy. The main focus of this work is on the -
strong-tunneling regime realized at large temperatures or -
bias voltagesV; across the point contacts which make the (i) =sgrii — (1 - &) —. (13
effective tunneling amplitudes large. The description of the @ro
strong-tunneling limit presented below is based on the ingpgiitution of the bosonized for1) of the Klein factors

stanton expansion around the saddle-point solufiévs dis- ¢, Eq.(9) turns the tunneling Lagrangian into a function of
cussed in the Introduction, this solution requires appropriat®, ,osonic variables

bosonization of the Klein factors of the electron tunneling
operators that takes into account the flux attachment. D; = \jg; + 7, (14)

1
¥j = sgrli _j)(l_(sij)v_o- (12

and one can reduce the kinetic Lagrangianto a simplified
form by integrating out all the fields exceft. The resulting

Substitution of the bosonic representati@ of the elec-  Gaussian action for the field; can be obtained directly by
tron operatorsy; into Eq. (1) transforms the tunneling La- noticinq that it should be determined by the matrix of corr-
grangian into elatorsKjj(w) =(®i(-w)®;(w)) as

I1l. BOSONIZATION OF THE KLEIN FACTORS

n

Etunn: E

=1 21

1 -~ 1 ~_
CF expling O} +He|. (9) Sp= LK P = 52} E Pi(- 0K () Pj(w), (15)
Here where w=27mT denotes the Matsubara frequencies with
=0+1,+2,... andemperaturel. The matrix of correlators

Bo(Xj,t) _ Pi(x;,0) K can be found from the correlatdB) of the tunneling
[on D fields ¢; [determined by the original kinetic Lagrangié®)]
and the correlatorgl3) of the statistical fields. Combining
and the factors the two we get

\joj(t) = ,
V1o VY
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20 )\2 .\ O(sgri — j)w) _ It is convenient to formulate the instanton dynamics in

Ku(w) = o 2 i » eletil(1-g) |, terms of the field®);, j=1, ... n, that are defined as dual to
0 16 ®;, i.e., satisfy the commutation relations:
1

wheret;; =t;—t; andtj=x;/v. Important feature of the terms
in Eqg. (16) that are nondiagonal in | is that they do not

contain the singular statistical parts. The singular part of the
correlator(8) of the tunneling fieldsp; is cancelled by the Wi e
statistical fieldsy;, if the phasesy; (11) are chosen appro- 2ma explie; O;(n)}
priately, as in Eq(12).

In terms of these fields, each instanton tunneling is generated
by the operator

(20)

which shifts®; by 27e;. The low-energy part of the action
containing instanton-instanton interacti@8) can be under-
IV. STRONG-TUNNELING LIMIT stood then as arising from Gaussian fluctuations of the dual

A. Instanton expansion and duality transformation fields:

: . . Sin ~€1jexi(Oi(m) 0 ( )>/2
The tunneling action(9) expressed through the bosonic ern=e WE

fields ®; (14) has an infinite set of minima a®;=27  and Eq.(18) gives the correlators of these fields:
Xinteger, j=1...n, that are degenerate in energy. In the .
strong-tunneling limit, when the electron tunneling ampli- (Oi(- w)@l-(w)):(Zﬂ'/w)zKﬁl(w).
tudes U; are large, these minima are well-separated in a To find th lat licitl dioi t th
sense that the amplitude d#;-tunneling between them is 0 find these correlators explicitly, we need fo invert the
small. Such rare tunneling processes correspond physicalfjatrix K defined in Eq(16). This task is not difficult, since
to finite backscattering at each of the point contq@ad are  the matrix has a triangular form: for negative frequendi@s

described by the instanton tunnelmg solutions which on theynd K1 are upper-triangular, while for positive frequencies

long-time scale behave asmd;@(r—a), where index| they are lower-triangular. In both situations, one can Rnd
counts different instanton tunneling evengg=+1, and 7

are the times of tunneling of ti; component. On the short by writing equations for the matrix elemerks;” as recur-
time scales on the order of ﬂ)l the variation ofd; is rence relations in terms of the “distance” from the diagonal
smoothed around;;, with the exact behavior dependent on @nd solving them starting with the diagonal elements. For
the form of the energy cutoff. For some special form of theN€gative frequencies, the result is

cutoff,}” the shape of the instantons for short times can be (0i(- 0)0;(w))

found from the equations of mation. It minimizes the instan- ~

ton contribution to the action in the absence of the long-time = (27-r/w)2Kﬂl

interactions and determines the instanton tunneling ampli- 2m
tudes. The amplitudes are, in addition, modified by quantum
corrections and we take them as some unspecified parameters | |

L\z 8~ O(sgrii - w)B;eltil(1 - J.)]

W,/ (27 a). (21)
The low-energy part of the action determines the
instanton-instanton interaction and can be found by substitu- 4 2
tion of the long-time asymptotic form ob;(7), i.e., ®;(7) Bjj = )\2)\ I1 (1— 2>- (22)
ji<k<j Vol

=2m Xinteger+2,g;2m0O(7-7;) into the ®; action (15). In-
deed, the constant part dfi(7) is irrelevant, and as we will - For positive frequencies, E¢21) remains valid if we define
see later, only the trajectorles with the same initial and finathe matrixB;; for i >j (below the diagonalby the condition
values of®;(7) for each contaci 2,;=0, are important.  B;=B;;. Qualitatively, as will be discussed in more details
The Fourier transform®d; (w)—\Tf /TdTele(I)(T) of such below, the dual field®; describe quasiparticles backscat-

“neutral” trajectories is tered at the point contacts, and the maBjx(22) determines
the exchange statistics of these quasiparticles.
2T Similarly to the case of electron tunneling model where
Di(w) =2 g éen, (17)  the correlatorg16) give the kinetic par(15) of the action,
|

the correlator$21) determine the kinetic part of the action of

o ) ) ) the dual model of quasiparticle tunneling:
and combining this equation with E¢l5) we see that the

low-energy part of the action has the form of the pair-wise < = 1 2K
instanton interaction with each pair of instantons with indi- So=50(/2m)KO. 23

ceslj andki contributing the term .
J g One more remark is that th@;-correlatorg21) show that the

2 \2. condition of neutrality of instanton tunneling trajectories,
Sint(71,7) = @8 T (—) Kjiweem. (18  Z&;=0, that was used above, is satisfied at each point con-
0 \ @ tactj. Indeed, the form21) of the correlators implies that
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interaction between instantons diverges at low energies and (a) ¢l

. . . . L J
only the trajectories that satisfy the neutrality condition for ofim Qtoun
eachj have finite action and contribute to the evolution of ° po 0
the system. o)

j
N ) (b)
B. Dual chiral fields and Klein factors /\/ /
One can see directly that the expansion of the system pw @ pw

propagator in the number of instanton tunneling events can

be generated as the expansion in the instanton tunneling La-

grangian composed of the tunneling operat@§). This FIG. 2. Diagram of the strong-coupling scattering of the edge
means that the dual model of quasiparticle tunneling can bgtates in the multipoint-contact junction considered in this weak:
formulated in complete analogy to the direct model of electransformation of the bosonic edge-state fie{@6) in one indi-
tron tunneling. Comparing the correlatof8l) with those vidual point contactj; and (b) transformation of the fields in the
from Eq. (16), one can notice that similarly to th& fields  n-point junction as a whole: the fieldl, undergoes successive trans-
(14), ©; can be represented as the sum formations in the course of propagation along the edge

0= Egj +7j (24) original bosonic modeg;(x) and ¢,(x) of the edges forming
Aj this contact. One is the field

of the fields with, respectively, chiral and pure statistical cor- _ 3
relators. Equatiori21) implies then that the chiral correlator B)(x) = = sgrix =) ¢;(X) (28)
of the fields¢, for i #] is dual to the tunneling fielg;(x), while the other;(x), is the

(6.6 = — (AN /4)Big(x — X, @) (25) combination ofe;(x) and ¢y(x) orthogonal to the tunneling

iYj i\ i i jr O . .
field, i.e.,

The representatio(24) of ®; allows us to write the instanton
tunneling Lagrangian in the form analogous to E): _ l( ) ﬂ) - 1 (ﬁ .\ il—) 29

— T ¢i=\ T
VgV AN\Nyp o Vg

n ] A
L, => —LF ex iza-(t) +H.c (26)
tunn™ Sl 2ma I N ] e [We use the same notation for the dual figjdiefined by Eq.
(28) as in EQ.(24) in anticipation of the fact, proven later,
where the Klein factors of the dual model are that these two fields indeed coincifi&ree evolution of the
- . o field 6,(x) (28) is equivalent to the statement that the incom-
Fi=e", [mml=-imsgnli-[)(1-8)By. (27)  ing tunneling field changes sign at the contast;. Com-

Before discussing the physical consequences of the dufining this change of sign with Eq29), we see that the
model of quasiparticle backscattering, we present the derivdansformation of the incoming fieldgo(x) and ¢;(x) at
tion of this model that is less rigorous than the one that use$<X into outgoing fields atx>x; [Fig. 2@)] can be
instanton expansion, but more direct. The approach is basetescribed with the 2-by-2 matrixPV:
on independent application of the known strong-tunneling -
solution for one point contatto individual contacts of our (¢g°“‘>,¢}°“‘>)T= P(J)(d%'n),(bf'n))T (30)
multipoint-contact junction and matching the obtained solu- ,
tions at successive contacts along the edgeommon to all  With the matrix elements
of them (see Fig. 1 Since the bosonic fields at different B N
point contacts interact strongly at low frequencies, the pos- |Sg(>) =— ﬁﬁ) = M, |58'J) = ﬁ}g = 2Vl (31)
sibility to simply match the solutions at successive contacts Vot v Vot v

is by no means trivial and represents an important assump- 5 natural way to combine transformation80) at the

tion. The instanton calculation described in the previous Supﬁeighboring contacts is @ssumehat the fie|d¢éout) coming

section can be wgwed as the proof that this assumption 1 ut of each contact along the edggserves as the incoming
indeed valid provided one chooses correctly the statistical (in) . )
ield ¢, for the next point contact downstream this edge

phases of electrons in different contacts, which after duality _. . . - T
transformation determine the statistical phases of backsc Fig. Z(b)].' _Under this aSSL.Jm.pt'O("a“d'ty of which lmplle_s .
R e nontrivial mutual statistics of backscattered quasiparti-

tered quasiparticles. S . .
cles, description of the overall transformation of the incom-

In more details, consider th¢h point contact of our mul- . . . S . .
ticontact model. Strong-tunneling solutigreviewed in the ing bosonic modes in our multipoint-contact junction can be

Appendix can be described as application of the Dirichletobtained by extending each of the matri¢e# trivially to
boundary condition to the tunneling fielg(x) which local- ~ then+1 by n+1 matrix: the fields#; with i #j are constant
izes this field at the minimum of the tunnel potential at thein PV, and multiplying this matrices. The full transformation
point of contactj. “Unfolded” form of this conditiod® im-  of the incoming fieldst™ = (¢, ¢1, ... ,¢) T into the outgo-
plies free propagation of the two fields constructed from theng fields[see Fig. 2b)] is described then as
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g =84, S=POPY. PO (32) G =70\ unSi,

Such a combination of successive transformations of thevhere o, is the universal free-electron conductane&h
fields at the point contacts together with the free propagatioequal to 1/2r in our unitse=#=1. Direct substitution of the
of the field ¢y between the contacts implies that the cor-matrices(31) into this expression gives
relator of the fieldsé,(x) defined by Eqs(28) and (29) at

n
1 i Vo — VY

different contacts is Goo= vol | 2,

1 oty
1 -
(6i(%) 6;(x;)) = — N g(x — Xj, ») IT P§. b=
Yohid I<k<] Gi=v——2, G;=0 forj>i=1,
B+ v j
Equationg10), (22), and(31) show that this correlator coin-
cides with the correlatof25). According to EqQ.(28), the _ Avoriv Vo~ Y L
| h . _ ij = forlsj<isn,
correlator (6,6;) at the same contact i%6;6;)=(¢;¢;) (v+ 1) (vo+ V) j<izi Vot 1

=m/|w| and also agrees with Eq&4) and(21). This means

that the chiral field®, introduced in Eqs(24) and(26) as the 5 no
fields describing the quasiparticles backscattered at the point G, = LI g iy
contacts coincide with the dual fieldg(x;) from Eq. (28) Vot vjisj oty
matched directly between the contacts. This coincidence is (34)
nontrivial and is only correct if the mutual statistics of qua- A

siparticles backscattered at different point contacts is acwhereG;; denotes the conductan@ in units of o. Charge
counted for by inclusion of the Klein factofs; (27). The  conservation requires tha}G; =, the condition that is in-
statistics, however, does not affect the scaling dimensions dfeed satisfied by Eq$34).

the quasiparticle tunneling operators, which have the same Equations(34) describe a flow of charge along the edges
values 2A? as for one independent point cont&tThis  in which the difference of currents in the edges 0 gnid
means that the dual model of strong tunneling in theredistributed at thgth point contact according to its tunnel-
multipoint-contact junction constructed in this work is stableing conductancery(v;—G;jj) =20gvovj/ (vp+v)). Such a de-

for large temperatures and/or voltages applied to all contactsgcription of current flow in the system of several point con-
and the strong-tunneling limit is always reached at suffi-tacts was first obtained in Ref. 10 under the assumption that
ciently large energies. guantum coherence of electron propagation along the com-
mon edge is suppressed, and electron distribution is equili-
brated between the successive point contacts. The calcula-
tions presented above show that this description of the
current flow remains valid in the quantum-coherent regime,

In this subsection, we use the approach developed abovihen any external decoherence mechanisms are absent.

to calculate the transport properties of the multipoint-contact We now turn to the regime dfinite backscatteringAs
junction in the limit of strong tunneling. Application of the discussed above, each elementary process of backscattering
voltageV, to thelth edge can be described simply as a shiftcan be described as instanton tunneling generated by the op-
of the incoming field(see, e.g., the Appendix eratoreexp{+i26,/\;} [see Eq(26)]. If the tunneling occurs

in the point contactj, the associated shift of the field

corresponds to the transfer of chargp:2/)\j2:2v0vj/(vo

+v)) (see, e.g., the Appendixn the multipoint-contact junc-

tion, quasiparticle of charge; produced in the Oth edge at
Mihe pointx; by instanton tunneling propagates along this edge
) ) and is split between edgésvith i > j and the edge 0 accord-
edge.(In this work, we discuss only the dc transport proper-jn, 5 the conductance matrix. Distribution of charges in
ties of.the junction biased by constant voItqng) Num_erl— backscattering processes that results from such a “current
cal shift of the fields#, does not affect their properties as ,nching” at the point contacts enables us to interpret the
quan;um olpelrators, and all the rgsglts@rdlscussed above quasiparticle Klein factorg27) of the dual model as ex-
remain valid in the presence of finite bias voltages. change statistics of charges generated in the edge 0. Indeed,

_ We consider f|r_st_the situation Wlt_ho backscattering the absence of the energy gap at the edge of a FQHL makes
Since the_current in the Ith edge is related tof as it possible to produce arbitrary edge excitations. For an iso-
I, ==—Vmdii(x,1)/2m, the outgoing currents are linear in |1eq edge 0, the exchange statistics of two excitations with
the applied voltages and one can deflr_le the matrix of CONchargesp, andp, is set by its filling factory, to be pyp,/ vo.
ductances through the current induced inlieedge by the  The two quasiparticles which tunnel in the nearest-neighbor
voltage applied to théth edge:Gy=j;/V\. The transforma- contacts create chargep and g, in the edge 0 and the
tion of the fields¢ according to Eq(32) means that the statistical angle for these quasiparticlesggy;.,/ vy is easily
conductance matrix is seen to indeed coincide with the statistical angleBg,.,

2vyv; Vo=V
_ 49 0~V
Go= 2] 7,

Vot vji<j oty

C. Interpretation of the quasiparticle statistics and calculation

of the outgoing currents and shot noise

¢|(in) . ¢|(in) _ \“'/;|V|ta (33

which can be understood as the evolution of the quantu
mechanical phase of the electron operafpi2) of the Ith
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determined by the Klein factor&@7) through the statistical while the part related t@); follows directly from Eqgs.(28)
matrix Bj; (22). If the quasiparticles tunnel at the point con- and(29):

tacts that are not nearest neighbors, one needs to take into 12 12

account that the charge created in the edge 0 in the vicinity T = (_VJ_> T =- (i) ,

of the contact by quasiparticle tunneling at the contget i . Vot v . Vot v

is smaller tharg; by the factor

H=pi) T =pl). 37
r= 11 (o= w0+ )] 00=Poo o/ =Py 37

j<I<i Since the voltage¥, shift the incoming fields according

due to charge spliting at the intermediate point contactsi© Ed:(33), the transformationi36) shows that the voltage-

Equation(22) shows then that the matri; can be written induced shift of the quasiparticle fields is
as Bj;=rq;q;/ vy, i.e., the statistics of quasiparticles can still
be interpreted as the exchange statistics of charges in the
common edge 0. A
This interpretation remains valid if some of the filling Obtaining the matrix elememsﬁ explicitly from Eqgs.(37)
factorsy are equal to each other. For instance, if the edges and (31) we see that the voltage bias in the quasiparticle
andj+1 have the same filling factar, as the edge 0, the tunneling operator in Eq26) is
charge and statistics of the backscattered quasiparticles coin-

0] — 01 - 2 A§’| \"/;|V|t.
|

cide with those of Laughlin’s quasiparticlegg=B; j,1= v, in 26; _ 26; -Vt V.= > AGV, (39)
i i ; i ) , it i vl
agreement with previous result©ur discussion here shows A Y |

that in general the strong coupling between non-identical . ) ) . .
edges should produce quasiparticles with both charge ar.}@se_rtlng this r_esult into the expression fo_r the rate of quasi-
statistics that are different from those of Laughlin’s quasiparParticle tunneling from the Oth edge at tfi contact that

ticles in the bulk. follows from Eq.(26) we get
To find the backscattered currents quantitatively, we cal- W 2 I
culate first the charges injected into each edge by quasipar- 110 = - —L Sin<—9j + 7, _Vjt>- (39
ticle tunneling at thgth contact. Combining the two facts, ma A
that the fraction of the incoming current in thh edge that Finally, combining the strong-coupling branching of the

goes out into théth edge is equal td;/v;, and that the currents according to the conductance ma8#) with the
quasiparticle charge; is created in the process of back- backscattering contribution to the current, we see that the
scattering directly in the Oth edge, we see from K84) that  averageoutgoing currentl,) in the Ith edge is

each backscattering event in the contacteates the charge

equal toG;; in theith edge,i # j. This means that the back- (1) = 002 GV + (179, (40)
scattering current in the Ith outgoing edgél =0, ... n) K

is related to the ratl%o) of quasiparticle backscattering in the In the limit of strong tunneling, the backscattering is weak

jth contact as and the average quasiparticle tunneling réll%@) can be
n evaluated in the lowest order of perturbation theory in back-
11P°0= 2 AGI?,  AGy =G - 1;§;. (35)  scattering(26). For large quasiparticle bias voltages one
j=1 gets

To find the ratesgo), we need to calculate the distribution W2D — 2
of bias voltages for quasiparticles. In contrast to finding the <IJ(0)> = msgr(vmvj/m(z’”i) .
bias (33) for electron tunneling, this task is not completely !
trivial, since in the strong tunneling limit, the bias voltage This expression combined with Eq85) and(40) describes
applied to thelth edge affects the quasiparticle biésin all ~how the average outgoing current in thie edge approaches

point contacts. The biag; can be obtained as the voltage- Its I'Ln?ﬁgl?gg?gglgigvieaasg rgg::igcc::sa.tterin the quasiparticle
induced shift of the dual fields; in the arguments of expo- 9 9, q P

nents in the tunneling Lagrangia@6). We find this shift tunneling produces regulahot noisewhich at low tempera-

from the linear relation between the incoming fietq@) and tures is the only source of noise of the outgoing curréhts.
the fields ¢, (28). Extending the set ofi fields 6, to the (n This mean that the correlators of the outgoing curréhisat

zero frequency can be expressed as
+1)-component vector05(¢é°”t),01,62,...,0n)T we can g y P

write this linear relation similarly to Eq.32): "
A o ) {11 o0= 22 AGHAG[(1V)], (41)
=9 (f’(in), S =TT, .. T(l), (36) j=1
where {...,...} denotes the anticommutator. In general, the

where the matncei(om)descrlbe transformations of the in- .o noise(41) is not proportional to the average back-

coming ﬁ6|d§_i”t0(¢o ,0)) in the individual point CoNtacts. - geattered current, unless the contribution to backscattering of
The part of T related to¢g°“t) is the same as il (30), one point contact is dominant. If the contamtdoes domi-
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nate, the shot noise of the outgoing current inltheedge is  creasing temperature, conductar@epproaches its satura-

characterized by the fractional charge equal®,, tion valueG,,
<{||1||}>|w~>0
» = [l eso ) £ (42) _ Ca -2 _2
2<||(b$d> | Im| Gn = 0'0V0[1 (q 1)”]' q = 1+ ” = )\2, (44)

i.e., the charge is proportional to the fraction of the quasipar-
ticle charge which reaches thi# edge in the current branch- reached in the absence of backscattering, as
ing process. The shot noise with the chai®), generated at
one point contact and fractionally split into another contact, d(g-1)"t T(qg) (wT)Z(q‘l)E ﬁ 45
>
j v

is direct manifestation of coherent propagation of electrons &= Gn 4z T(q+1/2\ D
between the point contacts. Equilibration of electron distri-
bution between the contacts would leave in each edge onlﬁ.

the shot noise generated by the backscattering at the poivgsl(i:ser?; %/\,/i':rr:einf::rri;c;rigertgﬁ:weg ?ﬂ?;;ﬁge(ﬁwgfﬂgf(é 5r)n era-
contact formed by this edge. 9 P P P

ture, G-G,,x 1/T?179 |n the limit of large number of point
contactsn— oo, this power-law correction is, however, sup-
V. TUNNELING BETWEEN MULTIMODE FERMI-LIQUID pressed by the same small fact@r-q)" which characterizes
RESERVOIR AND FQHL how G, approaches its equilibration valegr atn— . One
) , i o ) . can show that correction tG,, in the next nonvanishing or-
In this section, we consider the situation with one specificyer of the perturbation theory in backscattering is also sup-

choice of the filling factorsy;=1, forj=1...n, in the gen-  pressed by this factor. This suggests tBaapproaches the
eral model of the multipoint-contact junctiaifrig. 1). The  gaiyration value faster than any negative power.of

multi-point-contact junction in this regime has been used pgqjiowing the same step as for the linear conductance
beforé€1%12to model an interface between the multimode 45) we obtain the averageinneling currentin the large-

Fermi-liquid reservoir and the FQHL. In the limit of strong voltage regime:
tunneling, the reservoir-FQHL interface has all the features

of a regular Ohmic contact: linear current-voltage character- (- )"V

istics and no shot noise, and establishes equilibrium between  (I7) = G,V + —————(V/D)?4 (1 - )"V~

the reservoir and the edge of the FQHL when the nunmber 27T (29)

of reservoir modes is large. Results of this section describe X 3 (Wilp)2(1 - )2, (46)
i

corrections to the Ohmic behavior caused by the weak qua-
siparticle backscattering which manifests itself through the

shot noise and nonlinear corrections to current. For largen, the main contribution to the sum ovgin this
In the case of reservoir-FQHL interface, the 1 edges of  equation comes from the contacts at the end of the junction,
the general model of Fig. 1 represent one-dimensional fre@Wherej ~n. The overall magnitude of the average backscat-

electron scattering modes of themode Fermi-liquid reser-  tered current46) in the perturbative regime of weak back-
voir. When a voltageV is applied to the FQHL edge, the gcattering is proportional tq1-g)™ 2@, and for v,

tunneling current; that flows between the reservoir and the = 1,3 does not vanish wheam— «. If 10=1/3, theexponent
edge can be found as the sum of the outgoing curfs®s i, this dependence is zerog21=0,while for smallery, the

Egs.(35) and(40)] in the free-electron modgs=1. . .n: exponent is negative and makes the absolute value of the
n backscattered part of curreri6) a growing functionn.
l+= = 0oAGgV — 2, GOjI}O)(GjOV)- (43  Equationg(45) and(46) show also that the sign of the back-
=1 scattering contribution to the tunnel current oscillates with

) . (0) the parity of the numben of point contacts, with back-
The argument of théth rate of backscattermtj here rep- scattering increasing the tunnel current for even

resents the quasipartic!e bias onta@S) in thejth contact. The shot noiseof the tunneling current is given by the
Perturbation theory in quasiparticle tunneli¢gf) of the zero-frequency correlatdfl+,17}) and similarly to Eq(41)

dual model is justified when either the temperature or all ;
quasiparticle bias voltages are larger than the energy sca\% generated by the backscattering part of the curtesy

Ty =max(W;/ )Y1=2MD of the crossover to strong tunnel- n
ing in all point contacts. The condition on the bias voltages is iy = > GOiG0j<{|i(0)a|(0)}>- (47)
always satisfied if the applied voltadeis sufficiently large: ij=1 :

IVI[(A-vp)/ (1 +20)]">Tx.

Tunneling at large temperatures can be characterized by the lowest nonvanishing order in the backscattering, the
thelinear conductance @®f the reservoir-edge interface. We correlators on the right-hand side of E47) are not equal to
calculate this conductance by first obtaining the average rate=ero only fori=j. Nonzero diagonal correlators are given by
<I}°)) of backscattering in each contact in the first nonvanishthe average backscattered currents, as in (Ef). In this
ing order of perturbation theory in tunnelir@6) and then case, summing the contributionéf@) to noise from each of
summing them according to E¢43). We find that with in-  the point contacts according to E@7) we get
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gty - o are uniformly suppressed by the factdwy—1)/(vy+1)]",
SCALHE (VD)4 (1 - )by exponential in the numben of modes. In the opposite re-
71'(2q) ’ . . . . X
gime, TV, the corrections, i.e., the nonlinear junction con-

X 2 (Wilv)3(1 - q)m G20, (48)  ductance and current shot noise, do not vanish, however,
j even forn— oo,

Similar to the average backscattered current, the main con- t.DeSC.”EEﬂon oflt'_[he' ctharg(te a?_d St?tlSthSthhthe dedg? ex%"
tribution to the shot noise comes from few contacts with ations in the muftipoint-contact junction, which is develope

~n. If the tunneling amplitudes of these contacts are ap-In this Work_for simple single-mode edges in _the junction
geometry with one common edge for all point contacts,

proximately equal so that we can neglect their variations; hould also be i ant f | timode ed
nz\/\/ﬁ_l:---, the ratio between the noise and the averagéS ould also be important for more complex muitimode edges
backscattered current is and more general junction geometries.
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We see that in a uniform junction with large numbeof  with V. J. Goldman and J. K. Jain. This work was supported
modes, the splitting of excitations at the point contacts compy the NSA and ARDA under ARO contract No. DAAD19-
plicates the relation between the backscattered charge and-1-0126.
the shot noise. For instance, #§=1/3, by anumerical co-
incidence Eq(49) gives the noise-to-current ratio also equal
to 1/3, while the backscattered chargejisl/2. Forsmaller
vy, the ratio(49) does not correspond directly to eithgior In this appendix, we review the known res&f8 for
Vo strong tunneling in one point contact between two edges with
different filling factors using the approach similar to that
employed in the main text. For consistency of notations, we
number the two edges 0 afpdwith the filling factorsyy and
To summarize, this work provides a description of quasi-v;. The Hamiltonian of one point contact can be written as in
particle tunneling in the junction with geometry shown in the model described in Secs. Il and llI
Fig. 1, in which several point contacts are formed between
single-mode FQHL edges with in general different filling _ v 9 9
factors »;=1/odd and one common single-mode edge with ¢ ‘f dx(a[(ﬁx%) + (0xhy) ]+[VoP0+Vij])
filling factor vy. This description extends to finite reflection
in the contacts our previous thedfyof strong electron tun- — U COS (i_o _ il.)
neling in such a junction. New quasiparticle physics emerg- ! Vg
ing form the multipoint-contact geometry is coherent split-
ting of quasiparticles at all point contacts downstream thelhe two differences with Secs. Il and Il are that now we
common edge, from the point contact where the quasipar- €xplicitly include the bias voltageg, andV; applied to the
ticles have been created. Quasiparticles are split at each cogdges, and omit the Klein factors in the tunnel part of the
tact in precisely the same way as the incoming edge currentdamiltonian, since they are irrelevant in the case of one
in the strong tunneling limit. This means that the branchingpoint contact(The Klein factorsyé; and¢;& in the forward
ratios of the edge currents determine the quasiparticle charg#d backward tunneling terms commute with each other and
and statistics. The statistics is given by the permutation relaare constants of motion. This means that they can at most
tions between the backscattering operators producing quagioduce an irrelevant constant shift of the fietgls
particles and makes the whole process of coherent splitting at The tunneling fieldp; is introduced according to Eq&9)
successive point contacts causal. The quasiparticle chargagich can be viewed as the rotation in the space of the fields
determine the magnitude of the shot noise of the outgoing:
current in each edge. In the non-uniform junctions, in which )
one point contact dominates the backscattering, the shot 6_(‘305‘91: ‘5'”ﬁj>
noise in any given edge is directly related to the charge split sind;, cosv,
in this edge in the branching process—see &4§). In uni-
form junctions, the charge-noise relation is less difsete by the angled; defined through the relations:
Eq. (49) and the example discussed next tphecause of

averaging over different point contacts. oSS = [ v Cing. = [ v
In the case of a junction between the Fermi-liquid reser- 7Ny + v’ N gy + v’

voir and the FQHL edgey;=1 for j=1.. .n, the quasiparti-

cle backscattering gives corrections to the reservoir-edgPerforming this rotation in the Hamiltonigid1), in particu-
equilibration reached with increasing number of reservoirar rotating the “vector” of bias voltagesv,Vo, V7;Vj, we
modesn— , in the absence of backscattering. For temperasee that the Hamiltoniai(+ of the tunneling mode; can be
turesT much larger than the bias voltayethese corrections separated from other terms:

APPENDIX: ONE POINT CONTACT

VI. CONCLUSION

(A1)

x=0
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axl o v B 2mm 1 . V(1)
Hr= f ZT{E(&X‘PJ')Z * x_jf’xsoi} = U cogjei(x=0)], p0n==7 umz[a(t) ) T} ' ")
Vv, (A2) We see that up to small terms of the order ofi1¢(0,t)

is indeed pinned to one of the minimar@/\ of the tunnel-
From now on we omit the indek of all variables. Heisen- ing energy. Inserting EqA9) into Eq.(A6) we see that the
berg equation of motion fap obtained from the Hamiltonian tunnel current in the point contact is

(A2) and the commutation relatiorgs) is i

- 2 ot)

Q) = 0'0)\_2V(t) -—. (A10)

G+ 03 e0D) = - ? +um sinp(0,0]sgrX). py

(A3) The first term on the right-hand side of this equation gives
the strong-tunneling conductance of the point contact, while

Separating the bias voltage: the second term represents the tunnel current induced by the
1 [t incident field fluctuations. Finally, combining Eq#9) and
o(X,1) = @p(X,t) — N f dr'v(t’), (A4)  (A10) with the continuity conditionf/A7) we can determine

the transmitted fielgy(t) in Eq. (A5):
we can write the solution of EA3) as

2 t
27m {a(t - x/v) + MQ(t), x<0, x(t) = Xf dt'v(t’) - 6(t). (A11)

eolx ) ==+ ¥(t—xlv) - mQ(t), x>0, (AS)

, . , o [Equations(A10) and (Al1l1) include only the terms that do
where an arbltrary constanfrm/)\ is written in this form for 4t vanish in the limit— c.] Comparison of Eq(A11) with
later convenience, anQ(t) is the operator of charge trans- Egs. (A4) and (A5) shows explicitly that both the voltage
ferred through the point contact: contribution tog(x,t) and incident fluctuations(t) change

Ny — : sign at the point contact in the strong-tunneling limit. This
QM) =~ usinA¢(0.0]. (A6) m?aans that 51e field;(x) defined by Eq(%S) of the ?nain text
The functioné(t) in Eq. (A5) is an arbitrary operator which indeed propagates freely in the strong tunneling limit.

has the meaning of fluctuations of the figltk,t) incident on The last remark is that EGA5) enables us to obtain di-

the point contact, angy will be determined from the final rectly the charge of backscattered quasiparticles. Indeed, in-

solution of Eq.(A3). stanton tunneling that describes the backscattering changes
Equation(A3) implies thate(x,t) is continuous as a func- the numbem of the minimum the fieldp(x,t) is pinned to,

tion of x atx=0, i.e., affecting in the process the charge transfer through the point

2 contact. Equatior(A5) shows that the transition from one
©(0,) = —— = 6(t) + TAQ(t) = x(t) - mAQ(t). (A7) tunneling minimum to another changimg by 1 happens if
A the transferred charge changes by the amount
In the strong tunneling limiti— o, we assume that the value >
of ¢(0,t) is very close to one of the miniman2Zn/\, m Q=
=0,%1,... of thetunneling term in the HamiltoniatA2)

and we can linearize the Sin? in HAG). AS v_ve_will see in which coincides with the junction tunnel conductance in
the end of the calculation, this assumption is indeed correchits of 5. One can also see from Eq@5) and (A7) that
A_ppl)lllng I tc;.thefflrst (%f :)he EQS(AT7), we get the following the large-scale distribution of the fiejg(x,t) created by such
simple equation ok, b: a process of instanton tunneling occurring at tiredincides

) t o . essentially, as it should, with the retarded Green’s function
@(0,t) =—um\ | Apo(0,t) = | dt'V(t') | +6. (A8)  giscussed in Sec. II:

N (A12)

Solution of this equation under the conditiénV <u appro- o(x,t) =— 2—77®(t - t)sgix—v(t-t)]. (A13)
priate for the strong-tunneling limit gives ’ N ! !
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