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We have developed a theory of quasiparticle backscattering in a system of point contacts formed between
single-mode edges of several fractional quantum Hall liquids(FQHLs) with different filling factorsn j and one
common single-mode edgen0 of another FQHL. In the strong-tunneling limit, the model of quasiparticle
backscattering is obtained by the duality transformation of the electron tunneling model. The new physics
introduced by the multipoint-contact geometry of the system is coherent splitting of backscattered quasiparti-
cles at the point contacts in the course of propagation along the common edgen0. The “branching ratios”
characterizing the splitting determine the charge and exchange statistics of the edge quasiparticles that can be
different from those of Laughlin’s quasiparticles in the bulk of FQHLs. Accounting for the edge statistics is
essential for the system of more than one point contact and requires the proper description of the flux attach-
ment to tunneling electrons.
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I. INTRODUCTION

Electron transport properties of the fractional quantum
Hall liquids (FQHLs) continue to attract considerable interest
motivated by the unusual properties of FQHL excitations
which are characterized by fractional charge and nontrivial
exchange statistics. Since excitations in the bulk of a typical
FQHL are suppressed by the energy gap, the low-energy
transport properties are determined by the gapless modes at
the edges of the liquid.1 In the simplest case of a FQHL with
fillings factor n=1/odd, its sharp edge should support one
bosonic mode that is described as a single branch of chiral
Luttinger liquid.2 Although the edge states are gapless and in
principle can carry excitations of arbitrary charge, in the case
of tunneling between the edges of FQHLs with equal filling
factors, strong tunneling produces excitations which
coincide3 with Laughlin’s quasiparticles in the bulk of the
liquid. Experiments on resonant tunneling through a quan-
tum antidot4 and on the shot noise in quasiparticle back-
scattering in a single point contact5 measure directly the frac-
tional charge of these excitations. Edge-state tunneling
should also make possible the measurements of quasiparticle
exchange statistics6 which can be used in the development of
FQHE qubits7 for solid-state quantum computation.

In the situation of tunneling between the edges of FQHLs
with different filling factors, strong tunneling should produce
quasiparticles that are different from bulk quasiparticles.8

The charge of such “contact” quasiparticles coincides with
the dc conductance of the point contact(if the two are mea-
sured in units of electron chargee and the free-electron con-
ductancee2/h, respectively). Theory up to now could predict
only the properties of one point contact between different
edges. The aim of this work is to develop a theory of strong
tunneling between FQHL edges with different filling factors
in a junction with more than one point contact. Such a model
of multipoint-contact junction was introduced9,10 to describe
experiments11 on tunneling between FQHL edge and external
Fermi-liquid reservoir. Understanding of the strong-
tunneling limit of this model is important for the description
of the reservoir-edge equilibration that is responsible for cor-

rect quantization of the two-terminal FQHL conductance.12

Multipoint-contact junctions with a well-controlled geometry
similar to the one considered in this work are also studied
experimentally.13

The main technical obstacle to the description of strong
multipoint-contact tunneling between different edges is the
fact that the bosonic fields in the tunneling operators of dif-
ferent contacts do not commute with each other and, at first
sight, cannot be localized simultaneously at the minima of
large tunnel potential, as can be done for one point contact.
This problem is resolved, however, if the bosonic fields are
modified12 by the proper choice of the statistical phase of the
tunneling electrons[see Eqs.(11) and (12) below]. The sta-
tistical phase preserves the Fermi statistics of electrons but
accounts for the change of the number of flux quanta at-
tached to them in the FQHLs14 in the process of tunneling
between the liquids with different filling factors. With the
flux attachment taken into account, the total bosonic tunnel-
ing fields commute, and one can build the strong-coupling
description of the multipoint-contact junction in close anal-
ogy to the case of one point contact. Here, we use this ap-
proach to develop complete description of strong tunneling
in the multipoint-contact junction extending previous
results12 to quasiparticle backscattering.

Important elements of our approach can be summarized as
follows. Specific junction model considered in this work is
characterized by the existence of one edgen0 common to all
point contacts(Fig. 1). The quasiparticle backscattering is
produced by finite reflection coefficients of the contacts, and
is described as instanton tunneling between the infinite set of
the ground states of the original electron tunneling model
that are degenerate in the absence of backscattering. Expan-
sion of the junction dynamics in terms of instantons gives the
model of quasiparticle tunneling which is dual to the electron
tunneling model. Duality transformation relating the two
models produces the quasiparticle exchange statistics from
the electron statistical phases ascribed through the flux at-
tachement. Correct description of quasiparticle statistics in
our junction geometry enables one to combine sequentially
the edge-state transformations at different point contacts in
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such a way that the incoming edges are split coherently at
each point contact in the course of propagation along the
common edgen0. This process can be described with the
“branching ratios” which define how the incoming currents
(or charges) are split between the outgoing edges. Quasipar-
ticles produced by backscattering at one point contact are
split similarly at all point contacts downstream the edgen0
from the “contact of origin,” and the edge-state branching
ratios determine the charges generated in each edge by back-
scattering. As usual, these charges should manifest them-
selves through the intensity of the shot noise of outgoing
currents. The charge splitting also provides natural interpre-
tation of the quasiparticle exchange statistics obtained by the
duality transformation, so that both the charge and statistics
of backscattered quasiparticles can be viewed as being de-
fined by the strong-coupling edge-state branching.

The paper is organized as follows. Section II defines the
electron tunneling model considered in this work. Section III
describes the bosonization procedure for the Klein factors of
electron tunneling operators that implements the flux attach-
ment. Section IV explains the instanton transformation, for-
mulates the dual model of quasiparticle tunneling, and cal-
culates the dc current and shot noise in outgoing edges of the
junction. In Sec. V we apply the results of Sec. IV to the
situation that corresponds to the junction between a Fermi-
liquid reservoir and FQHL edge. Quasiparticle backscatter-
ing in this case gives rise to corrections to the Ohmic behav-
ior of the junction: nonlinear current-voltage characteristic
and shot noise, which limit the reservoir-edge equilibration
obtained in the absence of backscattering. In the Appendix,
we summarize for convenience the known results for strong
tunneling in one point contact that are used in the main text.

II. MULTIEDGE MODEL OF WEAK
ELECTRON TUNNELING

The model we consider consists ofn edges of different
FQHLs of the filling factorsn j, j =1, . . . ,n, which form n
tunnel point contacts with an edge of another FQHL of the
filling factor n0 (see Fig. 1). All liquids are assumed to cor-
respond to simple Laughlin states with the filling factorsnl
=1/odd, l =0, . . . ,n, which in general can all be different.
Since bulk excitations inside the liquids have energy gap, at
energies below some common cutoff energyD, only the
edges support excitations that propagate along them. In the
weak tunneling regime, when each of thej th edges is well

separated from the 0 edge, the tunnel currents between them
should be carried by individual electrons. We assume that the
tunnel contact formed by thej th edge is located at the point
xj along the 0 edge and its width is much smaller than the
magnetic length. Tunneling in such a system of contacts is
described by the Lagrangian

Ltunn= o
j=1

n

fUjc0
+sxj,tdc jsxj,td + H.c.g, s1d

where the tunnel amplitudesUj are taken to be real and posi-
tive, andcl is the electron operator of thelth edge.

If we assume that all edges are sharp enough to enable us
to use simple bosonic single-mode description of the edge-
state dynamics introduced by Wen,2 the electron operatorcl
can be expressed as

cl = s2pad−1/2jle
iflsx,td/Înl . s2d

Herefl is the bosonic field of the edgel; Majorana fermions
jl account for mutual statistics of electrons in different edges,
and a common factor 1/a=D /v denotes momentum cutoff
of the edge excitations. Since the spatial dynamics of the
edgesj =1. . .n does not affect the tunnel currents, propaga-
tion velocities of these edges are irrelevant, and we take
them to be equal to the velocityv of the excitations of the
edgen0. The bosonic fieldsfl are normalized in such a way
that their free dynamics is governed by the standard La-
grangian density2

L0 =
1

2 o
l,p=0

n

flĜlp
−1fp ;

1

2
fĜ−1f,

Ĝlp
−1 =

dlp

2p
]xs]t + v]xd, s3d

which corresponds to the Hamiltonian

H0 =
v

4p
E dx„]xflsxd…2 s4d

and the commutation relations

fflsxd,fps0dg = ipdlpsgnsxd. s5d

In the following, we will need free correlator of the fields
fl ordered in imaginary timet:

Ĝlpsx,td = dlpgsx,td, gsx,td = kTthflsx,tdfls0,0djl.

s6d

To find this correlator, we start with the retarded Green’s
function in real timet:

gRsx,td = − iQstdkfflsx,td,fls0,0dgl, s7d

whereQstd is the step function. Lagrangian(3) implies that
dynamics ofgRsx,td is governed by the equation

]xs]t + v]xdgRsx,td = 2pdsxddstd.

Solution of this equation that satisfies the symmetry of the
Eq. (7) [the commutator part of Eq.(7) should be antisym-

FIG. 1. Diagram of the model of a tunnel junction considered in
this work:n edges of FQHLs with different filling factorsn j tunnel
into one FQHL edge with the filling factorn0 at pointsxj along this
edge.Uj are electron tunneling amplitudes. Each edge is assumed to
support one branch of bosonic excitations with arrows indicating
direction of propagation of these excitations.
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metric with respect to simultaneous change of sign ofx,t] is

gRsx,td = pQstdsgnsx − vtd.

The standard steps: Fourier transformation ofgRsx,td,
gRsx,vd=edteivtgRsx,td, and analytical continuation to the
upper half-plane of frequency,v→ iv, give the Fourier
transform of the imaginary-time correlator for positive fre-
quenciesv: gsx,vd= u−gRsx,vduv→iv.

Similar calculations for the advanced Green’s function

gAsx,td = iQs− tdkfflsx,td,flgl = − pQs− tdsgnsx − vtd,

give gsx,vd for negative frequencies, and it can finally be
written for all Matsubara frequencies as

gsx,vd =
2p

v
sgnsxdS−

1

2
+ Qsvxde−vx/vD . s8d

The first part of this correlator does not depend onuxu and
characterizes singular behavior of the correlator at short
times,gsx,td, ip sgnsxtd /2, which is responsible for the in-
traedge statistics of the electronic operatorscl. With the
adopted normalization offl, the operator of charge density
of the lth edge at pointx is

rlsx,td = sÎnl/2pd]xflsx,td,

and the current in the edge is related to the charge density as
j l =vrl.

As in the case of a single point contact, the effective elec-
tron tunneling amplitudes are renormalized from their origi-
nal valuesUj in Eq. (1) by fluctuations of the fieldsfl. The
effective tunneling amplitudes scale with energy in such a
way that the weak-tunneling limit is always stable at suffi-
ciently low energy. The main focus of this work is on the
strong-tunneling regime realized at large temperatures or
bias voltagesVj across the point contacts which make the
effective tunneling amplitudes large. The description of the
strong-tunneling limit presented below is based on the in-
stanton expansion around the saddle-point solution.12 As dis-
cussed in the Introduction, this solution requires appropriate
bosonization of the Klein factors of the electron tunneling
operators that takes into account the flux attachment.

III. BOSONIZATION OF THE KLEIN FACTORS

Substitution of the bosonic representation(2) of the elec-
tron operatorscl into Eq. (1) transforms the tunneling La-
grangian into

Ltunn= o
j=1

n F Uj

2pa
Fj exphil jw jstdj + H.c.G . s9d

Here

l jw jstd ;
f0sxj,td

În0

−
f jsxj,td

În j

,

and the factors

l j = Fn0 + n j

n0n j
G1/2

s10d

are chosen in such a way that the normalization of the
bosonic operatorw j coincides with the normalization of the
bosonic fieldsfl used before, so that the imaginary-time cor-
relator of w j is given by the same Eq.(8) with x=0:
gs0,vd=p / uvu.

In the Lagrangian(9), Fj represents the anticommuting
statistical Klein factors,Fj =j0j j, which account for mutual
statistics of electrons in different edges. These factors play
an important role in the strong multiedge tunneling consid-
ered in this work. A convenient way of taking them into
account is to express them through the zero-energy bosonic
fields h j:

12,15

Fj = eih j, fhi,h jg = ipgi j , s11d

where gi j are odd integers. Different choices ofgi j corre-
spond to different branches of the phase of the fermionic
statistical factor −1 arising from interchange ofFi and Fj.
Under the condition that the point contacts are well-
separated,uxi −xju@a, minimization of energy of the strong-
coupling ground state requires that the statistical phases are
taken as12

gi j = sgnsi − jds1 − di jd
1

n0
. s12d

This equation assumes that the point contacts are numbered
as in Fig. 1:xi ,xj for 1ø i , j øn, and the coordinatex
increases in the direction of the edge propagation.

The steps similar to those that lead to Eq.(8) give then the
Fourier transform of thet-ordered correlator of the fields
h j:

16

khih jl = sgnsi − jds1 − di jd
p

vn0
. s13d

Substitution of the bosonized form(11) of the Klein factors
into Eq.(9) turns the tunneling Lagrangian into a function of
n bosonic variables

F j = l jw j + h j , s14d

and one can reduce the kinetic Lagrangian(3) to a simplified
form by integrating out all the fields exceptF j. The resulting
Gaussian action for the fieldsF j can be obtained directly by
noticing that it should be determined by the matrix of corr-

elatorsK̂ijsvd=kFis−vdF jsvdl as

S0 =
1

2
FK̂−1F =

1

2o
i j

o
v

Fis− vdK̂ij
−1svdF jsvd, s15d

wherev=2pmT denotes the Matsubara frequencies withm
=0±1, ±2, . . . andtemperatureT. The matrix of correlators

K̂ij can be found from the correlator(8) of the tunneling
fields w j [determined by the original kinetic Lagrangian(3)]
and the correlators(13) of the statistical fields. Combining
the two we get
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K̂ijsvd =
2p

uvu Fl j
2

2
di j +

Q„sgnsi − jdv…
n0

e−uvti j us1 − di jdG ,

s16d

wheretij = ti − tj and tj ;xj /v. Important feature of the terms
in Eq. (16) that are nondiagonal ini, j is that they do not
contain the singular statistical parts. The singular part of the
correlator(8) of the tunneling fieldsw j is cancelled by the
statistical fieldsh j, if the phasesgi j (11) are chosen appro-
priately, as in Eq.(12).

IV. STRONG-TUNNELING LIMIT

A. Instanton expansion and duality transformation

The tunneling action(9) expressed through the bosonic
fields F j (14) has an infinite set of minima atF j =2p
3 integer, j =1. . .n, that are degenerate in energy. In the
strong-tunneling limit, when the electron tunneling ampli-
tudes Uj are large, these minima are well-separated in a
sense that the amplitude ofF j-tunneling between them is
small. Such rare tunneling processes correspond physically
to finite backscattering at each of the point contactsj and are
described by the instanton tunneling solutions which on the
long-time scale behave as 2peljQst−tl jd, where index l
counts different instanton tunneling events,elj = ±1, andtl j
are the times of tunneling of theF j component. On the short
time scales on the order of 1/D, the variation ofF j is
smoothed aroundtl j , with the exact behavior dependent on
the form of the energy cutoff. For some special form of the
cutoff,17 the shape of the instantons for short times can be
found from the equations of motion. It minimizes the instan-
ton contribution to the action in the absence of the long-time
interactions and determines the instanton tunneling ampli-
tudes. The amplitudes are, in addition, modified by quantum
corrections and we take them as some unspecified parameters
Wj / s2pad.

The low-energy part of the action determines the
instanton-instanton interaction and can be found by substitu-
tion of the long-time asymptotic form ofF jstd, i.e., F jstd
=2p3 integer+olelj2pQst−tl jd into theF j action (15). In-
deed, the constant part ofF jstd is irrelevant, and as we will
see later, only the trajectories with the same initial and final
values ofF jstd for each contactj , olelj =0, are important.
The Fourier transformF jsvd=ÎTe0

1/TdteivtF jstd of such
“neutral” trajectories is

F jsvd = o
l

elj
2piÎT

v
eivtl , s17d

and combining this equation with Eq.(15) we see that the
low-energy part of the action has the form of the pair-wise
instanton interaction with each pair of instantons with indi-
cesl j andki contributing the term

Sintstl,tkd = eljekiTo
v
S2p

v
D2

K̂ij
−1svdeivstl−tkd. s18d

It is convenient to formulate the instanton dynamics in
terms of the fieldsQ j, j =1, . . . ,n, that are defined as dual to
F j, i.e., satisfy the commutation relations:

fQ j,F j8g = 2pid j j 8. s19d

In terms of these fields, each instanton tunneling is generated
by the operator

Wj

2pa
exphieljQ jstldj s20d

which shiftsF j by 2pelj . The low-energy part of the action
containing instanton-instanton interaction(18) can be under-
stood then as arising from Gaussian fluctuations of the dual
fields:

e−Sint = e−eljekikQistkdQ jstldl/2,

and Eq.(18) gives the correlators of these fields:

kQis− vdQ jsvdl = s2p/vd2K̂ij
−1svd.

To find these correlators explicitly, we need to invert the

matrix K̂ defined in Eq.(16). This task is not difficult, since

the matrix has a triangular form: for negative frequencies,K̂

and K̂−1 are upper-triangular, while for positive frequencies

they are lower-triangular. In both situations, one can findK̂−1

by writing equations for the matrix elementsK̂ij
−1 as recur-

rence relations in terms of the “distance” from the diagonal
and solving them starting with the diagonal elements. For
negative frequencies, the result is

kQis− vdQ jsvdl

= s2p/vd2K̂ij
−1

=
2p

uvu F 2

li
2di j − Q„sgnsi − jdv…Bije

−uvti j us1 − di jdG ,

s21d

Bij =
4

n0li
2l j

2 p
i,k, j

S1 −
2

n0lk
2D . s22d

For positive frequencies, Eq.(21) remains valid if we define
the matrixBij for i . j (below the diagonal) by the condition
Bij =Bji . Qualitatively, as will be discussed in more details
below, the dual fieldsQ j describe quasiparticles backscat-
tered at the point contacts, and the matrixBij (22) determines
the exchange statistics of these quasiparticles.

Similarly to the case of electron tunneling model where
the correlators(16) give the kinetic part(15) of the action,
the correlators(21) determine the kinetic part of the action of
the dual model of quasiparticle tunneling:

S̄0 =
1

2
Qsv/2pd2K̂Q. s23d

One more remark is that theQ j-correlators(21) show that the
condition of neutrality of instanton tunneling trajectories,
olelj =0, that was used above, is satisfied at each point con-
tact j . Indeed, the form(21) of the correlators implies that
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interaction between instantons diverges at low energies and
only the trajectories that satisfy the neutrality condition for
each j have finite action and contribute to the evolution of
the system.

B. Dual chiral fields and Klein factors

One can see directly that the expansion of the system
propagator in the number of instanton tunneling events can
be generated as the expansion in the instanton tunneling La-
grangian composed of the tunneling operators(20). This
means that the dual model of quasiparticle tunneling can be
formulated in complete analogy to the direct model of elec-
tron tunneling. Comparing the correlators(21) with those
from Eq. (16), one can notice that similarly to theF fields
(14), Q j can be represented as the sum

Q j =
2

l j
u j + h̄ j s24d

of the fields with, respectively, chiral and pure statistical cor-
relators. Equation(21) implies then that the chiral correlator
of the fieldsu j for i Þ j is

kuiu jl = − slil j/4dBijgsxi − xj,vd. s25d

The representation(24) of Q j allows us to write the instanton
tunneling Lagrangian in the form analogous to Eq.(9):

L̄tunn= o
j=1

n F Wj

2pa
F̄j expHi

2

l j
u jstdJ + H.c.G , s26d

where the Klein factors of the dual model are

F̄j = eih̄ j, fh̄i,h̄ jg = − ip sgnsi − jds1 − di jdBij . s27d

Before discussing the physical consequences of the dual
model of quasiparticle backscattering, we present the deriva-
tion of this model that is less rigorous than the one that uses
instanton expansion, but more direct. The approach is based
on independent application of the known strong-tunneling
solution for one point contact8 to individual contacts of our
multipoint-contact junction and matching the obtained solu-
tions at successive contacts along the edgen0 common to all
of them (see Fig. 1). Since the bosonic fields at different
point contacts interact strongly at low frequencies, the pos-
sibility to simply match the solutions at successive contacts
is by no means trivial and represents an important assump-
tion. The instanton calculation described in the previous sub-
section can be viewed as the proof that this assumption is
indeed valid provided one chooses correctly the statistical
phases of electrons in different contacts, which after duality
transformation determine the statistical phases of backscat-
tered quasiparticles.

In more details, consider thej th point contact of our mul-
ticontact model. Strong-tunneling solution(reviewed in the
Appendix) can be described as application of the Dirichlet
boundary condition to the tunneling fieldw jsxd which local-
izes this field at the minimum of the tunnel potential at the
point of contactj . “Unfolded” form of this condition18 im-
plies free propagation of the two fields constructed from the

original bosonic modesf jsxd andf0sxd of the edges forming
this contact. One is the field

u jsxd = − sgnsx − xjdw jsxd s28d

dual to the tunneling fieldw jsxd, while the other,w̃ jsxd, is the
combination off jsxd and f0sxd orthogonal to the tunneling
field, i.e.,

w j =
1

l j
S f0

În0

−
f j

În j
D, w̃ j =

1

l j
S f0

În j

+
f j

În0
D . s29d

[We use the same notation for the dual fieldu j defined by Eq.
(28) as in Eq.(24) in anticipation of the fact, proven later,
that these two fields indeed coincide.] Free evolution of the
field u jsxd (28) is equivalent to the statement that the incom-
ing tunneling field changes sign at the contactx=xj. Com-
bining this change of sign with Eq.(29), we see that the
transformation of the incoming fieldsf0sxd and f jsxd at
x,xj into outgoing fields atx.xj [Fig. 2(a)] can be

described8 with the 2-by-2 matrixP̂s jd:

sf0
soutd,f j

soutddT = P̂s jdsf0
sind,f j

sinddT s30d

with the matrix elements

P̂00
s jd = − P̂j j

s jd =
n0 − n j

n0 + n j
, P̂0j

s jd = P̂j0
s jd =

2În0n j

n0 + n j
. s31d

A natural way to combine transformations(30) at the
neighboring contacts is toassumethat the fieldf0

soutd coming
out of each contact along the edgen0 serves as the incoming
field f0

sind for the next point contact downstream this edge
[Fig. 2(b)]. Under this assumption(validity of which implies
the nontrivial mutual statistics of backscattered quasiparti-
cles), description of the overall transformation of the incom-
ing bosonic modes in our multipoint-contact junction can be

obtained by extending each of the matricesP̂s jd trivially to
the n+1 by n+1 matrix: the fieldsfi with i Þ j are constant

in P̂s jd, and multiplying this matrices. The full transformation
of the incoming fieldsfsind=sf0,f1, . . . ,fndT into the outgo-
ing fields [see Fig. 2(b)] is described then as

FIG. 2. Diagram of the strong-coupling scattering of the edge
states in the multipoint-contact junction considered in this work:(a)
transformation of the bosonic edge-state fields(30) in one indi-
vidual point contactj ; and (b) transformation of the fields in the
n-point junction as a whole: the fieldf0 undergoes successive trans-
formations in the course of propagation along the edgen0.
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fsoutd = Ŝfsind, Ŝ= P̂sndP̂sn−1d
¯ P̂s1d. s32d

Such a combination of successive transformations of the
fields at the point contacts together with the free propagation
of the field f0 between the contacts implies that the cor-
relator of the fieldsu jsxd defined by Eqs.(28) and (29) at
different contacts is

kuisxidu jsxjdl = −
1

n0lil j
gsxi − xj,vd p

i,k, j

P̂00
skd.

Equations(10), (22), and(31) show that this correlator coin-
cides with the correlator(25). According to Eq.(28), the
correlator ku ju jl at the same contact isku ju jl=kw jw jl
=p / uvu and also agrees with Eqs.(24) and(21). This means
that the chiral fieldsu j introduced in Eqs.(24) and(26) as the
fields describing the quasiparticles backscattered at the point
contacts coincide with the dual fieldsu jsxjd from Eq. (28)
matched directly between the contacts. This coincidence is
nontrivial and is only correct if the mutual statistics of qua-
siparticles backscattered at different point contacts is ac-

counted for by inclusion of the Klein factorsF̄j (27). The
statistics, however, does not affect the scaling dimensions of
the quasiparticle tunneling operators, which have the same
values 2/l j

2 as for one independent point contact.19 This
means that the dual model of strong tunneling in the
multipoint-contact junction constructed in this work is stable
for large temperatures and/or voltages applied to all contacts,
and the strong-tunneling limit is always reached at suffi-
ciently large energies.

C. Interpretation of the quasiparticle statistics and calculation
of the outgoing currents and shot noise

In this subsection, we use the approach developed above
to calculate the transport properties of the multipoint-contact
junction in the limit of strong tunneling. Application of the
voltageVl to the lth edge can be described simply as a shift
of the incoming field(see, e.g., the Appendix)

fl
sind → fl

sind − ÎnlVlt, s33d

which can be understood as the evolution of the quantum-
mechanical phase of the electron operatorcl (2) of the lth
edge.(In this work, we discuss only the dc transport proper-
ties of the junction biased by constant voltagesVl.) Numeri-
cal shift of the fieldsfl does not affect their properties as
quantum operators, and all the results forfl discussed above
remain valid in the presence of finite bias voltages.

We consider first the situation withno backscattering.
Since the currentj l in the lth edge is related tofl as
j lsx,td=−Înl]tflsx,td /2p, the outgoing currents are linear in
the applied voltages and one can define the matrix of con-
ductances through the current induced in thelth edge by the

voltage applied to thekth edge:Ĝlk= j l /Vk. The transforma-
tion of the fieldsfl according to Eq.(32) means that the
conductance matrix is

Ĝlk = s0
ÎnlnkŜlk,

where s0 is the universal free-electron conductancee2/h
equal to 1/2p in our unitse="=1. Direct substitution of the
matrices(31) into this expression gives

G00 = n0p
1

n
n0 − nl

n0 + nl
,

Gjj = n j
n j − n0

n0 + n j
, Gij = 0 for j . i ù 1,

Gij =
4n0nin j

sn + nidsn0 + n jd
p

j,l,i

n0 − nl

n0 + nl
for 1 ø j , i ø n,

G0j =
2n0n j

n0 + n j
p
l. j

n
n0 − nl

n0 + nl
, Gj0 =

2n0n j

n0 + n j
p
l, j

n0 − nl

n0 + nl
,

s34d

whereGij denotes the conductanceĜij in units ofs0. Charge
conservation requires thatolGlj =n j, the condition that is in-
deed satisfied by Eqs.(34).

Equations(34) describe a flow of charge along the edges
in which the difference of currents in the edges 0 andj is
redistributed at thej th point contact according to its tunnel-
ing conductances0sn j −Gjjd=2s0n0n j / sn0+n jd. Such a de-
scription of current flow in the system of several point con-
tacts was first obtained in Ref. 10 under the assumption that
quantum coherence of electron propagation along the com-
mon edge is suppressed, and electron distribution is equili-
brated between the successive point contacts. The calcula-
tions presented above show that this description of the
current flow remains valid in the quantum-coherent regime,
when any external decoherence mechanisms are absent.

We now turn to the regime offinite backscattering. As
discussed above, each elementary process of backscattering
can be described as instanton tunneling generated by the op-
erator~exph±i2u j /l jj [see Eq.(26)]. If the tunneling occurs
in the point contactj , the associated shift of the fieldf j
corresponds to the transfer of chargeqj =2/l j

2=2n0n j / sn0

+n jd (see, e.g., the Appendix). In the multipoint-contact junc-
tion, quasiparticle of chargeqj produced in the 0th edge at
the pointxj by instanton tunneling propagates along this edge
and is split between edgesi with i . j and the edge 0 accord-
ing to the conductance matrix. Distribution of charges in
backscattering processes that results from such a “current
branching” at the point contacts enables us to interpret the
quasiparticle Klein factors(27) of the dual model as ex-
change statistics of charges generated in the edge 0. Indeed,
the absence of the energy gap at the edge of a FQHL makes
it possible to produce arbitrary edge excitations. For an iso-
lated edge 0, the exchange statistics of two excitations with
chargesp1 andp2 is set by its filling factorn0 to bep1p2/n0.
The two quasiparticles which tunnel in the nearest-neighbor
contacts create chargesqj and qj+1 in the edge 0 and the
statistical angle for these quasiparticles, 2pqjqj+1/n0 is easily
seen to indeed coincide with the statistical angle 2pBj ,j+1
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determined by the Klein factors(27) through the statistical
matrix Bij (22). If the quasiparticles tunnel at the point con-
tacts that are not nearest neighbors, one needs to take into
account that the charge created in the edge 0 in the vicinity
of the contacti by quasiparticle tunneling at the contactj , i
is smaller thanqj by the factor

r ; p
j,l,i

fsn0 − nld/sn0 + nldg

due to charge splitting at the intermediate point contacts.
Equation(22) shows then that the matrixBij can be written
as Bij =rqiqj /n0, i.e., the statistics of quasiparticles can still
be interpreted as the exchange statistics of charges in the
common edge 0.

This interpretation remains valid if some of the filling
factorsnl are equal to each other. For instance, if the edgesj
and j +1 have the same filling factorn0 as the edge 0, the
charge and statistics of the backscattered quasiparticles coin-
cide with those of Laughlin’s quasiparticles:qj =Bj ,j+1=n0, in
agreement with previous results.3 Our discussion here shows
that in general the strong coupling between non-identical
edges should produce quasiparticles with both charge and
statistics that are different from those of Laughlin’s quasipar-
ticles in the bulk.

To find the backscattered currents quantitatively, we cal-
culate first the charges injected into each edge by quasipar-
ticle tunneling at thej th contact. Combining the two facts,
that the fraction of the incoming current in thej th edge that
goes out into theith edge is equal toGij /n j, and that the
quasiparticle chargeqj is created in the process of back-
scattering directly in the 0th edge, we see from Eqs.(34) that
each backscattering event in the contactj creates the charge
equal toGij in the ith edge,i Þ j . This means that the back-
scattering currentI l

sbscd in the lth outgoing edgesl =0, . . . ,nd
is related to the rateI j

s0d of quasiparticle backscattering in the
j th contact as

I l
sbscd = o

j=1

n

DGlj I j
s0d, DGlj ; Glj − n jdl j . s35d

To find the ratesI j
s0d, we need to calculate the distribution

of bias voltages for quasiparticles. In contrast to finding the
bias (33) for electron tunneling, this task is not completely
trivial, since in the strong tunneling limit, the bias voltageVl

applied to thelth edge affects the quasiparticle biasV̄j in all

point contacts. The biasV̄j can be obtained as the voltage-
induced shift of the dual fieldsu j in the arguments of expo-
nents in the tunneling Lagrangian(26). We find this shift
from the linear relation between the incoming fieldsfl

sind and
the fieldsu j (28). Extending the set ofn fields u j to the sn
+1d-component vectoru;sf0

soutd ,u1,u2, . . . ,undT we can
write this linear relation similarly to Eq.(32):

u = Ŝ8fsind, Ŝ8 = T̂sndT̂sn−1d
¯ T̂s1d, s36d

where the matricesT̂s jd describe transformations of the in-
coming fields intosf0

soutd ,u jd in the individual point contacts.

The part ofT̂s jd related tof0
soutd is the same as inP̂s jd (30),

while the part related tou j follows directly from Eqs.(28)
and (29):

T̂j0
s jd = S n j

n0 + n j
D1/2

, T̂j j
s jd = − S n0

n0 + n j
D1/2

,

T̂00
s jd = P̂00

s jd, T̂0j
s jd = P̂0j

s jd. s37d

Since the voltagesVl shift the incoming fields according
to Eq. (33), the transformation(36) shows that the voltage-
induced shift of the quasiparticle fieldsu j is

u j → u j − o
l

Ŝjl8ÎnlVlt.

Obtaining the matrix elementsŜjl8 explicitly from Eqs.(37)
and (31) we see that the voltage bias in the quasiparticle
tunneling operator in Eq.(26) is

2u j

l j
→ 2u j

l j
− V̄jt, V̄j = o

l

DGjlVl . s38d

Inserting this result into the expression for the rate of quasi-
particle tunneling from the 0th edge at thej th contact that
follows from Eq.(26) we get

I j
s0d = −

Wj

pa
sinS 2

l j
u j + h̄ j − V̄jtD . s39d

Finally, combining the strong-coupling branching of the
currents according to the conductance matrix(34) with the
backscattering contribution to the current, we see that the
averageoutgoing currentkI ll in the lth edge is

kI ll = s0o
k

GklVl + kI l
sbscdl. s40d

In the limit of strong tunneling, the backscattering is weak
and the average quasiparticle tunneling ratekI j

s0dl can be
evaluated in the lowest order of perturbation theory in back-

scattering(26). For large quasiparticle bias voltagesV̄j one
gets

kI j
s0dl =

Wj
2D

2pv2Gs4/l j
2d

sgnsVjduV̄j/Dus2/l jd
2−1.

This expression combined with Eqs.(35) and(40) describes
how the average outgoing current in thelth edge approaches
its linear large-voltage asymptotics.

In this regime of weak backscattering, the quasiparticle
tunneling produces regularshot noise, which at low tempera-
tures is the only source of noise of the outgoing currents.20

This mean that the correlators of the outgoing currentskI ll at
zero frequency can be expressed as

ukhI l,Ikjluv→0 = 2o
j=1

n

DGljDGkjukI j
s0dlu, s41d

where {…,…} denotes the anticommutator. In general, the
current noise(41) is not proportional to the average back-
scattered current, unless the contribution to backscattering of
one point contact is dominant. If the contactm does domi-
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nate, the shot noise of the outgoing current in thelth edge is
characterized by the fractional charge equal toDGlm,

q * ; U ukhI l,I ljluv→0

2kI l
sbscdl

U = uDGlmu, s42d

i.e., the charge is proportional to the fraction of the quasipar-
ticle charge which reaches thelth edge in the current branch-
ing process. The shot noise with the charge(42), generated at
one point contact and fractionally split into another contact,
is direct manifestation of coherent propagation of electrons
between the point contacts. Equilibration of electron distri-
bution between the contacts would leave in each edge only
the shot noise generated by the backscattering at the point
contact formed by this edge.

V. TUNNELING BETWEEN MULTIMODE FERMI-LIQUID
RESERVOIR AND FQHL

In this section, we consider the situation with one specific
choice of the filling factors,n j =1, for j =1. . .n, in the gen-
eral model of the multipoint-contact junction(Fig. 1). The
multi-point-contact junction in this regime has been used
before9,10,12 to model an interface between the multimode
Fermi-liquid reservoir and the FQHL. In the limit of strong
tunneling, the reservoir-FQHL interface has all the features
of a regular Ohmic contact: linear current-voltage character-
istics and no shot noise, and establishes equilibrium between
the reservoir and the edge of the FQHL when the numbern
of reservoir modes is large. Results of this section describe
corrections to the Ohmic behavior caused by the weak qua-
siparticle backscattering which manifests itself through the
shot noise and nonlinear corrections to current.

In the case of reservoir-FQHL interface, then=1 edges of
the general model of Fig. 1 represent one-dimensional free-
electron scattering modes of then-mode Fermi-liquid reser-
voir. When a voltageV is applied to the FQHL edge, the
tunneling currentIT that flows between the reservoir and the
edge can be found as the sum of the outgoing currents[see
Eqs.(35) and (40)] in the free-electron modesj =1. . .n:

IT = − s0DG00V − o
j=1

n

G0jI j
s0dsGj0Vd. s43d

The argument of thej th rate of backscatteringI j
s0d here rep-

resents the quasiparticle bias voltage(38) in the j th contact.
Perturbation theory in quasiparticle tunneling(26) of the

dual model is justified when either the temperature or all
quasiparticle bias voltages are larger than the energy scale
TX.maxjsWj /vd1/s1−2/l2dD of the crossover to strong tunnel-
ing in all point contacts. The condition on the bias voltages is
always satisfied if the applied voltageV is sufficiently large:
uVufs1−n0d / s1+n0dgn.TX.

Tunneling at large temperatures can be characterized by
the linear conductance Gof the reservoir-edge interface. We
calculate this conductance by first obtaining the average rates
kI j

s0dl of backscattering in each contact in the first nonvanish-
ing order of perturbation theory in tunneling(26) and then
summing them according to Eq.(43). We find that with in-

creasing temperature, conductanceG approaches its satura-
tion valueGn,

Gn = s0n0f1 − sq − 1dng, q =
2n0

1 + n0
=

2

l2 , s44d

reached in the absence of backscattering, as

G = Gn −
q2sq − 1dn−1

4Îp

Gsqd
Gsq + 1/2dSpT

D
D2sq−1d

o
j

Wj
2

v2 . s45d

Sinceq,1, the first-order perturbation correction toGn (45)
vanishes with increasing temperature as a power of tempera-
ture,G−Gn~1/T2s1−qd. In the limit of large number of point
contacts,n→`, this power-law correction is, however, sup-
pressed by the same small factors1−qdn which characterizes
how Gn approaches its equilibration values0n at n→`. One
can show that correction toGn in the next nonvanishing or-
der of the perturbation theory in backscattering is also sup-
pressed by this factor. This suggests thatG approaches the
saturation value faster than any negative power ofT.

Following the same step as for the linear conductance
(45) we obtain the averagetunneling currentin the large-
voltage regime:

kITl = GnV +
s− 1dnq2qV

2pGs2qd
sV/Dd2sq−1ds1 − qdsn−1ds2q−1d

3 o
j

sWj/vd2s1 − qd2sn−jds1−qd. s46d

For largen, the main contribution to the sum overj in this
equation comes from the contacts at the end of the junction,
where j .n. The overall magnitude of the average backscat-
tered current(46) in the perturbative regime of weak back-
scattering is proportional tos1−qdsn−1ds2q−1d, and for n0

ù1/3, does not vanish whenn→`. If n0=1/3, theexponent
in this dependence is zero: 2q−1=0,while for smallern0 the
exponent is negative and makes the absolute value of the
backscattered part of current(46) a growing functionn.
Equations(45) and(46) show also that the sign of the back-
scattering contribution to the tunnel current oscillates with
the parity of the numbern of point contacts, with back-
scattering increasing the tunnel current for evenn.

The shot noiseof the tunneling current is given by the
zero-frequency correlatorkhIT,ITjl and similarly to Eq.(41)
is generated by the backscattering part of the current(43):

khIT,ITjl = o
i,j=1

n

G0iG0jkhI i
s0d,I j

s0djl. s47d

In the lowest nonvanishing order in the backscattering, the
correlators on the right-hand side of Eq.(47) are not equal to
zero only fori = j . Nonzero diagonal correlators are given by
the average backscattered currents, as in Eq.(41). In this
case, summing the contributions 2kI j

s0dl to noise from each of
the point contacts according to Eq.(47) we get

V. V. PONOMARENKO AND D. V. AVERIN PHYSICAL REVIEW B 70, 195316(2004)

195316-8



khIT,ITjl =
q2q+1V

pGs2qd
sV/Dd2sq−1ds1 − qdsn−1ds2q−1d

3 o
j

sWj/vd2s1 − qdsn−jds3−2qd. s48d

Similar to the average backscattered current, the main con-
tribution to the shot noise comes from few contacts withj
,n. If the tunneling amplitudes of these contacts are ap-
proximately equal so that we can neglect their variations,
Wn

2.Wn−1
2 .¯, the ratio between the noise and the average

backscattered current is

U khIT,ITjl
2skITl + s0DG00Vd

U = q
1 − s1 − qd2s1−qd

1 − s1 − qd3−2q . s49d

We see that in a uniform junction with large numbern of
modes, the splitting of excitations at the point contacts com-
plicates the relation between the backscattered charge and
the shot noise. For instance, ifn0=1/3, by anumerical co-
incidence Eq.(49) gives the noise-to-current ratio also equal
to 1/3, while the backscattered charge isq=1/2. Forsmaller
n0, the ratio(49) does not correspond directly to eitherq or
n0.

VI. CONCLUSION

To summarize, this work provides a description of quasi-
particle tunneling in the junction with geometry shown in
Fig. 1, in which several point contacts are formed between
single-mode FQHL edges with in general different filling
factorsn j =1/odd and one common single-mode edge with
filling factor n0. This description extends to finite reflection
in the contacts our previous theory12 of strong electron tun-
neling in such a junction. New quasiparticle physics emerg-
ing form the multipoint-contact geometry is coherent split-
ting of quasiparticles at all point contacts downstream the
common edgen0 from the point contact where the quasipar-
ticles have been created. Quasiparticles are split at each con-
tact in precisely the same way as the incoming edge currents
in the strong tunneling limit. This means that the branching
ratios of the edge currents determine the quasiparticle charge
and statistics. The statistics is given by the permutation rela-
tions between the backscattering operators producing quasi-
particles and makes the whole process of coherent splitting at
successive point contacts causal. The quasiparticle charges
determine the magnitude of the shot noise of the outgoing
current in each edge. In the non-uniform junctions, in which
one point contact dominates the backscattering, the shot
noise in any given edge is directly related to the charge split
in this edge in the branching process—see Eq.(42). In uni-
form junctions, the charge-noise relation is less direct[see
Eq. (49) and the example discussed next to it] because of
averaging over different point contacts.

In the case of a junction between the Fermi-liquid reser-
voir and the FQHL edge,n j =1 for j =1. . .n, the quasiparti-
cle backscattering gives corrections to the reservoir-edge
equilibration reached with increasing number of reservoir
modes,n→`, in the absence of backscattering. For tempera-
turesT much larger than the bias voltageV, these corrections

are uniformly suppressed by the factorfsn0−1d / sn0+1dgn,
exponential in the numbern of modes. In the opposite re-
gime,T!V, the corrections, i.e., the nonlinear junction con-
ductance and current shot noise, do not vanish, however,
even forn→`.

Description of the charge and statistics of the edge exci-
tations in the multipoint-contact junction, which is developed
in this work for simple single-mode edges in the junction
geometry with one common edge for all point contacts,
should also be important for more complex multimode edges
and more general junction geometries.
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APPENDIX: ONE POINT CONTACT

In this appendix, we review the known results8,18 for
strong tunneling in one point contact between two edges with
different filling factors using the approach similar to that
employed in the main text. For consistency of notations, we
number the two edges 0 andj , with the filling factorsn0 and
n j. The Hamiltonian of one point contact can be written as in
the model described in Secs. II and III

H =E dxS v
4p

fs]xf0d2 + s]xf jd2g + fV0r0 + Vjr jgD
− uj cosUS f0

În0

−
f j

În j
DU

x=0

. sA1d

The two differences with Secs. II and III are that now we
explicitly include the bias voltagesV0 andVj applied to the
edges, and omit the Klein factors in the tunnel part of the
Hamiltonian, since they are irrelevant in the case of one
point contact.(The Klein factorsj0j j andj jj0 in the forward
and backward tunneling terms commute with each other and
are constants of motion. This means that they can at most
produce an irrelevant constant shift of the fieldsf.)

The tunneling fieldw j is introduced according to Eqs.(29)
which can be viewed as the rotation in the space of the fields
f:

Ô = Scosq j , − sinq j

sinq j , cosq j
D

by the angleq j defined through the relations:

cosq j =Î n j

n0 + n j
, sinq j =Î n0

n0 + n j
.

Performing this rotation in the Hamiltonian(A1), in particu-
lar rotating the “vector” of bias voltagesÎn0V0, În jVj, we
see that the HamiltonianHT of the tunneling modew j can be
separated from other terms:
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HT =E dx

2p
Fv

2
s]xw jd2 +

V

l j
]xw jG − uj cosfl jw jsx = 0dg,

V ; V0 − Vj . sA2d

From now on we omit the indexj of all variables. Heisen-
berg equation of motion forw obtained from the Hamiltonian
(A2) and the commutation relations(5) is

s]t + v]xdwsx,td = −
Vstd

l
+ upl sinflws0,tdgsgnsxd.

sA3d

Separating the bias voltage:

wsx,td = w0sx,td −
1

l
Et

dt8Vst8d, sA4d

we can write the solution of Eq.(A3) as

w0sx,td =
2pm

l
+ Hust − x/vd + plQstd, x , 0,

xst − x/vd − plQstd, x . 0,
J sA5d

where an arbitrary constant 2pm/l is written in this form for
later convenience, andQstd is the operator of charge trans-
ferred through the point contact:

Q̇std = − u sinflws0,tdg. sA6d

The functionustd in Eq. (A5) is an arbitrary operator which
has the meaning of fluctuations of the fieldwsx,td incident on
the point contact, andx will be determined from the final
solution of Eq.(A3).

Equation(A3) implies thatwsx,td is continuous as a func-
tion of x at x=0, i.e.,

w0s0,td −
2pm

l
= ustd + plQstd = xstd − plQstd. sA7d

In the strong tunneling limitu→`, we assume that the value
of ws0,td is very close to one of the minima 2pm/l, m
=0, ±1, . . . of thetunneling term in the Hamiltonian(A2)
and we can linearize the sine in Eq.(A6). As we will see in
the end of the calculation, this assumption is indeed correct.
Applying it to the first of the Eqs.(A7), we get the following
simple equation forw0s0,td:

ẇs0,td = − uplFlw0s0,td −Et

dt8Vst8dG + u̇. sA8d

Solution of this equation under the conditionu̇, V!u appro-
priate for the strong-tunneling limit gives

ws0,td =
2pm

l
+

1

upl2Fu̇std −
Vstd

l
G . sA9d

We see that up to small terms of the order of 1/u, ws0,td
is indeed pinned to one of the minima 2pm/l of the tunnel-
ing energy. Inserting Eq.(A9) into Eq. (A6) we see that the
tunnel current in the point contact is

Q̇std = s0
2

l2Vstd −
u̇std
pl

. sA10d

The first term on the right-hand side of this equation gives
the strong-tunneling conductance of the point contact, while
the second term represents the tunnel current induced by the
incident field fluctuations. Finally, combining Eqs.(A9) and
(A10) with the continuity condition(A7) we can determine
the transmitted fieldxstd in Eq. (A5):

xstd =
2

l
Et

dt8Vst8d − ustd. sA11d

[Equations(A10) and (A11) include only the terms that do
not vanish in the limitu→`.] Comparison of Eq.(A11) with
Eqs. (A4) and (A5) shows explicitly that both the voltage
contribution towsx,td and incident fluctuationsustd change
sign at the point contact in the strong-tunneling limit. This
means that the fieldu jsxd defined by Eq.(28) of the main text
indeed propagates freely in the strong tunneling limit.

The last remark is that Eq.(A5) enables us to obtain di-
rectly the charge of backscattered quasiparticles. Indeed, in-
stanton tunneling that describes the backscattering changes
the numberm of the minimum the fieldwsx,td is pinned to,
affecting in the process the charge transfer through the point
contact. Equation(A5) shows that the transition from one
tunneling minimum to another changingm by 1 happens if
the transferred charge changes by the amount

dQ =
2

l2 , sA12d

which coincides with the junction tunnel conductance in
units of s0. One can also see from Eqs.(A5) and (A7) that
the large-scale distribution of the fieldwsx,td created by such
a process of instanton tunneling occurring at timeti coincides
essentially, as it should, with the retarded Green’s function
discussed in Sec. II:

wsx,td = −
2p

l
Qst − tidsgnfx − vst − tidg. sA13d
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