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We investigate at the atomic scale the oxygen diffusion process occurring during silicon oxidation. First, we
address the energetics of several oxygen species in the oxide using density-functional calculations. Our results
support the interstitial O2 molecule as the most stable oxygen species. We then adopt a classical scheme for
describing the energetical and topological properties of the percolative diffusion of the O2 molecule through
the interstitial network of the oxide. By studying a large set of disordered oxide structures, we derive distri-
butions of energy minima, transition barriers, and the number of connections between nearest-neighbor
minima. These distributions are then mapped onto a lattice model to study the long-range O2 diffusion process
by Monte-Carlo simulations. The resulting activation energy for diffusion is found to be in agreement with
experimental values. We also extend our atomic-scale approach to an oxide of higher density, finding a
significant decrease of the diffusivity. To address the O2 diffusion directly at the Si-SiO2 interface, we con-
struct a lattice model of the interface which incorporates the appropriate energetic and connectivity properties
in a statistical way. In particular, this lattice model shows a thin oxide layer of higher density at the interface,
in accord with x-ray reflectivity data. We carry out Monte-Carlo simulations of the O2 diffusion for this model
and obtain the dependence of the diffusion rate on oxide thickness. For oxide thicknesses down to about 2 nm,
we find that the presence of an oxide layer of higher density at the Si-SiO2 interface causes a drop of the O2

diffusion rate with respect to its value in bulk SiO2, in qualitative agreement with the observed oxidation
kinetics.
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I. INTRODUCTION

Silicon dioxidesSiO2d films thermally grown on crystal-
line silicon (Si) substrates constitute the principal gate di-
electrics in metal-oxide-semiconductor devices.1 Nowadays,
gate dielectrics implemented in very-large scale integration
manufacturing are between 2 and 9 nm thick.2–4 Designing
modern processing routes for the formation of thin dielectric
layers requires not only a very precise knowledge of the
growth kinetics but also an atomic-scale understanding of the
microscopic processes which lead to the formation of the
Si-SiO2 interface.

According to the model introduced by Deal and Grove,5

the formation of a thermal oxide film on silicon is supposed
to proceed through three sequential steps:(i) the insertion of
an oxygen species from the vacuum into a preexisting oxide
layer; (ii ) the diffusion of the oxidant species through the
disordered oxide network toward the Si substrate, and finally
(iii ) the oxidizing reaction at the interface, where the new
oxide is formed.5 The Deal-Grove model has proved to be
extremely successful in reproducing a large variety of experi-
mental data on the kinetics of the silicon oxidation
process.5–8 In particular, the Deal-Grove model describes ac-
curately the growth kinetics of thick oxide films.5–8 In this
regime, the oxidation kinetics is governed by the oxygen
diffusion process. Kinetics data show that the oxygen solu-
bility depends linearly on pressure and that the activation
energy for oxygen diffusion is around 1.2 eV.5–8 These ob-
servations are in agreement with early oxygen permeation
experiments on silica membranes.9

Assuming a first-order reaction between external gaseous
O2 and the dissolved oxygen species in SiO2, Deal and
Grove naturally identified the undissociated oxygen mol-
ecule as the diffusing species during silicon oxidation.5 Fur-
thermore, by similarity with argon, an atom of approximately
the same size and activation energy for diffusion in silica,10

the O2 molecule was supposed to migrate through the inter-
stices of the oxide network.5

Direct experimental observations generally support the
Deal-Grove description of the oxygen diffusion process. In-
deed, nuclear reaction resonance,11–14 secondary ion mass
spectrometry,15 and medium energy ion scattering
experiments16 based on16O-18O sequential oxidation all con-
firm that the bulk of the oxide does not incorporate oxygen
during oxidation and that the new oxide essentially grows at
the Si-SiO2 interface. However, these experiments also re-
vealed the occurrence of oxygen exchange processes at the
external SiO2 surface. More recently, oxygen exchange pro-
cesses were also found to occur at the Si-SiO2 interface,17,18

providing support to an interpretation of the oxidation pro-
cess which favors atomic oxygen as the transported species
through the oxide.19

Different atomic-scale mechanisms have so far been pro-
posed for the diffusion of the O2 molecule in amorphous
SiO2 sa-SiO2d.20–22Mott invoked a mechanism based on the
availability of two kinds of local minima,20,21 while Revesz
and Schaeffer assumed the existence of special diffusive
channels through the oxide.22 However, such mechanisms
appear unsatisfactory, since they both contrast with the ho-
mogeneous nature of a continuous random network, gener-
ally assumed as structural model ofa-SiO2.
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Theoretical investigations based on density functional
theory appear particularly suitable for providing insight in
atomic processes involving oxygen species in SiO2.

23–32 So
far, many studies have been devoted to investigating the rela-
tive energetics of both neutral and charged oxygen species in
a-quartz.23–27,30,32 This crystalline model has also been
adopted to study the diffusion properties of the peroxyl
linkage,23,26 an oxygen atom incorporated in a Si-O-Si unit.
More recently, the effect of the disordered nature of the oxide
on the energetics of the several oxygen species has been
addressed.28,29 However, attempts at understanding the oxy-
gen migration reduce to the calculation of transition barriers
for the diffusion of the interstitial O2 molecule along a lim-
ited amount of pathways.29,32

We recently reported in a concise form on an atomic-scale
investigation of the oxygen diffusion process through the ox-
ide layer during silicon oxidation.33 We elucidated the nature
of the diffusing oxygen species ina-SiO2 and the physical
mechanism underlying this process. We adopted in sequence
first-principles calculations, classical molecular dynamics,
and Monte-Carlo simulations to span the relevant length and
time scales for an appropriate description of the long-range
diffusion process in a disordered network. The present paper
complements our previous work in two ways. First, we now
provide a more detailed description of the adopted method-
ologies and of the obtained results. Second, we extend our
work to the O2 diffusion across an oxide layer at the
Si-SiO2 interface accounting for the effect of an interfacial
layer of higher density.34,35

The paper is organized as follows. In Sec. II, we study the
energetics of several oxygen species in the oxide. In Sec. III,
we derive a classical scheme for the energetics of the inter-
stitial O2 molecule ina-SiO2. This scheme then allows us to
provide a statistical description of the energetical and topo-
logical properties of the potential energy landscape for O2
diffusion in a-SiO2. In Sec. IV, we describe our Monte-Carlo
simulations on lattice models for investigating the long-range
diffusion process. In Sec. V, we first extend our approach for
studying the oxygen diffusion to a bulk oxide of higher den-
sity. Then, we obtain the oxygen diffusion rate as a function
of oxide thickness at the Si-SiO2 interface, accounting for
the effect of an interfacial oxide layer of higher density. Con-
clusions are drawn in Sec. VI.

II. ENERGETICS OF OXYGEN SPECIES
IN SILICON DIOXIDE

Thick oxide films s.20 nmd are opaque to electrons.
Electrons or holes might be introduced in the oxide from the
conduction or the valence band of the silicon substrate. How-
ever, both the conduction-band and the valence-band offsets
s,3 and,4.5 eV,36 respectively) correspond to high energy
barriers which prevent charge carriers to flow through the
oxide layer, even at the relatively high temperatures of the
oxidation process. In addition, experimental studies on thick
films have shown that growth rates are independent of elec-
tric fields, thereby ruling out charged oxygen species as oxi-
dizing agents during silicon oxidation.37–41For these reasons,
we focus in the present investigation only on neutral oxygen
species.

The incorporation of oxygen from the gas phase in the
oxide layer can lead to the formation of either molecular or,
upon dissociation, atomic oxygen species. In particular, an
additional O atom or O2 molecule could incorporate in a
Si-O-Si unit of the SiO2 network forming a peroxyl or an
ozonyl linkage, respectively(Fig. 1).23,25Alternatively, these
atomic and molecular oxygen species could find equilibrium
positions in the interstices of the SiO2 network (Fig. 2). All
these oxygen species have been suggested to play an impor-
tant role during silicon oxidation.5,14,19,23,25In the following,
we will focus on their energetics in SiO2. The formation
energy of an oxygen species within the oxide will be referred
to the isolated O2 molecule and the unperturbed oxide.

A. First-principles scheme

To accurately describe the energetics of oxygen species in
SiO2, we adopt a first-principles scheme based on density-
functional theory.42,43The exchange and correlation energy is
accounted for within a generalized gradient
approximation.44,45 Only valence wave functions are de-
scribed explicitly while pseudopotentials are used to account
for core-valence interactions. We use a norm-conserving
pseudopotential for Si, derived as in Ref. 46, and an ultrasoft
pseudopotential for O.47 Plane-wave energy cutoffs of 24 and
150 Ry are used for the wave functions and the augmented

FIG. 1. Peroxyl(left) and ozonyl(right) linkages ina-quartz.
Some bond distances are indicated. Dark and light balls represent Si
and O atoms, respectively.

FIG. 2. Interstitial molecular oxygen ina-quartz. The left(right)
panel gives a view along a direction parallel(orthogonal) to thec
axis. Dark and light balls represent Si and O atoms, respectively.
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electron density, respectively.48,49Only theG-point is used to
sample the Brillouin zone. Full structural relaxations are car-
ried out using a damped molecular dynamics scheme.50 We
use a spin-polarized functional to accurately describe the
electronic ground state of the oxygen molecule, either in
vacuum(its ground state is3Sg) or in SiO2.

27,51 For the iso-
lated O2 dimer we find a bond length of 1.26 Å, a dissocia-
tion energy of 5.68 eV(the zero-point vibrational energy
correction being included), and a vibrational frequency of
1541 cm−1, to be compared with the respective experimental
values of 1.22 Å, 5.1 eV and 1578 cm−1.52

B. Oxygen species ina-quartz

Most theoretical studies usually adopta-quartz, the most
stable crystalline phase of SiO2 at standard ambient condi-
tions, as a model fora-SiO2.

23–27,31To allow a comparison
with previous theoretical studies, we first investigate the rela-
tive energetics of oxygen species in this crystalline material.
To modela-quartz, we use a periodic orthorhombic cell con-
taining 72 atoms with fixed cell parameters of 9.94 Å
38.61 Å310.91 Å, corresponding to the theoretical lattice
constants.53

We find that the interstitial O2 molecule with spinS=1 is
the most stable oxygen species ina-quartz. The O2 molecule
is found to be approximately oriented along thec axis, show-
ing a small tilt of 14°(Fig. 2). Upon relaxation, the nearby Si
and O atoms of thea-quartz network move away from the
O2 molecule by 0.1–0.2 Å and 0.2–0.5 Å, respectively. The
energy of the interstitial O2 is found to be higher than that of
the free molecule by 3.4 eV. The spin stateS=0 is found to
be higher than theS=1 state by 0.3 eV. The interstitial mo-
lecular species withS=1 is found to be considerably more
stable than two separated interstitial O atoms ina-quartz. In
particular, we find energy differences of 3.2 eV and 3.4 eV
for the interstitial O atoms in the singlet and triplet spin state,
respectively.

The network oxygen species are found at higher energies
with respect to the interstitial O2 molecule. We find an in-
crease of 1.0 and 1.6 eV per pair of O atoms for the ozonyl
and the peroxyl linkages, respectively. The relaxed atomic
structures of these configurations are illustrated in Fig. 1.
The lower energy of the ozonyl linkage with respect to the
peroxyl bridge is consistent with the distance between the Si
atoms which accommodate these oxygen species. For the
peroxyl bridge this distance is found to be 3.47 Å, signifi-
cantly longer than in the nondefecteda-quartz model
s3.09 Åd. The ozonyl linkage gives rise to a Si-Si distance of
3.26 Å, indicating that this species can be more easily ac-
commodated in thea-quartz network.

Our results show very good agreement with recent first-
principles calculations.24,26,27,31 However, the comparison
with two early first-principles investigations reveals differ-
ences which cannot simply be attributed to technicalities.23,25

In fact, these early studies neglected spin polarization
effects,23,25 which were later found to be important for accu-
rately accounting for the energy of the interstitial O2 mol-
ecule in SiO2.

27 In addition, in Ref. 23, the calculated energy
levels for oxygen ina-quartz were also affected by the use of

a small simulation cell. These aspects have been critically
addressed in Ref. 30.

C. Model structures of a-SiO2

We adopt a classical molecular dynamics scheme to gen-
erate a set of independent model structures representing the
oxide. In this scheme, the interactions between Si and O
atoms are described by the interatomic potentials given in
Ref. 54. We use periodically repeated cubic cells of fixed
volume, corresponding to the experimental density of silica
s2.2 g/cm3d. Starting from random atomic positions, models
of liquid SiO2 are equilibrated at 3500 K for more than
300 ps. Amorphous structures are then obtained by quench-
ing from the melt with a cooling rate of approximately
7 K/ps.55 Full simulations last from 500 ps to 1 ns, de-
pending on the size of the model structure. We construct a
large set of model structures containing between 72 and 144
atoms in the periodic cell. The full set of models spans an
equivalent bulk volume of 574 SiO2 units.

All the model structures of the oxide consist of a random
network of corner-sharing tetrahedral SiO4 units without co-
ordination defects. The structural parameters reported in
Table I confirm that the model structures reproduce the typi-
cal short-range order ofa-SiO2. Indeed, the mean value of
152° for the Si-O-Si bond angle distribution and the relative
standard deviation of 12° compare well with the correspond-
ing values extracted from x-ray diffraction(148° and 13°) or
NMR data (151° and 11°).56,57 In addition, the calculated
structure factor compares well with neutron diffraction data
and shows the characteristic first sharp diffraction peak at
about 1.5 Å−1.58 The agreement stems from a proper descrip-
tion of the intermediate range order ofa-SiO2, even in our
smallest model structures(Fig. 3).

The ring statistics averaged over the full set of model
structures is extracted according to the shortest path
analysis,59 and is reported in Fig. 4. Our results compare well
with distributions obtained for larger model structures ofa
-SiO2, generated by similar approaches.55,60 In addition, the
concentrations of oxygen atoms in three- and fourfold rings,
1.2% and 5.3%, respectively, are in fair agreement with re-
cent theoretical estimates derived from Raman spectra of vit-
reous silica(0.26% and 1.0%).61

D. Oxygen species ina-SiO2

We choose two specific 72-atom model structures ofa
-SiO2 for evaluating the energetics of various oxygen species

TABLE I. A comparison between average structural parameters
of amorphous SiO2 at regular densitysa-SiO2d and of amorphous
SiO2 at higher densitysd-SiO2d, as obtained by classical molecular
dynamics. The standard deviations are given after the6 sign.

a-SiO2 d-SiO2

r sg/cm3d 2.2 2.4

Si-Si (Å) 3.12±0.08 3.08±0.12

Si-O (Å) 1.61±0.02 1.61±0.02

O-O (Å) 2.63±0.09 2.63±0.09

/Si-O-Si 152° ±12° 149° ±13°

/O-Si-O 109.4° ±5.8° 109.4° ±5.8°
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within our density functional scheme. One of these model
structures was taken from the large set generated in Sec. II C.
The other one had been generated previously by first-
principles molecular dynamics.62,63Structural differences be-
tween the two models are essentially limited to the ring sta-
tistics and to the distribution of interstitial volumes.

Our study encompasses the interstitial O2 molecule and
the two network species, the peroxyl and ozonyl linkages.
We disregard the interstitial atomic species on the basis of its
high formation energy ina-quartz. To account for the statis-
tical variety of sites, we introduce the oxygen molecule
within the available interstitial cages offered by the network,
while, for the peroxyl and ozonyl linkage, we select a set of
Si-O-Si units showing different bond angles for construct-
ing their initial configuration. The defected structures are
then relaxed within the first-principles scheme.

We find energies for the network species, the peroxyl and
ozonyl linkages, spread around the values calculated for
a-quartz. We find energies ranging between 3.4 eV and
5.5 eV for the peroxyl linkage, and between 2.4 eV and
4.7 eV for the ozonyl linkage. For both network species,
energies do not show any apparent correlation with the
Si-O-Si bond angle of the undefected SiO2 structure.28 At
variance, the energy of the interstitial O2 molecule shows a
strong correlation with the size of the interstitial void,
strongly decreasing for increasing cage sizes(Fig. 5).

For selected configurations involving the interstitial O2
molecule, we also evaluate the energy difference between the
triplet and the singlet spin states. In the set of considered
configurations, we include both typical equilibrium states

and typical transition states for O2 migration(cf. Sec. III B).
We always find that the singlet state is at higher energies than
its corresponding triplet state, by approximately the same
amounts,0.3 eVd as ina-quartz. This result is in qualitative
agreement with a recent study on the way the spin affects the
O2 diffusion in a-quartz.27

E. Distribution of voids in a-SiO2

In the previous section, we have seen that the energy of
the interstitial O2 molecule depends on the size of the avail-
able interstitial voids(Fig. 5). It is therefore important to
characterize the interstitial void distribution ina-SiO2. Sev-
eral purposes motivate this characterization:(i) to determine
the relative stability of the interstitial O2 molecule with re-
spect to other oxygen species,(ii ) to estimate the concentra-
tion of equilibrium sites for O2, and(iii ) to examine whether
a diffusion mechanism based on the hopping of an O2 mol-
ecule between such sites is possible.

In this section, we address these issues carrying out an
analysis relying solely on geometric criteria. Further on, we
will support the main conclusions of this analysis by ener-
getic considerations. We use the extended set of continuous
random network models ofa-SiO2 generated in Sec. II C and
derive the interstitial void distribution on the basis of a geo-
metric Voronoi analysis(see Refs. 64,65, and references
therein).

The Voronoi analysis of a disordered network consists of
partitioning the space in polyhedra, each containing the vol-
ume nearest a given atom. The vertices of these polyhedra
have the property of being equidistant to at least four atoms
of the SiO2 network. Thus, the Voronoi analysis of a disor-
dered distribution of atoms directly leads to the definition of
spheres characterizing the distribution of interstitial voids.
Recently, this definition of interstitial voids has also been
used to investigate the origin of the first sharp diffraction
peak appearing in the structure factor of disordered network-
forming materials.65,66

We applied the Voronoi analysis on botha-quartz and on
our set of model structures ofa-SiO2 [Fig. 6(a)]. Interstitial

FIG. 3. Calculated structure factor(solid) for model structures
of amorphous SiO2 at regular density containing 72 atoms, com-
pared to experimental data from Ref. 58. Larger models show a
similar level of agreement.

FIG. 4. Average ring statistics in model structures of amorphous
SiO2 at regular density(shaded histogram) and of amorphous SiO2
at a density of 2.4 g/cm3 (thick solid line).

FIG. 5. Energies of the interstitial O2 molecule, and of the per-
oxyl s-O-O-d and ozonyls-O-O-O-d linkages ina-SiO2, as ob-
tained within a density-functional approach. The energy of the in-
terstitial O2 molecule(disks) is reported vs the volume of the largest
ellipsoidal void centered on the molecule. The solid line is a guide
to the eye. For comparison, the energy of the interstitial O2 mol-
ecule ina-quartz is also reported(gray disk). The range of energies
corresponding to peroxylsO-Od and ozonylsO-O-Od linkages are
indicated.
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voids in a-quartz show volumes closely distributed around
33 Å3. In a-SiO2, the distribution of volumes is shifted to-
ward higher values(an average volume of 58 Å3), and is
remarkably broader. However, it appears unreasonable to as-
sociate, on a one to one basis, interstitial voids defined in this
way to equilibrium sites for the O2 molecule. In fact, careful
inspection of the set of such interstitial voids shows that the
centers of a large number of voids are located within voids of
a larger radius. Since such smaller voids are presumably all
associated to the same equilibrium site for the interstitial O2
molecule, it is physically more reasonable to omit these
voids from the considered set.

The retained interstitial voids give the distribution of vol-
umes shown in Fig. 6(b). In a-quartz, this procedure gives a
single volumes33 Å3d. In the amorphous models, most of
the interstitial voids now have volumes larger than in
a-quartz, showing an average volume of about 110 Å3, cor-
responding to interstitials where, in view of the results in
Fig. 5, the O2 molecule has energies less than 1 eV. This
suggests that these voids are good candidates for equilibrium
sites of the interstitial O2 molecule. Moreover, we note that
only in a small fraction of interstitial voids the O2 molecule
has energies comparable to those of the network species.
This occurs for interstitial volumes close to those ina-quartz
[Fig. 5 and Fig. 6(b)]. The fact that most of the interstitials in
a-SiO2 are significantly larger than ina-quartz suggests that
O2 is the most stable neutral oxygen species ina-SiO2.

From the void distribution reported in Fig. 6(b), we derive
the value of 5.131021 cm−3 for the concentration of equilib-
rium sites of O2 in a-SiO2. By considering voids with over-
lapping spheres as nearest neighbors, we find an average
distance between nearest neighbor equilibrium sites of 4.7 Å.
The size of this distance is consistent with a diffusion mecha-
nism based on hopping events of the O2 molecule between
equilibrium sites. This consideration is solely based on the
distribution of equilibrium sites. A conclusive assessment re-
quires the study of the potential energy landscape connecting
these sites.

III. POTENTIAL ENERGY LANDSCAPE FOR O 2

DIFFUSION IN SILICA

Amorphous SiO2 offers a variety of interstitials as equi-
librium sites for O2. The transition energies required for go-
ing from a local minimum to neighboring ones depend on the
local environment. Such equilibrium sites are not expected to
be equivalent, showing different local energies and transition
barriers. Furthermore, the number of viable connections to
reach a given equilibrium site is also expected to show sta-
tistical variation. Hence, to address the O2 diffusion process
in a-SiO2, we need to explore both the energetical and topo-
logical properties of the interstitial network available for O2
diffusion. Treating the statistical diversity within a first-
principles approach constitutes at present a prohibitive com-
putational effort. Therefore, it is necessary to resort to a sim-
pler and computationally more advantageous scheme.

A. Classical scheme

To extensively sample the properties of the disordered
interstitial network for the diffusion of the O2 molecule in
a-SiO2, we construct a simplified energy scheme based on
classical interatomic potentials. For the Si and O atoms of
the SiO2 network, we adopt the same interatomic potentials
as used for generating the model structures ofa-SiO2 (Sec.
II C), while we derive a new set of potentials to account for
the interaction between the O2 molecule and the oxide net-
work. In particular, the interaction between the O atoms
within the molecule is described by a Morse potential whose
parameters are directly obtained from the bond length, the
dissociation energy, and the harmonic force-constant calcu-
lated from first-principles(Sec. II A).

For the O2-SiO2 interaction, we adopt Lennard-Jones-like
potentials. More precisely, for each oxygen atomi si =1,2d
of the O2 molecule, the potential,

Vx
i = exSsx

r ix
Dnx

− gxS rx

r ix
D6

, s1d

describes the interaction with a network atom of speciesx,
wherex=Si or O.nx is taken to be 7 and 9 forx=O and Si,
respectively. We fix the other parameters by fitting the ener-
gies obtained within our first principles scheme for the O2
molecule at equilibrium sites ina-SiO2 (Fig. 5). The ob-
tained parameters are given in Table II.

The classical scheme defined in this way accounts well
for the energetics of an interstitial O2 molecule ina-SiO2.
For the energies of equilibrium sites used in the fit, the clas-
sical scheme reproduces the first principles data within a rms
error of about 0.1 eV. Moreover, to verify the reliability of

FIG. 6. (a) Distribution of interstitial volumes ina-quartz
(thick-solid line, open histogram) and in the model structures of
a-SiO2 generated in this work(filled histogram). The interstitial
voids are defined using a Voronoi analysis.(b) Concentration of
interstitial voids, extracted by the Voronoi analysis, whose center is
not included in a void of larger radius. The arrow gives the result
for a-quartz.

TABLE II. Parameters of the Lennard-Jones-like interatomic
potentials describing the interaction between the interstitial O2 mol-
ecule and the SiO2 network.

x e (eV) s (Å) n g (eV) r (Å)

O 2.46 1.99 7 1.07 2.11

Si 1.44 1.99 9 0.39 0.37
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this simplified scheme for describing transition states, we
generate several O2 migration paths within the classical
scheme(Sec. III B). For a discrete set of configurations along
these pathways, we fully relax the atomic structure by first
principles, while keeping fixed the center of mass of the O2
molecule with respect to that of the network. We consider
migration pathways with different transition energies. The
largest differences between first-principles and classical en-
ergies are found for the pathway with the highest transition
barrier s2.2 eVd. However, even in this case, the errors are
always smaller than 0.18 eV as illustrated by the correspond-
ing energy profile in Fig. 7. The difference between first-
principles and classical energies raises along the transition
path, acquiring its largest value at the transition state(Fig. 7).
We note that the error does not derive from the O2-SiO2
interaction, which is overall well described by our modeling
scheme, but rather from the relaxation of the SiO2 network
which directly results from the adopted interatomic
potentials.67 During the O2 diffusion process, even for tran-
sition energies as high as 2.2 eV, the energy along the mi-
gration path is dominated by the O2-SiO2 interaction, the
SiO2 deformation contributing by at most 20%. This results
in an overall error of about 10% for the classical energies
with respect to the first-principles ones.

B. Equilibrium sites, transition barriers, and connections
between equilibrium sites

To investigate the potential energy landscape for O2 dif-
fusion in a-SiO2, we use the classical scheme(Sec. III A)
and span the full volume associated to the set of model struc-
tures generated by classical molecular dynamics(Sec. II C).
We first search for local minima of the potential energy land-
scape. We insert the O2 molecule randomly in the model
structure of the oxide and adopt a damped molecular dynam-
ics approach for finding the corresponding equilibrium posi-
tion. For each model structure ofa-SiO2, the procedure is
repeated until convergence on the number of local minima is
reached. As a result of the disordered nature of the oxide, the
energy distribution of local minima shows a finite spread
(Fig. 8). In agreement with the first-principles results ob-

tained for a limited set of cases(Sec. II D), essentially all
these energies remain well below those of network oxygen
species. The distribution of O2 minima in a-SiO2 is well
described by an exponential function with a decay constant
of 0.6 eV. The density of equilibrium sites and their average
energy are similar for the various model structures of the
oxide. This suggests that equilibrium sites are weakly corre-
lated with specific structural features and that they are uni-
formly distributed ina-SiO2.

The equilibrium sites for O2 diffusion allow us to deter-
mine the distribution of interstitial volumes available in
a-SiO2. To each local minimum we associate the largest el-
lipsoidal volume centered on the O2 molecule and contained
in the interstitial void. The resulting distribution of volumes
is shown in Fig. 9, and only slightly differs from that ob-
tained through the Voronoi analysis[Fig. 6(b)]. Indeed, from
this distribution we find a concentration of local minima for
O2 in a-SiO2 of 5.431021 cm−3, corresponding to an aver-
age distance between solubility sites of 5.7 Å. This distance
is very close to the value of 4.7 Å, extracted on the basis of
simple geometrical criteria from the distribution of Voronoi
spheres(Sec. II E). The difference should be attributed to the
occurrence of an unphysically large number of small inter-
stitials when adopting the geometrical criteria.

To explore energy barriers between interstitials and ac-
cordingly determine the connectivity properties of the disor-

FIG. 7. A comparison between first-principles(black disks) and
classical(gray disks) energies in the proximity of the transition state
for the O2 migration between two nearest neighbor minima. The
thick black lines indicate the energy levels of the two minima,
which are separated by a distance of about 3.3 Å. The coordinatej
specifies the distance of the O2 molecule to the minimum on the
left. The energies separate into contributions from the SiO2 relax-
ation (open squares) and the O2-SiO2 interaction(closed squares).

FIG. 8. From top to the bottom, energy distributions of local
minima, lowest barriers, highest barriers, and saddle points, for the
interstitial O2 molecule ina-SiO2. The energy reference is the same
as in Fig. 5. Histograms refer to distributions obtained exploring
model structures for the oxide within the classical scheme. Expo-
nential decaying functions(solid curves) are found to fit distribu-
tions of minima and lowest barriers very well. The continuous dis-
tributions for highest barriers and saddle points are obtained by
convolving the exponentials for minima and lowest barriers under
the assumption of independence, and are found to compare well
with the histograms extracted from the actual atomistic model
structures.
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dered network of local minima, we still adopt the classical
scheme described in Sec. III A. We search for saddle points
of the potential energy landscape by applying two different
methods: the activation relaxation technique(ART)68 and a
dragging procedure.69 In the ART method, a system is driven
from a local minima to a saddle point by partially reversing
the restoring force.68 In our particular case, the transition
states can be found by using a reaction coordinate corre-
sponding to the translational motion of the O2 molecule from
a particular equilibrium site to a nearest neighboring one.
Therefore, we simplify the ART technique reversing only the
forces associated to the translational degrees of freedom of
the O2 molecule. Furthermore, at variance with respect to the
original ART formulation,68 the coefficient controlling the
fraction of the reversed force component is varied during the
ART evolution in order to ensure fixed strides of 5
310−4 Å for the motion of the O2 center of mass. Such a
constant slow evolution rate allowed us to construct transi-
tions pathways for the O2 molecule in which the SiO2 net-
work is fully relaxed at each step. For each local minimum,
after having randomly displaced the O2 molecule from equi-
librium, ART is applied to generate the transition path lead-
ing across a saddle point to another nearest neighbor local
minimum. This procedure is repeated for each local mini-
mum until convergence on the number of discovered nearest
neighbor minima is reached.

To validate this approach, we also determine saddle points
and connections using a constrained molecular dynamics
technique.69 For each pair of local minima, the center of
mass of the O2 molecule is continuously dragged across the
SiO2 network from one local minimum to the other. At each
step of the dragging procedure, we reduce the distance be-
tween the O2 molecule and the target minimum by 5
310−3 Å and determine the ground state configuration of the
system while the O2-minimum distance is kept fixed. The
path through the SiO2 network is interrupted if, during the
evolution, the O2 molecule meets another local minimum.
The saddle point energies and number of nearest neighbor
minima obtained with the two approaches coincide. The re-
sults of this investigation are reported in Fig. 8.

Since nonequivalent local minima share asymmetric bar-
riers, we reported separately distributions for lowest and
highest barriers. The distribution of the lowest barriers be-
tween nearest neighbor minima is well reproduced by an
exponential function with a decay constant of 0.9 eV. More-

over, from the statistical analysis of our data results that
minima and lowest barriers are uncorrelated quantities. In
fact, we verified that distributions of highest barriers and
saddle points are properly reproduced by convolving the dis-
tributions of minima and lowest barriers, as appropriate for
independent quantities(Fig. 8). We note that the energy bar-
riers recently calculated in Refs. 29 and 32 are consistent
with the barrier distributions shown in Fig. 8.

By identifying the transition states between nearest neigh-
bor local minima, we also access the topological properties
of the random network for interstitial O2 diffusion in
a-SiO2. Indeed, the transition states define the connections
between nearest neighbor equilibrium sites. The distribution
of distances between such sites is shown in Fig. 10. The
average distance derived from this distribution is 5.3 Å, only
slightly different from that estimated on the basis of the con-
centration of energy minimas5.7 Åd. Moreover, we extract
the connectivity properties of the disordered interstitial net-
work (Fig. 11). The number of connections per node extends
from 2 to 6, with an average number of 3.3. For the purpose
of further investigation, it is convenient to note that the dis-
tribution of connections extracted from the model structures
of the oxide is well reproduced by a sixth-degree binomial
distribution with coefficient 0.55.

C. O2 solubility in a-SiO2

We here provide an estimate of the O2 solubility in
a-SiO2 on the basis of the information acquired on its equi-

FIG. 9. The distribution of interstitial ellipsoidal volumes for the
O2 molecule ina-SiO2, as obtained by exploring the model struc-
tures of the oxide within the classical scheme. The arrow gives the
result fora-quartz.

FIG. 10. The distribution of distances between nearest neighbor
equilibrium sites for the interstitial O2 molecule ina-SiO2.

FIG. 11. The distribution of connections between nearest neigh-
bor equilibrium sites in amorphous SiO2 at regular density. A sixth-
degree binomial distribution with a coefficient of 0.55(open histo-
gram) is found to well reproduce the data extracted from the
atomistic model structures of the oxide(filled histogram).
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librium sites. We suppose that agasof independent O2 mol-
ecules dissolved in the interstitials ofa-SiO2 is in equilib-
rium with a gas of free molecules. Thus, according to
classical thermodynamics,70–72the chemical potentialsmd for
O2 is the same both in vacuum and in SiO2. Hencemfree
=mSiO2

or, equivalently,

− kBT lnSZfree

Nfree
D = − kBT lnSZSiO2

NSiO2

D , s2d

whereZfree, Nfree andZSiO2
, NSiO2

are the partition function
and the number of O2 molecules in vacuum anda-SiO2,
respectively.T is the temperature andkB the Boltzmann con-
stant.

Accounting for the distribution of interstitials ina-SiO2
available for the O2 molecule(Fig. 9), we can writeZSiO2

as
follows:

ZSiO2
= VSiO2

NSiO2E msEdZVsEddE, s3d

whereVSiO2
andNSiO2

are the volume of the oxide and the
concentration of solubility sites for O2, respectively.msEd
corresponds to the energy distribution of local minima for O2
in the oxide(Fig. 8, top panel), whereasZVsEd is the partition
function for the molecule ina-SiO2 where the spatial inte-
gration is limited to the volumeVsEd associated to the equi-
librium site of energyE.

Evaluating Eq.(3) to obtain the solubilitynSiO2
snSiO2

=NSiO2
/VSiO2

d through Eq.(2) is a complicated task.72 By
assuming a uniform distribution of identical solubility sites,
early investigations estimated the binding energy of rare
gases and inert molecules ina-SiO2 by direct comparison
with solubility data.73,74 More recently, Monte-Carlo simula-
tions based on interatomic potentials addressed the calcula-
tion of Eq.(3) for rare gases dissolved ina-SiO2 obtaining a
qualitative agreement with experiments.71

Here, we estimate the O2 solubility in the oxide on the
basis of crude approximations.72 In particular, we assume
that a O2 molecule in the oxide can access only a limited
region of space in the neighborhood of each equilibrium site.
These spatial regions constitute a network of physically
separated volumes in which the O2 molecule is completely
free to move, rotate and vibrate, as in vacuum. The surround-
ing oxide determines the energyE with respect to vacuum.
Adopting this picture and using the partition function for an
ideal gas composed ofNfree oxygen molecules at a tempera-
ture T and pressurep, from Eq. (3) we obtain

nSiO2
=

p

kBT
NSiO2E msEdVsEdexpS−

E

kBT
DdE. s4d

To evaluate the solubilitynSiO2
by using Eq.(4), we consider

the energies of the equilibrium sites in our set of model
structures ofa-SiO2 (Fig. 8). For each energy minimum, we
then define the associated spatial region as the sphere cen-
tered on the equilibrium site and with radius half the distance
to the next-nearest neighbor O2 equilibrium site. For a pres-
sure of 1 atm and a temperature of 1078 °C, we obtain in
this way a solubility ofnSiO2

=19.431016 cm−3, to be com-

pared with the corresponding experimental value of 5.5
31016 cm−3.9 This comparison between theory and experi-
ment should be considered very satisfactory. Indeed, the ob-
served difference for the solubility corresponds to an error of
about 0.1 eV on the energy scale of the energy minima for
the O2 molecule in a-SiO2, within the uncertainty of our
level of theory.

IV. LONG-RANGE O 2 DIFFUSION IN SILICA

The average energy barrier between neighboring local
minima for O2 in a-SiO2 is about 0.7 eV. This value is suf-
ficiently high for assuming that dynamical correlation ef-
fects, such as recrossing events or consecutive multiple
jumps, are negligibly small during diffusion.75 Under this
assumption, the transition-state theory, which defines transi-
tion rates according to the relative energy position of minima
and saddle points,76 constitutes a suitable approach for study-
ing the diffusion process. In this framework, the statistical
properties of the O2 energy landscape(Fig. 8) and of the
topology of the interstitial network(Fig. 11) are relevant in-
gredients for studying the diffusion process.

A. Random lattice model

To model in a statistical meaningful way the long-range
diffusion process, it is necessary to further increase the
length and time scales spanned in our investigation. There-
fore, we turn to a lattice model with the intent of preserving
(i) the nearest-neighbor connectivity and(ii ) the energy dis-
tributions of minima and saddle points, found within our
classical modeling scheme. We consider a cubic lattice
model, in which each site mimics an equilibrium position in
an interstitial void ofa-SiO2 and each bond between nearest
neighbor lattice sites represents the transition path between
two nearest neighbor equilibrium sites. We find that a lattice
model of 30330330 is sufficiently large to model the dif-
fusion properties. Since the average distance between
nearest-neighbor equilibrium sites is of 5.3 Å(Fig. 10), this
lattice model corresponds to a cubic sample ofa-SiO2 with a
side of 17 nm.

The distribution of connections between nearest neighbor
local minima is well reproduced by the binomial function

BN
psnd =

N!

n ! sN − nd!
pns1 − pdN−n, n = 1, . . .N, s5d

with N=6 andp=0.55. Hence, to reproduce the connectivity
of the network of interstitials for the O2 molecule in
a-SiO2, we choose a fraction 1−p=0.45 of the bonds at ran-
dom and omit them from the outset(infinite energy barrier).
To the remaining bonds, we assign finite energy barriers ac-
cording to the distributions found for our atomistic model
structures of the disordered oxide(Fig. 8). For simplicity, we
make use of the continuous exponential distributions. This
random assignment of energies and connections is expected
to accurately mimic the actual interstitial network, in view of
the weak correlations observed in the atomistic model struc-
tures.
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B. Monte-Carlo simulations

According to the transition-state theory,76 transition rates
for hopping between nearest neighbor equilibrium sites are
defined by energy barriers and attempt frequencies. The dif-
fusion coefficient is then determined by the geometrical
properties of the disordered network hosting the migration
process, namely the distributions of distances and connec-
tions between nearest-neighbor equilibrium sites.75 For dis-
tributions of energies, attempt frequencies, connections, and
distances showing finite first and second moments, the diffu-
sion process is normal.77,78Under these conditions, distances
between nearest neighbor sites and hopping attempt frequen-
cies influence the absolute value of the diffusion coefficient,
whereas the energetical and topological properties of the dis-
ordered network determine its dependence on
temperature.77,78

In our Monte-Carlo simulations, the attempt frequencies,
or equivalently the rattling times within the interstitial vol-
umes, are assumed to be identical and independent of the
energy of the equilibrium site. Since the O2 molecule visits
interstitials covering a limited range of energies during dif-
fusion (see Sec. IV C), this assumption appears reasonable.
The distribution of distances between nearest-neighbor equi-
librium sites is well localized around a mean value of 5.3 Å
(Fig. 10). Therefore, distances between nearest neighboring
sites are supposed to be the same in our simulations. Our
principal goal is the calculation of the effective activation
energy for diffusion, a quantity which is strictly related to the
energetical and topological properties of the potential energy
landscape.

To find the effective activation energy for O2 diffusion in
the oxide, we distribute a set of 1000 independent moving
particles(O2 molecules) on the random lattice model(disor-
dered network of interstitials ina-SiO2). The particles are
then evolved at a specified temperature by adopting the Me-
tropolis Monte-Carlo algorithm.79 In particular, at each
Monte-Carlo step, for a specified diffusing particle at the
lattice sitei, a transition path toward another nearest neigh-
boring equilibrium sitej is chosen at random and the particle
is transferred toj according to the probability expf−Ebsi
→ jd /kBTg, whereT is the temperature andEbsi → jd the en-
ergy barrier associated to the transitioni → j .

At low temperature, the diffusion coefficient obtained by
the Monte-Carlo simulations converges slowly.80 To increase
the efficiency of the scheme, we therefore adopt a modified
version of the Metropolis algorithm.80 The acceleration of
the scheme is achieved by raising the energy values of all
minima by a small amounte or, equivalently, by augmenting
the hopping rates by a factorA=expse /kTd. To preserve the
absolute values for transition rates, the time unit is also
scaled by the acceleration factorA. Neither the equilibrium
distribution of particles in the local minima nor the relative
transition rates between nearest neighbor sites are altered by
this modification. Furthermore, by adopting small values for
e, the particle dynamics is altered only at short times because
of the modified energy landscape. The long-range diffusion
properties are determined by energy barriers greater thane
and are therefore preserved.80 We successfully determine dif-
fusion coefficients usinge=0.17 eV.

C. Activation energy for O2 diffusion in a-SiO2

During the Monte-Carlo simulations on random lattice
models, the average mean-square displacement follows a
normal diffusive behavior,77 increasing linearly with time af-
ter an initial sublinear regime(Fig. 12). Thus, from each
Monte-Carlo simulation, we derive a diffusion coefficient us-
ing Einstein’s relation.77 At every considered temperature,
several Monte-Carlo simulations are performed for different
configurations of the random lattice. The averaged results are
reported in Fig. 13.

Diffusion coefficients are estimated at temperatures rang-
ing from 1000 K to 1500 K, which correspond to typical
temperatures adopted during silicon oxidation. In this inter-
val of temperatures, the O2 diffusion coefficient follows a
quasi-Arrhenian behavior with a corresponding effective ac-
tivation energy of 1.12 eV(Fig. 13). The calculated activa-
tion energy is in excellent agreement with experimental val-
ues obtained at similar temperaturess1.04–1.26 eVd.9,81–83

During the Monte-Carlo evolution, the diffusing particles
visit a particular distribution of minima and saddle points of
the disordered energy landscape.33 Visited minima are con-
centrated at the lowest energy values for O2 in a-SiO2. The
energy distribution of the visited saddle points is broader.
When the energies are referenced with respect to the most
stable minimum in SiO2, the highest energy values visited
during the motion are located around the effective activation
energy for O2 diffusion.33 The highest energy level reached
during the diffusion process remains well below the energy
intervals corresponding to peroxyl and ozonyl linkages(Fig.
5), indicating that network oxygen exchange processes are
unlikely during O2 diffusion. This result is consistent with
experimental observations which found evidence for such

FIG. 12. Average mean square displacement of the diffusing
particles vs. time at 1200 K. The time step used in the simulation
corresponds to an arbitrary unit.

FIG. 13. Logarithm of the diffusion coefficient extracted from
Monte-Carlo simulations at different temperaturessb=1/kBTd.
Each of the diffusion coefficients(disks) is obtained as an average
over eight simulations. The error bars are the relative rms
deviations.
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exchange processes only at the SiO2 surface and at the
Si-SiO2 interface, but not in the bulk of the SiO2
layer.11–15,17,18

These results highlight the percolative nature of the O2
diffusion process in the disordered oxide. The long-range
diffusion mainly involves the lowest-energy part of the en-
ergy landscape still allowing for percolation throughout the
oxide. In Ref. 33, we showed that the activation energy for
the long-range diffusion results from the combination of both
the energetical and topological properties of the O2 energy
landscape ina-SiO2.

V. DEPENDENCE OF THE O2 DIFFUSION RATE
ON OXIDE THICKNESS

In the Deal and Grove model,5 the inverse growth rate,
1/R, depends on the oxide thicknessX as follows:

1

R
=

1

kl
+

2X

kp
, s6d

where the linearskld and parabolicskpd constants are propor-
tional to the O2 interfacial oxidation reaction rate and the O2
diffusivity in the oxide, respectively.7,85 Equation (6) well
describes the growth rates when the oxide film is sufficiently
thick sù20 nmd.5 However, for very thin oxide films, the rate
given by Eq. (6) significantly deviates from experimental
values.7,85 Indeed, in this regime, the experimental growth
rates appear anomalously larger thankl, the value predicted
by the Deal and Grove model forX,0 [cf. Eq. (6)].84,85

Many interpretations have been put forward to describe this
behavior.84,85,8 The most accredited among them assumes
that the oxidation kinetics depends only on the diffusion of
the oxidizing speciesskl →`d, with a variable diffusion rate
across the oxide layer.84–86 In particular, to reproduce the
experimental growth rates the diffusion rate should decrease
as the oxide film becomes thinner. As a matter of fact, this
assumption is currently adopted in modern models which
successfully account for the silicon oxidation kinetics in both
the thin and the thick oxide regimes.87 However, an atomic
scale description of the diffusion rate corroborating this be-
havior is lacking.

The O2 diffusion rate through a thin oxide films,20 nmd
with the same properties and density asa-SiO2 is expected to
increase significantly because of the percolative nature of the
diffusion mechanism.87,33 In fact, on a short-range scale,a
-SiO2 is not homogeneous and the diffusion rate increases
due to the occurrence of small-barrier pathways. This effect
is in clear contrast with experimental observations. Another
mechanism is therefore expected to oppose this behavior
leading to an overall lower diffusivity with respect to the
bulk. Such an opposing effect might be achieved by the pres-
ence of an oxide layer of higher density in the neighborhood
of the silicon substrate, as revealed by x-ray reflectivity
experiments.34,35 Indeed, this layer is expected to reduce the
diffusivity.88

In this section, we specifically focus on the effect of an
interfacial oxide layer of higher density on the O2 diffusion
rate across the thin oxide. We note that, although other

mechanisms might be operative in the thin oxide regime,89,29

we assume here that the interstitial O2 molecule dominates
the oxygen diffusion process across the film, regardless of its
thickness.

A. O2 diffusion in amorphous SiO2 of higher density

We describe amorphous SiO2 of higher densitysd-SiO2d
by a set of atomistic model structures, generated by classical
molecular dynamics.54,55 We use periodically repeated cubic
cells of fixed volume, corresponding to a density of
2.4 g/cm3, as estimated by x-ray reflectivity measurements
for the oxide in the vicinity of the Si-SiO2 interface.34,35 To
generate model structures, we adopt the procedure described
in Sec. II C. We construct 16 model structures with a number
of atoms in the periodic cell ranging between 72 and 90. All
the model structures consist of random networks of corner-
sharing tetrahedral SiO4 units, without any coordination de-
fect. As compared witha-SiO2 at the regular density, struc-
tural parameters are only slightly affected by the increased
density(Table I). The reduced volume per SiO2 unit appears
to be accommodated by the reduction of the mean Si-O-Si
bond angle and consequently of the distance between Si at-
oms in neighboring tetrahedral units. The increased density
also barely affects the ring statistics(Fig. 4). In fact, as com-
pared witha-SiO2 at the regular density(cf. Sec. II C), the
model structures ofd-SiO2 only show a small decrease of the
threefold rings in favor of sixfold rings. The calculated struc-
ture factor compares well with experimental data and cor-
rectly shows a shift of the first sharp diffraction peak toward
a value of about 1.7 Å−1.90 This agreement indicates that the
intermediate range order in our model structures is properly
described.

We explore the potential energy landscape for the intersti-
tial O2 molecule ind-SiO2 following the same procedure as
in the case ofa-SiO2 (cf. Sec. III). We use the extended set
of model structures generated for the oxide of higher density
and describe the energetics with the classical scheme given
in Sec. III A. We first search for equilibrium sites of intersti-
tial O2 molecules ind-SiO2. We find a concentration of local
minima of 6.731021 cm−3 and an average distance of about
5.3 Å between nearest neighbor minima. These values are
very close to those found for amorphous SiO2 at regular
densitys5.431021 cm−3, 5.7 Å). On the other hand, the en-
ergy distribution of local minima undergoes important
changes. In particular, the mean value of this distribution
shifts to a higher energy by 0.6 eV with respect to the mean
value for amorphous SiO2 at regular density(Fig. 14). This
property is consistent with the decrease of the average inter-
stitial volume ind-SiO2. In fact, the O2-network energy in-
creases for decreasing interstitial volumes(cf. Fig. 5).

We then locate the saddle points of the potential energy
landscape and their corresponding energies. The transition
states connect neighboring minima by an asymmetric barrier.
The energy barrier distribution associated to the low barrier
side is well described by an exponential function with a de-
cay constant of 1.7 eV(Fig. 14). This should be compared
with the corresponding value of 0.9 eV fora-SiO2. These
results indicate that the potential energy landscape for O2
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diffusion in d-SiO2 is considerably shifted toward higher en-
ergies as compared to amorphous SiO2 at regular density.

The location of the transition states defines an interstitial
network for O2 diffusion. The local minima form the nodes
of this network. Our analysis shows that ind-SiO2 the num-
ber of connections per node can vary between one and 10.
The average number of connections per node is found to be
4.1 (Fig. 15). The associated distribution can be well repro-
duced by a binomial distribution, characterized by param-
etersN=12 andp=0.34.

To study the O2 diffusion in d-SiO2, we use a periodic fcc
lattice model with 50350350 independent sites. For a
mean distance between local minima of 5.3 Å, this corre-
sponds to a cubic volume of side,19 nm. Assuming that
neighboring nodes and barriers are uncorrelated, we transfer
the nearest neighbor connectivity and the energy distribu-
tions derived from the atomistic structural models onto the
lattice model. Monte-Carlo simulations for 2000 diffusing
particles were performed at temperatures ranging between
1000 K and 1500 K. Minima and saddle points visited dur-
ing the diffusion fall below the energies of competitive oxy-
gen species, thereby indicating that the interstitial O2 mol-
ecule remains the favorite transported oxygen species also in
amorphous SiO2 with a density 2.4 g/cm3. The calculated

diffusion coefficients are interpolated by an Arrhenius law
with an effective activation energy of 2.0 eV, consistent with
the experimental estimate of 2.0-2.4 eV for O2 diffusion in
an amorphous SiO2 sample with a density of about
2.5 g/cm3.88

B. O2 diffusion through the oxide layer
at the Si-SiO2 interface

To model the O2 diffusion through oxide layers of differ-
ent thickness, we perform Monte-Carlo simulations on peri-
odic lattice models of variable size in the directionz. In
particular, we consider fcc lattice models of 503503N
sites, whereN is varied from 2 to 20, corresponding to oxide
thicknesses between 1 and 10 nm. The reduced periodicity in
the z direction effectively models the diffusion in a thin ox-
ide layer, as occurs at the Si-SiO2 interface. In the other
directions(x and y), the system is sufficiently large to re-
cover the bulk limit. The diffusion coefficient is calculated at
1300 K, a temperature typically adopted for the thermal oxi-
dation of silicon.

At first, we consider the case of homogeneous oxide lay-
ers. We assign energies and connections to the lattice model
according to distributions extracted for amorphous SiO2 at
regular density. In particular, a good representation of the
nearest-neighbor connectivity on the fcc lattice is obtained
for a binomial function withp=0.27. The results of the
Monte-Carlo simulations show that the rate for diffusion
along z increases for decreasing oxide thickness(Fig. 16).
This behavior can be understood in terms of the percolative
nature of the diffusion process. In fact, when the layer thick-
ness drops, the number of low-barrier paths increases, result-
ing in an increase of the diffusion coefficient. For thick lay-
ers, the bulk value is recovered. We note that an increase of
the diffusion coefficient for thin oxide layerscannotexplain
the anomalous deviations from the Deal-Grove model in the
initial stages of oxidation.91,85

X-ray reflectivity experiments indicate the occurrence of a
10-Å-thick oxide layer of higher densitys2.4 g/cm3d in the
proximity of the Si-SiO2 interface.34,35 We model the pres-

FIG. 14. Energy distributions of minima and lowest barriers
(inset) for diffusion of the interstitial O2 molecule in amorphous
SiO2 at a density of 2.4 g/cm3. Histograms refer to distributions
obtained exploring actual model structures of the oxide, while solid
lines correspond to fitted continuous distributions.

FIG. 15. Distribution of connections between nearest neighbor
equilibrium sites in amorphous SiO2 at a density of 2.4 g/cm3. A
twelfth-degree binomial distribution with a coefficient of 0.34(open
histogram) is found to well reproduce the data extracted from ato-
mistic model structures representing this oxide(filled histogram).

FIG. 16. Calculated diffusion coefficients in the direction per-
pendicular to the plane of the interface for homogeneous(open
symbols) and nonhomogeneous(closed symbols) oxide layers of
varying thickness at Si-SiO2 interfaces. The horizontal dashed line
corresponds to the diffusion coefficient in bulk SiO2. The shaded
region indicates the thickness of the interfacial oxide layer of higher
densitys2.4 g/cm3d, considered in our simulations of the nonhomo-
geneous oxide layer.
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ence of this dense layer by including in our lattice models
two planes, on which we map connectivity and energetic
properties corresponding to amorphous SiO2 with a density
of 2.4 g/cm3 (Fig. 15). For the remainingN−2 planes, we
use the properties appropriate for amorphous SiO2 at regular
density. The two layers are separated by two planes of inter-
layer connections. For one plane of such connections, we use
properties of amorphous SiO2 at regular density and for the
other those of SiO2 at higher density.

The diffusion coefficient for such oxide layers is given as
a function of oxide thickness in Fig. 16. As expected, the
diffusion coefficient is now lower than for homogeneous ox-
ide layers. More interestingly, the diffusion coefficient falls
below the bulk limit for oxide thicknesses down to about
2 nm. This result indicates that the presence of a denser ox-
ide can indeed account for a lower diffusion coefficient dur-
ing oxidation. The diffusion coefficient is found to vary as a
function of oxide thickness, approaching from below the
bulk limit corresponding to amorphous SiO2 at regular den-
sity. As long as the diffusion coefficient significantly differs
from the bulk limit, deviations with respect to the Deal-
Grove oxidation kinetics can be expected. This behavior of
the diffusion coefficient as a function of oxide thickness is in
qualitative agreement with experimental data for the oxida-
tion kinetics.8

For oxide thicknesses below 2 nm, size effects due to per-
colation still dominate the diffusion coefficient in our model
oxide layers. However, in these early stages of oxidation, the
specific bonding pattern at the interface as well as the occur-
rence of other atomic scale processes might invalidate the
underlying assumptions of our approach. Such processes in-
clude diffusion of peroxy linkages and charged species, ex-
change processes between gas-phase and network oxygen
atoms.89,29

VI. CONCLUSION

The present work provides an atomistic picture for the
oxygen diffusion mechanism during silicon oxidation in the
thick oxide regime. We first focus on the diffusion process
occurring in a region far from the Sis100d-SiO2 interface,
where the oxide properties correspond to those of amorphous

SiO2. We identify the interstitial O2 molecule as the diffusing
species ina-SiO2. We provide a statistical characterization of
the disordered network of interstices for O2 diffusion in a
-SiO2 in terms of distributions of energy minima, transition
barriers and number of connections between nearest neigh-
bor minima. Then, we address the long-range diffusion pro-
cess by mapping these distributions on an extended lattice
model and using a Monte-Carlo approach. We find an acti-
vation energy for diffusion of 1.12 eV, in excellent agree-
ment with experimental data.9,81–83 Furthermore, our study
highlights the percolative nature of the diffusion process and
the critical dependence of the diffusion rate on both the en-
ergetical and topological properties of the interstitial
network.33

Next, we address the O2 diffusion rate through the oxide
layer at Sis100d-SiO2 interfaces focusing on the effect of a
dense oxide layer located close to the silicon substrate. We
first extend our atomic-scale description of O2 diffusion in
amorphous SiO2 to the case of an oxide of higher density
s2.4 g/cm−3d. This yields an activation energy of 2.0 eV
which compares well with the experimental result.88 Then,
we investigate the dependence of the O2 diffusion rate on
oxide thickness at Sis100d-SiO2 interfaces using Monte-
Carlo simulations. We consider both homogeneous and non-
homogeneous oxide layers. The nonhomogeneous oxide is
composed of two layers: one at regular density and one at
higher density. The thickness and the mass density of the
denser layer are taken from x-ray reflectivity
measurements.34,35 In the case of a regular oxide, we find
that the O2 diffusion rate increases for decreasing thickness,
as a result of the percolative nature of the diffusion mecha-
nism. When the occurrence of an oxide layer of higher den-
sity is considered, the diffusion coefficient drops below its
value for bulk a-SiO2, for oxide thicknesses larger than
2 nm. This result is consistent with the observed oxidation
kinetics.8
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