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We discuss the magnetic phases of the Hubbard model for the honeycomb lattice both in two and three
spatial dimensions. A ground state phase diagram is obtained depending on the interaction strandth
electronic densityn. We find a first order phase transition between ferromagnetic regions where the spin is
maximally polarized(Nagaoka ferromagnetigmand regions with smaller magnetizatigweak ferromag-
netism). When taking into account the possibility of spiral states, we find that the lowest clitisabbtained
for an ordering momentum different from zero. The evolution of the ordering momentum with doping is
discussed. The magnetic excitatigepin wavegin the antiferromagnetic insulating phase are calculated from
the random-phase approximation for the spin susceptibility. We also compute the spin fluctuation correction to
the mean field magnetization by virtual emission/absorption of spin waves. In theddngét, the renormal-
ized magnetization agrees qualitatively with the Holstein-Primakoff theory of the Heisenberg antiferromagnet,
although the latter approach produces a larger renormalization.
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[. INTRODUCTION In this work the magnetic phases of the Hubbard model in
the honeycomb lattice are studied. In addition to the two-
The interest in strongly correlated systems in frustratedlimensional problem we also address the three-dimensional
lattices has increased recently because of the possible realystem composed of stacked layers. The critical lines associ-
ization of exotic magnetic statéspin and charge separation ated with instabilities of the paramagnetic phase are obtained
in two dimensiong, and the discovery of superconductivity in the U,n plane(interaction versus particle densitySpiral
in Na,Co0,-yH,0.2 Many researchers have discussed superspin phases are also considered. A ground state phase dia-
conductivity in non-Bravais lattices, mainly using self- gram containing ferro and antiferromagnetic order is ob-
consistent spin fluctuation approaches to the proffiéithe  tained. Interestingly, we find ferromagnetic regions with
honeycomb lattice, which is made of two interpenetratingfully polarized spin in the vicinity of regions with smaller
triangular lattices, has received special attention after the dignagnetization.
covery of superconductivity in Mgg’ Additionally, the hon- We also address the calculation of the magnetic excita-
eycomb lattice has been shown to stage many different type#ons (spin wavegin the half-filled antiferromagnetic honey-
of exotic physical behaviors in magnetism and the growingcomb layer within the random-phase approximati&®irA).
experimental evidence of non-Fermi liquid behavior inlt is known that the Hartree-Fock-RPA theory of the half-
graphite has led to the study of electron-electron correlation§lled Hubbard model is correct in both weak and strongly
and quasiparticle lifetimes in graphfte. interacting limits: at strong coupling, the spin wave disper-
Around a decade ago, Sorella and Tos$&ttind that the sion obtained in RPA agrees with the Holstein-Primakoff
Hubbard model in the half-filled honeycomb lattice would theory for the Heisenberg model; at intermediate interactions
exhibit a Mott-Hubbard transition at finitd. Their Monte  (U/t~6), the RPA dispersion shows excellent agreement
Carlo results were confirmed by variational approaches andith experiment®'” The Hartree-Fock-RPA theory should,
reproduced by other authot$!! As important as the exis- therefore, be considered as a useful starting point to study the
tence of the Mott-Hubbard transition in strongly correlatedintermediate coupling regime. Starting from the spin wave
electron systems is the possible realization of Nagaoka feispectrum obtained in RPA theory, we calculate the quantum
romagnetism. The triangular, the honeycomb, and thdluctuation correction to the ground state magnetization aris-
Kagomé lattices were studied, but a strong tendency for ing from virtual emission/reabsorption of spin waves. In the
Nagaoka type ground state was found only in nonbipartitestrong coupling limit, we find a ground state magnetization
lattices (triangular and Kagomeé? On the other hand, the which is about 67% of full polarization. This is not so great
effect of long range interactions in half-filled sheets of a reduction as predicted by the Holstein-Primakoff theory of
graphite was considered from a mean field point of viewthe Heisenberg model, which is about 48%.
using an extended Hubbard model. A large region of the Our paper is organized as follows: in Sec. Il we introduce
phase diagram having a charge density wave ground statee Hamiltonian and its mean field treatment. In Sec. Ill, we
was found'® More recently, the existence of a magnetic ex-discuss the possibility of a well defined magnetic excitation
citation in paramagnetic graphite has been claiffdajt its  in the paramagnetic phase. In the ordered phase at half fill-
existence was reanalyzed by two of the present auffiors. ing, the spin wave spectrum is computed and the effect of

1098-0121/2004/109)/19512212)/$22.50 70195122-1 ©2004 The American Physical Society



N. M. R. PERES, M. A. N. ARAUJO, AND DANIEL BOZI PHYSICAL REVIEW Br0, 195122(2004)

antiferromagneti¢AF) order is described by the average lat-
tice site occupation
K
> n m JeA
A ,) ==+ —o cogc : 5
— M)=5%50 s(Q»{ B (5
Tiliin where thez-axis ordering vectoQ=(0,0,Q,) will be used

zone

when studying multilayers) denotes the electron density,

is the staggered magnetization, and+1. We introduce
FIG. 1. Primitive vectors for the honeycomb lattice and the cor-field operators for each sublattice satisfying the usual Fourier

responding Brillouin zone. transformations

different hopping terms in the spin wave spectrum is dis- éITE
cussed. In Sec. IV, the magnetic instability lines are obtained

and the possibility of spiral spin phases fox 1 is dis-
cussed. The corresponding lowest critichls determined as
function of the ordering wave vector Section V is devoted
to the phase diagram of the system, where two differen

—2 elk Rlak(r’ bIEB()’ ’_E elk Rlbku" (6)

= N
whereN denotes the number of unit cells. Within a Hartree-
Fock decoupling of the Hubbard interaction in EG) we
Pbtain an effective Hamiltonian matrix

types of ferromagnetism are found. The first order critical . . H.. H Ay
lines separating the three ordered phases are determined. H:E[élgblg]{ 1 12] 0, 7)
Section VI contains a study of the renormalization of the ko Ha1 Hao 1| by,
electron’s spectral function and magnetization by the spin
wave excitations. with matrix elements given by
n—om *
Il. MODEL HAMILTONIAN Hy = D(K) + U s Hip= o = Hiy
The magnetic properties of the honeycomb lattice is dis-

cussed in the context of the Hubbard model, which is defined n+om
as Ha,=D(k) +U (8)

== 248 &+ UEC (& E el g, where

ij,o i,o )

1) d=—1>,€%?  D(k) = ¢ — 2t"codcky) — u,
S5
wheret; ; are hopping integrald) is the onsite repulsion, and L, o'
u denotes the chemical potential. The honeycomb lattice is $ =1 DI 9)
lsl

not a Bravais lattice since there are two atoms per unit cell.

Therefore, it is convenient to define two sublatticksndB,
as shown in Fig. 1.
The expressions for the lattice vectors are

a_ - a [2
a1:§(3,\s‘3,0), 32:5(3,—v3,0), a3=¢(0,0,1),

2

wherea is the length of the hexagon side ands the inter-
layer distance. The reciprocal lattice vectors are given by

2
b3:{<o,o,n.

()

The nearest neighbors of an atom belonging toAtsublat-
tice are

2 — 21 =
b;=—(1,V3,0, b,=—(1,-V3,0),
1 Sa( N ) 2 3a( Al )

52: 53:_a)2, S'Zici,

(4)

while the second nearest neighbams the plang are: &§;

a_ r a -
6,==(1,vy3,0 —(1,-v3,0
1 2( V3,0 2( V3,0

=tay,8,=*a,,03=*(a,—ay). In a broken symmetry state,

In Egs.(8) and(9) t andt’ are the first and second neighbor
hopping integrals, respectively, whité describes interlayer
hopping. The dispersion relation for the case wheret”
=0 andU=0is

|4 = £1V3+ 2 cog\3ak) + 4 cog3ak,/2)cos\3ak,/2).
(10)

Diagonalization of the effective Hamiltonian yields a two
band spectrum. The band energies are:

U Um)2
E.(0=D(K) + \/(7m> +| 2.

Because there are two sublattices, the Matsubara Green's
function is a 2< 2 matrix whose elements are given by

(11

aa: AR
GoXiw,k) = 2 _E ot (12
b A, B,
Giw,k) = JZ+—J—J—I =y (13
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FIG. 2. Single particle density of states(e), for independent
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Brillouin Zone (see Fig. 1, where the electron dispersion
becomes linear

3
E(k) ~ ¢t§|dk|,

dk denotes the deviation from thé point. This dispersion is
called the “Dirac cone.”

IIl. COLLECTIVE EXCITATIONS AT HALF FILLING

The magnetic excitations are obtained from the poles of
the transverse spin susceptibility tensgrwhich is defined,
in Matsubara form, as

uT R ~
X (@ion = f dre* (T, §(a.1§(-4,0), (20
0

wherei,j=a,b label the two sublatticegot lattice point$

electrons in an honeycomb lattice. The left and right panels sho@"dS (@), S (@) denote the spin raising and lowering opera-
ple) as function of energy and electron density, respectively. ThdOrs for each sublattice.

solid line refers ta’=-0.2 and the dashed line t6=0.

A B,
ba,: - o, =0,
GPiw, k) = > —2I=2 £ 10

(14)
j=+ lw—

ok =3 el

7o iw-Ejk)’

where the coherence factors are

i)

1
B .(K[==[1+
1B, +(K)| 2{

(15)

Umo
2E.(K)

A .(K?=
A=

Umo
2E. (k)

], (16)

* k
A 0B, 0 == S

In the ferromagneti¢F) phase, the site occupation is the
same for both sublattices

(17)

. n m .
<I"IJ-‘U> = 5 + EO‘, ] € AB. (18)
In this case the quasiparticle energy bands are given by

U
EZ10 =D(K) + - (n=om) £ |- (19

In the paramagnetid;, or AF phases, the zero order sus-
ceptibility is just a simple bubble diagram with the Green’s
functions given in Eqs(12)—(15):

. T N -
X2 @iy = = 52 Gl(kio) G (k= giwn — o).

ko
(21)

Going beyond mean-field, the RPA result for the susceptibil-
ity tensor is obtained from the Dyson equation

x= X0+ U 0 x=[1-Ux° T, (22)
wherel denotes the 2 identity matrix. The poles of the
susceptibility tensor, corresponding to the magnetic excita-
tions, are then obtained from the condition

Defl - Ux°]=0. (23)

We note that the tensorial nature of the spin susceptibility is
a consequence of there being two sites per unit cell and is not
related to the magnetic order in the system.

A. Magnetic excitations in a single paramagnetic layer

Here we discuss the possibility of existence of magnetic
excitations in a single honeycomb paramagnetic layer. Our
interest in this problem stems from a recent claim, by Baska-
ran and Jafart who recently proposed the existence of a
neutral spin collective mode in graphene sheets. In the cal-

In the paramagnetic phase of the system the energies artlations of Ref. 14 a half-filled Hubbard model in the hon-

propagators are simply obtained by setting0 in the equa-

eycomb latticgwith t’ =t"=0) was considered but the tenso-

tions above. The density of states of single electrons isial character of the susceptibility was neglectedsince

shown in Fig. 2 against particle density and energy. In thénelastic neutron scattering can be used to study this spin
two upper panels we have included a second-neighbor hogollective mode in graphite, we decided to re-examine this
ping while in the two lower panels only nearest neighborproblem taking into account the tensorial nature of the trans-
coupling is considered. An important feature is the@d) van-  verse spin susceptibility.

ishes linearly withe as we approach the half filled limit, both Collective magnetic modes with frequeneyand momen-

for t'=0 andt’ #0. This is related to th& points of the tum q are determined from the conditiq@3) after perform-
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FIG. 3. Spin-wave excitation spectrum for several valuebl of FIG. 4. Spin-wave excitation spectrum for several value$) of

The dashed-dotted line gives the Holstein-Primakoff result for theandt’ # 0.
Heisenberg antiferromagnet in the honeycomb lattice.

energies for the two-dimension@D) lattice (t' =0) along a
in_g the analytic continuatiorw— w+i0". The determinantis closed path in the Brillouin Zone. Energies in Fig. 3 are
given by normalized by the Holstein-Primakov result at tkepoint,

o 10aa, {21 (0aay2 _ (0)ab. (O)ba wpp(K) (see Fig. 1 It can be seen that the results o8
D.-(q.0) =1 -2+ UT (- Xo= X s are very close to the asymptotic behavior of the RPA,
(24)  whereas, for smalldy, the spin wave energy is reduced. The

, ) ; S : ;
where we have taken into account that in a p::lramagnetix“?ﬁeCt of '’ on w(q) is depicted in Fig. 4. It is of particular

systemx(o)a"‘:)((f_)bb. Below the particle-hole continuum of Interest the fact that the dispersion along ¥ direction is

excitatioﬁs, the spectrafielta-function contributionspart in almost absent fot/=4. The presence df does not change
(0)ij ! ) . » . __this effect.

X, (gq,w+i0") vanishes and there is the additional relation

x 2ba=[,(03b) collective modes are only well defined out-

side the particle-hole continuuginside the continuum they

become Landau dampedWe searcheld for well defined

magnetic modesy(q), below the continuum of particle-hole ~ The magnetic instabilities in the paramagnetic phase can

excitations, and found no solutions for any value of the in-b@ obtained from the divergence of the RPA susceptibilities

teractionU. In Fig. 1 of Ref. 15 we ploD,_(q, ») for eight ~ at critical values o_f the interaction., driving thg system

different g vectors andw ranging from zero to the point towards a magnetically ordered phase. At a given electron

where the particle hole continuum begins. Our analysis red€nsityn we always find two instability solutions, one ferro-

veals that the full tensorial structure of the Hubbard model’sN@gnetic and one antiferromagnetic. One of these solutions

RPA susceptibility in the honeycomb lattice does not predictMinimizes the free energy. Sindg is determined from

IV. MAGNETIC INSTABILITIES

a collective magnetic mode. D, (q,0)=0, taking into account that'?®*=y'"*® and
X 230= (/93" iy the paramagnetic phase, we obtain
B. Spin waves in the antiferromagnetic layer
The spin wave dispersion(q) for the AF layer with one Ue= W_ (26)
electron per site can be obtained from E¢&l) and (23) X 2 2%

using expressiongl2)«(15) for the propagators. Spin wave Eigyre 5 showsJ, obtained from the static uniform suscep-
spectra, for different values of second-neighbor hoppifig, iipjlities (q=0 and w=0), as a function of electron density
are plotted in Figs. 3 and 4. In the largelimit, spin wave oy various values of’. Detailed equations for the instability
energies agree with those obtained from the Holsteinfines are given in Appendix A. The left panel of Fig. 5 refers
Primakoff theory of the Heisenberg model. We give an anay, the 2D case, corresponding to a single honeycomb layer,
lytical derivation of this limit in Appendix B. The Holstein- \ynereas the right panel refers to the three-dimensi(3@)
Prir_nakoff result for the Heisenberg model in the honeycombsystem with a constant interlayer hoppitig=0.1. The Van
lattice, which is derived in Appendix C, can be written as  gye singularity(associated with th& point) plays an im-
—1a)2 a2 portant role.

onpl(Q) =ISZ - [A(Q)[" (25 As we have already mentioned, the two solutions of Eq.
This result can be mapped on the Hubbard model provide¢26) correspond to two different magnetic transitions, one
that J=4t?/U and S=1/2. Figure 3 shows the spin wave between a paramagnetic phase and a ferromagnetic phase

195122-4



PHASE DIAGRAM AND MAGNETIC COLLECTIVE... PHYSICAL REVIEW B 70, 195122(2004)

ANTIFERRO |

Critical U

) L L L L s s N
00102 03 04 05 06 07 08 09 1 %.1 02 03 04 050607 08 09 1
n

FIG. 5. Left panel: Effect of’ on the instability lines, as deter-
mined from Eq.(26) , for a single honeycomb layer. Right panel:
Effect oft’ on the instability lines, as determined from E26) , for
a layered honeycomb. This panel differs from the other inasmuch a
smallt”=0.1 hoping term was included coupling the 2D layers.

and another between a paramagnetic phase and an antiferro- ) ) _
magnetic phase. That this is so can easily be confirmed by F'C- 8- (Color onling Fq (uppey and AR (lower) spin configu-
solving the self-consistent equations for the ferromagnetiggmOnS forg=/6.
and the antiferromagnetic magnetizations, respectively, de-
rived from the HF Hamiltoniar{7). By minimizing the free qualitatively modify the conclusions valid for the 2D case.
energy with respect to magnetization, one finds the following Besides collinear spin phases, the system may also
expressions for ferro- and antiferromagnetic magnetizationg?resent noncollinear spiral spin phases in some regions of the
phase diagram. We now study what are the changes in the
_ 4 critical U values determining the instability of the paramag-
2N % ol f(ES) + F(E)], netic phase if we allow for noncollinear ground states, since
it is well known that the Hubbard model on bipartite and
= —E |§k [f(E )= HEL], 27) non-bipartite lattices can have the lowést for spiral spin
N V1 phase¥'®1%for some electronic densities. In a spiral state,
the spin expectation value at sitebelonging to sublattice
where f(x) is the Fermi function and,=Umae/(2|¢|).  v=a,b, is given by°
Letting both mg and m,: approach zero, one obtains the
same lines as those in Fig. 5. Generally speaking, for elec- " . Y
tron densities lower than 0.85, the valuelgf that separates (8= ?[cos{q RY),sin@- Ri)]. (28)
the paramagnetic region from the ferromagnetic region is
lower than the corresponding value bf, separating the If q#0, the ferromagnetic and antiferromagnetic spin con-
paramagnetic region from the antiferromagnetic region. Thdigurations become twisted. We shall refer to the twisted
critical U associated with the ferromagnetic instability in- #0 configurations as F;” whenevermy=mg, and “AFR;
creases with’. The size of the paramagnetic region in Fig. 5whenevem,=-mg. The criterion for choosing the vectors
increases with’. On the other hand, far =0.2, we see that is taken directly from the geometry of the lattice by request-
the critical line for the ferromagnetic region is very close toing a constant angle between spins on neighboring sites, i.e.,
the critical line of the antiferromagnetic region. Therefore,q-d;=q-8,=-q-d3. Unfortunately, however, this cannot be
the ferromagnetic region is progressively shrinking with in-achieved in the honeycomb lattice with only ogevector.
creasingt’. If we now turn to densities larger than 0.85, we The closest one can get to a “true” spiraling state is by letting
find that the antiferromagnetic critical line is the one with -6;=-q-&5 (or equivalently,q-8,=-q-d3), which implies
lowestU,. However, in contrast to lower densities, the anti-that q=(ay,q,) =a(1, 1/3) [q=qy(1,-1/V3)]. For the mo-
ferromagne'uc critical line hardly changes when varythg ment we letg, be zero which means that we consider iden-
This description applies equally well to the single honey-tical layers. The conditiom-d;=-q-é; means that the in-
comb layer and weakly coupled layers, even though therease in spin angle between two lattice sites in tiég —
guantitative functional dependenceldf on n is different in  direction is the same as the increase in spin angle between
the two cases, the main difference coming from the vaniwo lattice sites in the; direction. There is no increase in
Hove singularity present in the 2D case. At finite temperaturghe spin angle in thé, direction. Examples of the spin con-
the van Hove singularity is rounded off and the 2D phasdigurations obtained in this way are shown in Figs. 6 and 7.
diagram will be much more similar to the 3D case. We there-Several notes are in order at this stage. First, although we do
fore, consider that a weak 3D interlayer coupling does nohot have a true spiraling state over the whole lattice, we do
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present a curve showing tlievectors that minimizeJ.(q),
as functions of particle density. We consider discrete val-
uesq,=i(7/12) withi=0,1,...,12. Thelependence oti is
overall the same as that discusseddetO (for example, the
shrinking effect with increasint] is also seen heyeThere is
no reason to restriof to integer multiples ofw/12, other
than a pure computational one. By performing the same cal-
culation with moreq vectors, the “step function” like appear-
ance of the lower graphs of Fig. 8 can be smoothed out. Our
analysis is sufficient, however, to get an insight into how the
g vectors(which minimizeU,.) vary with n.

The solid line limiting the paramagnetic region is shown
in the lower graphs of Fig. 8. We see that the behaviay,pf
as function ofn, is almost the same for the 2D and 3D cases.
As the system approaches half filling, the preferred spin con-
figuration approaches that with=0. In a doped system,
however, minimization ofJ.(q) is attained for a nonzerq.
It is also seen that the dependencegodn n is not mono-
tonic. Either in 2D or 3D g, goes all the way from Qat n
=1) to m, displaying two local maximd@and a local mini-
mum in betweepasn ranges from 1 towards O.

FIG. 7. (Color onling F, (uppej and AR, (lower) spin configu- The value ofgy, reaches a local minimum g{=7/12, at
rations forg,=2/3. n=0.37(in 2D) or atn=0.45(in 3D). For even lower densi-

ties, g, attains another maximum g¢= 7, which means that

have a spiraling configuration in theSyand &, directions, as  the spins of any two nearest neighbors, in th& and o,
can be seen from the Figs. 6 and 7, going from the lower leftlirections, point exactly in opposite directions to each other.
to upper right. Second, when traveling along thelirection, The same type of behavior is seen also for the critical line
the spin angles do not increase. Instead, neighboring spins #eparating magnetically ordered phag#sshed ling Again,
this direction are always aligned ferromagnetically whenthe 2D and the 3D cases are very similar to each other. For
ma=mg, and antiferromagnetically whem,=-mg. How-  densities around 0.30—0.32D) and 0.35-0.4Q3D), we
ever, two successivé, bonds (“sliding down” the lattice haveq,=8w/12 yielding the lowest.. Moreover, the solid
from left to right) have the same increase in spin angle as anynd the dashed lines coincide, illustrating the previously
two neighbors connected byss or 8;. Theq vector(i.e., the  mentioned ferromagnetic “shrinking out” effect. In other
spin configurationthat a system with a given density would words, forg,=8/12, the two solutions of)(q) almost co-
prefer is the one with the lowest value df(qg). In Fig. 8 we incide for alln, leaving only a thin strip of ferromagnetism

Minimum RPA Lines 2D Honeycomb Minimum RPA Lines 3D Honeycomb
10 C T ] 10 N -‘ ]
o 4 9 —
- ‘ - - 5

-8 1 s -
q U \\ - Y - \ —
-3 -1 .
3 6 — 6 -
g 51 9 sp . FIG. 8. The upper panels show
3 4 4 4 - the minimumU,(q) according to
g C o~ ~ ~ Eq. (26) . The solid line separates

r 1 2 PARA ] the paramagnetic phase from mag-

T 1 'F -] netically ordered phases, while the
0 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 0 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 . -

01 02 03 04 05 06 07 08 09 1 01 02 03 04 05 06 07 08 09 1 dashed line separates differently
12E o T = ordered magnetic phases. The
1 N A -] lower panels show thg, compo-

g 10— - o - nent of the ordering vectdcorre-
Q - — — — . ..
‘g g g sponding to the minimunJ,) as
™ == —— [ "= . .
g 7+ [ I Y - function of electron density.
% (] o L) I —] 6 ] —
£ 5 Y -1 [} - 5 1
s 4 - L I [ —
8 3 - — 3 -
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n n
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between the paramagnetic and the antiferromagnetic regions [T+ T T T [ T T T ]
Although this is true for alh, it is only forn=0.37-0.4Q2D o}~ Nagaoka ferromagnetism I' 4 o (.
cas@ and n=0.35-0.37(3D case that U (q,=87/12) is [ [ BN ,' ]
minimum. I P ! I ol
So far, our analysis has been restrictedjteectors lying Un </ &1 I' §j
in the x-y spin plane. This means that two interlayer neigh- sF> “( éé” _ e_Nagaokaferromagnetism, 5-
bors have the same spin. If we now consider neighboring_ '~ Weak Ferm\\ £ ] sL /g b
layers with opposite spin, we pat=1. At half filling, the i \\ \v° | I N< ]
lowestU.(0,0,7)=2.04 limiting the paramagnetic region is 4| \ 4 4r o\
lower than the corresponding,(0,0,0=2.35, indepen- sl \ 1 L 0#?0“ i
dently oft’. Moreover, forn=1, U(gy,a,/v3,m) is always i \\ Y L N
lower thanU(qy,q,/V3,0) for any q,, showing that, at half | L U SERRN
filing, we should expect antiferromagnetic ordering along [ Paramaghetc 4 - 17 amaght
the z direction. g ] %'2. SEISERNEY N
The above study was focused on the second order insta ’ n ' ’ ’ n ’

bility lines, both in the case of collinear and spiral spin
phases, being clear that spiral states have a lower crltical _ _ : X
value, over a large range electronic densities. It is instructiv&?©de! in the(n, U) plane for a single layer wittf =0. Right panel:
to compare our results with those of Ref. 12. Looking at Fig.Cround state phase diagram of the Hubbard model in(the))
2 of Ref. 12 we see that for the triangular lattice there aréolang for a S.'ngle layer with =-0.2. In both cases dashed .a.nd
- . continuous lines represent first and second order transitions,
some finite regions where the more stable ground states Corréspectively
respond to spiral states. These regions are located at elec- '
tronic densities smaller than 0.5 and larger than 0.8. SincSince we have found the possibility of having, at least, two
the honeycomb lattice consists of two interpenetrating trian¢ferro and antiferrp different types of ground states, then in
gular lattices we expect the same type of behavior, at least #ie case where interaction is stronger than both critical val-
the qualitative level. That is, we do expect to have finiteues, we need to address the problem of competition between
regions of the phase diagram where spiral phases have tiiee two ordered phases. The phase with the lowest free en-
lowest energy. Also, in Ref. 12 the authors do not discuss thergy is the one preferred by the system. In this section we
full phase diagram of the Hubbard model in the honeycomigestrict ourselves to the study of a single layer but we shall
lattice, as we do in next section. They are primarily inter-consider different band structures. Spiral states will not be
ested in the stability of the Nagaoka state. Their study igonsidered, since we are most interested in a weak ferromag-
done using three different approach@sThe Hartree single netic phase showing up in a region of the phase diagram
flip ansatz; (i) the SKA Gutwiller ansatz; andiii) the where the studies of Ref. 12 suggest that the collinear ferro-
Basile-Elser ansatz. A comparison can be established b&agnetic(fully polarized phase should be the most stable
tween the Hartree single flip ansatz which roughly speakingone. In the ferromagnetic phase we distinguished two types
produces a straight line for all densities at the on-site Couof ferromagnetic ground states: the Nagaoka ground state,
lomb interactionU ~5, and our self consistent Hartree-Fock With a maximally polarized spitmg=n), and a weak ferro-
study. If we forget, for a moment, the van Hove singularity, magnetic state withmz<<n. The order parameter and free
both results are qualitatively the same foup to 0.8. Above energies were obtained from the mean field Hamiltoin
this value our Hartree-Fock analysis, forgetting about thdrigure 9 shows the ground-stdie,U) phase diagram of the
existence of the antiferromagnetic phase, predicts a vergodel.
strong increase of the criticdl value (not shown in Fig. 5, The effect oft’ on the phase diagram can be seen in right
since the AF phase presents the lowest critidalalue), in panel of Fig. 9. In Fig. 9 the dashed lines represent first-order
agreement with the SKA ansatz. This behavior is not capphase transitions, where the order parameter do not vanish
tured by the Hartree single flip ansatz. It seems that our studgmoothly, while continuous lines represent second order tran-
interpolates between the Hartree single flip ansatz for lowsitions, where the order parameter vanishes smoothly, but its
densities and the SKA ansatz for densities above 0.8. Quaffirst derivative is discontinuous. In both cagg¢’s=0 andt’
titatively there are differences between the two studies# 0) we find a finite region of weak ferromagnetism. In gen-
which are understandable on the basis of the different typegral the Nagaoka phase is more stable for lddg&he weak
of proposed ground states. ferromagnetic phase is separated from the Nagaoka phase by
first or second order transition lines, depending on the path
followed on (U,n) diagram. The second order transition
manifests itself through a discontinuity of the derivative of
As we mentioned in the previous section, the study ofthe magnetization with respect th. At n=0.75 the instabil-
Ref. 12 is mainly concerned with the stability of the Nagaokaity line towards the ferromagnetic phase shows a (gim-
state, and in the previous section we studied the values of theounced ift’ =0), which is due to the logarithmic van Hove
Hubbard interaction associated with instabilities of the parasingularity atn=0.75. A negative’ produces two effects on
magnetic system. The transition from the paramagnetic to the phase diagrani) the instability line towards thE phase
magnetically ordered state is determined by the loviést moves downwards; andi) the point where the instability

FIG. 9. Left panel: Ground state phase diagram of the Hubbard

V. PHASE DIAGRAM
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ky Gii_spin reversed ang_, replaced withy,_. The renormal-
ized staggered magnetizationat 0 is given by

_ 1 °d
== ~2ofIm Gk, ) — Im Gk, )],
ko

2

—o0

(30)

whereIm G! g (k,w) stands for the imaginary part of the
retarded Green'’s function for a spinelectron.

The RPA susceptibility has poles corresponding to the
spin waves calculated in Sec. I, with energy¢(k)|?/U,
lines towards~ and AF meet moves to larger Similarly to  pyt it also has poles describing a particle-hole continuum of
what was found in the previous section, the overall effect ofexcitations at higher energigsf order U). In what follows
t" is to modify the ferromagnetic region of the phase dia-we ignore this particle-hole continuum and take into account
gram. Further, for negativeé we expect collinear ferromag- only the contribution from the spin wave poles to the self-
netism to exist over a large region of the phase diagrangnergy. Physically, this means that we shall calculate the
relatively to the case’=0, since it is well known that a magnetization renormalized by the spin waves. To this end,

negativet’ stabilizes the ferromagnetic phase. On the othefye start by replacing the susceptibility in EQ9) by the
hand we do not expect the phase diagram presented in thisipression

section to be fully accurate for low densities, where the find- i i
ings of Ref. 12 should apply. (RPA (i) = Rlw(@)] , R[-w(@)] 31)
The first order critical lines do separate two different fer- ' iw-w@) io+oq)’

romagnetic(or ferromagnetic from antiferromagnetice- . . RPA] )
gions, in what concerns the total magnetization. In view of"hereR'[z«(a)] denotes the residue o7 at the spin

the results published in Ref. 21, where a first order transitiorf'ave pole with dispersiom(q). Equation(31) describes an
between the two competing phases is transformed by disofffective spin wave propagator. After performing the Mat-
der into two second order phase transitions, we expect theubara frequency summation in E@9) we obtain

P4 Pay Pi

FIG. 10. The self-energy for &spin electron. The bubble rep-
resents the transverse susceptibility computed in RPA.

same behavior to apply here, that is, disorder may change the ) U2 nun{ G2 (p - ) IRI[- w

order of the transition, since the arguments put forward in 3 (p,iw) =—> n[ L= (P~ IR~ w(g)]

Ref. 21 are of very general nature. It would be very interest- N~q iw+w(q) +E(p-q)

ing to study whether the introduction of disorder in the sys- n Oij(n - )R

tem could change the nature of the first order transitions. - u.rT[g“ (-9 IRw(@)] , (32
io-w(q)-Ep-q)

VI. QUANTUM FLUCTUATIONS ) ) .
where we have introduced the notation r{ﬂﬁb‘} for the

This section is devoted to the calculation of quantum flucumerators of the Green’s functions, as expressed in Egs.
tuation corrections to the magnetization. An analogous calf12)—(17).
culation for the Hubbard model in the square lattice in the In Figure 11 we show the renormalized magnetization
t/U—0 limit was sketched by Singh and TeSaro%?® versusU. The Hartree-Fock magnetization is also shown in
The computation of the renormalized staggered magnetiFig. 11 for comparison. The calculation was performed for
zation requires the evaluation of the Feynman diagramhree different lattice sizes. It can be seen that convergence
shown in Fig. 10, which shows the second order the  does not require a very large numberkopoints in the Bril-
interactionU) contribution to the self-energy. The diagram |ouin zone. This is not surprising because the Hartree-Fock
describes the emission and later absorption of a spin wave agnetization itself already converges to the correct value in
an up-spin electron. The emission and absorption process@s40x 40 lattice. We have also checked that the RPA propa-
are accompanied by electron spin reversal. This effect, coyators return the original electron density 1, meaning that
sisting of virtual spin flips, is going to renormalize the stag-no spectral weight was lost in the used approximation for the
gered magnetization. The spihelectron Green's function is  self-energy. In the large limit, the renormalized magneti-
© N _ A0 O/ ; ; zation saturates at about 67% of ttielly polarized mean
Gi(pi) = Gi(p.iw) + Gi(piw)2 (piw)G(piiw), field value. This is in qualitati\}(ei ggfeement with the
henceG1=[G©]1-3"1. Here,G° denotes the Hartree-Fock Holstein-Primakoff result for thé&=1/2 Heisenberg model
Green’s functions matrix appearing in Eq42)—<15). The in the honeycomb lattice, which predicts a ground state mag-

self-energy matrix is given by netization of 48%. We should remark, however, that the spin
T wave spectrum calculated within RPA theory has shown

Si(p,iw) =U2=> ¢9i(p - q,iw-i0Q)yRPP(q,iQ), much better agreement with experimental results for Mott-
TP N%q LP X Hubbard antiferromagnetic insulators than the Holstein-

(29) Primakoff theory-8:7

In Fig. 12 we show the imaginary part of the electron’s
wherei,j are sublattice indices. The self-energy fof-apin  Green’s function at negative frequencies, on both sublattices,
electron would be similar to that in Eq29) with the for two different values ofJ. It is clear that, for strong cou-
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bution of spectral weight from the top to the bottom of the
energy band.

Finally, a comment regarding approximatig@l). The
commutation relation between the spin raising and lowering
operators

28] Bpeg 18 g B ] =Ep (&, ,8p,, — &5 180.1).
p.p’

is equivalent to the following relation between the Hartree-
Fock magnetizationm, and the transverse susceptibilities:

1 _idz "
072000 r=00=¢ Stz

1 idz

- ﬁ EX-JZ)GZO =-m,

at T=0. The integration of the tere?" (e') is performed
along the semicircular contour on the rigkgft) half of com-

(33

joo

layer. The continuous line represents the Hartree-Fock resulflex plane. Approximatiori31) would predict

Renormalized magnetizations are shown for different lattice gizes:
20X 20; 62X 62; 82x82. The vertical dashed line represents the
mean field criticalU value at which the magnetic instability
develops.

plings, part of the Hatree-Fock spectral weight is shifted to

the bottom of th€negative energy band. This shifting of the
spectral weight is responsible for the renormalization of th
staggered magnetization. It is interesting to see that for lo

U the spectral weight is most significant at high energy, in

the interval]-2, ([, with a much smaller weight in the inter-
val ]-4,-7. At a stronger Hubbard interaction most of the
high energy spectral weightpreviously in the interval

1-2,d) has been displaced to lower energies and becom

localized around well defined energies, whereas the spectr.
weight at intermediate energy(in the interval

1-4,-2) remains essentially unchanged. Therefore, increa
ing Hubbard coupling has the effect of displacing the distri-

6 40

— ImG™ -
(@ a0 | — MG
4L U3 1 U8
20 |
10 }
0 JL Y
0 .7 6 5 4 3 2 -1 0
10—
IMG™(w)
8 - -
sl U=8 1
4 L
1} 2r 1

o | IV N NV PO PR I B |
4 -3 2 -1 0 7 6 5 -4 -3 2 -1 0

FIG. 12. Imaginary part of the retarded electron Green’s func-

tion multiplied by -1, +mGaa(bb)(w), Vs negative frequency. The
Green’s function includes the quantum fluctuations.

¥l

S_

R w(q)] - R w(q)] = m. (34)

Indeed, we have checked that our numerical calculation of
the residues satisfig84) to an accuracy of 1.3%.

VII. FINAL REMARKS

In this paper we have studied the magnetic properties of
e Hubbard model in honeycomb layers. Our study focused
on the instabilities of the paramagnetic phase, on the mag-
netic phase diagram and on the collective excitations of the
half-filled phase. Of particular interest is the fact that it is not
possible to describe a true spiraling state in the honeycomb

ttice, as opposed to the usual cubic case. As a consequence,
g e magnetic spiral order follows a kind of one dimensional
path over the 2D lattice. This kind of ordering, here studied
at mean field level, may have important consequences to the
study of spin charge separation in 2D lattices. Also interest-
ing, was the identification of two types of ferromagnetic or-
der, which have eluded previous studies. For moderate val-
ues ofU and electron densities not far from the half filled
case, a region of weak ferromagnetism was found to have
lower energy than the more usual Nagaoka ferromagnetic
phase. The renormalization effect of the spin wave excita-
tions on the Hartree-Fock magnetization was also studied.

However, our calculation does not take into account the
renormalization of the mean field criticlll. It is well known
that quantum fluctuations should induce an increase the
value ofU,. Our calculation cannot capture this effect, since
it only takes into account the effect of well defined spin
waves. We believe, however, that the calculation can be ex-
tended to include the effect of high-energy damped particle-
hole processes leading to a renormalizatiorlJef but this
would require a modification of our numerical calculations
and a significant increase of the computational time.

APPENDIX A: USEFUL EXPRESSIONS FOR THE U,
CRITICAL LINES AT q=0

In this appendix, we derive the equations for the critical
lines from the static susceptibilitie®=0 and w=0). Our

195122-9
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starting point is the zero order spin-spin susceptibility in Eq.
(21) . The Green's functions in the paramagnetic region are
obtained from Eqs(12)—(15) after setting the magnetization

to zero. Performing the Matsubara summations in @4),

the analytical continuation and taking the zero frequencyY

limit, we obtain

1
x'2%(q,0) = ZE [M..(k,q) + M, _(k,q) + M_,(k,q)
k

Mk, (A1)

$9%(q,0) = izk WM, ,(k,0) - M,_(k,q)
- M_.(k,q) + M__(k,a)], (A2)
g < B OIE=a]

Ea(k) —Egk —0q)

where y,=ard ¢,). The critical interaction strength),, is
given by Uo/N=[x\2%+[x' 2%, in the limit g—0. Ex-
panding allq dependent quantities around the pairtO up
to first order, we obtain

1 0 - |D(k
K60 = 1S e+ e (] + L
- |D(k
XOB6,0= 1 a(E.00) + () - A= IPE]
4% |
Inserting this result in the expression fdg, gives (for g
=0):
U \?t 1
(ﬁ) =S 2 {O[E(]+o[E(W],  (A6)
+ k
U\ ™ _1g 4o - [D(K)])
— = A7
ol 2 Ind (A7

We recognize the density of statqs(f)-— WO EL(K)+u

- €]+ S[E_(k)+u—€]}, appearing in Eq(A6), which is just
the Stoner criterion. The critical interaction strengths are

given by

2
Ugs=——, A8
T p(w) (A8)

2
Ue_= . A9
1y walPw) (A9)

Nk |

Note that allt’ andt” dependence is contained k). Of

PHYSICAL REVIEW Br0, 195122(2004)

APPENDIX B: LARGE U RESULTS FOR THE
SUSCEPTIBILITIES AND SPIN WAVES

We give asymptotic expressions for the susceptibilities
_(z,q) and spin wave dispersion for a half-filled honey-
comb antiferromagnetic layer with nearest neighbor hopping.
In this case, the chemical potentjaE0 and the two energy
bands are given b(K).= = (Um/2)2+| ¢ /2.

The expressions for coherence factors appearing in the

single electron propagators, expanded up to second order in
t/U, are

|A1,+(k)|2 = |A1,—(k)|2 = |B¢,+(k)|2 = |B¢,—(k)|2

_ o
IVEN (B1)
A (1= A L(K)2= B, (k)|
k 2
=[By (k)P =1~ 'ﬁznﬂz : (B2)
A (B, (k) == A[ ,(K)B; (k) = A _(K)B; -(K)
x " (k
= A0 0~ 280 (g

We therefore may use the approximate expressions for the
X°_ susceptibilities.

1
(O)a PO
"za) Nzk z-Ek)-Ek+q)

|p(K)[2 + |k +q)|?
X[l- il

] (B4)

1 1
(0)bb -
D~ 2 R Bk g

SO+ (K + )l
x{l—l s '] (85)

KOz = <3 { :

N [ z-E(k)-E(k +0q)
B 1 ] $(K)¢ (k +q)
z+EK)+Ek +0q) U2m? '
(B6)

1 1
XOM(z,q) =~ =2 L_

N E(k) -E(k +0)

¢ (K)p(k +0q)
U2m2 '

1
7+ E(k) +E(k + q)]
(B7)

course, these equations could also have been obtained bye anticipate that the spin wave energies are of omler

taking the limitmg, myr—0 in Eq. (27).

~t2/U so that we may use the expansion
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1 S=-bb+S S =125-b'bb, S =b\25-b'b.
z+EKk)+EKk+q) (C3)
24 2
- i[l _z ¢+ [k + q)| } Making the usual linear expansion and introducing the mo-
Um Um u2m? mentum representation for the bosonic operators, the Hamil-

. " ) ) tonian can be written as
in Egs.(B4)«(B7). The condition(23) for the spin wave dis-

persion now takes the form H=-JNzS+ Iz, (aiak + blbk) +JD (p(k)agb_y
k k
Z 1 .
Ut~ {1 m’ 02 3,\,[2 |¢(p)|1} + ¢ (kbla)). (C4)

Next we introduce a set of quasiparticle operators defined by
(B8) aj = ukVI,k ~ Yok D= uk?’;,k vk (CH)

where the coherence factors oldey>~|v,|?=1. After intro-
But we must take into account that the self-consistent equaducing transformation&b) in the Hamiltonian we find
tion for the Hartree-Fock magnetization, expanded to second

E &' (p)d(p +q)

Um

order int/U, is H == INazS + X [23280,? - ISp(K)viuy = ISP (K)viu]
k
1
1-=~- 2 B9 +E[323u2+vz) ISA(K)v iU
C~- 3N[E|¢(p>|] (89 2 1928+ o) - IS,
Introducing Egs.(B9) and (B8) we finally obtain the spin = IS (K)o Y vin + 2 A= 228U+ ISp(K)vivk
wave dispersion k
2= w(q) +3S6" (KU Uyt vag + Hc), (Ce)
2 1 2 which implies the conditions
2 —_— J— * * * *
Um \‘ 2 |¢(p)| J sz ¢ (p)¢(p + q) JZ$(|UK|2+ |vk|2) _JS(b(k)UkUk _JSd) (k)vkuk] — w(k),
(B10) = 2129 Uy + ISH(K)vwy + ISP (K)uu,=0.  (C7)

which agrees with the result predicted by the Holstein-1n€ second condition reveals that we can chogséo be
real andv, = ¢(k)a(k), with a(k) real. After some straight-

Primakoff theory.
Y forward manipulations we find

APPENDIX C: HOLSTEIN-PRIMAKOFF ANALYSIS oK) = ISVZ— |2, aP(K) = - 1 ..z J5
OF THE HEISENBERG MODEL K 2lo? 2l (k)
The Heisenberg Hamiltonian in the honeycomb lattice is (C8)
given by The staggered magnetization is given by
2 {$ZS1Z+5+ ~(§S:s+S 51:5)} =S- _2 (afay + blby)
IEA o 2NA k
z
2 |:SZSZ+5 (S S+5+ S—S+5):| (Cl) =S- —E ( )
2|535 2 NA™K VZ ‘| l?
We introduce two sets of operators 1 an[w(k)] (9
o e o e
| NP Y
SZ:—aiTai+S’ S+:VZS_ alTaia“ S+:a1T\,28— aITa“ .
(C2) and at zero temperature we assumgew(k)]=0. Computing
the integral gives a magnetization value of 0.24, that is about
and 50% the Néel valug.
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