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We discuss the magnetic phases of the Hubbard model for the honeycomb lattice both in two and three
spatial dimensions. A ground state phase diagram is obtained depending on the interaction strengthU and
electronic densityn. We find a first order phase transition between ferromagnetic regions where the spin is
maximally polarized(Nagaoka ferromagnetism) and regions with smaller magnetization(weak ferromag-
netism). When taking into account the possibility of spiral states, we find that the lowest criticalU is obtained
for an ordering momentum different from zero. The evolution of the ordering momentum with doping is
discussed. The magnetic excitations(spin waves) in the antiferromagnetic insulating phase are calculated from
the random-phase approximation for the spin susceptibility. We also compute the spin fluctuation correction to
the mean field magnetization by virtual emission/absorption of spin waves. In the largeU limit, the renormal-
ized magnetization agrees qualitatively with the Holstein-Primakoff theory of the Heisenberg antiferromagnet,
although the latter approach produces a larger renormalization.
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I. INTRODUCTION

The interest in strongly correlated systems in frustrated
lattices has increased recently because of the possible real-
ization of exotic magnetic states,1 spin and charge separation
in two dimensions,2 and the discovery of superconductivity
in NaxCoO2·yH2O.3 Many researchers have discussed super-
conductivity in non-Bravais lattices, mainly using self-
consistent spin fluctuation approaches to the problem.4–6 The
honeycomb lattice, which is made of two interpenetrating
triangular lattices, has received special attention after the dis-
covery of superconductivity in MgB2.

7 Additionally, the hon-
eycomb lattice has been shown to stage many different types
of exotic physical behaviors in magnetism and the growing
experimental evidence of non-Fermi liquid behavior in
graphite has led to the study of electron-electron correlations
and quasiparticle lifetimes in graphite.8

Around a decade ago, Sorella and Tossatti9 found that the
Hubbard model in the half-filled honeycomb lattice would
exhibit a Mott-Hubbard transition at finiteU. Their Monte
Carlo results were confirmed by variational approaches and
reproduced by other authors.10,11 As important as the exis-
tence of the Mott-Hubbard transition in strongly correlated
electron systems is the possible realization of Nagaoka fer-
romagnetism. The triangular, the honeycomb, and the
Kagomé lattices were studied, but a strong tendency for a
Nagaoka type ground state was found only in nonbipartite
lattices (triangular and Kagome).12 On the other hand, the
effect of long range interactions in half-filled sheets of
graphite was considered from a mean field point of view,
using an extended Hubbard model. A large region of the
phase diagram having a charge density wave ground state
was found.13 More recently, the existence of a magnetic ex-
citation in paramagnetic graphite has been claimed,14 but its
existence was reanalyzed by two of the present authors.15

In this work the magnetic phases of the Hubbard model in
the honeycomb lattice are studied. In addition to the two-
dimensional problem we also address the three-dimensional
system composed of stacked layers. The critical lines associ-
ated with instabilities of the paramagnetic phase are obtained
in the U ,n plane(interaction versus particle density). Spiral
spin phases are also considered. A ground state phase dia-
gram containing ferro and antiferromagnetic order is ob-
tained. Interestingly, we find ferromagnetic regions with
fully polarized spin in the vicinity of regions with smaller
magnetization.

We also address the calculation of the magnetic excita-
tions (spin waves) in the half-filled antiferromagnetic honey-
comb layer within the random-phase approximation(RPA).
It is known that the Hartree-Fock-RPA theory of the half-
filled Hubbard model is correct in both weak and strongly
interacting limits: at strong coupling, the spin wave disper-
sion obtained in RPA agrees with the Holstein-Primakoff
theory for the Heisenberg model; at intermediate interactions
sU / t,6d, the RPA dispersion shows excellent agreement
with experiment.16,17 The Hartree-Fock-RPA theory should,
therefore, be considered as a useful starting point to study the
intermediate coupling regime. Starting from the spin wave
spectrum obtained in RPA theory, we calculate the quantum
fluctuation correction to the ground state magnetization aris-
ing from virtual emission/reabsorption of spin waves. In the
strong coupling limit, we find a ground state magnetization
which is about 67% of full polarization. This is not so great
a reduction as predicted by the Holstein-Primakoff theory of
the Heisenberg model, which is about 48%.

Our paper is organized as follows: in Sec. II we introduce
the Hamiltonian and its mean field treatment. In Sec. III, we
discuss the possibility of a well defined magnetic excitation
in the paramagnetic phase. In the ordered phase at half fill-
ing, the spin wave spectrum is computed and the effect of
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different hopping terms in the spin wave spectrum is dis-
cussed. In Sec. IV, the magnetic instability lines are obtained
and the possibility of spiral spin phases forn,1 is dis-
cussed. The corresponding lowest criticalU is determined as
function of the ordering wave vectorq. Section V is devoted
to the phase diagram of the system, where two different
types of ferromagnetism are found. The first order critical
lines separating the three ordered phases are determined.
Section VI contains a study of the renormalization of the
electron’s spectral function and magnetization by the spin
wave excitations.

II. MODEL HAMILTONIAN

The magnetic properties of the honeycomb lattice is dis-
cussed in the context of the Hubbard model, which is defined
as

Ĥ = − o
i,j ,s

ti,jĉi,s
† ĉj ,s + Uo

i

ĉi,↑
† ĉi,↑ĉi,↓

† ĉi,↓ − mo
i,s

ĉi,s
† ĉi,s,

s1d

whereti,j are hopping integrals,U is the onsite repulsion, and
m denotes the chemical potential. The honeycomb lattice is
not a Bravais lattice since there are two atoms per unit cell.
Therefore, it is convenient to define two sublattices,A andB,
as shown in Fig. 1.

The expressions for the lattice vectors are

a1 =
a

2
s3,Î3,0d, a2 =

a

2
s3,−Î3,0d, a3 = cs0,0,1d,

s2d

wherea is the length of the hexagon side andc is the inter-
layer distance. The reciprocal lattice vectors are given by

b1 =
2p

3a
s1,Î3,0d, b2 =

2p

3a
s1,−Î3,0d, b3 =

2p

c
s0,0,1d.

s3d

The nearest neighbors of an atom belonging to theA sublat-
tice are

d1 =
a

2
s1,Î3,0d d2 =

a

2
s1,−Î3,0d d3 = − ax̂, d9 = ± cẑ,

s4d

while the second nearest neighbors(in the plane) are: d18
= ±a1,d28= ±a2,d38= ± sa2−a1d. In a broken symmetry state,

antiferromagnetic(AF) order is described by the average lat-
tice site occupation

kn̂j ,sl =
n

2
±

m

2
s cosscQzdH+ , j P A

− , j P B
, s5d

where thez-axis ordering vectorQ=s0,0,Qzd will be used
when studying multilayers,n denotes the electron density,m
is the staggered magnetization, ands= ±1. We introduce
field operators for each sublattice satisfying the usual Fourier
transformations

âiPA,s
† =

1
ÎN

o
k

eik ·Riâks
† , b̂iPB,s

† =
1

ÎN
o

k

eik·Rib̂ks
† , s6d

whereN denotes the number of unit cells. Within a Hartree-
Fock decoupling of the Hubbard interaction in Eq.(1) we
obtain an effective Hamiltonian matrix

Ĥ = o
ks

fâks
† b̂ks

† gFH11 H12

H21 H22
GFâks

b̂ks

G , s7d

with matrix elements given by

H11 = Dskd + U
n − sm

2
, H12 = fk = H21

* ,

H22 = Dskd + U
n + sm

2
, s8d

where

fk = − to
d

eik·d, Dskd = fk8 − 2t9cossckzd − m,

fk8 = − t8o
d8

eik·d8. s9d

In Eqs.(8) and(9) t and t8 are the first and second neighbor
hopping integrals, respectively, whilet9 describes interlayer
hopping. The dispersion relation for the case wheret8= t9
=0 andU=0 is

ufku = ± tÎ3 + 2 cossÎ3akyd + 4 coss3akx/2dcossÎ3aky/2d.

s10d

Diagonalization of the effective Hamiltonian yields a two
band spectrum. The band energies are:

E±skd = Dskd +
U

2
n ±ÎSUm

2
D2

+ ufku2. s11d

Because there are two sublattices, the Matsubara Green’s
function is a 232 matrix whose elements are given by

Gs
aasiv,kd = o

j=±

uAs,ju2

iv − Ejskd
, s12d

Gs
absiv,kd = o

j=±

As,jBs,j
*

iv − Ejskd
, s13d

FIG. 1. Primitive vectors for the honeycomb lattice and the cor-
responding Brillouin zone.
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Gs
basiv,kd = o

j=±

As,j
* Bs,j

iv − Ejskd
, s14d

Gs
bbsiv,kd = o

j=±

uBs,ju2

iv − Ejskd
, s15d

where the coherence factors are

uAs,±skdu2 =
1

2
F1 −

Ums

2E±skdG,

uBs,±skdu2 =
1

2
F1 +

Ums

2E±skdG , s16d

As,±skdBs,±
* skd = −

fskd
2E±skd

. s17d

In the ferromagneticsFd phase, the site occupation is the
same for both sublattices

kn̂j ,sl =
n

2
+

m

2
s, j P A,B. s18d

In this case the quasiparticle energy bands are given by

E±
sskd = Dskd +

U

2
sn − smd ± ufku. s19d

In the paramagnetic phase of the system the energies and
propagators are simply obtained by settingm=0 in the equa-
tions above. The density of states of single electrons is
shown in Fig. 2 against particle density and energy. In the
two upper panels we have included a second-neighbor hop-
ping while in the two lower panels only nearest neighbor
coupling is considered. An important feature is thatrsed van-
ishes linearly withe as we approach the half filled limit, both
for t8=0 and t8Þ0. This is related to theK points of the

Brillouin Zone (see Fig. 1), where the electron dispersion
becomes linear

Eskd < ± t
3a

2
udku,

dk denotes the deviation from theK point. This dispersion is
called the “Dirac cone.”

III. COLLECTIVE EXCITATIONS AT HALF FILLING

The magnetic excitations are obtained from the poles of
the transverse spin susceptibility tensor,x, which is defined,
in Matsubara form, as

x+−
i,j sq,ivnd =E

0

1/T

dt eivntkTt Ŝi
+sq,tdŜj

−s− q,0dl, s20d

where i , j =a,b label the two sublattices(not lattice points)
andSi

+sqd ,Sj
−sqd denote the spin raising and lowering opera-

tors for each sublattice.
In the paramagnetic,F, or AF phases, the zero order sus-

ceptibility is just a simple bubble diagram with the Green’s
functions given in Eqs.(12)–(15):

x+−
s0di,jsq,ivnd = −

T

No
k,vm

G↑
jisk,ivndG↓

i jsk − q,ivn − ivmd.

s21d

Going beyond mean-field, the RPA result for the susceptibil-
ity tensor is obtained from the Dyson equation

x = x0 + Ux0x ⇒ x = fÎ − Ux0g−1x0, s22d

where Î denotes the 232 identity matrix. The poles of the
susceptibility tensor, corresponding to the magnetic excita-
tions, are then obtained from the condition

DetfÎ − Ux0g = 0. s23d

We note that the tensorial nature of the spin susceptibility is
a consequence of there being two sites per unit cell and is not
related to the magnetic order in the system.

A. Magnetic excitations in a single paramagnetic layer

Here we discuss the possibility of existence of magnetic
excitations in a single honeycomb paramagnetic layer. Our
interest in this problem stems from a recent claim, by Baska-
ran and Jafari,14 who recently proposed the existence of a
neutral spin collective mode in graphene sheets. In the cal-
culations of Ref. 14 a half-filled Hubbard model in the hon-
eycomb lattice(with t8= t9=0) was considered but the tenso-
rial character of the susceptibility was neglected.15 Since
inelastic neutron scattering can be used to study this spin
collective mode in graphite, we decided to re-examine this
problem taking into account the tensorial nature of the trans-
verse spin susceptibility.

Collective magnetic modes with frequencyv and momen-
tum q are determined from the condition(23) after perform-

FIG. 2. Single particle density of states,rsed, for independent
electrons in an honeycomb lattice. The left and right panels show
rsed as function of energy and electron density, respectively. The
solid line refers tot8=−0.2 and the dashed line tot8=0.
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ing the analytic continuationiv→v+ i0+. The determinant is
given by

D+−sq,vd = 1 – 2Ux+−
s0daa + U2fsx+−

s0daad2 − x+−
s0dabx+−

s0dbag,

s24d

where we have taken into account that in a paramagnetic
systemx+−

s0daa=x+−
s0dbb. Below the particle-hole continuum of

excitations, the spectral(delta-function contributions) part in
x+−

s0di jsq,v+ i0+d vanishes and there is the additional relation
x+−

s0dba=fx+−
s0dabg* .Collective modes are only well defined out-

side the particle-hole continuum(inside the continuum they
become Landau damped). We searched15 for well defined
magnetic modes,vsqd, below the continuum of particle-hole
excitations, and found no solutions for any value of the in-
teractionU. In Fig. 1 of Ref. 15 we plotD+−sq,vd for eight
different q vectors andv ranging from zero to the point
where the particle hole continuum begins. Our analysis re-
veals that the full tensorial structure of the Hubbard model’s
RPA susceptibility in the honeycomb lattice does not predict
a collective magnetic mode.

B. Spin waves in the antiferromagnetic layer

The spin wave dispersionvsqd for the AF layer with one
electron per site can be obtained from Eqs.(21) and (23)
using expressions(12)–(15) for the propagators. Spin wave
spectra, for different values of second-neighbor hopping,t8,
are plotted in Figs. 3 and 4. In the largeU limit, spin wave
energies agree with those obtained from the Holstein-
Primakoff theory of the Heisenberg model. We give an ana-
lytical derivation of this limit in Appendix B. The Holstein-
Primakoff result for the Heisenberg model in the honeycomb
lattice, which is derived in Appendix C, can be written as

vHPsqd = JSÎz2 − ufsqdu2. s25d

This result can be mapped on the Hubbard model provided
that J=4t2/U and S=1/2. Figure 3 shows the spin wave

energies for the two-dimensional(2D) lattice st8=0d along a
closed path in the Brillouin Zone. Energies in Fig. 3 are
normalized by the Holstein-Primakov result at theK point,
vHPsKd (see Fig. 1). It can be seen that the results forU=8
are very close to the asymptotic behavior of the RPA,
whereas, for smallerU, the spin wave energy is reduced. The
effect of t8 on vsqd is depicted in Fig. 4. It is of particular
interest the fact that the dispersion along theX-K direction is
almost absent forUù4. The presence oft8 does not change
this effect.

IV. MAGNETIC INSTABILITIES

The magnetic instabilities in the paramagnetic phase can
be obtained from the divergence of the RPA susceptibilities
at critical values of the interaction,Uc, driving the system
towards a magnetically ordered phase. At a given electron
densityn we always find two instability solutions, one ferro-
magnetic and one antiferromagnetic. One of these solutions
minimizes the free energy. SinceUc is determined from
D+−sq,0d=0, taking into account thatx+−

s0daa=x+−
s0dbb and

x+−
s0dab=sx+−

s0dbad* in the paramagnetic phase, we obtain

Uc =
1

x+−
s0daa ± ux+−

s0dabu
. s26d

Figure 5 showsUc obtained from the static uniform suscep-
tibilities (q=0 and v=0), as a function of electron density
for various values oft8. Detailed equations for the instability
lines are given in Appendix A. The left panel of Fig. 5 refers
to the 2D case, corresponding to a single honeycomb layer,
whereas the right panel refers to the three-dimensional(3D)
system with a constant interlayer hoppingt9=0.1. The Van
Hove singularity(associated with theX point) plays an im-
portant role.

As we have already mentioned, the two solutions of Eq.
(26) correspond to two different magnetic transitions, one
between a paramagnetic phase and a ferromagnetic phase

FIG. 3. Spin-wave excitation spectrum for several values ofU.
The dashed-dotted line gives the Holstein-Primakoff result for the
Heisenberg antiferromagnet in the honeycomb lattice.

FIG. 4. Spin-wave excitation spectrum for several values ofU
and t8Þ0.
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and another between a paramagnetic phase and an antiferro-
magnetic phase. That this is so can easily be confirmed by
solving the self-consistent equations for the ferromagnetic
and the antiferromagnetic magnetizations, respectively, de-
rived from the HF Hamiltonian(7). By minimizing the free
energy with respect to magnetization, one finds the following
expressions for ferro- and antiferromagnetic magnetizations:

mF =
1

2No
ks

sffsE+
sd + fsE−

sdg,

mAF =
1

No
k

uzku
Î1 + zk

2
ffsE−d − fsE+dg, s27d

where fsxd is the Fermi function andzk =UmAF/ s2ufk u d.
Letting both mF and mAF approach zero, one obtains the
same lines as those in Fig. 5. Generally speaking, for elec-
tron densities lower than 0.85, the value ofUc that separates
the paramagnetic region from the ferromagnetic region is
lower than the corresponding value ofUc separating the
paramagnetic region from the antiferromagnetic region. The
critical U associated with the ferromagnetic instability in-
creases witht8. The size of the paramagnetic region in Fig. 5
increases witht8. On the other hand, fort8=0.2, we see that
the critical line for the ferromagnetic region is very close to
the critical line of the antiferromagnetic region. Therefore,
the ferromagnetic region is progressively shrinking with in-
creasingt8. If we now turn to densities larger than 0.85, we
find that the antiferromagnetic critical line is the one with
lowestUc. However, in contrast to lower densities, the anti-
ferromagnetic critical line hardly changes when varyingt8.
This description applies equally well to the single honey-
comb layer and weakly coupled layers, even though the
quantitative functional dependence ofUc on n is different in
the two cases, the main difference coming from the van
Hove singularity present in the 2D case. At finite temperature
the van Hove singularity is rounded off and the 2D phase
diagram will be much more similar to the 3D case. We there-
fore, consider that a weak 3D interlayer coupling does not

qualitatively modify the conclusions valid for the 2D case.
Besides collinear spin phases, the system may also

present noncollinear spiral spin phases in some regions of the
phase diagram. We now study what are the changes in the
critical U values determining the instability of the paramag-
netic phase if we allow for noncollinear ground states, since
it is well known that the Hubbard model on bipartite and
non-bipartite lattices can have the lowestUc for spiral spin
phases12,18,19for some electronic densities. In a spiral state,
the spin expectation value at sitei, belonging to sublattice
n=a,b, is given by20

kSi
nl =

mn

2
fcossq ·Ri

nd,sinsq ·Ri
ndg. s28d

If qÞ0, the ferromagnetic and antiferromagnetic spin con-
figurations become twisted. We shall refer to the twistedq
Þ0 configurations as “Fq” whenever mA=mB, and “AFq”
whenevermA=−mB. The criterion for choosing theq vectors
is taken directly from the geometry of the lattice by request-
ing a constant angle between spins on neighboring sites, i.e.,
q·d1=q·d2=−q·d3. Unfortunately, however, this cannot be
achieved in the honeycomb lattice with only oneq vector.
The closest one can get to a “true” spiraling state is by letting
q·d1=−q·d3 (or equivalently,q·d2=−q·d3), which implies
that q=sqx,qyd=qxs1,1/Î3d fq=qxs1,−1/Î3dg. For the mo-
ment we letqz be zero which means that we consider iden-
tical layers. The conditionq·d1=−q·d3 means that the in-
crease in spin angle between two lattice sites in the −d3
direction is the same as the increase in spin angle between
two lattice sites in thed1 direction. There is no increase in
the spin angle in thed2 direction. Examples of the spin con-
figurations obtained in this way are shown in Figs. 6 and 7.
Several notes are in order at this stage. First, although we do
not have a true spiraling state over the whole lattice, we do

FIG. 5. Left panel: Effect oft8 on the instability lines, as deter-
mined from Eq.(26) , for a single honeycomb layer. Right panel:
Effect of t8 on the instability lines, as determined from Eq.(26) , for
a layered honeycomb. This panel differs from the other inasmuch a
small t9=0.1 hoping term was included coupling the 2D layers.

FIG. 6. (Color online) Fq (upper) and AFq (lower) spin configu-
rations forqx=p /6.
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have a spiraling configuration in the −d3 andd1 directions, as
can be seen from the Figs. 6 and 7, going from the lower left
to upper right. Second, when traveling along thed2 direction,
the spin angles do not increase. Instead, neighboring spins in
this direction are always aligned ferromagnetically when
mA=mB, and antiferromagnetically whenmA=−mB. How-
ever, two successived2 bonds (“sliding down” the lattice
from left to right) have the same increase in spin angle as any
two neighbors connected by −d3 or d1. Theq vector(i.e., the
spin configuration) that a system with a given density would
prefer is the one with the lowest value ofUcsqd. In Fig. 8 we

present a curve showing theq vectors that minimizeUcsqd,
as functions of particle densityn. We consider discrete val-
uesqx= isp /12d with i =0,1, . . . ,12. Thedependence ont8 is
overall the same as that discussed forq=0 (for example, the
shrinking effect with increasingt8 is also seen here). There is
no reason to restrictq to integer multiples ofp /12, other
than a pure computational one. By performing the same cal-
culation with moreq vectors, the “step function” like appear-
ance of the lower graphs of Fig. 8 can be smoothed out. Our
analysis is sufficient, however, to get an insight into how the
q vectors(which minimizeUc) vary with n.

The solid line limiting the paramagnetic region is shown
in the lower graphs of Fig. 8. We see that the behavior ofqx,
as function ofn, is almost the same for the 2D and 3D cases.
As the system approaches half filling, the preferred spin con-
figuration approaches that withq=0. In a doped system,
however, minimization ofUcsqd is attained for a nonzeroq.
It is also seen that the dependence ofq on n is not mono-
tonic. Either in 2D or 3D,qx goes all the way from 0(at n
=1) to p, displaying two local maxima(and a local mini-
mum in between) asn ranges from 1 towards 0.

The value ofqx reaches a local minimum atqx=7p /12, at
n=0.37(in 2D) or at n=0.45(in 3D). For even lower densi-
ties,qx attains another maximum atqx=p, which means that
the spins of any two nearest neighbors, in the −d3 and d1
directions, point exactly in opposite directions to each other.

The same type of behavior is seen also for the critical line
separating magnetically ordered phases(dashed line). Again,
the 2D and the 3D cases are very similar to each other. For
densities around 0.30–0.35(2D) and 0.35–0.40(3D), we
haveqx=8p /12 yielding the lowestUc. Moreover, the solid
and the dashed lines coincide, illustrating the previously
mentioned ferromagnetic “shrinking out” effect. In other
words, forqx=8p /12, the two solutions ofUcsqd almost co-
incide for all n, leaving only a thin strip of ferromagnetism

FIG. 7. (Color online) Fq (upper) and AFq (lower) spin configu-
rations forqx=2p /3.

FIG. 8. The upper panels show
the minimumUcsqd according to
Eq. (26) . The solid line separates
the paramagnetic phase from mag-
netically ordered phases, while the
dashed line separates differently
ordered magnetic phases. The
lower panels show theqx compo-
nent of the ordering vector(corre-
sponding to the minimumUc) as
function of electron densityn.
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between the paramagnetic and the antiferromagnetic regions.
Although this is true for alln, it is only for n=0.37–0.40(2D
case) and n=0.35–0.37(3D case) that Ucsqx=8p /12d is
minimum.

So far, our analysis has been restricted toq vectors lying
in the x-y spin plane. This means that two interlayer neigh-
bors have the same spin. If we now consider neighboring
layers with opposite spin, we putqz=p. At half filling, the
lowestUcs0,0,pd=2.04 limiting the paramagnetic region is
lower than the correspondingUcs0,0,0d=2.35, indepen-
dently of t8. Moreover, forn=1, Ucsqx,qx/Î3,pd is always
lower thanUcsqx,qx/Î3,0d for any qx, showing that, at half
filling, we should expect antiferromagnetic ordering along
the z direction.

The above study was focused on the second order insta-
bility lines, both in the case of collinear and spiral spin
phases, being clear that spiral states have a lower criticalU
value, over a large range electronic densities. It is instructive
to compare our results with those of Ref. 12. Looking at Fig.
2 of Ref. 12 we see that for the triangular lattice there are
some finite regions where the more stable ground states cor-
respond to spiral states. These regions are located at elec-
tronic densities smaller than 0.5 and larger than 0.8. Since
the honeycomb lattice consists of two interpenetrating trian-
gular lattices we expect the same type of behavior, at least at
the qualitative level. That is, we do expect to have finite
regions of the phase diagram where spiral phases have the
lowest energy. Also, in Ref. 12 the authors do not discuss the
full phase diagram of the Hubbard model in the honeycomb
lattice, as we do in next section. They are primarily inter-
ested in the stability of the Nagaoka state. Their study is
done using three different approaches:(i) The Hartree single
flip ansatz; (ii ) the SKA Gutwiller ansatz; and(iii ) the
Basile-Elser ansatz. A comparison can be established be-
tween the Hartree single flip ansatz which roughly speaking,
produces a straight line for all densities at the on-site Cou-
lomb interactionU,5, and our self consistent Hartree-Fock
study. If we forget, for a moment, the van Hove singularity,
both results are qualitatively the same forn up to 0.8. Above
this value our Hartree-Fock analysis, forgetting about the
existence of the antiferromagnetic phase, predicts a very
strong increase of the criticalU value (not shown in Fig. 5,
since the AF phase presents the lowest criticalU value), in
agreement with the SKA ansatz. This behavior is not cap-
tured by the Hartree single flip ansatz. It seems that our study
interpolates between the Hartree single flip ansatz for low
densities and the SKA ansatz for densities above 0.8. Quan-
titatively there are differences between the two studies,
which are understandable on the basis of the different types
of proposed ground states.

V. PHASE DIAGRAM

As we mentioned in the previous section, the study of
Ref. 12 is mainly concerned with the stability of the Nagaoka
state, and in the previous section we studied the values of the
Hubbard interaction associated with instabilities of the para-
magnetic system. The transition from the paramagnetic to a
magnetically ordered state is determined by the lowestUc.

Since we have found the possibility of having, at least, two
(ferro and antiferro) different types of ground states, then in
the case where interaction is stronger than both critical val-
ues, we need to address the problem of competition between
the two ordered phases. The phase with the lowest free en-
ergy is the one preferred by the system. In this section we
restrict ourselves to the study of a single layer but we shall
consider different band structures. Spiral states will not be
considered, since we are most interested in a weak ferromag-
netic phase showing up in a region of the phase diagram
where the studies of Ref. 12 suggest that the collinear ferro-
magnetic(fully polarized) phase should be the most stable
one. In the ferromagnetic phase we distinguished two types
of ferromagnetic ground states: the Nagaoka ground state,
with a maximally polarized spinsmF=nd, and a weak ferro-
magnetic state withmF,n. The order parameter and free
energies were obtained from the mean field Hamiltonian(7).
Figure 9 shows the ground-statesn,Ud phase diagram of the
model.

The effect oft8 on the phase diagram can be seen in right
panel of Fig. 9. In Fig. 9 the dashed lines represent first-order
phase transitions, where the order parameter do not vanish
smoothly, while continuous lines represent second order tran-
sitions, where the order parameter vanishes smoothly, but its
first derivative is discontinuous. In both cases(t8=0 andt8
Þ0) we find a finite region of weak ferromagnetism. In gen-
eral the Nagaoka phase is more stable for largeU. The weak
ferromagnetic phase is separated from the Nagaoka phase by
first or second order transition lines, depending on the path
followed on sU ,nd diagram. The second order transition
manifests itself through a discontinuity of the derivative of
the magnetization with respect toU. At n=0.75 the instabil-
ity line towards the ferromagnetic phase shows a dip(pro-
nounced ift8=0), which is due to the logarithmic van Hove
singularity atn=0.75. A negativet8 produces two effects on
the phase diagram:(i) the instability line towards theF phase
moves downwards; and(ii ) the point where the instability

FIG. 9. Left panel: Ground state phase diagram of the Hubbard
model in thesn,Ud plane for a single layer witht8=0. Right panel:
Ground state phase diagram of the Hubbard model in thesn,Ud
plane for a single layer witht8=−0.2. In both cases dashed and
continuous lines represent first and second order transitions,
respectively.
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lines towardsF and AF meet moves to largern. Similarly to
what was found in the previous section, the overall effect of
t8 is to modify the ferromagnetic region of the phase dia-
gram. Further, for negativet8 we expect collinear ferromag-
netism to exist over a large region of the phase diagram
relatively to the caset8ù0, since it is well known that a
negativet8 stabilizes the ferromagnetic phase. On the other
hand we do not expect the phase diagram presented in this
section to be fully accurate for low densities, where the find-
ings of Ref. 12 should apply.

The first order critical lines do separate two different fer-
romagnetic (or ferromagnetic from antiferromagnetic) re-
gions, in what concerns the total magnetization. In view of
the results published in Ref. 21, where a first order transition
between the two competing phases is transformed by disor-
der into two second order phase transitions, we expect the
same behavior to apply here, that is, disorder may change the
order of the transition, since the arguments put forward in
Ref. 21 are of very general nature. It would be very interest-
ing to study whether the introduction of disorder in the sys-
tem could change the nature of the first order transitions.

VI. QUANTUM FLUCTUATIONS

This section is devoted to the calculation of quantum fluc-
tuation corrections to the magnetization. An analogous cal-
culation for the Hubbard model in the square lattice in the
t /U→0 limit was sketched by Singh and Tešanović.22,23

The computation of the renormalized staggered magneti-
zation requires the evaluation of the Feynman diagram
shown in Fig. 10, which shows the second order(in the
interactionU) contribution to the self-energy. The diagram
describes the emission and later absorption of a spin wave by
an up-spin electron. The emission and absorption processes
are accompanied by electron spin reversal. This effect, con-
sisting of virtual spin flips, is going to renormalize the stag-
gered magnetization. The spin-↑ electron Green’s function is

G↑sp,ivd = G↑
0sp,ivd + G↑

0sp,ivdS↑sp,ivdG↑sp,ivd,

hence,G−1=fGs0dg−1−S−1. Here,G0 denotes the Hartree-Fock
Green’s functions matrix appearing in Eqs.(12)–(15). The
self-energy matrix is given by

S↑
i jsp,ivd = U2 T

No
iV,q

G↓
s0di jsp − q,iv − iVdx−+

sRPAdi jsq,iVd,

s29d

wherei , j are sublattice indices. The self-energy for a↓-spin
electron would be similar to that in Eq.(29) with the

Gs0di j-spin reversed andx−+ replaced withx+−. The renormal-
ized staggered magnetization atT=0 is given by

m̄= −
1

No
ks
E

−`

0 dv

2p
sfIm Gs,Ret

aa sk,vd − Im Gs,Ret
bb sk,vdg,

s30d

where Im Gs,Ret
i j sk ,vd stands for the imaginary part of the

retarded Green’s function for a spins electron.
The RPA susceptibility has poles corresponding to the

spin waves calculated in Sec. III, with energy<ufskdu2/U,
but it also has poles describing a particle-hole continuum of
excitations at higher energies(of order U). In what follows
we ignore this particle-hole continuum and take into account
only the contribution from the spin wave poles to the self-
energy. Physically, this means that we shall calculate the
magnetization renormalized by the spin waves. To this end,
we start by replacing the susceptibility in Eq.(29) by the
expression

xsRPAdi jsq,ivd =
Rijfvsqdg
iv − vsqd

+
Rijf− vsqdg
iv + vsqd

, s31d

whereRijf±vsqdg denotes the residue ofx−+
sRPAdi j at the spin

wave pole with dispersionvsqd. Equation(31) describes an
effective spin wave propagator. After performing the Mat-
subara frequency summation in Eq.(29) we obtain

S↑
i jsp,ivd =

U2

N o
q
HnumfG↓,−

s0di jsp − qdgRijf− vsqdg
iv + vsqd + E+sp − qd

−
numfG↓,+

s0di jsp − qdgRijfvsqdg
iv − vsqd − E+sp − qd J , s32d

where we have introduced the notation numhGs,b
s0di jj for the

numerators of the Green’s functions, as expressed in Eqs.
(12)–(17).

In Figure 11 we show the renormalized magnetization
versusU. The Hartree-Fock magnetization is also shown in
Fig. 11 for comparison. The calculation was performed for
three different lattice sizes. It can be seen that convergence
does not require a very large number ofk points in the Bril-
louin zone. This is not surprising because the Hartree-Fock
magnetization itself already converges to the correct value in
a 40340 lattice. We have also checked that the RPA propa-
gators return the original electron densityn=1, meaning that
no spectral weight was lost in the used approximation for the
self-energy. In the largeU limit, the renormalized magneti-
zation saturates at about 67% of the(fully polarized) mean
field value. This is in qualitative agreement with the
Holstein-Primakoff result for theS=1/2 Heisenberg model
in the honeycomb lattice, which predicts a ground state mag-
netization of 48%. We should remark, however, that the spin
wave spectrum calculated within RPA theory has shown
much better agreement with experimental results for Mott-
Hubbard antiferromagnetic insulators than the Holstein-
Primakoff theory.16,17

In Fig. 12 we show the imaginary part of the electron’s
Green’s function at negative frequencies, on both sublattices,
for two different values ofU. It is clear that, for strong cou-

FIG. 10. The self-energy for a↑-spin electron. The bubble rep-
resents the transverse susceptibility computed in RPA.
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plings, part of the Hatree-Fock spectral weight is shifted to
the bottom of the(negative) energy band. This shifting of the
spectral weight is responsible for the renormalization of the
staggered magnetization. It is interesting to see that for low
U the spectral weight is most significant at high energy, in
the interval]−2,0[, with a much smaller weight in the inter-
val ]−4,−2[. At a stronger Hubbard interaction most of the
high energy spectral weight(previously in the interval
g−2,0f) has been displaced to lower energies and become
localized around well defined energies, whereas the spectral
weight at intermediate energy (in the interval
g−4,−2f) remains essentially unchanged. Therefore, increas-
ing Hubbard coupling has the effect of displacing the distri-

bution of spectral weight from the top to the bottom of the
energy band.

Finally, a comment regarding approximation(31). The
commutation relation between the spin raising and lowering
operators

o
p,p8

fâp,↓
† âp+q,↑,âp8+q,↑

† âp8,↓g = o
p

sâp,↓
† âp,↓ − âp,↑

† âp,↑d,

is equivalent to the following relation between the Hartree-
Fock magnetization,m, and the transverse susceptibilities:

x−+
aasq,t = 0+d − x−+

aasq,t = 0−d =R
−i`

+i` − idz

2p
x−+

aaszde−z0+

−R
−i`

+i` − idz

2p
x−+

aaszdez0+
= − m, s33d

at T=0. The integration of the terme−z0+
sez0+

d is performed
along the semicircular contour on the right(left) half of com-
plex plane. Approximation(31) would predict

Rbbfvsqdg − Raafvsqdg = m. s34d

Indeed, we have checked that our numerical calculation of
the residues satisfies(34) to an accuracy of 1.3%.

VII. FINAL REMARKS

In this paper we have studied the magnetic properties of
the Hubbard model in honeycomb layers. Our study focused
on the instabilities of the paramagnetic phase, on the mag-
netic phase diagram and on the collective excitations of the
half-filled phase. Of particular interest is the fact that it is not
possible to describe a true spiraling state in the honeycomb
lattice, as opposed to the usual cubic case. As a consequence,
the magnetic spiral order follows a kind of one dimensional
path over the 2D lattice. This kind of ordering, here studied
at mean field level, may have important consequences to the
study of spin charge separation in 2D lattices. Also interest-
ing, was the identification of two types of ferromagnetic or-
der, which have eluded previous studies. For moderate val-
ues ofU and electron densities not far from the half filled
case, a region of weak ferromagnetism was found to have
lower energy than the more usual Nagaoka ferromagnetic
phase. The renormalization effect of the spin wave excita-
tions on the Hartree-Fock magnetization was also studied.
However, our calculation does not take into account the
renormalization of the mean field criticalU. It is well known
that quantum fluctuations should induce an increase the
value ofUc. Our calculation cannot capture this effect, since
it only takes into account the effect of well defined spin
waves. We believe, however, that the calculation can be ex-
tended to include the effect of high-energy damped particle-
hole processes leading to a renormalization ofUc, but this
would require a modification of our numerical calculations
and a significant increase of the computational time.

APPENDIX A: USEFUL EXPRESSIONS FOR THE Uc

CRITICAL LINES AT q=0

In this appendix, we derive the equations for the critical
lines from the static susceptibilities(q=0 and v=0). Our

FIG. 11. The magnetization in the half-filled honeycomb AF
layer. The continuous line represents the Hartree-Fock result.
Renormalized magnetizations are shown for different lattice sizes:23

20320; 62362; 82382. The vertical dashed line represents the
mean field critical U value at which the magnetic instability
develops.

FIG. 12. Imaginary part of the retarded electron Green’s func-
tion multiplied by −1, −ImG↑

aasbbdsvd, vs negative frequency. The
Green’s function includes the quantum fluctuations.
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starting point is the zero order spin-spin susceptibility in Eq.
(21) . The Green’s functions in the paramagnetic region are
obtained from Eqs.(12)–(15) after setting the magnetization
to zero. Performing the Matsubara summations in Eq.(21),
the analytical continuation and taking the zero frequency
limit, we obtain

x+−,0
s0daasq,0d =

1

4o
k

fM++sk,qd + M+−sk,qd + M−+sk,qd

+ M−−sk,qdg, sA1d

x+−,0
s0dabsq,0d =

1

4o
k

eisck−q−ckdfM++sk,qd − M+−sk,qd

− M−+sk,qd + M−−sk,qdg, sA2d

Ma,bsk,qd =
u fEaskdg − u fEbsk − qdg

Easkd − Ebsk − qd
, sA3d

where ck=argsfkd. The critical interaction strength,Uc, is
given by Uc/N=fx+−,0

s0daa± ux+−,0
s0dabug−1, in the limit q→0. Ex-

panding allq dependent quantities around the pointq=0 up
to first order, we obtain

x+−,0
s0daasq,0d =

1

4o
k

dfsE+skdd + dsE−skddg +
ufufku − uDskdug

ufku

+ q · s¯d + ¯ sA4d

x+−,0
s0dabsq,0d =

1

4o
k

dfsE+skdd + dsE−skddg −
ufufku − uDskdug

ufku

+ q · s¯d + ¯ . sA5d

Inserting this result in the expression forUc gives (for q
=0):

SUc

N
D

+

−1

=
1

2o
k

hd fE+skdg + d fE−skdgj, sA6d

SUc

N
D

−

−1

=
1

2o
k

usufku − uDskdud
ufku

. sA7d

We recognize the density of states,rsed= 1
Nokhd fE+skd+m

−eg+d fE−skd+m−egj, appearing in Eq.(A6), which is just
the Stoner criterion. The critical interaction strengths are
given by

Uc,+ =
2

rsmd
, sA8d

Uc,− =
2

1

N
ok

usufku− uDskdud
ufku

. sA9d

Note that allt8 and t9 dependence is contained inDskd. Of
course, these equations could also have been obtained by
taking the limitmF ,mAF→0 in Eq. (27).

APPENDIX B: LARGE U RESULTS FOR THE
SUSCEPTIBILITIES AND SPIN WAVES

We give asymptotic expressions for the susceptibilities
x+−

0 sz,qd and spin wave dispersion for a half-filled honey-
comb antiferromagnetic layer with nearest neighbor hopping.
In this case, the chemical potentialm=0 and the two energy
bands are given byEskd±= ±ÎsUm/2d2+ ufku2.

The expressions for coherence factors appearing in the
single electron propagators, expanded up to second order in
t /U, are

uA↑,+skdu2 = uA↓,−skdu2 = uB↓,+skdu2 = uB↑,−skdu2

<
ufskdu2

U2m2 , sB1d

uA↑,−skdu2 = uA↓,+skdu2 = uB↓,−skdu2

= uB↑,+skdu2 < 1 −
ufskdu2

U2m2 , sB2d

A↓,−
* skdB↓,−skd = − A↑,+

* skdB↑,+skd = A↑,−
* skdB↑,−skd

= − A↓,+
* skdB↓,+skd <

f*skd
Um

. sB3d

We therefore may use the approximate expressions for the
x+−

0 susceptibilities.

xs0daasz,qd < −
1

No
k

1

z− Eskd − Esk + qd

3F1 −
ufskdu2 + ufsk + qdu2

U2m2 G , sB4d

xs0dbbsz,qd <
1

No
k

1

z+ Eskd + Esk + qd

3F1 −
ufskdu2 + ufsk + qdu2

U2m2 G , sB5d

xs0dbasz,qd <
1

No
k
F 1

z− Eskd − Esk + qd

−
1

z+ Eskd + Esk + qdGfskdf*sk + qd
U2m2 ,

sB6d

xs0dabsz,qd <
1

No
k
F 1

z− Eskd − Esk + qd

−
1

z+ Eskd + Esk + qdGf*skdfsk + qd
U2m2 .

sB7d

We anticipate that the spin wave energies are of orderz
< t2/U so that we may use the expansion
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1

z+ Eskd + Esk + qd

<
1

Um
F1 −

z

Um
−

ufskdu2 + ufsk + qdu2

U2m2 + ¯G
in Eqs.(B4)–(B7). The condition(23) for the spin wave dis-
persion now takes the form

z2

U2m4 = H1 −
1

m
+

4

U2m3NFo
p

ufspdu2GJ2

−
4

U2m6U 1

No
p

f*spdfsp + qdU2

. sB8d

But we must take into account that the self-consistent equa-
tion for the Hartree-Fock magnetization, expanded to second
order in t /U, is

1 −
1

m
< −

2

U2m3NFo
p

ufspdu2G sB9d

Introducing Eqs.(B9) and (B8) we finally obtain the spin
wave dispersion

z= vsqd

<
2

Um
ÎF 1

No
p

ufspdu2G2

− U 1

No
p

f*spdfsp + qdU2

,

sB10d

which agrees with the result predicted by the Holstein-
Primakoff theory.

APPENDIX C: HOLSTEIN-PRIMAKOFF ANALYSIS
OF THE HEISENBERG MODEL

The Heisenberg Hamiltonian in the honeycomb lattice is
given by

H =
J

2 o
iPA,d

FSi
zSi+d

z +
1

2
sSi

+Si+d
− + Si

−Si+d
+ dG

+
J

2 o
iPB,d

FS̃i
zS̃i+d

z +
1

2
sS̃i

+S̃i+d
− + S̃i

−S̃i+d
+ dG . sC1d

We introduce two sets of operators

Si
z = − ai

†ai + S, Si
+ = Î2S− ai

†aiai, Si
+ = ai

†Î2S− ai
†ai ,

sC2d

and

S̃i
z = − bi

†bi + S, S̃i
+ = Î2S− bi

†bibi, S̃i
+ = bi

†Î2S− bi
†bi .

sC3d

Making the usual linear expansion and introducing the mo-
mentum representation for the bosonic operators, the Hamil-
tonian can be written as

H = − JNAzS2 + JzSo
k

sak
†ak + bk

†bkd + JSo
k

sfskdakb−k

+ f*skdb−k
† ak

†d. sC4d

Next we introduce a set of quasiparticle operators defined by

ak
† = ukg1,k

† − vk
*g2,k, b−k

† = ukg2,k
† − vk

*g1,k, sC5d

where the coherence factors obeyuuku2− uvku2=1. After intro-
ducing transformations(5) in the Hamiltonian we find

H = − JNAzS2 + o
k

f2JzSuvku2 − JSfskdvkuk
* − JSf*skdvk

*ukg

+ o
k;i=1,2

fJzSsuuku2 + uvku2d − JSfskdvkuk
*

− JSf*skdvk
*ukggi,k

† gi,k + o
k

hf− 2JzSvkuk + JSfskdvkvk

+ JSf*skdukukgg1,k
† g2,k

† + H.c.j, sC6d

which implies the conditions

JzSfsuuku2 + uvku2d − JSfskdvkuk
* − JSf*skdvk

*ukg = vskd,

− 2JzSvkuk + JSfskdvkvk + JSf*skdukuk = 0. sC7d

The second condition reveals that we can chooseuk to be
real andvk

* =fskdaskd, with askd real. After some straight-
forward manipulations we find

vskd = JSÎz2 − ufku2, a2skd = −
1

2ufku2
+

z

2ufku2
JS

vskd
.

sC8d

The staggered magnetization is given by

m= S−
1

2NA
o

k
kak

†ak + bk
†bkl

= S−
1

NA
o

k
S−

1

2
+

1

2

z
Îz2 − ufku2

D
−

1

NA
o

k

znBfvskdg
Îz2 − ufku2

, sC9d

and at zero temperature we assumenBfvskdg=0. Computing
the integral gives a magnetization value of 0.24, that is about
50% the Néel value12.
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