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Tunneling through two resonant levels: Fixed points and conductances
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We study point contact tunneling between two leads of a Tomonaga-Luttinger liquid through two degenerate
resonant levels in parallel. This is one of the simplest cases of a quantum junction problem where the Fermi
statistics of the electrons plays a nontrivial role through the Klein factors appearing in bosonization. Using a
mapping to a “generalized Coulomb model” studied in the context of the dissipative Hofstadter model, we find
that any asymmetry in the tunneling amplitudes from the two leads grows at low temperatures, so that
ultimately there is no conductance across the system. For the symmetric case, we identify a nontrivial fixed
point of this model; the conductance at that point is generally different from the conductance through a single
resonant level.
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The calculation of conductances of quantum wires andunneling amplitudes, though in this paper, we concentrate
dots continues to be of major interest, as the sophistication ion ®=0.
the fabrication of semiconductor heterostructures and carbon The bosonized action for the two disconnected wires in
nanotubes increaséstunneling through barriers and quan- Fig. 1 is given in imaginary time By
tum dots are now amenable to sophisticated controls that
allow tunneling through specific levels in quantum dot. On 1 0 o
the theoretical side, several studies of low dimensional sys- S=— f d{f dX(&M¢A)2+f dX((?MQSB)Z]. (1)
tems have probed the effects of strong correlations which g - 0
often lead to novel featurés.

The motivation for this work is that tunneling through two Here ¢, (a=A,B) is related to the electron annihilation op-
resonant levels appears to be the simplest set-up in which th&ator on theath wire asy, ~ 7.6/%¢\2. The Klein factorsz,
Fermi statistics of the electrons that tunnel through the levelgre needed to enforce Fermi statistics, {ep, 7,}=264p.
play a nontrivial role and lead to a nontrivial fixed point. ¢ 74 can be chosen to be two of the Pauli matrices;
Tunneling through a single resonant level has been studie@ance, ! =
earlier, both for an arbitrary strength of the interactions be- Ta” Tar 6

' As done earlier by Nayalkt al.,° we represent the two

it\rﬁg(ragctit Qﬁ Sé'ﬁf:;%?s rc?t?llgr% msvc:ar:/lé?ﬁt%%nge:r?wri s\;\;?iaslt(ics charge states at each of the resonant levels at the origin by
! b ' ' spin 1/2 degrees of freedom. The spin raising and the spin

does not appear to play a role. On the other hand, Nayak . " . S
al® and Chamoret al’ have studied models where Eermi lowering operatorsS™ are the creation and annihilation op-

statistics are important and lead to nontrivial infrared fixed€rators for an electron at the resonant levehe tunneling
points, but they require a junction direewires. between the leads and the resonant levels is described by
In this paper, we study a model of quantum tunneling of _ _ _
spinless electrons between two leads through two parallel — H;=1t3,S; 74€ 42 + t,5S] 75€ %82 + 1,0 S} €l #4112
QZTI?/n:r?otvl\?r:ﬂs ';/:/énclh are degenerate. The set-up is schemati + S e 2 4 h. )
There are several possible experimental realizations of the ,
above schematic diagram. The leads labefeshdB can be Heretg o5 are the amplitudes for the electrons to tunnel to
connected to a single dot, with two energy levélsandE,, ~ the two resonant levels 1 and 2 from the right légdand
where both the levels can be tuned to conduct by applying &1a2a) are the tunneling amplitudes from the left leadWe
gate voltageVg. This scenario is schematically depicted in have been most general here and allowed for asymmetric
Fig. 2, where the two levels of the dot are depicted by linegunnelings. If the tunneling was symmetric between the two
whose widths are, ande,; the widths(which are functions leads, we would havga ,a=t;5 ,5. We have also allowed for
of the tunneling amplitudes of the electrons to hop from thedifferent tunneling amplitudes to the two levetg; ;5 need
leads to the dotare such that both the energy levels havenot be equal td,, 5. Note that in generaly, (i=1,2 and
nonzero overlaps with the energy of the electrons in the leadg=A,B) may be complex; this will take care of the phases
and, hence, both the levels conduct. Another experimentdhat may be generated by a magnetic flux through the ring.
realization of the model is shown in Fig. 3; the leads labeledHowever, for the calculations below, we will assume that all
A andB are connected to two quantum dots labeled 1 and 2het;, are real.
in parallel, with both the dots having been tuned to conduct It is easy to check that the scaling dimensions of all the
through a single level. A magnetic fluk can also be passed tunneling operators in Eq2) are given by 1(2g). So for
through the ring allowing for arbitrary phases in the g<1/2, they are irrelevant and the decoupled fixed point is
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FIG. 1. (Color onling Schematics of a two-lead two resonant LEAD

level multiple tunneling setup.

stable. However, fog>1/2, the decoupled fixed point is
unstable; one would then like to find the stable fixed ge)nt | Vo |
of the theory.

To solve the problem, we need to be able to calculate FIG. 3. (Color onling Possible experimental realization of tun-
correlation functions involving any string of operata@éa.  neling through two resonant levels, using two quantum dots in par-
In the absence of Klein factors, this would be trivial, sinceallel which are tuned to resonance by gate voltages.
the ¢, are just free bosonic fields. The presence of the Klein
factors gives rise to nontrivial phases.

We first study the problem with a single resonant level t
illustrate our method, i.e., we sét,=t,5=0. The partition
function is given by

odrbitrary term in the expansion of the partition function can
be written as

(t )N N(t ) N3N STN1S N2 G Nag Na)
s (d®ah\2. . N, i N AN
Z:fDqﬁAD%e‘s("’A"”B), 3 (g : N, times el ’ N, times
X e?%2... N, timesx e98/'2. .. N, time9. (4)

where S=S+ [drdxH,. On expanding this, terms involving Thjs correlation function is nonzero only whéf=N, and

multiple tunnelings of the electrons will be generated. Fol-y,=N,;: then the spin terms just give unity. So the full parti-
lowing Ref. 3, we can map the problem to a one-dimensionafion function is given by

Coulomb gas of logarithmically interacting charges by clas-

sifying the different tunnelings in terms of the charggs

=m-n, andr;=m+n;. Herem and n, denote the charges z= > (tlA)ZNl(tlB)ZszdTldTZ"'dTN

transferred to the resonant level from the left lead and right N1.N3

lead, respectively. Thugy is the total charge transferred X<eim1¢A/\f§eim2¢A/\f§...ein1¢B/¢§einz¢B/\f§...>, (5)

from the left lead to the right lead in any process, ans
the change in the charge on the resonant level in any procesghere my=+1, 3;jm|=2N;, n;=+1, Z;|n|=2N;. The total
The four different kinds of tunneling events can be classifiechumber of events idl=2N, +2N5. The correlation functions

in terms ofg; andr; as follows: can easily be calculated since the bosons are free. Using
(1) Tunnel from leadA to resonant levelr;=1, g=1.
(2) Tunnel from resonant level to leait r;=-1, g;=-1. (eimi¢A(7'i)/\°§eimj¢A(Tj)/V§> = g(1/2g)mm; In(; = 71)2/75, (6)
(3) Tunnel from leadB to resonant levelr;=1, g;=-1.
(4) Tunnel from resonant level to led#t ri=-1, g;=1. where . is an infrared cutoff, one can see that the resulting

Furthermore, events 1 and 2 carry Klein factorsgf partition function is identical to that of two independent Cou-
while events 3 and 4 carry Klein factors gf. Let N, (where  lomb gases, with charges, and n,. The partition function
k=1,2,3,4 represent the number of each of the above eventsan be written as
in the partition function.

Without Klein factors, the order of the tunnelings does not !
matter; if we also assume that the resonant level can accom- Z= 2 (tu)M(tyg)™ f drdz, - dry
modate any number of electrons, it is easy to see that an A

< H e(l/2g)(mimj+ninj)ln(r, - Tj)z/Tgy (7)
i<j
E;
LEAD 4 LEAD whereN==3;(|m|+|n;)).
4 $(g B For the fermionic mode{with Klein factors present the
E, ordering of the tunnelings becomes important since not more
than one electron can sit on a resonant ley@le are con-

V—v.  V sidering the case of spinless electrons herhis means that
Ve the tunnelings on to and off the resonant level have to alter-
FIG. 2. (Color onling Schematics of a possible experimental Nate in time. In other words, any chain of events must satisfy
realization of tunneling through two resonant levels, using a singldhe following three constraintgi) %;q;=0, (ii) Z;r;=0, and
dot with two energy levels overlapping with the Fermi level in the (iii ) the r; alternate in sign.
leads. The extent of overlap can be tuned by a gate voltage, and the Does the presence of two Klein factors lead to nontrivial
widths e; ande, are functions of the tunneling amplitudes. phases in the partition function? The answer is no; this can
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be understood as follows. First, we note that for any pair ocsomewhat different. One finds the wire gets healed and the
eventsi andj, the exchange of the two Klein factors leads to conductance ig€?/h if g>1, while the wire is cut and the
a phase, conductance is zero §<1°.
4 . We now consider the case of two resonant levels. The

iy = mype A AArISO) (8 main difference from the earlier analysis is that we now have
[Here sigii7) =1 for >0 and -1 forr<0.] Equation(8) can  to consider tunnelings to resonant level 1 and level 2 inde-
easily be checked for the events of type 1-4 listed above. Fdtendently. We defing as the total charge transferred to reso-
instance, 1 followed by 2 gives a phase of 1, whereas Pant level 1,s as the total charge transferred to resonant
followed by 4 gives a phase of —1. Equati@) suggests that l€vel 2, andq; as the charge transferred from leado lead
for one particular ordering of two events, it is useful to in- B- Then the eight possible tunneling events and their charge
troduce a factor whose phase is equal to half the exchang&ssignments are as follows:

, A (2) Tunnel from level 1 to lead\: r;=-1,s=0, g;=-1;
P;j = &(mararsignsr), 9) (3) Tunnel from leadB to level 1:r;=1,5=0, g;=-1;

(4) Tunnel from level 1 to lead: r;=-1,5=0, g =1;
(5) Tunnel from leadA to level 2:r;=0,s=1, g;=1;
(6) Tunnel from level 2 to lead\: r;=0,s=-1, g;=-1;
(7) Tunnel from leadB to level 2:r;=0,s=1, g;=-1;

One can use EdB8) to repeatedly exchange Klein factors so
as to eventually bring pairs of identical Klein factors next to
each other; the product of such a pair is equal to the identity
matrix since each Klein factor is given by a Pauli matrix. In co _ _
this way, one can show that the total phase factor for any (8) Tunnel from level 2 to lead: r;=0, 5=-1, ¢;=1.

term in the partition function can be written purely as a phase Events 1-2 and 5-6 have Klein factoyg, while the oth-
factor, namely, ers have Klein factorgg. Let us again denote the number of

events of typa asN;. It is easy to check that the correlation

P=]] P;. (10)  function of such a set of events will be nonzero onlyif

i< +N5=N,+Ng andN3;+N;=N,+Ng. The partition function for
) " o this model can now be computed in the same way that it was
Now, using the three conditions stated above, it is easy t@ompuyted for the single resonant level case. However, as we
check thaP=1. This is crucially dependent on conditidin)  ¢hail see below, this model will get mapped to a different
which says that; has to alternate. Hence, the phases due t@5,1omb gas model which has chargess, and g; and
the fermionic nature of the electrons do not play a nontrivial,gnirivial phases.
role in this case. So the computation of the correlation func- st a5 before, Fermi statistics implies that for any chain
tions can be done as for the case without the Klein factors. events(i) ,q,=0, (i) =r,=2,5 =0, and(iii ) nonzero val-

To implement the constraint$)—iii), it is more conve- .o ofr; ands alternate in sign.

nient to rewrite_ the partition function in E@7) terms ofr; We now defineR =r,+s;, and note that it can only take the
andg; we obtain values +1. Overall charge neutrality implies tBaR =0, but
7= (1) g, ) d-ari)2 R, does not have to alternate in sigumlike r; in the earlier

model with only one resonant leyeDne finds that the phase

N g . .
can once again be written as

X f dTlde' .. dTNiE[ e(1/4g)(rirj+qiqj)ln(r. - Tj)zlfg. Pij - i(w/4)(qiRj—qui)sigr(r,—rj)' (12)
I (11) However, since theR; do not have to alternate, the total
phaseP in a chain of events in the partition function does not
Note that we do not need the sum ovgrbecause oncg is  always have to be 1; it can sometimes be —1. This can be
fixed, the rest are fixed by the alternation rule. This agreeseen if we consider the chain of events 1, 4, 6, 7 which
with the result in Ref. 3 for the double barrier case, which iscontains the stringga s 7a78=—1. Hence, this model clearly
similar to the case of the single resonant level, as expectedas nontrivial phases. This means that if we want to map it to
The Coulomb gas partition function can then be studieca Coulomb gas problem, we need to worry about phases.
using the renormalization grouRG) method as done in Namely, in the partition function, along with the logarithms
Ref. 3. Let us first discuss the symmetric cage=t;s. For  which appear due to the contraction of the pairspdields,
g>1/2, it was shown in Ref. 3 that the tunneling amplitudeswe also need to include the phases which appear from the
for a double barrier structuréwhich may be expected to Klein factors. This is, in essence, very similar to the problem
have the same behavior as the single resonant level that vé¢udied by Chamoret al,” who considered a junction of
are consideringgrow under the RG transformation, eventu- three wires on a ring containing a magnetic field. Although
ally leading to a “healing” between the leadsandB. We their problem involved three wires, they could decouple the
will demonstrate this below. On the other hand, ger 1/2,  “center of mass” field ¢+ ¢,+ ¢3)/ V3, and reduce it to a
the tunneling amplitudg ,=t;g decreases under RG as men- problem which involves only two bosonic fields but has non-
tioned earlier; the stable fixed point then is the “cut” wire trivial phases due to the Klein factors and the magnetic flux
with zero transmission between the two leads. The condudhrough the ring at the junction.
tance is given bye?/h if the wire is healed, and zero if the Note that the above phase occurs even in the absence of a
wire is cut. For the asymmetric casg # tig, the situation is  magnetic flux through the ring, i.e., even when the tunneling
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amplitudes are real. When the tunnelings are com(@ar to
a flux through the ring we will have extra phases. (H ti) f dndr,... - dr,
Let us write the partition function including the phases as :
follows: < LX) < @laX(m). .. (@lnX(m)y
= Ht-)fdrdr -+ dr, 5(2 L-)
Z=EE<Htia)jd71de”'dTN ( P . T
N Rigi \ i
o
XH Pije(1/4g)(RiRj+Qin)|n(7'i - 7])2/7'(2;, (13) XeXp|: N BZE Li-L; In(r - TJ-)Z/Tg
i<j 1<J
; —i LE L: X L;si - 16
wheret;, can denoté,, t3g, ths OF t,s. Equation(13) looks ”Ta2+,82-<- i X Ljsign(z - 7)) (16)
i<j

very similar to Eq(11) for the model with a single resonance
level except for the alternating constraint and the presence @ft the nth order. Here eaclt; is one of the four vectors
the phase®;;. +K 1 ».

Fortunately, as shown in Ref. 7, the above problem with  For the eight tunneling events described above, let us as-
the phases can be mapped to a “generalized Coulomb gagciate the vectdK ; with events 1 and 5, K, with events 2
model” studied in the context of the dissipative Hofstadterang 6 K., with events 3 and 7, andk with events 4 and 8.
model, provided that {,=t;n=ta andtig=te=tg. This i @ Then we find that for any pair of eventRR+qg;
model of free bosons with a “magnetic field” at the bound-:ZKi.Kj and R -q;R =-2K; X K;. Hence the term in Eq.
ary, and it has been studied in detail in Refs. 8, 9, and 12. (16) matches a similar term in the partition function E#3)

Let us introduce the mOde| Studied in Ref 8 and ShOW thabf the resonant tunne"ng model if we equate
the expansion of its partition function agrees with the expan-
sion of the partition function for the above model with two a 1 B
resonant levels, under a certain identification of the param- m = 2_g azTBz =nN=5 17
eters. They introduced a model for the quantum motion of a
single particle in the presence of a magnetic field, a periodigvheren is some fixed integer. This implies that
potential and dissipation; the model is described by the ac-

tion o= 29 __2@n-1)g*_ (19)
1+(2n-1%% " 1+(2n-1°¢*
S= % j dolalw|,, + Bwe,,]X (o)X, (0) Different values of the integer describe different field theo-

ries for theX; in Eq. (14), but they describe the same reso-
_ _ nant level model. As we have seen earlier, the tunneling term
+ f dtaeX1 X + tge2X(? 4 h c], (14)  isirrelevant ifg<1/2[i.e., inside the circle+B2=a in the
(a,B) pland, and is relevant fog>1/2 (outside the circle
a?+ B%=a). Thus we flow towards the strong tunneling limit
whereu, v=1,2,€;,=—€;,;=1, ande;;=€,,=0. Herea andB ¢ g>1/2.
are related to the dissipation and the magnetic field, respec- \we now begin at the opposite end and study the stability
tively. The potential term is defined in terms of two vectorsuf the infinite tunnelinghealed limit. For t,, tg— < in Eq.
K1=(1,0 andK;=(0,1); these vectors define a rectangular (14 the fieldsX, and X, get pinned at the minima of the
basis for a two-dimensional plane defined By=X;K; potential. These minima form a square lattice with lattice
+XoK,. The quadratic part of the above action leads to thespacing 2r. The fluctuations around these minima are given

propagator by instantons which tunnel from one minimum to another.
The scaling dimension of these fluctuations are given by the
D, = (X, (1) X,(72)) square of the lattice spacin@n units of 27) multiplied by
«.”® Hence the scaling dimension is given by
= -8, In(ry — )47
- 2 2 Cuv n(Tl TZ) c
a“+ 29
Avm= 5. (19
B 1+(2n-1g
+ iﬁﬁeﬂy SigI’(Tl - 7‘2). (15)
a’+ B We see that this is always less than 1 except wgeth and

n=0 or 1. Thus the strong tunneling limit is always unstable,
The unusual part of the above propagator is the second terexcept wherg=1 (which describes noninteracting electrins
or phase term, which exists only in the presence of the seawe shall discuss this special case later. We therefore con-
ond term in the action Eq.14); this is a “magnetic field” clude that healing by resonant tunneling through two levels
term and it is antisymmetric in the indices and v. If we is generically not possible.
now expand the partition function in powers of the perturba- Let us now return, for a moment, to the case of resonant
tionst;, we get terms of the form tunneling through only one resonant levelamely,t,n=t,g
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=0. Then there are no phases as we saw eatrlier. A compari- * W
son between Eq$11) and(16) shows that the parameteds <
and B satisfy IR
a 1 B t [\ !
=o =n. 20 B \ [FPX  \/
A+ B 29" P+ pP (20 /\ ~ o
This implies that >
29 ang?
= =, 0
@ 1+ 4n292’ '8 1+ 4n292 (21) tA 0
In the limit of infinite tunneling, the fieldX; and X, again FIG. 4. Schematic picture of the renormalization group flow in

get pinned at the points of a two-dimensional lattice withthe (ta,tg) plane. An intermediate fixed point is shown on the
lattice spacing z. The scaling dimension of the instanton =tg line.
fluctuations is now given by

2_ .2
_ 29 d(ta—tg) 2(2_}) {2 - 12 26
An—TAHZgz. (22 dinL g (A B)- (26)

The maximum possible value of this occursraet0, when

the scaling dimension is@ Then the infinite tunneling limit  For g>1/2, this implies that any asymmetry in the ampli-
is stable forg>1/2 and unstable fog<1/2. This is the  t,des grows with the length scale. Henceti t2 to begin
result in Ref. 3, except for some modifications in the regionwith, they will become increasingly more unequal. One can

1/4_<g<1/2 (these ari;e because they deal with a doublgnen show from Eqgs(23) that eventually the larger ampli-
barrier system, not a single resonant level, and hence haygge will flow to infinity while the smaller amplitude will

other possibilities of backscatterindeference 3 also shows fioy to zero.[The cancellation between the cubic terms in

that the conductance is given lag?/h if g>1/2. Egs. (23), which allows us to obtain a simple uncoupled
A better _understandmg of the two-resonant level mo_dekgquation forta—t3, may not persist at higher orders, for in-
can be obtained from the RG equations for the theory definediance, if we compute the RG equations to fifth order. In that

in Eq. (14). Using the method described in Ref. 9, one cancase, the asymmetry parameter may not necessarily flow to
derive the RG equations to third order in the tunneling amnfinjty. |

plitudes ty and tg. Using Egs.(17), we find that for any We thus see that ifg>1/2, a nonzero conductance
integern, through two levels in parallel is not a stable situation. If we
dt 1 £t fine tune the tunneling amplitudes so that=t,n=t, and
A A'B — — H H
= (1 - _)tA_ -2 tig=t,z=tg are equal, then the system flows to an intermedi-
dinL 29 4’ ate fixed pointIFP). But if we begin with generic values of
ta andtg which are not equal, then one of them eventually
dtg 1 tBti grows to infinity while the other goes to zero. The conduc-
dinL =1 _2_g BT 4.2’ (23 tance between the two leads is then zero in the long distance
limit. A schematic RG flow diagram in thé,,tg) plane is
where L denotes the length scale. Fge>1/2, there is a  shown in Fig. 4(see also Ref. 12
stable fixed point for nonzero values of thegiven by ti The symmetry between the two lea@shannel is not
:téztﬁ where “protected” by any conservation law in our model. In order
to access the nontrivial fixed point experimentally, one may
12 = 4772<1 _ i) _ (24) therefore need to consider a different set-up in which the two
¢ 29 channels are labeled by spin up and spin dé®mis would

: o . ive rise to a robust symmetry in the absence of a magnetic
The location of this fixed point moves closer to zero, the?eld y y g

closer we get tog=1/2. Sothis third order RG result is
trustworthy for small values of, which occur close ta
=1/2. Since we expect the conductance of the system to b
proportional to the square of the tunneling amplitidehe o0 method We first “unfold” the left and right half-

amplitude is weak we find that lines to full lines, and define the electron fieldg(x, 7),
e, & 1 wherea=A, B and - <x<. The incoming and outgoing
G~ PL F(l - 5) (25 fermion fields are given by,(0—,7) and,(0+,7), respec-
tively. The creation and annihilation operators for the two
Note the nonlinear dependence gt this point, similar to ~ resonant levelgwhich lie atx=0) are defined asgl(7) and
the nonlinear dependence obtained in Ref. 7. d'(n, wherei=1,2. Interms of these fields, the action for
Equations(23) imply that g=1 is given by

For the noninteracting case given by 1, we can com-
ute the conductance in terms of the parametgrand tg
efined in the previous paragraph. We use the equation of
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. * . ) A comparison between the symmetric one-resonant level
S=| dr| 2 dfod + dx{ Po(0, 410 model(t;p=t;5 # 0, andt,n=t,5=0) and the symmetric two-
a resonant level moddt;,=t;g=t,n=t,5 # 0) shows that foig

1 —00

slightly larger than 1/2, the conductance in the former case
* 5()()%: ta(‘/’;di * diT‘pa)H : (27) (where only one level contributgss larger than in the latter
’ case(where both levels contributeThis probably happens
The equations of motion for this system are because, in the two-resonant level model, the phase factors
) P; in Eq. (13) lead to destructive interference between dif-
[9:+id]ya(x,7) + 5(X)ta2 di(7) =0, ferent series of tunneling events.

It is straightforward to extend the above analysis to the
case in whicht;p=t;5 andt,p=t,g are complex. A more dif-

0(7) + 2 ta1h5(0,7) = 0. (28)  ficult problem would be to study the general two-resonant
a level model in which the four tunneling amplitudgsare all

Here 4,(0,7) =[y,(0+,7+y,(0—,7]/2. We integrate the different from each other and are complé€Such a generali-
first equation in(28) from x=0- tox=0+, and then Fourier zation would allow one to examine the case in which there is

transform in time to obtain a magnetic flux through the center of the system shown in
Fig. 2) However, it does not seem possible at present to
i[/a(0 +,0) = ¥o(0 = ,@)] + 1,2, di(w) =0, study such a general model using the known Coulomb gas

i

approach which, as mentioned above, requires one to assume
thattja=t,n andt g=tsp.
wd (@) + > ta,(0,0) = 0. (29) To summarize, we have shown that a Tomonaga-Luttinger
a liquid tunneling through two resonant levels has a nontrivial
fixed point at long distances i§>1/2 and the tunneling
amplitudes from the two leads are equal. If the two ampli-
tudes are not equal, then the model flows to a different fixed
limit w— 0 (dc conductande we find thatSya=-Ssg=—(ta FOint tirr: Whicz ort1e of the tunne_zllir:lg amplitudes atnd,bthtere-
_2)/(2+12), and Sag=Ssac ~2tats/ (2+12). The conduc- ore, the conductance is zero. Thus an asymmetry between
B/ VA B . SoAE the two leads is a relevant perturbation which grows at long
tance is given bye?/h times |Sygl*. Thus the conductance istances. This behavior is similar in spirit to that of the
depends on the precise valuestolndtg if g=1. one-impurity two-channel Kondo model in which an asym-

The noninteracting case may t_)e exceptional In that th_?‘netry between the couplings of the two channels to a spin-
conductance is a continuous function of the tunneling ampll-ll2 magnetic impurity is a relevant perturbation which

tudest, andt. For the interacting casg 1 (and larger than 465 the system to a fixed point that is very different from
1/2), we saw above that the symmetric modl=tg) and o+ of the symmetric modét

the asymmetric mode(t, # tg) have different fixed points,

and the conductance at large length scales can take only two We would like to thank Sourin Das and Igor Klebanov for
different values, i.e., a finite value given in E@5) and zero, useful suggestions. D.S. acknowledges financial support
respectively. from a Homi Bhabha Fellowship.
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