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We study point contact tunneling between two leads of a Tomonaga-Luttinger liquid through two degenerate
resonant levels in parallel. This is one of the simplest cases of a quantum junction problem where the Fermi
statistics of the electrons plays a nontrivial role through the Klein factors appearing in bosonization. Using a
mapping to a “generalized Coulomb model” studied in the context of the dissipative Hofstadter model, we find
that any asymmetry in the tunneling amplitudes from the two leads grows at low temperatures, so that
ultimately there is no conductance across the system. For the symmetric case, we identify a nontrivial fixed
point of this model; the conductance at that point is generally different from the conductance through a single
resonant level.
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The calculation of conductances of quantum wires and
dots continues to be of major interest, as the sophistication in
the fabrication of semiconductor heterostructures and carbon
nanotubes increases.1 Tunneling through barriers and quan-
tum dots are now amenable to sophisticated controls that
allow tunneling through specific levels in quantum dot. On
the theoretical side, several studies of low dimensional sys-
tems have probed the effects of strong correlations which
often lead to novel features.2

The motivation for this work is that tunneling through two
resonant levels appears to be the simplest set-up in which the
Fermi statistics of the electrons that tunnel through the levels
play a nontrivial role and lead to a nontrivial fixed point.
Tunneling through a single resonant level has been studied
earlier, both for an arbitrary strength of the interactions be-
tween the electrons using bosonization3 and for weak
interactions;4,5 in that problem, however, the Fermi statistics
does not appear to play a role. On the other hand, Nayaket
al.6 and Chamonet al.7 have studied models where Fermi
statistics are important and lead to nontrivial infrared fixed
points, but they require a junction ofthreewires.

In this paper, we study a model of quantum tunneling of
spinless electrons between two leads through two parallel
resonant levels which are degenerate. The set-up is schemati-
cally shown in Fig. 1.

There are several possible experimental realizations of the
above schematic diagram. The leads labelledA andB can be
connected to a single dot, with two energy levelsE1 andE2,
where both the levels can be tuned to conduct by applying a
gate voltageVG. This scenario is schematically depicted in
Fig. 2, where the two levels of the dot are depicted by lines
whose widths aree1 ande2; the widths(which are functions
of the tunneling amplitudes of the electrons to hop from the
leads to the dot) are such that both the energy levels have
nonzero overlaps with the energy of the electrons in the leads
and, hence, both the levels conduct. Another experimental
realization of the model is shown in Fig. 3; the leads labeled
A andB are connected to two quantum dots labeled 1 and 2
in parallel, with both the dots having been tuned to conduct
through a single level. A magnetic fluxF can also be passed
through the ring allowing for arbitrary phases in the

tunneling amplitudes, though in this paper, we concentrate
on F=0.

The bosonized action for the two disconnected wires in
Fig. 1 is given in imaginary time by2

S0 =
1

2g
E dtFE

−`

0

dxs]mfAd2 +E
0

`

dxs]mfBd2G . s1d

Herefa sa=A,Bd is related to the electron annihilation op-
erator on theath wire asca,hae

ifa/Î2. The Klein factorsha
are needed to enforce Fermi statistics, i.e.,hha,hbj=2dab.
The ha’s can be chosen to be two of the Pauli matrices;
henceha

†=ha.
As done earlier by Nayaket al.,6 we represent the two

charge states at each of the resonant levels at the origin by
spin 1/2 degrees of freedom. The spin raising and the spin
lowering operatorsSi

± are the creation and annihilation op-
erators for an electron at the resonant leveli. The tunneling
between the leads and the resonant levels is described by

Ht = t1AS1
+hAeifA/Î2 + t1BS1

+hBeifB/Î2 + t2AS2
+hAeifA/Î2

+ t2BS2
+hBeifB/Î2 + h.c. s2d

Here ts1B,2Bd are the amplitudes for the electrons to tunnel to
the two resonant levels 1 and 2 from the right leadB, and
ts1A,2Ad are the tunneling amplitudes from the left leadA. We
have been most general here and allowed for asymmetric
tunnelings. If the tunneling was symmetric between the two
leads, we would havet1A,2A= t1B,2B. We have also allowed for
different tunneling amplitudes to the two levels;t1A,1B need
not be equal tot2A,2B. Note that in general,tia (i =1,2 and
a=A,B) may be complex; this will take care of the phases
that may be generated by a magnetic flux through the ring.
However, for the calculations below, we will assume that all
the tia are real.

It is easy to check that the scaling dimensions of all the
tunneling operators in Eq.(2) are given by 1/s2gd. So for
g,1/2, they are irrelevant and the decoupled fixed point is
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stable. However, forg.1/2, the decoupled fixed point is
unstable; one would then like to find the stable fixed point(s)
of the theory.

To solve the problem, we need to be able to calculate
correlation functions involving any string of operatorseifa.
In the absence of Klein factors, this would be trivial, since
thefa are just free bosonic fields. The presence of the Klein
factors gives rise to nontrivial phases.

We first study the problem with a single resonant level to
illustrate our method, i.e., we sett2A= t2B=0. The partition
function is given by

Z =E DfADfBe−SsfA,fBd, s3d

whereS=S0+edtdxHt. On expanding this, terms involving
multiple tunnelings of the electrons will be generated. Fol-
lowing Ref. 3, we can map the problem to a one-dimensional
Coulomb gas of logarithmically interacting charges by clas-
sifying the different tunnelings in terms of the chargesqi
=mi −ni and r i =mi +ni. Here mi and ni denote the charges
transferred to the resonant level from the left lead and right
lead, respectively. Thus,qi is the total charge transferred
from the left lead to the right lead in any process, andr i is
the change in the charge on the resonant level in any process.
The four different kinds of tunneling events can be classified
in terms ofqi and r i as follows:

(1) Tunnel from leadA to resonant level:r i =1, qi =1.
(2) Tunnel from resonant level to leadA: r i =−1, qi =−1.
(3) Tunnel from leadB to resonant level:r i =1, qi =−1.
(4) Tunnel from resonant level to leadB: r i =−1, qi =1.
Furthermore, events 1 and 2 carry Klein factors ofhA,

while events 3 and 4 carry Klein factors ofhB. Let Nk (where
k=1,2,3,4) represent the number of each of the above events
in the partition function.

Without Klein factors, the order of the tunnelings does not
matter; if we also assume that the resonant level can accom-
modate any number of electrons, it is easy to see that an

arbitrary term in the expansion of the partition function can
be written as

st1AdN1+N2st1BdN3+N4kS1
+N1S1

−N2S1
+N3S1

−N4l

3keifA/Î2
¯ N1 times3 e−ifA/Î2

¯ N2 times

3 eifB/Î2
¯ N3 times3 e−ifB/Î2

¯ N4 timesl. s4d

This correlation function is nonzero only whenN1=N2 and
N3=N4; then the spin terms just give unity. So the full parti-
tion function is given by

Z = o
N1,N3

st1Ad2N1st1Bd2N3E dt1dt2 ¯ dtN

3keim1fA/Î2eim2fA/Î2
¯ ein1fB/Î2ein2fB/Î2

¯ l, s5d

where mi = ±1, oiumiu=2N1, ni = ±1, oiuniu=2N3. The total
number of events isN=2N1+2N3. The correlation functions
can easily be calculated since the bosons are free. Using

keimifAstid/Î2eimjfAst jd/Î2l = es1/2gdmimj lnsti − t jd
2/tc

2
, s6d

wheretc is an infrared cutoff, one can see that the resulting
partition function is identical to that of two independent Cou-
lomb gases, with chargesmi and ni. The partition function
can be written as

Z = o
mi,ni

st1Adumiust1Bduniu E dt1dt2 ¯ dtN

3p
i, j

es1/2gdsmimj+ninjdlnsti − t jd
2/tc

2
, s7d

whereN=oisumiu+ uniud.
For the fermionic model(with Klein factors present), the

ordering of the tunnelings becomes important since not more
than one electron can sit on a resonant level.(We are con-
sidering the case of spinless electrons here.) This means that
the tunnelings on to and off the resonant level have to alter-
nate in time. In other words, any chain of events must satisfy
the following three constraints:(i) oiqi =0, (ii ) oir i =0, and
(iii ) the r i alternate in sign.

Does the presence of two Klein factors lead to nontrivial
phases in the partition function? The answer is no; this can

FIG. 1. (Color online) Schematics of a two-lead two resonant
level multiple tunneling setup.

FIG. 2. (Color online) Schematics of a possible experimental
realization of tunneling through two resonant levels, using a single
dot with two energy levels overlapping with the Fermi level in the
leads. The extent of overlap can be tuned by a gate voltage, and the
widths e1 ande2 are functions of the tunneling amplitudes.

FIG. 3. (Color online) Possible experimental realization of tun-
neling through two resonant levels, using two quantum dots in par-
allel which are tuned to resonance by gate voltages.
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be understood as follows. First, we note that for any pair of
eventsi and j , the exchange of the two Klein factors leads to
a phase,

hih j = h jhie
isp/2dsqir j−qjridsignsti−t jd. s8d

[Here signstd=1 for t.0 and −1 fort,0.] Equation(8) can
easily be checked for the events of type 1–4 listed above. For
instance, 1 followed by 2 gives a phase of 1, whereas 1
followed by 4 gives a phase of −1. Equation(8) suggests that
for one particular ordering of two events, it is useful to in-
troduce a factor whose phase is equal to half the exchange
phase given in that equation, namely,

Pij = eisp/4dsqir j−qjridsignsti−t jd. s9d

One can use Eq.(8) to repeatedly exchange Klein factors so
as to eventually bring pairs of identical Klein factors next to
each other; the product of such a pair is equal to the identity
matrix since each Klein factor is given by a Pauli matrix. In
this way, one can show that the total phase factor for any
term in the partition function can be written purely as a phase
factor, namely,

P = p
i, j

Pij . s10d

Now, using the three conditions stated above, it is easy to
check thatP=1. This is crucially dependent on condition(iii )
which says thatr i has to alternate. Hence, the phases due to
the fermionic nature of the electrons do not play a nontrivial
role in this case. So the computation of the correlation func-
tions can be done as for the case without the Klein factors.

To implement the constraints(i)–(iii ), it is more conve-
nient to rewrite the partition function in Eq.(7) terms ofr i
andqi; we obtain

Z = o
N

o
qi

st1Ads1+qirid/2st1Bds1−qirid/2

3E dt1dt2 ¯ dtNp
i, j

es1/4gdsrir j+qiqjdlnsti − t jd
2/tc

2
.

s11d

Note that we do not need the sum overr i, because oncer1 is
fixed, the rest are fixed by the alternation rule. This agrees
with the result in Ref. 3 for the double barrier case, which is
similar to the case of the single resonant level, as expected.

The Coulomb gas partition function can then be studied
using the renormalization group(RG) method as done in
Ref. 3. Let us first discuss the symmetric caset1A= t1B. For
g.1/2, it was shown in Ref. 3 that the tunneling amplitudes
for a double barrier structure(which may be expected to
have the same behavior as the single resonant level that we
are considering) grow under the RG transformation, eventu-
ally leading to a “healing” between the leadsA and B. We
will demonstrate this below. On the other hand, forg,1/2,
the tunneling amplitudet1A= t1B decreases under RG as men-
tioned earlier; the stable fixed point then is the “cut” wire
with zero transmission between the two leads. The conduc-
tance is given byge2/h if the wire is healed, and zero if the
wire is cut. For the asymmetric caset1AÞ t1B, the situation is

somewhat different. One finds the wire gets healed and the
conductance isge2/h if g.1, while the wire is cut and the
conductance is zero ifg,13.

We now consider the case of two resonant levels. The
main difference from the earlier analysis is that we now have
to consider tunnelings to resonant level 1 and level 2 inde-
pendently. We definer i as the total charge transferred to reso-
nant level 1,si as the total charge transferred to resonant
level 2, andqi as the charge transferred from leadA to lead
B. Then the eight possible tunneling events and their charge
assignments are as follows:

(1) Tunnel from leadA to level 1: r i =1, si =0, qi =1;
(2) Tunnel from level 1 to leadA: r i =−1, si =0, qi =−1;
(3) Tunnel from leadB to level 1: r i =1, si =0, qi =−1;
(4) Tunnel from level 1 to leadB: r i =−1, si =0, qi =1;
(5) Tunnel from leadA to level 2: r i =0, si =1, qi =1;
(6) Tunnel from level 2 to leadA: r i =0, si =−1, qi =−1;
(7) Tunnel from leadB to level 2: r i =0, si =1, qi =−1;
(8) Tunnel from level 2 to leadB: r i =0, si =−1, qi =1.
Events 1–2 and 5–6 have Klein factorshA, while the oth-

ers have Klein factorshB. Let us again denote the number of
events of typei asNi. It is easy to check that the correlation
function of such a set of events will be nonzero only ifN1
+N5=N2+N6 andN3+N7=N4+N8. The partition function for
this model can now be computed in the same way that it was
computed for the single resonant level case. However, as we
shall see below, this model will get mapped to a different
Coulomb gas model which has chargesr i, si, and qi and
nontrivial phases.

Just as before, Fermi statistics implies that for any chain
of events,(i) oiqi =0, (ii ) oir i =oisi =0, and(iii ) nonzero val-
ues ofr i andsi alternate in sign.

We now defineRi =r i +si, and note that it can only take the
values ±1. Overall charge neutrality implies thatoiRi =0, but
Ri does not have to alternate in sign(unlike r i in the earlier
model with only one resonant level). One finds that the phase
can once again be written as

Pij = eisp/4dsqiRj−qjRidsignsti−t jd. s12d

However, since theRi do not have to alternate, the total
phaseP in a chain of events in the partition function does not
always have to be 1; it can sometimes be −1. This can be
seen if we consider the chain of events 1, 4, 6, 7 which
contains the stringhAhBhAhB=−1. Hence, this model clearly
has nontrivial phases. This means that if we want to map it to
a Coulomb gas problem, we need to worry about phases.
Namely, in the partition function, along with the logarithms
which appear due to the contraction of the pairs off fields,
we also need to include the phases which appear from the
Klein factors. This is, in essence, very similar to the problem
studied by Chamonet al.,7 who considered a junction of
three wires on a ring containing a magnetic field. Although
their problem involved three wires, they could decouple the
“center of mass” fieldsf1+f2+f3d /Î3, and reduce it to a
problem which involves only two bosonic fields but has non-
trivial phases due to the Klein factors and the magnetic flux
through the ring at the junction.

Note that the above phase occurs even in the absence of a
magnetic flux through the ring, i.e., even when the tunneling
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amplitudes are real. When the tunnelings are complex(due to
a flux through the ring), we will have extra phases.

Let us write the partition function including the phases as
follows:

Z = o
N

o
Ri,qi

Sp
i

tiaD E dt1dt2 ¯ dtN

3p
i, j

Pije
s1/4gdsRiRj+qiqjdlnsti − t jd

2/tc
2
, s13d

wheretia can denotet1A, t1B, t2A or t2B. Equation(13) looks
very similar to Eq.(11) for the model with a single resonance
level except for the alternating constraint and the presence of
the phasesPij .

Fortunately, as shown in Ref. 7, the above problem with
the phases can be mapped to a “generalized Coulomb gas
model” studied in the context of the dissipative Hofstadter
model, provided that t1A= t2A= tA and t1B= t2B= tB. This is a
model of free bosons with a “magnetic field” at the bound-
ary, and it has been studied in detail in Refs. 8, 9, and 12.

Let us introduce the model studied in Ref. 8 and show that
the expansion of its partition function agrees with the expan-
sion of the partition function for the above model with two
resonant levels, under a certain identification of the param-
eters. They introduced a model for the quantum motion of a
single particle in the presence of a magnetic field, a periodic
potential and dissipation; the model is described by the ac-
tion

S=
1

2
E dvfauvudmn + bvemngXmsvdXnsvd

+E dtftAeiK 1·Xstd + tBeiK 2·Xstd + h.c.g, s14d

wherem, n=1,2,e12=−e21=1, ande11=e22=0. Herea andb
are related to the dissipation and the magnetic field, respec-
tively. The potential term is defined in terms of two vectors
K 1=s1,0d andK 2=s0,1d; these vectors define a rectangular
basis for a two-dimensional plane defined byX =X1K 1
+X2K 2. The quadratic part of the above action leads to the
propagator

Dmn = kXmst1dXnst2dl

= −
a

a2 + b2dmn lnst1 − t2d2/tc
2

+ ip
b

a2 + b2emn signst1 − t2d. s15d

The unusual part of the above propagator is the second term
or phase term, which exists only in the presence of the sec-
ond term in the action Eq.(14); this is a “magnetic field”
term and it is antisymmetric in the indicesm and n. If we
now expand the partition function in powers of the perturba-
tions ti, we get terms of the form

Sp
i

tiD E dt1dt2 . . . ¯ dtn

, eiL 1·Xst1d , eiL 2·Xst2d
¯ keiL n·Xstndl

= Sp
i

tiD E dt1dt2 ¯ dtndSo
i

L iD
3expF a

a2 + b2o
i, j

L i ·L j lnsti − t jd2/tc
2

− ip
b

a2 + b2o
i, j

L i 3 L j signsti − t jdG s16d

at the nth order. Here eachL i is one of the four vectors
±K 1,2.

For the eight tunneling events described above, let us as-
sociate the vectorK 1 with events 1 and 5, −K 1 with events 2
and 6,K 2 with events 3 and 7, and −K 2 with events 4 and 8.
Then we find that for any pair of events,RiRj +qiqj
=2K i ·K j andqiRj −qjRi =−2K i 3K j. Hence the term in Eq.
(16) matches a similar term in the partition function Eq.(13)
of the resonant tunneling model if we equate

a

a2 + b2 =
1

2g
,

b

a2 + b2 = n −
1

2
, s17d

wheren is some fixed integer. This implies that

a =
2g

1 + s2n − 1d2g2 , b =
2s2n − 1dg2

1 + s2n − 1d2g2 . s18d

Different values of the integern describe different field theo-
ries for theXi in Eq. (14), but they describe the same reso-
nant level model. As we have seen earlier, the tunneling term
is irrelevant ifg,1/2 [i.e., inside the circlea2+b2=a in the
sa ,bd plane], and is relevant forg.1/2 (outside the circle
a2+b2=a). Thus we flow towards the strong tunneling limit
if g.1/2.

We now begin at the opposite end and study the stability
of the infinite tunneling(healed) limit. For tA, tB→` in Eq.
(14), the fieldsX1 and X2 get pinned at the minima of the
potential. These minima form a square lattice with lattice
spacing 2p. The fluctuations around these minima are given
by instantons which tunnel from one minimum to another.8

The scaling dimension of these fluctuations are given by the
square of the lattice spacing(in units of 2p) multiplied by
a.7,8 Hence the scaling dimension is given by

Dn =
2g

1 + s2n − 1d2g2 . s19d

We see that this is always less than 1 except wheng=1 and
n=0 or 1. Thus the strong tunneling limit is always unstable,
except wheng=1 (which describes noninteracting electrons);
we shall discuss this special case later. We therefore con-
clude that healing by resonant tunneling through two levels
is generically not possible.

Let us now return, for a moment, to the case of resonant
tunneling through only one resonant level,3 namely,t2A= t2B
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=0. Then there are no phases as we saw earlier. A compari-
son between Eqs.(11) and(16) shows that the parametersa
andb satisfy

a

a2 + b2 =
1

2g
,

b

a2 + b2 = n. s20d

This implies that

a =
2g

1 + 4n2g2 , b =
4ng2

1 + 4n2g2 . s21d

In the limit of infinite tunneling, the fieldsX1 andX2 again
get pinned at the points of a two-dimensional lattice with
lattice spacing 2p. The scaling dimension of the instanton
fluctuations is now given by

Dn =
2g

1 + 4n2g2 . s22d

The maximum possible value of this occurs atn=0, when
the scaling dimension is 2g. Then the infinite tunneling limit
is stable forg.1/2 and unstable forg,1/2. This is the
result in Ref. 3, except for some modifications in the region
1/4,g,1/2 (these arise because they deal with a double
barrier system, not a single resonant level, and hence have
other possibilities of backscattering). Reference 3 also shows
that the conductance is given byge2/h if g.1/2.

A better understanding of the two-resonant level model
can be obtained from the RG equations for the theory defined
in Eq. (14). Using the method described in Ref. 9, one can
derive the RG equations to third order in the tunneling am-
plitudes tA and tB. Using Eqs.(17), we find that for any
integern,

dtA
d ln L

= S1 −
1

2g
DtA −

tAtB
2

4p2 ,

dtB
d ln L

= S1 −
1

2g
DtB −

tBtA
2

4p2 , s23d

where L denotes the length scale. Forg.1/2, there is a
stable fixed point for nonzero values of theta given by tA

2

= tB
2 = tc

2 where

tc
2 = 4p2S1 −

1

2g
D . s24d

The location of this fixed point moves closer to zero, the
closer we get tog=1/2. So this third order RG result is
trustworthy for small values oftc which occur close tog
=1/2. Since we expect the conductance of the system to be
proportional to the square of the tunneling amplitude(if the
amplitude is weak), we find that

G ,
e2

h
tc
2 ,

e2

h
S1 −

1

2g
D . s25d

Note the nonlinear dependence ong at this point, similar to
the nonlinear dependence obtained in Ref. 7.

Equations(23) imply that

dstA
2 − tB

2d
d ln L

= S2 −
1

g
DstA

2 − tB
2d. s26d

For g.1/2, this implies that any asymmetry in the ampli-
tudes grows with the length scale. Hence, iftA

2 Þ tB
2 to begin

with, they will become increasingly more unequal. One can
then show from Eqs.(23) that eventually the larger ampli-
tude will flow to infinity while the smaller amplitude will
flow to zero.[The cancellation between the cubic terms in
Eqs. (23), which allows us to obtain a simple uncoupled
equation fortA

2 − tB
2, may not persist at higher orders, for in-

stance, if we compute the RG equations to fifth order. In that
case, the asymmetry parameter may not necessarily flow to
infinity.]

We thus see that ifg.1/2, a nonzero conductance
through two levels in parallel is not a stable situation. If we
fine tune the tunneling amplitudes so thatt1A= t2A= tA and
t1B= t2B= tB are equal, then the system flows to an intermedi-
ate fixed point(IFP). But if we begin with generic values of
tA and tB which are not equal, then one of them eventually
grows to infinity while the other goes to zero. The conduc-
tance between the two leads is then zero in the long distance
limit. A schematic RG flow diagram in thestA,tBd plane is
shown in Fig. 4(see also Ref. 12).

The symmetry between the two leads(channels) is not
“protected” by any conservation law in our model. In order
to access the nontrivial fixed point experimentally, one may
therefore need to consider a different set-up in which the two
channels are labeled by spin up and spin down;10 this would
give rise to a robust symmetry in the absence of a magnetic
field.

For the noninteracting case given byg=1, we can com-
pute the conductance in terms of the parameterstA and tB
defined in the previous paragraph. We use the equation of
motion method.6 We first “unfold” the left and right half-
lines to full lines, and define the electron fieldscasx,td,
wherea=A, B and −̀ ,x,`. The incoming and outgoing
fermion fields are given bycas0− ,td andcas0+ ,td, respec-
tively. The creation and annihilation operators for the two
resonant levels(which lie at x=0) are defined asdistd and
di

†std, where i =1,2. In terms of these fields, the action for
g=1 is given by

FIG. 4. Schematic picture of the renormalization group flow in
the stA,tBd plane. An intermediate fixed point is shown on thetA
= tB line.
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S=E dtFo
i

di
†]tdi +E

−`

`

dxHo
a

ca
†s]t + i]xdca

+ dsxdo
a,i

tasca
†di + di

†cadJG . s27d

The equations of motion for this system are

f]t + i]xgcasx,td + dsxdtao
i

distd = 0,

]tdistd + o
a

tacas0,td = 0. s28d

Here cas0,td;fcas0+ ,td+cas0− ,tdg /2. We integrate the
first equation in(28) from x=0− to x=0+, and then Fourier
transform in time to obtain

ifcas0 + ,vd − cas0 − ,vdg + tao
i

disvd = 0,

vdisvd + o
a

tacas0,vd = 0. s29d

We now eliminate the operatorsdisvd and relate the outgoing
fermion fields to the incoming fermion fields through a scat-
tering matrixS, namely,cas0+ ,vd=obSabcbs0− ,vd. In the
limit v→0 (dc conductance), we find thatSAA=−SBB=−stA

2

− tB
2d / stA

2 + tB
2d, and SAB=SBA=−2tAtB/ stA

2 + tB
2d. The conduc-

tance is given bye2/h times uSABu2. Thus the conductance
depends on the precise values oftA and tB if g=1.

The noninteracting case may be exceptional in that the
conductance is a continuous function of the tunneling ampli-
tudestA andtB. For the interacting casegÞ1 (and larger than
1/2), we saw above that the symmetric modelstA= tBd and
the asymmetric modelstAÞ tBd have different fixed points,
and the conductance at large length scales can take only two
different values, i.e., a finite value given in Eq.(25) and zero,
respectively.

A comparison between the symmetric one-resonant level
model(t1A= t1BÞ0, andt2A= t2B=0) and the symmetric two-
resonant level modelst1A= t1B= t2A= t2BÞ0d shows that forg
slightly larger than 1/2, the conductance in the former case
(where only one level contributes) is larger than in the latter
case(where both levels contribute). This probably happens
because, in the two-resonant level model, the phase factors
Pij in Eq. (13) lead to destructive interference between dif-
ferent series of tunneling events.

It is straightforward to extend the above analysis to the
case in whicht1A= t1B and t2A= t2B are complex. A more dif-
ficult problem would be to study the general two-resonant
level model in which the four tunneling amplitudestia are all
different from each other and are complex.(Such a generali-
zation would allow one to examine the case in which there is
a magnetic flux through the center of the system shown in
Fig. 2.) However, it does not seem possible at present to
study such a general model using the known Coulomb gas
approach which, as mentioned above, requires one to assume
that t1A= t2A and t1B= t2B.

To summarize, we have shown that a Tomonaga-Luttinger
liquid tunneling through two resonant levels has a nontrivial
fixed point at long distances ifg.1/2 and the tunneling
amplitudes from the two leads are equal. If the two ampli-
tudes are not equal, then the model flows to a different fixed
point in which one of the tunneling amplitudes and, there-
fore, the conductance is zero. Thus an asymmetry between
the two leads is a relevant perturbation which grows at long
distances. This behavior is similar in spirit to that of the
one-impurity two-channel Kondo model in which an asym-
metry between the couplings of the two channels to a spin-
1/2 magnetic impurity is a relevant perturbation which
drives the system to a fixed point that is very different from
that of the symmetric model.11
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