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We investigate different aspects of the absolute photonic band gap(PBG) formation in two-dimensional
photonic structures consisting of rods covered with a thin dielectric film. Specifically, triangular and honey-
comb lattices in both complementary arrangements, i.e., air rods drilled in silicon matrix and silicon rods in air,
are studied. We consider that the rods are formed of a dielectric core(silicon or air) surrounded by a cladding
layer of silicon dioxidesSiO2d, silicon nitride sSi3N4d, or germaniumsGed. Such photonic lattices present
absolute photonic band gaps, and we study the evolution of these gaps as functions of the cladding material and
thickness. Our results show that in the case of air rods in dielectric media the existence of dielectric cladding
reduces the absolute gap width and may cause complete closure of the gap if thick layers are considered. For
the case of dielectric rods in air, however, the existence of a cladding layer can be advantageous and larger
absolute PBG’s can be achieved.
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I. INTRODUCTION

Photonic crystals(PC’s) provide an effective way to con-
trol and manipulate electromagnetic radiation. They can af-
fect the properties of photons in much the same way as a
semiconductor affects the properties of electrons.1 One of the
main features of PC’s is that they can be designed to exhibit
an absolute photonic band gap: a frequency region where
electromagnetic waves are prohibited to propagate in the
crystal, regardless of the polarization or propagating direc-
tion. This may bring about some unusual physical phenom-
ena, such as light localization2 and inhibited spontaneous
emission.3 Applications of PC’s in semiconductor lasers,4 op-
tical fibers,5 single-mode waveguides,6 etc. have been pro-
posed. However, three-dimensional(3D) photonic crystals
are still very difficult to fabricate at optical length scales.
Two-dimensional PC’s are easier to fabricate than 3D ones,
especially for the technologically important near-IR spec-
trum. Much attention has therefore been paid to 2D PC’s
which have been mainly investigated for triangular,7 square,8

and hexagonal9 lattices with various cross sections of the
dielectric scatterers.10–12

Unlike the numerous studies of 2D PC’s with diverse ar-
rangements and scatterers, to our knowledge few authors
have studied how the existence of an interfacial(or cladding)
layer affects the properties of photonic gaps in 2D crystals.
This interfacial layer could be the unwanted result of the
fabrication process itself. For example, a promising tech-
nique for the fabrication of 2D PC’s for the near-IR spectrum
is the electrochemical etching of silicon in acid solutions.13

Macroporous silicon formed by this technique exhibits uni-
form pores with a diameter of less than 1mm and an aspect
ratio (the ratio of pore length to pore diameter) of several
hundreds of micrometers. After etching, the macropores are
covered by a thin microporous layer14 that can be treated as
an interfacial layer between the pores(air rods) and back-

ground medium. The effective refractive index of this inter-
facial layer is less than the refractive index of silicon and
depends on the sample characteristics and etching condi-
tions. The existence of such an interfacial layer will influence
the properties of photonic gaps in 2D photonic crystal. Very
recently, Pan and Li15 have studied the effects of the etching
interfacial layers on the absolute photonic band gap(PBG) in
2D triangular structure. However, they did not consider the
inverse structure—namely, dielectric rods in air. It is well
known that the honeycomb lattice formed of dielectric rods
in air does exhibit absolute PBG’s. These absolute PBG’s
arise for filling fractions far from the close-packed condition
and therefore greatly favor the fabrication of 2D photonic
crystals. In addition, when the aim is the fabrication of semi-
conductor active devices, the use of dielectric rods in air
instead of holes in dielectric media is advantageous.16 An
important loss mechanism in these active devices is the non-
radiative surface recombination at the sidewalls of the active
media. A common strategy for reducing the surface recom-
bination is passivating the semiconductor surfaces by a thin
dielectric film. Therefore the interfacial layer in this case is a
requirement and it should be intentionally formed.

In this context, we think that it is also important to study
how the existence of some dielectric cladding affects the
PBG formation in 2D photonic crystals of both complemen-
tary arrangements: air rods in dielectric media and dielectric
rods in air. The aim of the present work is therefore to ana-
lyze the absolute PBG formation for triangular and honey-
comb photonic structures consisting either of air rods(holes)
in silicon or silicon rods in air. The rod surface, in the case of
silicon rods, and hole walls, in the case of air rods, are cov-
ered with an interfacial layer of varied thickness. The rod
and the surrounding interfacial layer can be treated as a
single rod having a core and cladding regions. We considered
three different materials for the dielectric cladding: silicon
dioxide sSiO2d, silicon nitride sSi3N4d, or germaniumsGed.
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They have been chosen for the following reasons. The SiO2
and Si3N4 are commonly used as passivating materials in the
silicon industry. A fully established technique for growing
SiO2 or Si3N4 layers exists, that permits fine control of the
layer thickness. Besides, the refractive indexes of SiO2 and
Si3N4 are less than that of silicon and they cover in part the
refractive-index range of microporous silicon mentioned
above. Thereby, the results considering etched pores “cov-
ered” with the SiO2 or Si3N4 layer will be also valid for the
case of pores walls covered with microporous silicon. Ger-
manium has been mainly chosen because it has a refractive
index greater than that of silicon. Thus we are not restricted
to study only lower-refractive-index materials because depo-
sition of the Ge interfacial layer is also possible, for instance
by plasma-enhanced chemical vapor deposition technique.

II. LATTICE DESCRIPTION AND NUMERICAL
METHOD

The structures under consideration are depicted in Fig. 1,
where(a) is a triangular lattice of inner rods and outer inter-
facial (shell) layer and(b) is the honeycomb lattice of inner
rods and outer shell layer. Parameters«r, «s, and«b denote
the dielectric constants of the inner rod, shell layer, and
background medium, respectively. When air holes in silicon
are considered the dielectric constants of the inner rods and
background medium are fixed to be«r =1 and «b=12.096
(silicon at wavelengthl=1.55mm).17 For silicon rods in air,
the values of the parameters are reversed:«r =12.096 and
«b=1. The shell-layer dielectric constant«s for the three dif-
ferent materials considered here is:(i) «s=3.9 for SiO2, (ii )
«s=7.5 for Si3N4, and (iii ) «s=16 for Ge.17 The dielectric
constant of the shell layer is therefore fixed to be less than
the dielectric constant of silicon for the first two cases and
greater than the dielectric constant of silicon for the third
case. Parametera is the distance between the centers of two
nearest-neighbor rods. For the triangular structure, the lattice
constant is equal toa, whereas for the honeycomb structure
the lattice constant is equal toÎ3a. Parametersr1 and r2
denote the radius of the inner rods and the outer radius of the
shell layer, respectively. The thickness of the shell layer is
thenr2−r1. We prefer to describe the shell-layer thickness by
introducing a new parameterb, defined as the ratio between

r2−r1 and the outer radiusr2, i.e., b=sr2−r1d / r2. Parameter
b can range between 0 and 1. Note thatb=0 yields rods
without shell layer, whileb=1 yields rods made of the shell
material only, i.e., there are no inner rods.

The photonic bands of 2D photonic crystals were calcu-
lated using the finite difference time domain(FDTD)
method, also known as the ordersNd method.18 In a 2D pho-
tonic crystal, the electromagnetic wave is decoupled into two
polarization modes according to whether the electric field
(TM modes) or the magnetic field(TE modes) is parallel to
the rods. The bands for both polarization modes were inde-
pendently calculated along theG-X-J-G edges of the irreduc-
ible Brillouin zone. The computational domain for the FDTD
calculations consisted of one lattice unit cell, repeated infi-
nitely by applying Bloch periodic boundary conditions. The
lattice unit cell was divided up into 64364 discretization
grid points. The dielectric constant at each grid point was
defined by taking the average of the dielectric constant over
10310 subgrid points, ensuring in this way better
convergence.18 The convergence and numerical stability of
the calculations were tested by increasing the grid size, i.e.,
using a grid of up to 1003100 points(the number of subgrid
points was kept the same). The deviations in the band fre-
quencies were found to be less than 1% for the lowest ten
photonic bands. As a comparison, several tests with smaller
grid size, e.g., 32332 points, did not meet the 1% accuracy
condition, showing band deviations in the order of 3%. Thus
the results for the gap widths reported here(with 64364
grid size) are believed to be accurate to within at least 1% of
their true values.

III. RESULTS AND DISCUSSION

A. Triangular lattice

We begin our discussion with the triangular structure con-
sisting of air holes drilled in silicon[Fig. 1(a)]. First, we
consider the case whenb=0, i.e., there is no interfacial layer.
The triangular structure of circular air rods is known to have
the greatest absolute PBG among the studied 2D photonic
crystals.19 Figure 2(a) shows the photonic band structure for
the optimum rod radiusr1=0.48a, for which the absolute
PBG reaches its maximum normalized width ofDv /vg
=17.7%. Here, the normalized gap width is expressed as the
ratio in percent between the frequency widthDv of the gap
and the frequencyvg at the middle of the gap. The absolute
PBG is formed from the overlap between the TE1-2(i.e., the
gap between the first and second photonic bands) and the
TM2-3 polarization gaps. Now let us consider that a shell
layer exists between the air rods and the background dielec-
tric, i.e., b.0. Figure 2(b) shows the dispersion curves for
r1=0.432a and b=0.1 considering that the shell layer is
made of SiO2 s«s=3.9d. For these geometrical parameters the
outer radiusr2 of the rods covered with a shell layer is ex-
actly r2=0.48a and it is equal to the optimum rod radius for
the shell-less case. We should expect that the bands decay in
frequency because of the reduced air filling fraction. Indeed,
the photonic bands tend to bunch towards lower frequencies.
This effect is more pronounced for the higher bands, which
finally leads to a decrease in the absolute PBG width. The

FIG. 1. Schematic representation of the studied structures:(a)
triangular lattice of circular rods,(b) honeycomb lattice of circular
rods. The rods are covered by a shell layer with dielectric constant
«s different from the dielectric constant of the rods«r and that of the
background media«b. The lattice unit cell is indicated by a dashed
line.
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absolute PBG width in this case isDv /vg=13.7%.
The photonic gap map in the case of rods covered with

SiO2 shell layer of thicknessb=0.1 is shown in Fig. 3, where
the dimensionless frequencies are plotted against the rod ra-
dius r1/a. If we compare this map with the well-known gap
map for the ideal triangular structure[for example, see Fig. 4
(Appendix C) from Ref. 1] we can see that the gaps lie at
lower frequencies. The shift of gap positions towards lower
values of the inner rod radiusr1 accounts for the given defi-
nition of b. The outer radiusr2 of the rods with shell layer
can be calculated fromr2=r1/ s1−bd. It can be seen that the
TE1-2 polarization gap is not closed for rod radii above the
close-packed condition. Here, the close-packed condition is
defined as the value of outer radiusr2 for which the rods
covered with a shell layer begin to touch. This is alwaysr2
=0.5a. The value of the inner rod radiusr1 (air rod radius)
for which close packing occurs will then depend on the shell
layer thicknessb. For example, forb=0.1 the rods begin to
touch whenr1=0.45a. The TE1-2 polarization gap is still
opened forr1.0.45a because the triangular lattice remains

connected through the overlapping shell layers of the neigh-
bor rods. The TM2-3 polarization gap has a smaller width
than for the ideal case leading to narrower absolute photonic
gap. The largest gap-midgap ratio for this structure is
Dv /vg=15.2% reached forr1=0.438a.

Note that forr1=0.438a andb=0.1, the thickness of the
shell layer is approximately 0.049a, so the outer diameterr2
of the air rods, “covered” with SiO2 is r2=0.487a. It seems
that the maximum absolute PBG occurs for almost the same
rod diameter as when there is no shell layer. This is because
for lower values ofb and for shell layers of low dielectric
constant, for instance SiO2, the effective dielectric constant
remains almost unchanged. However, for higher values ofb
and for shell layers of high dielectric constant, the effects of
the interfacial layer on the absolute PBG cannot be trivially
deduced. The dependence of the absolute PBG on the thick-
nessb and the dielectric material«s of the shell layer can be
traced from the next two figures. In Fig. 4 the normalized
width of the absolute PBG is plotted against the radiusr1 of
the air rods for several values of the parameterb and for the
three shell materials considered here. The case without shell
layer sb=0d is also shown for the purposes of comparison.
For the case of SiO2 shell layer, it can be seen that as the
thickness of the layer increases, the position of maximum
absolute PBG shifts towards lower values of the rod radius
r1. The absolute PBG reaches its maximum for values ofr1
below the close-packed condition(indicated by a short ver-
tical bar). Unlike the inner rod radiusr1, the value of outer
rod radiusr2 which gives the largest absolute PBG remains
close to 0.48a, as for the shell-less case. Figure 5 shows the
dependence of the maximum gap width on the shell layer
thicknessb. For the case of SiO2 layer, the maximum width
of the absolute PBG decreases for values ofb.0, and for
b.0.33 the absolute gap completely disappears. For greater
values ofb, the air rods have a thick SiO2 cladding, so the
structure resembles now a triangular structure formed mostly
of SiO2 rods embedded in silicon. This structure does not
exhibit an absolute PBG because of the low dielectric con-
trast«b/«s.

The overall behavior of the absolute PBG in the case of
Si3N4 shell layer s«s=7.5d is similar to the previous case.

FIG. 2. Photonic bands for(a) triangular structure of air holes in silicon atr1=0.48a and (b) triangular structure of air holes in silicon
with an interstitial layer of SiO2 s«s=3.9d at r1=0.432a and b=0.1. The solid and dashed lines denote TE and TM polarization modes,
respectively. The picture insets depict the structures under consideration and the irreducible Brillouin zone for the calculations. The absolute
PBG is indicated by shaded area.

FIG. 3. Photonic gap map(normalized frequencyva/2pc ver-
sus relative radiusr1/a) for the triangular structure of air rods with
a SiO2 shell layer of thicknessb=0.1. The absolute PBG has a
maximum width of Dv /vg=15.2% for r1=0.438a (indicated by
arrow).
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The existence of a shell layer always leads to a smaller ab-
solute gap(Fig. 5). However, the absolute PBG width de-
creases more rapidly and, for values ofb.0.25, it is almost
zero. The position of the maximum absolute PBG is no
longer as predictable as it was for the SiO2 shell layer. For
example, in the case of the SiO2 shell layer, it was found that
the absolute PBG reached its maximum width for outer ra-
dius r2 near 0.48a, regardless of the shell layer thicknessb.
In the case of Si3N4, however, the absolute PBG does not
follow the same rule. Forb=0.1, the absolute PBG has a
maximum whenr1=0.454a, so the outer radius should be
r2=0.504a. The outer radiusr2 becomes greater than the

close-packed condition and the shell layers of adjacent rods
should therefore overlap. The critical value of the shell layer
thicknessb, for which the maximum absolute PBG width
appears at the close-packed condition, isb=0.09. For
b.0.09, the absolute PBG decreases sharply because the
optimum outer radiusr2 already approaches the filling-space
condition. The filling-space condition is defined as the radius
for which the rods entirely fill the area of the unit cell. For
the triangular structure, this isr2=0.577a. For shell layer
thickness greater than 0.09, the optimum gap is reached
when the rods actually overlap. Therefore the photonic struc-
ture consisting of Si3N4-clad air rods embedded in silicon
background becomes a structure comprising air rods embed-
ded in Si3N4 background, instead of silicon. Because of the
low dielectric contrast, the triangular lattice of air rods in
Si3N4 presents a very small absolute PBG width of about
Dv /vg=2.8%.

The behavior of the absolute PBG drastically changes
when the air rods are covered with Ges«s=16d shell layer.
The dielectric constant of the shell layer is now greater than
that of background material. It should be expected that the
existence of an interstitial layer would improve the absolute
PBG because of higher dielectric contrasts«s/«rd at the air
rod interface. Indeed, the absolute PBG has greater magni-
tudes than in the shell-less casesb=0d (Fig. 5). The gap
width increases as the shell layer gets thicker. For example,
for b=0.2 the maximum absolute PBG width isDv /vg
=26.2% atr1=0.49a. However, the optimum absolute PBG
always happens to occur above the close-packed condition.
Moreover, whenb.0.15 it occurs for rod radii above the
filling-space condition, so the structure we actually investi-
gate is a triangular structure of air rods embedded in Ge
background matrix. For radiusr1 far from the close-packed
condition, the absolute PBG width is always less than in the
shell-less case.

Having discussed the triangular structure of air rods cov-
ered with a shell layer and embedded in silicon, we shall
now study the inverse arrangement, i.e., silicon rods covered
with a shell layer and embedded in air. For the shell-less
silicon rodssb=0d, it is well known that the triangular struc-
ture does not exhibit any absolute PBG because of disrupted
lattice connectivity. Neither does the existence of a shell
layer sb.0d contribute to the opening of an absolute PBG.
We can use the heuristic in Ref. 1 , which holds that the
connectivity of high-« regions is conducive to TE gaps, and
that isolated islands of high-« material lead to TM gaps.
Then there is no reason for the absolute PBG opening be-
cause the shell layer does not form any connected structure.
We think it would be interesting to see how the shell layer
affects the properties of the first TM polarization gap(TM1-
2), which is aboutDv /vg=48.9% for the shell-less triangu-
lar structure. Figure 6 shows how the maximum width of the
TM1-2 gap depends on the shell layer thicknessb for the
three dielectric materials considered. We can see that if the
dielectric constant of the shell material is less than that of
silicon, the gap diminishes when the thickness of the shell
layer increases. For germanium, whose dielectric constant is
greater than that of silicon, the reverse is true: the gap widens
asb increases. Forb=1, the silicon rods covered with a shell

FIG. 4. WidthDv /vg of the absolute PBG as a function of the
rod radiusr1 for the triangular structures of air rods covered with
SiO2, Si3N4, or Ge shell layers of different thicknessesb. The ver-
tical bar marker indicates the close-packed condition, which is
r1cp=0.5, 0.475, 0.45, and 0.4 forb=0, 0.05, 0.1, and 0.2,
respectively.

FIG. 5. Maximum width of the absolute PBG as a function of
the shell-layer thicknessb for the triangular lattice of air rods “cov-
ered” with SiO2 s«s=3.9d, Si3N4 s«s=7.5d, or Ges«s=16d shell layer.
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layer are transformed into rods made of the corresponding
shell material. Therefore for the triangular structure of di-
electric rods with a shell layer, the width of the TM1-2 po-
larization gap always ranges between its values forb=0
(shell-less rods) andb=1 (rods entirely replaced by the shell
layer).

These results suggest that the gap behavior is governed by
the dielectric contrast at the shell layer–air interface. Cover-
ing the rods with materials of low dielectric constant will
reduce the width of the gap, while high-dielectric claddings
will improve the gap size. However, for the triangular struc-
ture of air rods in dielectric media, this improvement is fic-
titious because it appears for infeasible rod diameters. Any
interfacial layers for this arrangement should be therefore
avoided.

B. Honeycomb lattice

In this section, we focus on the honeycomb lattice con-
sisting of rods covered with a shell layer. In the ideal case
(shell-less rods), the honeycomb arrangement of air holes in
dielectric media exhibits a narrow absolute PBG due to the
weak overlap between TE5-6 and TM6-7 polarization gaps
(see, for example, Fig. 2 of Ref. 9). In the particular case of
air rods embedded in silicon background, this absolute PBG
has an optimum width ofDv /vg=4.4% for r1=0.484a,
which is very close to the close-packed condition. The evo-
lution of this absolute PBG, when an interfacial layer is
present between the air rods and the background silicon, is
rather strange. Figure 7 shows its optimal width as a function
of the shell layer thickness for the three shell materials con-
sidered. It can be seen that shell layers of lower dielectric
constants, i.e., SiO2 and Si3N4, yield an improvement in the
absolute PBG size, whereas shell layers of higher dielectric
constants, i.e., Ge, reduce the gap width. This gap behavior is
just opposite to the already discussed one for the triangular
lattice of air rods in silicon. We notice that the observed
improvement in the absolute PBG size always occurs for rod
radii above the close-packed conditionsr2=0.5ad. Near the
close-packed condition, the honeycomb lattice of air rods in

dielectric resembles a triangular structure with lattice con-
stantÎ3a formed by dielectric rods of noncircular cross sec-
tion and embedded in air.9 Therefore for rod radii above the
close-packed condition we actually examine the triangular
structure comprising noncircular dielectric rods in air. The
unfeasible rod diameters and the really small width of the
absolute PBG make the honeycomb lattice of air rods in
dielectric worthless for practical realization.

The most prominent feature of the honeycomb structure is
that, in the case of dielectric rods embedded in air, it exhibits
an absolute PBG, so in a sense it is complementary to the
triangular structure discussed in the previous section. Also,
the absolute PBG occurs at filling fractions that are far from
the close-packed condition, which makes the fabrication of
such 2D photonic crystals less formidable. In Fig. 8(a) we
plot the dispersion relation for the shell-less honeycomb lat-
tice at r1=0.247a. An absolute photonic gap opens up from
the overlap between TE5-6 and TM7-8 polarization gaps. For
the given rod radius, this absolute PBG has a maximum nor-
malized width ofDv /vg=10%. Let us cover now the silicon
rods by SiO2 of thicknessb=0.1, so that the outer radiusr2
of the rods with a shell layer remainsr2=0.247a. Figure 8(b)
plots the dispersion relation for this case and we can see that
the bands go to higher frequencies since the effective dielec-
tric constant is reduced. The gap widthsDv /vg=9.4%d is
slightly decreased compared to the ideal(shell-less) struc-
ture. Figure 9 shows the photonic gap map for this modified
honeycomb lattice considering that the rods are covered with
SiO2 layer of thicknessb=0.1. As for the shell-less honey-
comb lattice(see, for example, Fig. 4 from Ref. 9), three
absolute photonic gaps are present, which appear and have
their maxima for different rod dimensions. The highest ab-
solute PBG is formed from the overlapping TE5-6 and
TM7-8 polarization gaps. Hereafter, to avoid ambiguity and
repetition, we will refer to this absolute PBG as the G1 gap.
The lowest one is due to the overlap between TE3-4 and
TM6-7 gaps. It will be referred to as the G2 gap. Finally, the
overlapping TE5-6 and TM6-7 polarization gaps give rise to
a small absolute PBG, which will be referred to as the G3
gap. In addition to these three absolute PBG a weak overlap

FIG. 6. Maximum width of the TM1-2 polarization gap as a
function of the shell layer thicknessb for triangular structure of
silicon rods in air.

FIG. 7. Optimal width of the absolute PBG as a function of the
shell layer thicknessb for the honeycomb lattice of air rods embed-
ded in silicon.
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can be seen between the TE1-2 and TM2-3 polarization gaps
(Fig. 9), which is not observed in the gap map of the ideal
honeycomb structure. However, the gap size of this new ab-
solute PBG is too small to be used, so we do not concern
ourselves with this band-gap region. The largest absolute
photonic gap for the present case is the G1 gap, which
reaches its maximum width ofDv /vg=9.6% for r1
=0.234a. Therefore it seems that the existence of an interfa-
cial layer surrounding the silicon rods reduces the size of the
largest absolute PBG for the studied structure. But, we will
show that the interfacial layer could favor the other absolute
PBG’s, increasing their initially smaller magnitudes, and
could even give rise to larger gaps compared to the shell-less
structure. We have studied how the three substantial absolute
PBG’s( G1, G2, and G3) for the structure shown in Fig. 1(b)
evolve with respect to the material and thickness of the shell
layer covering the silicon rods.

Figure 10 shows the normalized widths of these absolute
PBG’s as functions of the rod radiusr1 for three different
thicknesses of the shell layer made of SiO2. Again, the case
without shell layersb=0d is also shown for purposes of com-
parison. The G1 gap decreases slightly with increasing the
shell layer thicknessb, whereas the other two gaps G2 and

G3 are more strongly affected. This is particularly due to the
variations in the filling fraction for different radiir1. From
the definition of parameterb, according to whether the inner
rod radiusr1 is small or high, the shell layer will be thinner
or thicker for fixed value ofb. Since the G2 and G3 gaps
arise for higher values ofr1, the introduced amount of the
shell material is greater than in case of smallerr1, so these
gaps appear to be more sensitive to changes inb. Neverthe-
less, the overall tendency for the G1 and G2 gaps is the
same. These gaps shrink when a shell layer is present,
whereas the G3 gap widens. It should be noted that in the
present case the close-packed conditionsr2=0.5ad is never
reached.

FIG. 9. Photonic gap map for the honeycomb lattice of silicon
rods in air covered with SiO2 layer of thicknessb=0.1. Three ab-
solute PBG’s are observed, denoted as G1, G2, and G3 absolute
gaps. The arrow indicates the positionr1=0.234a of the largest
absolute PBG with a maximum width ofDv /vg=9.6%.

FIG. 10. Normalized widths of the three absolute PBG’s(G1,
G2, and G3) for the honeycomb lattice plotted against the inner rod
radiusr1 for three shell layer thicknessesb=0.05, 0.10, and 0.20.
The considered shell layer material is SiO2 s«s=3.9d. The shell-less
casesb=0d is also shown.

FIG. 8. Photonic band structures for the honeycomb lattice of silicon rods in air:(a) shell-less rods with radiusr1=0.247a and(b) rods
with inner radiusr1=0.222a (outer radiusr2=0.247a) covered by SiO2 with thicknessb=0.1. The solid and dashed lines represent the TE
and TM modes, respectively. The frequency range of the absolute PBG is indicated by a shaded patch.
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Almost the same happens in the evolution of the gaps
when a shell layer of Si3N4 is considered(Fig. 11). We will
discuss here only the main differences in gap behavior with
respect to the previous case. The G1 and G2 absolute gaps
are much less affected by the thickness of the shell layer and
decrease slightly asb increases. The increase in the G3 gap,
however, is lower than in the case of SiO2 shell layer. The
maximum width reached forb=0.2 is Dv /vg=5.3%, com-
pared toDv /vg=6.1% in the case of SiO2.

If the shell layer is made of Ge, whose dielectric constant
is greater than that of silicon rods, the absolute PBG’s evolve
in a completely different way(Fig. 12). For example, the G3
gap is disappointingly small and for values ofb.0.24 it
becomes fully suppressed. Fortunately, the G1 gap, which
was the largest one for the shell-less honeycomb lattice, is
not altered at all by the thickness of the shell layer. Even at
b=0.2, its widthDv /vg=9.6% remains almost the same as
for the shell-less case. Moreover, the G2 gap now shows a
relative width Dv /vg=12.2% and so becomes the largest
gap for the structure. It lies at lower frequencies and so it
becomes more robust to imperfections generated by the fab-
rication. Whenb increases, the width of the G2 gap ap-
proaches its value for the case of honeycomb lattice compris-
ing germanium rods rather than silicon rods in air. Our
structure consisting of silicon rods with Ge coating is there-
fore mainly seen as a structure formed of germanium rods,
even for thin interfacial layers. This claim is justified in the
Fig. 13, which plots the optimum widths of the absolute gaps
against the shell layer thickness. The lowersb=0d and upper
sb=1d limits of the parameterb represent the two special
cases, i.e., shell-less structure and structure where the rods
are made of the shell material, respectively. When SiO2 and
Si3N4 layers are considered, the width of the G1 gap de-
creases, but for the Si3N4 layer the gap width does not fall

below 2.4% atb=1. Indeed, this is the width of the G1 gap
for the honeycomb lattice of Si3N4 rods embedded in air.
Because of the low dielectric contrast, this lattice does not
exhibit any other absolute PBG’s. The honeycomb structure
consisting of SiO2 rods in air has no absolute PBG’s for the
same reason. In the case of Ge rods in air, the width of the
G1 gap is about 9%, so the G1 gap for silicon rods with Ge

FIG. 11. Normalized widths of the three absolute PBG’s(G1,
G2, and G3) for the honeycomb lattice plotted against the rod ra-
dius r1 for three shell layer thicknessesb. The shell layer material
studied is Si3N4 s«s=7.5d.

FIG. 12. Normalized widths of the G1, G2, and G3 absolute
gaps for the honeycomb lattice plotted against the rod radiusr1 for
three shell layer thicknessesb. The shell layer material studied is
Ges«s=16d.

FIG. 13. Optimal widths of the G1, G2, and G3 absolute pho-
tonic gaps as functions of shell layer thicknessb for the three di-
electric materials considered SiO2, Si3N4, and Ge. The lowerb=0
and upperb=1 limits represent the shell-less honeycomb lattice
with rods made of silicon or of the shell dielectric, respectively.
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cladding stands near this value asb increases. The G2 gap
behaves in a similar way, i.e., it increases towards the value
Dv /vg=15.6%, which is the gap width for the special case
of Ge rods embedded in air.

To conclude, it should be pointed out that the honeycomb
arrangement of dielectric rods is suitable for the fabrication
of PBG materials because the largest absolute gaps are at-
tainable for reasonable rod diameters, which avoids the
tricky achievement of thin dielectric voids. In addition, our
results provide further flexibility in the realization of these
materials. For example, in certain cases we may not be able
to obtain pillars(rods) of the required diameter or of the
particular material we need, because of technological limita-
tions. However, we are enabled to grow the rods of materials
with lower dielectric constants, for which a well-developed
technology exists. The rods can then be covered with the
required dielectric by some depositing technique, thus
achieving almost the same gap properties as those of the
ideal shell-less structure.

IV. CONCLUSIONS

We have performed a detailed quantitative analysis of the
absolute PBG’s in 2D triangular and honeycomb lattices con-
sidering that an interfacial layer is present between the rods
and the background matrix. Both complementary structures,
i.e., air rods in a dielectric and dielectric rods in air have
been studied. The properties of the photonic gaps are
strongly affected by the thickness and the dielectric constant
of this interfacial layer. The following general conclusions
about the absolute PBG evolution can be drawn:

(i) For structures consisting of air rods in a dielectric
background, the existence of an interfacial layer always en-
tails a reduction in the absolute PBG width and should there-
fore be avoided. The decrease in the gap width depends

mainly on whether the dielectric constant of the interfacial
layer is greater or less than that of the background matrix.
Higher dielectric constant of the shell layer entails gaps
which are practically unattainable. If for any reasons an in-
terfacial layer is desired, small thicknesses and low dielectric
constants should be chosen because the gap properties will
be only slightly affected.

(ii ) For structures formed of dielectric rods in air, in-
terfacial layers with lower dielectric constants yield gaps
with smaller widths than in the shell-less case. The rate of
decrease is as high as the dielectric constant of the shell
material is low. However, shell layers whose dielectric con-
stants are higher than that of the rod material lead to larger
absolute photonic gaps. The gap size is increased up to val-
ues that are typical for the structure consisting of rods made
only of the shell dielectric.

The interfacial layer can be treated as hollow ring-shaped
rods included at the center of each basic rod of the lattice
unit cell. However, we notice that the concept of including
an interfacial layer into the basic unit cell does not deal at all
with the symmetry reduction approach because this inclusion
does not modify the symmetry properties of the lattice or
those of the scatterers. The gap behavior is ruled by the
dielectric constant and the filling fraction of the included
material and reflects the induced changes in the effective
dielectric constant of the crystal. Although we have consid-
ered here a few 2D lattices, nevertheless, the given approach
is not essential and can be applied to other 2D as well 3D
photonic structures.
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